
Article

A method for measuring the real part of the weak
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Abstract: A method for measuring the real part of the weak value of spin for non-zero rest mass atoms 
is presented using a variant on the original Stern-Gerlach apparatus. The experiment utilises helium 
in the metastable 23S1 state. A full simulation for observing the real part of the weak value using the 
impulsive approximation has been carried out and it predicts a displacement of the beam, ∆w, that 
is within the resolution of our detector. It also indicates how this shift might be increased. The full 
analysis also indicated that there is a limit, L, to the applicability of the weak value approximation 
and has been evaluated for our apparatus. This experiment has the possibility to be expanded to 
utilise other nobal gas species such as neon and argon in the 3P2 metastable state, but we shall restrict 
this paper to metastable helium only.
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0. Introduction11

Weak values are, in fact, "Transition Probability Amplitudes", (TPA), which played a significant12

role in the formulation of the quantum field theory by Dirac [1] and Schwinger [2]. Moreover the13

weak value of momentum defines a local velocity which is the Bohm momentum [3,4]. This notion14

was first used by Landau [5] and London [6] in connection with superfluids. As these values were15

not eigenvalues of the system and could not be measured in the usual way, they were not pursued.16

However Hirschfelder [7] later realised their importance and discussed them in terms of what he17

called "subobservables". He also noted their connection with Bohm’s proposals.18

The subject returned to prominence when Aharonov, Albert and Vaidman (AAV) [8,9] suggested19

an experimental procedure to measure the weak value of spin for a particle. While "TPA and20

subobservable" were the original names for these variables and are still used by some authors [10],21

"weak" has become popular in this context. Even though we believe "weak" is misleading and can22

cause confusion with the electroweak force, we will continue to use it in the rest of this paper.23

Weak values are complex numbers, in contrast to eigenvalues that are only real. It must be clearly24

stated they cannot be identified as an eigenvalue. The experiment described here will show how the25

real part of the weak value of spin may be observed. Since weak values are TPAs, weak measurement26

can reveal more subtle details of quantum processes.27

Measuring an eigenvalue uses a von Neumann (strong) measurement [11]. This is a single stage28

process whereby the wave function is said to "collapse". In contrast, the weak measurement process29

has three stages; pre-selection, the weak stage followed by a strong measurement of a post-selected30

variable.31

The real parts of the weak values for the polarisation and momentum of photons [12–14] have32

already been observed and measured. It should be noted that the theory of weak measurement was33

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 April 2018                   doi:10.20944/preprints201804.0373.v1

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Entropy 2018, 20, 566; doi:10.3390/e20080566

http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
http://dx.doi.org/10.20944/preprints201804.0373.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/e20080566


2 of 9

originally cast in the non-relativistic regime using Schrödinger’s equation (Schrödinger particles),34

whereas photons obey quantised Maxwell’s equations and are relativistic. In addition to the photon35

case, the real and imaginary parts of the weak value of spin for non-relativistic neutrons have been36

measured [15]; the purpose of this paper is to show how weak measurements can be made using37

non-relativistic atoms. We are following a scheme outlined in AAV and in Duck, Stevenson and38

Sudarshan [16] which is a variant of the original Stern-Gerlach (S-G) apparatus [17]. A simulation has39

been carried out giving firm predictions of what should be observed within the scope of the parameters40

set by our experiment.41

We will first present an overview of the experiment giving the main features of the method42

used. Then we will present the simulation in full and show there is a limit to the weak measurement43

approximation. Finally we will give a more detailed description of our method and report the44

parameters, such as the speed of the particles, that are required to be able to produce a final design45

and realisation of the experiment.46

1. Simulation using the impulsive approximation47

1.1. Weak measurement of spin overview48

The weak measurement process allows for the detection of very small phase shifts. By preparing49

the system in a particular pre- and post-selected quantum state, it is possible to amplify these phase50

shifts, and from this amplified signal, it is possible to extract the desired observable of interest.51

As a consequence of this effect, the phrase "weak value amplification" is commonly used in the52

literature. The amplified shifts are relatively small therefore great care has to be taken in designing53

and constructing the experiment.54

The three stages of the weak measurement regime for spin are as follows. Atoms are first55

pre-selected in a desired spin state with the spin axis set at a pre-selected angle θ in the x-z plane, see56

Figure 1. The atoms then propagate through the weak stage which in our case is a S-G magnet with a57

field gradient that is very small along the z-axis.58

.

Figure 1. Schematic view of the experimental technique. Helium atoms in the mS = +1 metastable
state enter from the left, with spin vector angle θ. The atoms pass through the weak and strong S-G
magnets before reaching the detector. The displacement due to the weak measurement process is ∆w,
which is a function of the chosen pre-selected spin state. For simplicity the mS = 0 spin state is not
shown.

The strong stage consists of a second S-G magnet, with its inhomogeneous magnetic field aligned59

along the x-axis. Note the axes of the weak and strong stage magnets are at right angles with each60

other. The field of the strong stage magnet is large enough to clearly separate the spin eigenstates61

on this axis. It is this separation that enables us to detect the small phase shift, proportional to ∆w,62
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induced by the weak stage as shown in the Figure 1. The size of ∆w depends on various features of63

the apparatus. Furthermore, since this shift is still relatively small, we must maximise it by suitably64

adjusting the experimental parameters as will be discussed below.65

We have chosen to work initially with helium, excited into a metastable 23S1 triplet state, mS =66

±1, 0. In the excitation process a metastable 21S0 singlet state is also produced. This state passes67

though the experiment unaffected and is useful as a fiducial showing the mid-point of the distributions.68

We also plan to extend the experiment and use other gases such as neon and argon both in the 3P269

metastable state (mJ = ±2,±1, 0). To confirm production of these metastable states and observe their70

spin and angular momentum eigenstates experimentally we used a strong S-G magnet with a field71

gradient of 100 T/m, see Figure 2 and Figure 3.72

Figure 2. Distribution of the helium atoms in the metastable triplet state 23S1 with mS = ±1, 0, (He*).
The central peak is larger because of the double contribution from the mS = 0 and the singlet state
21S0.

Figure 3. The left hand picture shows the five angular momentum states, mJ = ±2,±1, 0, of the
metastable form of argon, (Ar*), and the right hand picture the identical states of the metastable form
of neon (Ne*). The states are clearly delineated indicating that they would be good candidates for
measuring weak values of angular momentum.

Metastable helium in the 23S1 state has several advantages:73

1. Its magnetic dipole moment, µ, has a magnitude of two Bohr magnetons, µ = 2µB, [18,19]. This74

maximises the displacements produced by the S-G magnets.75

2. It has a lifetime of approximately 8000 s [20], being unable to decay via electric dipole transitions76

and the Pauli exclusion principle i.e. its decay is doubly forbidden. This lifetime is clearly large enough77

for the atoms to pass through all the stages of the apparatus before decaying.78
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3. Metastable helium atoms have an internal energy of 19.6 eV, the highest of any metastable noble79

gas species. Upon collision with any surface it will easily ionise and the emitted electron is observed80

with a multichannel plate detector (MCP).81

All of these characteristics will enhance the overall signal strength and sensitivity of the82

experiment. The simulation given below is based on using this form of metastable helium and83

preselecting the mS = +1 state.84

1.2. Simulation85

The simulation is divided into three parts; the initial conditions, the application of the interaction86

Hamiltonian in the weak stage using the impulsive approximation [21] and finally the action of the87

strong Stern-Gerlach magnet. This approximation neglects the free evolution of the atoms in the88

weak magnet, only the interaction Hamiltonian is considered. It is also important to note that the89

inhomogeneous magnetic field produced by the S-G magnet in the weak stage is maximal along the90

z-axis, but negligible along the other two axes. The analysis follows the scheme outlined in [16] but in91

our case we are using the spin-1 rather than spin-1/2.92

1.3. Initial conditions93

The helium gas is initially prepared as a pulsed beam and is described by the normalised Gaussian94

wave packet at time t = 095

ψ(z, 0) =
1(

2πσ2
) 1

4
exp

(
− z2

4σ2

)
, (1)

where σ is the width in position space. The width of the atomic beam is set by passing it through96

an orifice/skimmer at the entrance of the weak stage. We describe the spinor in terms of polar angles θ97

and φ in the following form [22],98

ξi(θ, φ, 0) =


1
2 (1 + sin(θ))e−iφ

1√
2

cos(θ)
1
2 (1− sin(θ))eiφ

 =

 c+
c0

c−

 . (2)

The initial orientation of the spin vector angle θ can be seen in Figure 1, where the azimuthal99

angle φ (not shown), is the corresponding angle in the x-y plane. We set φ = 0 and only consider100

variations of the angle θ. Therefore the initial wave function prior to entering the weak stage is101

Ψi(z, 0) = ψ(z, 0)ξi(θ). (3)

1.4. Simulation of the weak stage process102

The atoms then traverse the weak stage magnet, where the wave function evolves under the103

interaction Hamiltonian, weakly coupling the spin to the centre-of-mass wave function. The interaction104

Hamiltonian is given by105

HI = µ (ŝ.B) , (4)

where µ is the magnetic moment, ŝ are the spin-1 matrices ŝ = [ŝx, ŝy, ŝz], and the magnetic field106

B = [Bx, By, Bz]. The inhomogeneous field in the z-direction is maximal Bz = ∂B
∂z z. Explicitly the107

interaction Hamiltonian is then,108

HI = µ

 Bz 0 0
0 0 0
0 0 −Bz

 . (5)
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At this point Schrödinger’s equation is used to calculate the state of the system at a later time ∆t,109

which is the time that the atom spends in the weak field. The resultant wave function is now given by110

Ψw(z, ∆t) = exp

(
− i

h̄

ˆ ∆t

0
HIdt

)
ψ(z, 0)ξi(θ). (6)

Following the process of the weak measurement regime as described in [23], the pre-selected111

wave function is then post-selected via the strong stage into the spin-up, m = +1 state in the x-basis112

ξ†
f =

[
1
2

1√
2

1
2

]
. Giving the final wave function113

Ψf(z, ∆t) = ξ†
f exp

(
−i

µ∆t ∂B
∂z zŝz

h̄

)
ψ(z, 0)ξi(θ). (7)

The explicit wave function at the exit of the weak stage is now114

Ψf(z, ∆t) = ψ(z, 0)

1
2

exp

− i
µ∆t ∂B

∂z z
h̄

c+ +
1√
2

c0 +
1
2

exp

i
µ∆t ∂B

∂z z
h̄

c−

 . (8)

1.5. Obtaining the weak value of spin115

The exponential (phase shift) in Equation 7 can be Taylor expanded116

Ψf(z, ∆t) = 〈Sf|

1− i
µ∆t ∂B

∂z zŝz

h̄
− 1

2

(
µ∆t ∂B

∂z zŝz

h̄

)2

+ ...

 |Si〉ψ(z, 0), (9)

where for convenience we have written |Si〉 for ξi and 〈Sf| for ξ†
f . Hence117

Ψf(z, ∆t) =

〈Sf|Si〉 − i
µ∆t ∂B

∂z z
h̄
〈Sf|ŝz|Si〉 −

1
2

(
µ∆t ∂B

∂z z
h̄

)2

〈Sf|ŝ2
z |Si〉+ ...

ψ(z, 0). (10)

If the phase shift in Equation 10 is sufficiently small such that the inequalities118 ∣∣∣∣∣∣
(

µ∆t ∂B
∂z z

h̄

)n

〈Sf|ŝn
z |Si〉

∣∣∣∣∣∣ <<
∣∣〈Sf|Si〉

∣∣ (11)

and119 ∣∣∣∣∣∣
(

µ∆t ∂B
∂z z

h̄

)n

〈Sf|ŝn
z |Si〉

∣∣∣∣∣∣ <<

∣∣∣∣∣
(

µ∆t ∂B
∂z z

h̄

)
〈Sf|ŝz|Si〉

∣∣∣∣∣ (12)

hold true for n ≥ 2 [16,23], then Equation 10 can be expanded to first order120

Ψf(z, ∆t) =

(
〈Sf|Si〉 − i

µ∆t ∂B
∂z z

h̄
〈Sf|ŝz|Si〉

)
ψ(z, 0), (13)

and the transition probability amplitude 〈Sf|Si〉 can be factored out121

Ψf(z, ∆t) = 〈Sf|Si〉
(

1− i
µ∆t ∂B

∂z z
h̄

〈Sf|ŝz|Si〉
〈Sf|Si〉

)
ψ(z, 0). (14)

The weak value of spin is defined as W = 〈Sf|ŝz |Si〉
〈Sf| Si〉

. Note W is in general a complex number with122

real and imaginary parts. When φ = 0 the imaginary part goes to zero and only the real part, WRe,123

contributes and thus becomes,124
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Ψf(z, ∆t) = 〈Sf|Si〉
(

1− i
µ∆t ∂B

∂z z
h̄

WRe

)
ψ(z, 0). (15)

Using the pre- and post-selected states of the system, the real part of the weak value becomes,125

WRe = tan
(

θ

2

)
. (16)

In order to cast Equation 15 into an exponential form the following inequality must be met,126

L =

∣∣∣∣∣µ∆t ∂b
∂z z

h̄
WRe

∣∣∣∣∣ << 1 (17)

where L is a limit to be determined [16,23].127

As the spread in z-axis is related experimentally to the width of the atomic beam in question [16],128

it can be replaced by σ, therefore the inequality becomes,129

L =

∣∣∣∣∣µ∆t ∂b
∂z σ

h̄
tan

(
θ

2

)∣∣∣∣∣ << 1. (18)

The final wave function after the Gaussian wave packet has trasversed both the weak and strong130

magnets is,131

Ψf(z, ∆t) = 〈Sf|Si〉 exp

(
−i

µ∆t ∂b
∂z z

h̄
tan

(
θ

2

))
ψ(z, 0). (19)

In this experiment, the real part of the weak value of spin will be measured by setting φ = 0 and132

varying the angle θ between 0 and π.133

1.6. Free evolution of the Gaussian wave packet at the detector134

After the strong stage, the problem is treated as the free evolution of a Gaussian wave packet135

by solving the Pauli equation using well-known methods [21]. The probability density can now be136

computed, giving the form of the wave function as seen by the detector137

|ΨD(z, t)|2 = |〈Sf| Si〉 |2
2πσ2

(
1 +

h̄2t2

4m2σ4

)− 1
2

exp

 − (z + utWRe)
2

2σ2
(

1 + h̄2t2

4m2σ4

)
 , (20)

Where t is the time of flight from the exit of the strong magnet to the detector, the mean of the138

post-selected wave function shifts by the value utWRe =
(

µ
m

∂B
∂z ∆t

)
t tan

(
θ
2

)
, where u is the transverse139

velocity of the helium atoms. We will denote this as ∆w, being the displacement of the wave packet140

due to the weak value of spin. This is in contrast to the standard S-G experiment where the shift is141

only ut.142

As the pre- and post-selected spin states approach orthogonality, θ tends to π, ∆w increases but the143

transition probability decreases. This reduces the number of post-selected events of interest, leading to144

the need for longer experimental runs.145

Again it is important to understand that this effect only arises when the phase shift acquired at146

the first stage is sufficiently small, see Equation 18. The centre-of-mass wave function is displaced but147

its overall shape is maintained after exiting the weak stage.148

1.7. The limit and its validity149

In literature the real part of the weak value is given as tan
(

θ
2

)
. This functional dependance is for150

an ideal case when the limit in Equation 18 is equal to, or smaller than, an optimal value which we will151
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call Lo. For this experiment it is crucial to know Lo in order to successfully measure the well known152

tan
(

θ
2

)
dependance. If L exceeds Lo, then this leads to alterations to the weak value as higher order153

terms begin to dominate.154

In this case Lo can be determined by analysing the weak measurement process for two Gaussian155

wave packets, one describing the first order approximation, Equation (20), and the other, an exact case156

where no approximation is considered, using Equation (7).157

Lo is calculated by increasing the inhomogeneous magnetic field in the weak stage only, thus158

increasing the limit, all other variables are held constant. Fig. 4 illustrates the behaviour of the the159

two Gaussians. For small values of L the two curves strongly overlap, the point just before the two160

wave packets deviate is the optimal limit, Lo. By finding this value the experiment can be tailored in161

order to maximise the displacement measured, this is important as the amplified displacement is still162

relatively small and on the limits of our detectors resolution. Past Lo the first order approximation163

continues to move to the left, while the full order approximation slowly reverts to that of a standard164

S-G measurement.165

Note: this optimal limit is only valid if θ > π
2 .166

Figure 4. A series of plots showing how the displacement, ∆w, of the Gaussian wave packet is
constrained by various limits. The red curve is the first order approximation which is dominated by
tan( θ

2 ). The blue curve is the exact treatment of the system taking into account the higher order terms.
The red and blue curves coincide when the limit L = Lo = 0.37; this is the maximum limit for which
the first order approximation holds.

As the optimal limit is now fixed, we can rearrange the wave packets deviation ∆W with respects167

to this fixed limit168

∆w =
µ ∂B

∂z (∆t)t
m

tan
(

θ

2

)
=

h̄t
σm

L. (21)

We now can see the maximum deviation of the wave packet is only dependent on t and σ. By169

changing θ and adjusting other experimental parameters so that L = Lo, for all values of θ > π
2 we will170

measure the same displacement, a maximal displacement, and from this the functional dependance171

tan
(

θ
2

)
can be observed. Using parameters from our proposed experiment, of which the most172

important are the atomic velocity of our beam, 1717 m/s, our free flight distance, 2.4 m, the optimal173

limit, Lo = 0.37, and the width of the beam, σ = 0.5 µm, our expected displacement, ∆w, is of the order174

of 20 µm.175
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2. Method for the weak measurement of spin for atomic systems: experimental realisation176

Figure 5. The pulsed helium gas enters from the left. Preparation of the metastable atoms occurs in the
first two chambers. In the next chamber the hexapole magnet (HM) preselects the mS = +1 state which
moves onto the weak measuring process. This comprises a weak stage magnet (WS) and a strong stage
magnet (SS). Finally the atoms are detected using a micro-channel plate detector (MCP).

A schematic of our experimental arrangement is shown in Figure 5. The first step is to produce a177

beam of the metastable states of helium. Helium gas at high pressure enters the apparatus from the178

left and is pulsed using an electromagnetic valve producing a supersonic beam. The atomic beam is179

excited via an electron seeded discharge, where the atoms collide with a stream of energetic electrons180

in a 300 V/cm electric field [19]. The excited gas then passes through a 2 mm diameter skimmer and181

travels between two electrically charged plates to remove residual ionised atoms and free electrons.182

The next step is to select the correct spin state, mS = +1, and set its spin axis at an angle θ. A183

hexapole magnet focuses the mS = +1 state to a point along the axis of propagation, defocusing the184

mS = −1 state. The mS = 0 state is left untouched. A 50 µm slit is then used to select the atoms with a185

particular spin vector, θ, within the x-z plane, see Figure 1. The mS = +1 spin state is focused onto a186

second slit, producing an atomic beam with a width between 0.5− 1.0 µm before entering the weak187

stage.188

Upon exiting the weak stage, the atomic beam enters the strong stage. Subsequently the atoms189

propagate freely onto a detector that consists of two micro-channel plates in a chevron configuration,190

coupled to a phosphor screen and CCD camera. The measured deflection ∆w will be proportional to191

the weak value of the atomic spin.192

3. Conclusion193

The experiment described in this paper is designed to measure the real part of the weak value of194

spin for an atomic system. A full simulation of the process has been carried out giving a prediction of195

the displacement, ∆w. A limit, Lo, has been determined defining the range over which the first order196

approximation holds. We have analysed and optimised the experimental parameters to achieve the197

largest possible displacement.198

Using the parameters of our experiment a shift, ∆w, of the order 20 µm is predicted which is199

within our experimental resolution. There is also scope to increase ∆w by cooling the atomic beam and200

thus reducing the velocity of the atoms and by reducing the width of the beam. These refinements201

can increase ∆w to 20− 40 µm. Our experiment is designed to vary the angle θ and thereby show its202

relationship with ∆w, i.e. tan
(

θ
2

)
.203

The authors would like to thank the Fetzer Franklin Fund of the John E. Fetzer Memorial Trust for204

their continued generous support.205
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