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Abstract: The increasing use of renewable energies as a source of electricity has led to a fundamental
transition of the power supply system. The integration of fluctuating weather-dependent energy
sources into the grid already has a major impact on the load flows of the grid. As a result, the interest
in forecasting wind and solar radiation with a sufficient accuracy over short time horizons grew.
In this study the short-term forecast of the effective cloud albedo based on optical flow estimation
methods are investigated. The optical flow method utilized here is TV-L1 from the open source
library OpenCV. This method uses a multi-scale-approach to capture cloud motions on various spatial
scales. After the clouds are displaced the solar surface radiation will be calculated with SPECMAGIC
NOW which computes the global irradiation spectrally resolved from satellite imagery. Due to a
high temporal and spatial resolution of satellite measurements the effective cloud albedo and thus
solar radiation can be forecasted from 5 minutes up to 4 hours with a resolution of 0.05 ◦. In the
following there will be a brief description of the method for the short-term forecast of the effective
cloud albedo. Subsequently evaluation results will be presented and discussed. Finally an outlook of
further developments will be given.

Keywords: effective cloud albedo; solar surface irradiance; optical flow; cloud motion vectors;
renewable energies

1. Introduction

The power supply system is in a fundamental transition. The replacement of fossil fuels with
renewable energies evolves with enormous speed. Weather-dependent energy resources such as wind
and solar energy play a major role within this scope. Their integration into the grid has a huge impact
on the load flows and for this reason the forecasts of solar radiation and wind have to be more precise
including the short-term forecast up to 3-4 hours. Hence, a forecast based on satellite observations, is
also referred to as nowcasting, depicts a reasonable choice for this issue. These forecasts show better
results than the numerical weather prediction model (NWP) for the first few hours, for instance up to
3-4 hours for photovoltaic power forecasts (PV-forecasts) [1]. Further, NWP runs with data assimilation
need usually 3-6 hours of computing time. Thus, the results of the numerical weather prediction model
are only available with a time delay of several hours, whereas satellite based forecasts are available
near real time.

The temporal short-term variation of the solar surface irradiance is predominantly defined by
clouds in Central Europe. Thus, an accurate short-term forecast of cloud properties is the most
important step. The main challenge here is to derive the location and the shape of clouds for the next
few hours from satellite data. In our work the optical flow method TV-L1 provided by the OpenCV
library is used for the calculation of cloud motion vectors and thus for the forecast of clouds [2].
Optical flow is a widely used, evaluated and established technique for image pattern recognition
within the scope of traffic, locomotion and face re-detection. An overview of different optical flow
methods and its application is given by Sonka et al. [3]. TV-L1 and other optical flow methods are so
far only sparsely used for the calculation of cloud motion vectors in the research field of meteorology.
To the knowledge of the authors, one of the first applications has been the utilization of the optical
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flow for radar images, as described by Peura and Hohti [4]. Also at the German Weather Service
(“Deutscher Wetterdienst”), optical flow has been recently implemented for the short-term forecast of
radar reflectivity. The success of the estimation of the optical flow of radar images indicates that the
method could be successfully applied also to clouds in general. A promising candidate for the forecast
of cloud properties is the effective cloud albedo (CAL). CAL is a satellite observable characteristic
derived from the reflectivity of the visible channel of satellites. The advantages of the effective cloud
albedo are numerous. It can be directly observed from space with the use of satellites, without the need
of any model or other external information [5] (see section 2). For effective cloud albedo values up to
0.8 the cloud transmission is simply defined by 1−CAL [5]. Thus, the effective cloud albedo provides
a clear and direct information on the cloud effect on the solar surface irradiance. The reflection of
the Earth’s surface is already filtered allowing optical flow to focus on clouds. Satellite observations
enable the retrieval of the effective cloud albedo, and thus the solar radiation, with high spatial and
temporal resolution and a large areal coverage. Further information concerning the retrieval of the
effective cloud albedo can be found in Müller et al. [5].

Straightforward methods for the calculation of cloud motion vectors are based on the minimization
of the root mean square error (RMSE) or the absolute difference between a shifted image in x-y direction
at t0 and the subsequent image at t1. The cloud motion is then defined by the shift in x-y direction
which minimizes the RMSE or absolute difference between the images. This can be applied for various
spatial scales and is called multi-scale-approach. Multiple scales lead to a dense vector field, however,
more scales increase the needed computing time.

The cloud motion vector applied for the satellite weather at the German Weather Service [6] is
an example of a straightforward multi-scale approach, which is based on the minimization of the
absolute differences. Another example is the method of Schmetz et al. [7]. Here a cross correlation
method is used for the cloud motion vectors. In this method, image filtering, also known as slicing,
is applied to enhance the highest cloud tracer suitable for tracking. This filtering leads to a relative
low density of cloud motion vectors, which is a significant disadvantage for energy meteorology
applications. NWCSAF uses a similar approach, namely a gradient method, to define the cloud edges
and cross correlation for the calculation of the motion vectors [8]. This methods leads also to a low
density of cloud motion vectors and is therefore not appropriate for the utilization in the field of energy
meteorology. Originally, the main application of satellite-derived cloud motion vectors was the use
as wind fields in the data analysis for numerical weather prediction [7]. Only a dense field of cloud
motion vectors enables a forecast with large geographical coverage and high temporal resolution
without data gaps.

In the last years, cloud motion vectors have gained significantly in importance within the scope
of PV-forecasts and recently their relevance is also recognized for short-term forecasts of wind energy.
A dense vector field of cloud motion vectors is usually needed for energy meteorology applications,
for example for the forecast of solar surface irradiance. Neuronal networks are therefore widely
used in order to gain a dense field accompanied with a fast computing time from high resolution
satellite images. Once a successful training has been performed, the execution of the code is very fast.
Voyant et al. [9] provides a review and overview of neuronal network methods applied within the
forecast of solar surface radiation. A disadvantage of neuronal networks is their black box character. A
neuronal network is, strictly speaking, only valid for the training framework, as only the behaviour of
the training data sets can be reproduced by them. Application to other regions, periods or satellite
instruments requires typically extensive retraining. Further, the black box character hampers a deeper
understanding of the involved physics and physical reasons for the occurring uncertainties.

Optical flow methods might be a good alternative for the estimation of cloud motion fields.
However they are not mentioned neither in the review of photovoltaic power forecasting performed
by Antonanzas et al. [10], nor by the review of very short PV-forecasting with cloud modelling by
Barbieri et al. [11]. Other leading experts, for example Raza et al. [12] or Wolff et al. [1], do not
mention optical flow methods by OpenCV as an option or alternative. However, the optical flow of
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satellite images has been used for the Geometric Accuracy Investigations of SEVIRI High Resolution
Visible (HRV) Level 1.5 Imagery [13]. Further, Simonenko et al. discussed the optical flow method
TV-L1 concerning the interpolation between observed cloud images, in order to improve the temporal
information about convection volcanic ash plumes for instance [14]. However, neither the short-term
forecast of the solar surface irradiance nor its application is addressed. This shows that there are only
few works about the application of optical flow methods for the forecast of cloud motion fields from
satellite imagery and hence practically no works on satellite based short-term forecast of solar surface
irradiance. Yet, the authors are aware of only one publication in which a multiple-scale optical flow
method is applied within the scope of satellite based solar irradiance forecasts [15]. The respective
method is based on that and developed within the storm detection and nowcasting system Cb-TRAM
[16,17]. Unfortunately the details of the method are not well described and the software is not available
in open access, which limits the scientific benefit of the work. Further, they applied the cloud motion
vectors to cloud optical thickness and effective radii and not to cloud albedo. For the correct retrieval
of cloud optical depth (COD) and effective radius reff accurate information of the surface albedo (SAL)
and the atmospheric composition are needed. Furthermore, simplifications in the radiative transfer
are typically applied within the retrieval of the cloud optical depth and reff. These items induce
uncertainties in the estimation of the solar surface irradiance which can be avoided if the satellite
observable CAL is used, as it does not rely on accurate information of the surface albedo, atmospheric
composition or any radiative transfer model simplification [5].

Thus, to the knowledge of the authors the usage of the recent TV-L1 method on the effective cloud
albedo is a novel approach within energy meteorology and especially for the forecast of solar surface
irradiance. Furthermore, this work is one of the first in which two optical flow methods of the OpenCV
library are evaluated and optimized for the use of effective cloud albedo. The authors believe that the
combination of the effective cloud albedo with TV-L1 and SPECMAGIC NOW [18] is a new powerful
method for the short-term forecast of solar surface irradiance.

2. Materials and Methods

2.1. Optical Flow Method

The optical flow is a pattern of apparent motion of image objects between two sequential frames
caused by either the movement of the object or by the camera [19]. Three-dimensional motion of
objects can be projected onto a two-dimensional plane by calculating the optical flow. Its result is a
vector field where each vector is a displacement vector showing the movement of pixels from first
frame to second [20]. Once computed, the optical flow can be used for a wide range of tasks [21]. It
may be applied for general image processing or more precise for motion detection, object segmentation,
motion compensated encoding and stereo disparity measurements. On top of that it can be used to
reconstruct three-dimensional motion of visual sensors and surface structures [20].

The optical flow works on two major assumptions which are first of all that the pixel intensities of
an object do not change between consecutive frames and second of all that neighbouring pixels have
similar motion. The assumption of constant intensity I(x, t) between two consecutive frames is valid
for all of the following methods. It can be expressed as follows [20–22]:

I(x, t) ≈ I(x + δx, t + δt) (1)

where x represents the location and t the time. After that, I(x, t) can be developed with a Taylor series
to get the following functional:

I(x + δx, t + δt) = I(x, t) +∇I(x, t) · δx +
∂I
∂t
(x, t) · δt +O2 (2)
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Taking Equation (1) into account and after dividing by δt, Equation (2) simplifies to

0 ≈ ∇I(x, t)
δx
δt

+
∂I
∂t
(x, t) (3)

where δx
δt = v is the velocity. This equation alone is not sufficient for the estimation of the optical flow

though, because we have two unknown variables, x and t, and only one equation. At this point, a
lot of methods for the determination of the optical flow were found to solve the problem by adding
various conditions. There are methods such as block-based methods, discrete optimization methods or
differential methods [23]. The latter offers some more methods for instance the Lucas-Kanade-method
or the Horn-Schunck-method [24,25] which were the first to extend the problem with additional
conditions. Both are based on partial derivatives of the image signal or the sought flow field and
higher-order partial derivatives. The most common algorithms for meteorological purposes concerning
optical flow are by Farnebäck [26] and the duality based approach of the method TV-L1 [27,28].

The optical flow estimation by Farnebäck [26] is the older one of the two named above. It uses two
frames to estimate the flow. In a first step the neighbourhood of both frames has to be approximated by
quadratic polynomials. This can be efficiently done by using the polynomial expansion transform. In a
second step, the displacement has to be estimated with the help of the coefficients of the polynomial
expansion

f (x) ∼ xTAx + bTx + c (4)

where A is a matrix, b is a vector and c is a scalar. These coefficients are calculated from a weighted
least squares fit to the signal value in the neighbourhood. Typically the centre point has the highest
weight while the surrounding weights decrease radially. Large displacements can cause large errors
in the estimated motion because the general assumption of Farnebäck is that the local polynomials
at the same coordinates in the two images are identical except for a displacement. This issue can be
solved by a multi-scale-approach which means that the algorithm starts at a coarse scale to get a rough
displacement estimation and continue with finer scales to obtain a more accurate estimate [26].

TV-L1 is a variational method based on the method by Horn and Schunck [25], however using
other data and smoothness terms [28]. Like the Farnebäck method, TV-L1 uses two frames to estimate
the optical flow. The TV-L1 method is based on the minimization of a functional containing a data term
using the robust L1-norm in the data fidelity term and a regularization term using the total variation
(TV) of the flow [27]. The method is based on the minimization of the following image-based error
criterion: ∫

Ω
{λφ (I0(x)− I1(x + u(x))) + ψ(u,∇u, . . . )} dx. (5)

In this formula I0 and I1 denote the two image frames and u : Ω → R2 denotes the disparity map
which should be found with this method. Further, the disparity map u is the minimizer of the above
mentioned criterion (see Equation (5)). The term φ(I0(x)− I1(x + u(x))) describes the image data
fidelity and ψ(u,∇u, . . . ) represents the regularization term. Moreover, λ works as a weighting factor
between the data fidelity and the regularization term. If one selects φ(x) = x2 and ψ(∇u) = |∇u|2,
the result will be the Horn-Schunck-method. As the algorithm by Farnebäck, the TV-L1 method uses
scale-space approaches and on top of that coarse-to-fine warping to provide solutions for optical flow
estimations with large displacements. Because the algorithm contains discontinuities it is more robust
against noise than the classical approach by Horn and Schunck [25].

In the numerical implementation of both algorithms there are several parameters to adjust the
estimation of the optical flow to the sort of data one is working with. This can range from the number
of scales for the multi-scale-approach to smoothing factors and the number of iterations. However,
the amount of parameters differs as well as the parameters of the two algorithms themselves. The
algorithm of Farnebäck uses 8 parameters while the TV-L1 method by Zach et al. uses 11, when you
count the settings for the inner and outer iterations separately [26,28]. For further information the
reader may refer to the website of OpenCV [2].
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After the calculation of the motion vectors for the optical flow estimation these vectors need to be
applied to a data field to achieve a forecast at all. First of all, the motion vectors need to be extrapolated
to yield a short-term forecast. In other words, the calculated motion vectors point in the direction
where the pixel was coming from. To extrapolate the motion of the clouds these vectors need to be
inverted to continue the motion in the given direction from the past. Second of all, a data field to start
with is required. When the optical flow is calculated between the pictures of t = n− 1 and t = n in
the past, the motion vectors are applied to the data at t = n and the result will be at t = n + 1. This
process can be repeated as often as desired until a certain forecast time is reached at which the NWP
delivers better results than the nowcasting.

2.2. The Heliosat Method

The effective cloud albedo can be derived from geostationary satellites by using the observed
reflections of visible channels without the need for any further information. The effective cloud albedo
is also referred to as cloud index by other authors [29–31]. The visible channel at 600 nm from the
Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board of Meteosat Second Generation
(MSG) is used for the calculation of the effective cloud albedo. The data is provided by EUMETSAT as
rectified images of digital counts, capturing the signal of the reflection of the Earth atmosphere and
surface.

Figure 1. Example of the clear sky reflection ρcs (left) and effective cloud albedo CAL (right) for a 11
UTC slot in June 2005.

The location of the geostationary satellites was over the equator at 0 ◦ longitude with a field of
view up to 80 ◦N/S and 80 ◦E/W respectively. An example of this view is illustrated in Figure 1 for a
clear sky reflection and effective cloud albedo case. The effective cloud albedo can be defined as the
normalized difference between the all sky and the clear sky reflection in the visible range observed
by the satellite. 1 minus the effective cloud albedo defines the cloud transmission for values of the
albedo between 0 and 0.8. For effective cloud albedo values above 0.8 this relation will be modified in
order to consider the saturation and absorption effects in optically thick clouds [5]. Due to the fact,
that different luminance conditions may vary because of the sun-earth distance and the solar zenith
angle the effective cloud albedo has to be corrected. Furthermore, the dark offset of the instrument has
to be subtracted from the satellite image counts. The observed reflections are therefore normalised by
application of the following equation:

ρ =
D− D0

f cos(θ)
(6)

Here, D is the observed digital count including the dark offset of the satellite instrument. D0 is the dark
offset, which is the baseline value of the instrument in the absence of irradiance and therefore has to be
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subtracted. The sun-earth distance variation is taken into account by the factor f . Finally, the cosine
of the solar zenith angle corrects the different illumination conditions at the top of the atmosphere
introduced by different solar altitudes.

The effective cloud albedo can be derived from the normalised pixel reflection ρ, the clear sky
reflection ρcs and the maximal cloud reflection ρmax as follows:

CAL =
ρ− ρcs

ρmax − ρcs
(7)

Here, ρ is the observed reflection for each pixel and time and ρcs is the clear sky reflection, which is
calculated according to an approach discussed in Müller et al. [18] within the scope of spectral clear
sky reflectance. The maximum reflection ρmax is determined by the 95th percentile of all reflection
values ρ at local noon in a target region. It is characterized by high frequency of cloud occurrence for
each month. This way, changes in the satellite brightness sensitivity are accounted for. All reflection
types were corrected in the same manner using Equation (6).

Only the observed reflections are needed to derive the effective cloud albedo with the application
of Equation (7). As a result, the effective cloud albedo is completely defined by the satellite observation
with only one broadband visible channel needed. Accuracy and limitations of the method are discussed
in [5].

The aim of the application of the optical flow onto the effective cloud albedo is to obtain a
short-term forecast of the solar surface irradiation. First of all, the optical flow of the effective cloud
albedo is used to displace the clouds and after that the solar surface radiation can be calculated. The
solar surface irradiance is retrieved using the well established Heliosat relation between the effective
cloud albedo and the solar irradiance, which is based on the law of energy conservation [29,31].
As a consequence the basic relation between the solar irradiance and the effective cloud albedo is
predominantly a linear relation given in the following equation:

SSI = SSIcs ∗ (1−CAL) (8)

Here, SSI is the solar surface irradiance, SSIcs is the clear sky surface irradiance, which is derived with
the clear sky model SPECMAGIC [32] and CAL is the effective cloud albedo, also called cloud index n
in former publications [33]. For effective cloud albedo values above 0.8 the above equation is modified
in order to consider the saturation and absorption effects in optically thick clouds. The modification of
the equation for small and large values of the effective cloud albedo is based on ground measurements
and is described in more detail in Hammer et al. [31]. The forecast of solar surface irradiance relies on
the accuracy of the forecasted effective cloud albedo as can bee seen in Equation (8). As the clear sky
variables are not forecasted it is the only quantity of interest for the present forecast study and thus for
the following results and discussion.

2.3. Verification

For the purpose of verifying the optical flow results we calculated the absolute difference of the
optical flow estimate and the measured satellite image. The unit of this result is % as it is the unit
of the effective cloud albedo as well. This was done for all investigated cases. On top of that, three
different error measures were calculated on the bases of the absolute difference which are the bias,
absolute bias and root mean square error. The exact calculation of the error measures can be found in
the following Equations (9)–(11):

bias =
1
n

n

∑
i=1

(xi − yi) (9)

absolute bias =
1
n

n

∑
i=1
|xi − yi| (10)
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RMSE =

√
1
n

n

∑
i=1

(xi − yi)2 (11)

3. Results

3.1. TV-L1 versus Farnebäck

As mentioned in subsection 2.1 there are two prominent methods to estimate the optical flow
for meteorological purposes. To decide whether the Farnebäck or the TV-L1 method works better for
the effective cloud albedo we calculated the absolute difference of the optical flow estimate and the
measured satellite image as described in subsection 2.3 for both methods. The parameter settings for
this comparison were done by eye which is sufficient because differences can get small when setting
the parameter values. The absolute difference is shown in Figure 2 and the absolute bias for this case
and for another 10 exemplary cases can be found in Table 1.

Figure 2. Plots of the verification of the optical flow estimate with the method by Farnebäck (left) and
the TV-L1 method (right) for a 15-minute forecast. The area of Germany is marked by the red frame.

First of all, the higher absolute difference of the optical flow calculated with the method by
Farnebäck is obvious. Moreover, the absolute bias equals 5.43 % for the Farnebäck method and it
is equal to 4.37 % for the TV-L1 method. Also the RMSE is higher with the use of the Farnebäck
method, namely 9.53 % with the Farnebäck method and 7.59 % with TV-L1. Even though, this is just
one example, we can approve that the TV-L1 method provides the better results for all examined cases
and this is why we decided to use this method for the estimation of the optical flow with the effective
cloud albedo.

There are 11 different parameters in the TV-L1 method DualTVL1OpticalFlow from OpenCV which
can be modified to influence the result of the optical flow estimation. Some parameters like ε as well
as the inner and outer iterations can affect the speed of your algorithm. ε is a threshold for the accuracy
which will be achieved after the given number of iterations and thus has an impact on the precision
but also on the speed of your algorithm. For the in section 1 mentioned multi-scale-approach the
method needs the number of scales and the fraction or scale step by which the area is divided. Other
parameters have an influence on the shape of the clouds, for instance τ, λ and θ. And in our case two
of the parameters were less sensitive to the data and these were γ and the warping so the setting of
these parameters didn’t affect the results much.
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Table 1. Calculated absolute bias and RMSE for both optical flow methods, the one by Farnebäck and
with TV-L1. The error measures were calculated for a 15-minute forecast over the area of Europe. These
are 10 exemplary cases because the superiority of TV-L1 can be clearly seen already and these values
are sufficient to see the diffenrence between the perfomrance of the methods.

day time Farnebäck TV-L1

abs. bias [%] RMSE [%] abs. bias [%] RMSE [%]

2017-08-07 09:00 5.07 9.19 3.87 7.03
2017-08-11 15:00 7.4 12.81 5.54 9.81
2017-08-15 15:00 6.67 12.22 4.83 8.96
2017-09-01 12:00 6.36 11.29 4.67 8.46
2017-09-17 12:00 5.43 9.53 4.37 7.59
2017-09-22 09:00 6.82 11.24 5.25 8.82
2017-09-30 13:00 7.19 11.68 5.31 8.75
2017-10-01 09:00 7.25 11.19 5.57 8.73
2017-10-03 13:00 9.34 14.76 6.79 10.78
2017-10-04 12:00 7.62 12.18 5.94 9.57

3.2. Parameter optimization

The first task when estimating the optical flow is to change the parameters of the algorithm in a
way that the optical flow for the favoured sort of data is optimal. For the short-term forecast of solar
surface irradiance we used the effective cloud albedo as variable for the calculation. To optimize the
parameters of the optical flow algorithm, we calculated the bias, absolute bias and RMSE as error
measures over the area of Europe (-10 – 25 ◦N, 36 – 60 ◦E) . The results of the calculation of the absolute
bias for the forecast times from 15 to 120 minutes are shown in Figure 3. There are shown two examples
for the cases of 30th of September and 4th of October 2017. The left image shows the bias for the case
of a situation where a front passes Germany and convective clouds form behind it and in Italy and
the right figure shows a case of stratiform precipitation. As one would have expected, the error of the
forecast grows with increasing forecast time. However, this growth does not have to be linear. Instead,
the error growth decreases with time which leads to a root-function-shaped graph. This shape can be
more or less bent, as can be seen in Figure 3 in the left plot, but never completely linear.

Figure 3. Plots of the absolute bias of the effective cloud albedo against the foreceast time for the cases
of 2017-09-30 at 13:00 UTC (situation with convection behind a front over Germany) and 2017-10-04 at
12:00 UTC (stratiform situation). The unit of the absolute bias is %.
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To choose the optimal value for each parameter of the TV-L1 method, the values had to be changed
several times and the optical flow estimate with the parameter value which corresponds to the lowest
absolute bias is the most optimal one. However, this does not always has to be as easy as it sounds.
For some cases the parameter values have to be changed for each forecast time. Because this would be
difficult to declare for every single case, there should be a better solution. As the differences between
a case with optimal and second best values are small, the solution was to calculate the integral of
the function seen in Figure 3 with the composite trapezoidal rule to get the overall optimum for the
whole forecast. This was done for all 21 cases with a variety of weather situations between August
and October 2017 (see Table 5). Despite the fact, that different weather situations were analysed, the
choice of the parameter values was quite clear and therefore it is valid for all short-term forecasts of
the effective cloud albedo. And again, the differences of the bias values for optimal and second best
parameter values were small, but not negligible. The results of this optimization can be seen in Table 2.

Table 2. List of parameter settings for the TV-L1 method in the DualTVL1OpticalFlow algorithm by
OpenCV.

parameter value parameter value

γ 0.1 outer iterations 2
τ 0.1 inner iterations 10
λ 0.03 warping 3
θ 0.3 scales 3
ε 0.01 scale step 0.5

median filtering 5

A common approach for numerical models as well as nowcasts is to choose the parameter values
in dependence of spacial scales. In this study we examined the choice of the parameter value again but
for shorter time periods concerning smaller spatial scales. The result was that the values presented in
Table 2 perfectly fit for all forecast times. As can be seen in Figure 3, the plots do not show two or more
different regimes which proofs the good choice of the parameters already. In other words, the function
of the absolute bias against the forecast time is continuous and linearly growing. Moreover, it does
not show jumps or features which would differ a lot from the observed shape. The number of cases
where this separated choice of parameter values would be successful was too little to be efficiently
implemented in the algorithm. On top of that, the achieved effect would be very small.

3.3. 120-minute-forecast

In the following subsection, we will present two examples of a 120-minute-forecast based on the
optical flow of the effective cloud albedo. The utilized algorithm is DualTVL1OpticalFlow from OpenCV
with the in subsection 3.2 listed parameter values. These two examples were already introduced in the
previous subsection.

The first case (see Figure 4) shows a quasi stationary front over Central Europe with convective
clouds behind it on the westerly site. The front extends from north to south and moves towards the
east. More convective clouds can be seen over southern Italy and the surrounding ocean.

The forecast figure can be easily recognized by its inward moving edge (Figure 4 left). Due to
the given data set to which the optical flow is added to, there is no new information after shifting
these cloud pixels to its calculated position. In other words, in an optical flow estimation all boundary
conditions are set to zero. Besides that, the shown figure depicts a 120-minute-forecast, so the clouds
usually move further than in a shorter time period. Moreover, the forecast figure can be found by
comparing the cloud top structure. Due to the fact, that the new formation or dissipation of clouds
cannot be displayed in the optical flow estimate, the overall structure of the clouds is softer. In the
measured image the structure of the cloud tops especially in the area of the front is more irregular and
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Figure 4. A short-term forecast for 120 minutes of the effective cloud albedo for 2017-09-30 at 15:00
UTC can be seen in the left figure. The satellite image by MSG with the effective cloud albedo depicted
for comparison is shown in the right image.

shows lots of details (Figure 4 right). All in all, the position and spatial extend of the cloud formation
in the forecast fits quite well to the observations.

The second case shown here was a different weather situation. Over the northern part of the
chosen area there can be seen stratiform clouds which extend over large parts of Central Europe (see
Figure 5). Again, there can be seen convective clouds over southern Italy and the Balkans. Compared
with the observations (Figure 5 right) the overall structure of the cloud area looks quite similar.
Nevertheless, the extension to the south is larger in the forecast because over the area of Austria and
Switzerland the clouds dissipated in the time period of 120 minutes. Furthermore, on the southern tip
of Italy there formed a few new clouds which cannot be seen in the forecast.

Figure 5. A short-term forecast for 120 minutes of the effective cloud albedo for 2017-10-04 at 14:00
UTC can be seen in the left figure. The satellite image by MSG with the effective cloud albedo depicted
for comparison is shown in the right image.

To verify these short-term forecast results of the effective cloud albedo we calculated the absolute
difference between the forecast and the corresponding satellite image at the same time. The verification
results can be seen in Figure 6 for the above discussed cases (see Figure 4 and Figure 5).

In the case of 30th of September, the verification confirms the above mentioned quality of the
forecast. Higher deviations can be seen in places with formation of convective clouds for example over
the Mediterranean Sea near the southern tip of Italy or in the area on the western side of the front.
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Figure 6. Verification plots of the optical flow method for the cases of 2017-09-30 at 15:00 UTC and
2017-10-04 at 14:00 UTC. It is shown the absoulte difference between the effective cloud albedo from
satellite imagery and the effective cloud albedo from the short-term forecast for 120 minutes in %.

There, the absolute difference can reach values up to 80 % in small spatial areas. Moreover, the change
of the cloud top structure of the front seems to cause trouble for the algorithm as well. This can be
explained through the changing intensity of each pixel throughout the forecast time. The bias is small
for the whole area with bias = 1.98 % after 120 minutes. The other error measures are higher (absolute
bias = 12.99 %, RMSE = 18.16 %) than the bias which shows that positive and negative deviations
cancel out in the short-term forecast which is generally the case. All error measures for this case can be
found in Table 3.

As for the case of 30th of September, the bias for the 120 minute forecast (bias = 1.84 %) is quite
low for the case of 4th of October 2017. Also, the other error measures are higher so that in this
case the positive and negative deviations cancel out, too (see Table 4). Most of the clouds especially
in the stratiform precipitation area were forecasted very well and the verification shows only small
deviations. Areas with high absolute differences can be found north of the stratiform clouds and in
the South. Both situations can be explained through the formation of new clouds and the changing
intensity of cloud pixels. This behaviour violates the criterion for the optical flow estimation which
states that the intensity of the pixels have to be constant over time. This is, however, not fulfilled in all
of the cases. Therefore, convective clouds pose a problem for the optical flow estimation.

Table 3. Values of the bias, absolute bias and RMSE for the case of 2017-09-30. The basis for the
calculation is the area of Europe.

forecast time [min] bias [%] absolute bias [%] RMSE [%]

30 0.11 5.95 9.49
60 -0.37 8.68 13.40
90 1.55 10.77 15.77
120 1.98 12.99 18.16

4. Discussion

The applications of optical flow estimates are diverse. As shown in subsection 3.3 the utilization
of optical flow estimation for a short-term forecast of the effective cloud albedo and hence of the solar
surface irradiance shows promising results. Validation results reported in recent review publications
by Voyant et al. [9], Antonanzas et al. [10] or Barbieri et al. [11] or rather publications by other leading
experts, for example Raza et al. [12], Wolff et al. [1] or Cros et al. [34] do not provide any hints that the
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Table 4. Values of the bias, absolute bias and RMSE for the case of 2017-10-04. The basis for the
calculation is the area of Europe.

forecast time [min] bias [%] absolute bias [%] RMSE [%]

30 0.85 6.02 9.57
60 1.48 8.24 12.85
90 1.93 9.61 14.69

120 1.84 10.78 16.21

application of the widely used neuronal networks lead to a significant better accuracy for cloud motion
vectors. For example in Cros et al. [34] the RMSE of the 30-minute forecast of the effective cloud
albedo is about 30 % for a neuronal network state of the art approach and a phase correlation method.
Thus, the discussed optical flow method might be among the best approaches for cloud motion vector
estimation. Moreover, the big advantage of the TV-L1 approach, which has been optimised for the
effective cloud albedo in this work, is the free access and transparent documentation of the method.
However, no matter which satellite based method for cloud motion vectors is used, the limit of a good
short-term forecast compared to NWP is approximately between 120 and 240 minutes because the
forecast is only based on the optical displacement of pixels. Without physical equations this method
does not lead to good forecast results after a certain time threshold. Comparisons with the numerical
weather prediction models will follow in the future to provide more detailed information about the
time when the accuracy of the NWP matches that of TV-L1. Further, we plan to investigate the benefit
of rapid scan imagery which are available every 5 instead of 15 minutes.

A currently known problem of satellite imagery methods is the new formation or dissipation
of clouds in the forecast which can be caused for example by convection. This is obvious from the
verification results (see Figure 6). As mentioned above, one criterion of the optical flow is that the
intensity of image pixels has to stay constant between two consecutive frames. Due to the fact, that
convective clouds form very fast this is clearly not fulfilled. Nevertheless, these areas where convection
can be found are very small in comparison to stratiform clouds or fronts and are rather negligible.
A common approach for short-term forecasts is the separation into sub-scales. Convection is a fast
small-scale progress while pressure systems with fronts can extend up to 1000 km and exist for days.
To cover both regimes the optimization process can be done for the first 60 minutes and the second
60 or more minutes. This was already done for the mentioned 21 cases and all in all one could say
that it did not improve the forecast. From 21 cases there were only 4 of them in which a separately
done optimization would make sense. Besides, the differences between the optimal and the second
best parameter value are in the range of hundredth and thus negligible. The implementation of such a
parameter change would just be too costly.

5. Conclusions

As the use of renewable energies as a source of electricity increased, the demand for more precise
forecasts for wind and solar irradiance over shorter time horizons grew as well. A short-term forecast
of solar surface irradiance can be obtained by optical flow estimation of the effective cloud albedo. For
this purpose, we used the TV-L1 algorithm by Zach et al. available from OpenCV [2,28]. As can be seen
in Figure 2 and Table 1, the method by Zach et al. for the estimation of the optical flow delivers better
results than the method by Farnebäck for the purpose of a short-term forecast of the effective cloud
albedo. Due to a high temporal and spatial resolution of satellite measurements the short-term forecast
of solar surface irradiance can be gained from 5 minutes up to 4 hours with a resolution of 0.05 ◦. The
performed experiments show that the use of TV-L1 for the estimation of the optical flow works well for
the short-term forecast of the effective cloud albedo and thus for the solar surface irradiance. Overall
the error measures are small for the examined cases although the formation and dissipation of clouds
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in general pose problems for the optical flow estimation (see Table 6). One of the major assumptions
for the optical flow estimation is that the intensity of pixels remains similar between two consecutive
frames. However, this is not fulfilled when new clouds occur or grow. This is the case because the
newly formed top of the cloud consists of smaller droplets and thus the effective cloud albedo is higher
because more light is reflected. Moreover there can form bigger clouds or clouds at other positions
than there was between the first two frames. Nevertheless, these issues take place on small scales and
do not influence the regional forecast too much. In general, the results show that the approach is very
promising.
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Abbreviations

CAL Effective Cloud Albedo

COD Cloud Optical Depth

CMSAF Climate Monitoring Satellite Application Facility

HRV High Resolution Visible

MFG Meteosat First Generation

MSG Meteosat Second Generation

Meteosat Meteorological Satellite

MVIRI Meteosat Visible and Infrared Imager

NWCSAF Nowcasting Satellite Application Facility

NWP Numerical Weather Prediction Model

OpenCV Open Source Computer Vision

POLARA Polarimetric Radar Algorithms

PV Photovoltaic

RMSE Root Mean Square Error

SAL Surface Albedo

SEVIRI Spinning Enhanced Visible and Infrared Imager

SSI Solar Surface Irradiance

TV-L1 Method based on Total Variation in Regularization Term and L1-Norm in Data Fidelity Term
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Appendix

Table 5. List of investigated cases for the settings of the parameters in the TV-L1 method for the
optical flow estimation of the effective cloud albedo. The error measures were calculated for a
15-minute-forecast over the area of Europe.

day time weather situation bias [%] absolute bias [%] RMSE [%]

2017-08-07 09:00 high pressure -0.61 3.06 5.49
2017-08-11 14:00 stratiform precipitation 0.82 4.32 7.76

15:00 stratiform precipitation 0.06 4.31 7.69
16:00 stratiform precipitation -0.21 4.80 8.21

2017-08-15 14:00 convection 0.51 3.66 6.86
15:00 convection 0.07 3.63 6.78

2017-08-28 15:00 high pressure 0.04 4.77 8.23
2017-08-29 12:00 high pressure 0.08 3.90 7.03

2017-09-01 12:00 stratiform precipitation 0.10 3.52 6.40
2017-09-07 15:00 broken clouds 0.53 4.61 7.19
2017-09-17 12:00 broken clouds 0.24 4.71 8.24
2017-09-19 14:00 broken clouds 1.69 5.73 9.37
2017-09-22 09:00 broken clouds 0.36 3.92 6.65
2017-09-26 12:00 convection 0.44 4.67 7.68

13:00 convection 0.31 4.80 7.82
2017-09-30 13:00 front & convection 0.10 4.08 6.67

2017-10-01 09:00 front 0.41 4.13 6.48
2017-10-02 12:00 stratiform precipitation 0.33 4.83 8.06
2017-10-03 13:00 broken clouds 0.21 5.28 8.35
2017-10-04 12:00 stratiform precipitation 0.44 4.22 9.57
2017-10-07 10:00 stratiform precipitation -0.31 4.47 7.78
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Table 6. Mean values of the bias, absolute bias and RMSE for all investigated cases. The basis for the
calculation is the area of Europe.

forecast time [min] bias [%] absolute bias [%] RMSE [%]

30 0.41 6.35 10.47
60 0.41 9.10 14.28
90 0.57 11.12 16.87

120 0.43 12.78 18.83
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