

1 **Prenatal exposure to bisphenol A and phthalates and behavioral problems in children at preschool**

2 **age: The Hokkaido Study on Environment and Children's Health**

3

4

5 **Authors and Affiliations**

6 Machiko Minatoya¹, Sachiko Itoh¹, Keiko Yamazaki¹, Atsuko Araki¹, Chihiro Miyashita¹, Naomi Tamura¹,

7 Jun Yamamoto², Yu Onoda², Kazuki Ogasawara², Toru Matsumura², Reiko Kishi¹

8

9 ¹ Center for Environmental and Health Sciences, Sapporo, Japan

10 ² Institute of Environmental Ecology, Idea Consultants, Inc., Shizuoka, Japan

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 **Corresponding Author**

31 Prof. Reiko Kishi, MD, PhD, MPH

32 Tel.: +81-11-706-4748

33 Email: rkishi@med.hokudai.ac.jp

34 Mailing address: Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan

35 **Abstract**

36 Studies reported adverse behavioral development including internalizing and externalizing problems
37 in association with prenatal exposure to bisphenol A (BPA) and phthalates, however, findings were
38 not sufficient due to using different assessment tools and child ages among studies. This study aimed
39 to examine associations between maternal serum levels of BPA and phthalate metabolites and
40 behavioral problems at preschool age.

41 The Strengths and Difficulties Questionnaire (SDQ) was used to assess behavioral problems at 5 years
42 of age. BPA and phthalate metabolite levels in the 1st trimester maternal serum was determined by
43 LC-MS/MS for 458 children. Variables used for adjustment were parental ages, maternal cotinine
44 levels, family income during pregnancy, child sex, birth order and age at SDQ completed.

45 The median concentrations of BPA, MnBP, MiBP, MEHP and MECPP were 0.062, 26.0, 7.0, 1.40, and
46 0.20 ng/ml, respectively. BPA level was associated with increased hyperactivity/inattention risk
47 among girls (OR=1.66, 95% CI: 0.95-2.90) and Σ DBP_m (MnBP + MiBP) level was associated with
48 decreased total difficulties risk overall and among girls (OR=0.48, 95% CI: 0.20-1.13, OR=0.24, 95%
49 CI: 0.06-1.03, respectively) without significance. MECPP level was associated with increase conduct
50 problems risk (OR=2.78, 95% CI: 1.36-5.68).

51 Our analyses found no significant association between BPA or summation of phthalate metabolite
52 levels and any of the behavioral problems at 5 years of age, however, suggested possible association

53 between MECPP levels and increased risk of conduct problems.

54

55 **Keywords:** SDQ, bisphenol A, phthalates, prenatal exposure, birth cohort, behavioral problems

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71 **Introduction**

72 It has been reported that developmental disabilities have increased in recent decades^{1,2)}. Childhood
73 behavioral problems have influence on individual development, school performance and quality of
74 life. BPA and phthalates are ubiquitous environmental chemicals that were detected from various
75 specimen including urine, blood, breast milk and anomic fluid^{3,4)}. BPA is widely used in polycarbonate
76 products, epoxy resins as coatings on the inside of many food and beverage cans⁵⁾. There are variety
77 of phthalates used in consumer products such as food packages, polyvinyl chloride floor materials,
78 lotion and fragrances. Humans are exposed to phthalates by multiple routes. Exposures can be oral
79 or dermal or can also be via inhalation⁶⁾. Since BPA and phthalates can cross the placenta^{7,8)}, exposure
80 during critical period in fetal development is a concern^{6,7)}.

81 Exposure to environmental chemicals such as bisphenol A (BPA) and phthalates may play roles in the
82 development of child behavioral problems^{9,10)}. BPA and phthalates are both known as endocrine
83 disruptors and there is a growing concern of exposure to these chemicals and adverse health
84 outcomes on human. From laboratory studies, BPA has been shown to disrupt brain function and
85 structure¹¹⁻¹³⁾.

86 Previously several birth cohort studies have investigated associations between BPA and phthalates
87 exposures and child behavioral problems. For example, maternal levels of BPA have been associated
88 with various child behavioral outcomes including behavioral problems, internalizing and externalizing

89 problems, cognitive development, anxiety and so on in early childhood ¹⁴⁻²⁰⁾. Maternal levels of
90 phthalate including di-2-ethylhexyl phthalate (DEHP), butylbenzyl phthalate (BBzP), and dibutyl
91 phthalates (DBP) were associated with adverse child neurodevelopmental outcomes including
92 internalizing and externalizing problems, however, findings from these studies were inconsistent as
93 the age of children at testing, testing tools, and outcomes varied from study to study ²⁰⁻²⁴⁾.
94 Additionally, some of these studies found association only in specific child sex.
95 The present study examined the association of maternal levels of BPA and phthalates with child
96 behavioral problems at preschool age using Strength and Difficulty Questionnaire (SDQ), a widely-
97 used assessment tool of child behavioral problems²⁵⁾.
98

99 **Methods**

100 **Study design and selection of study population**

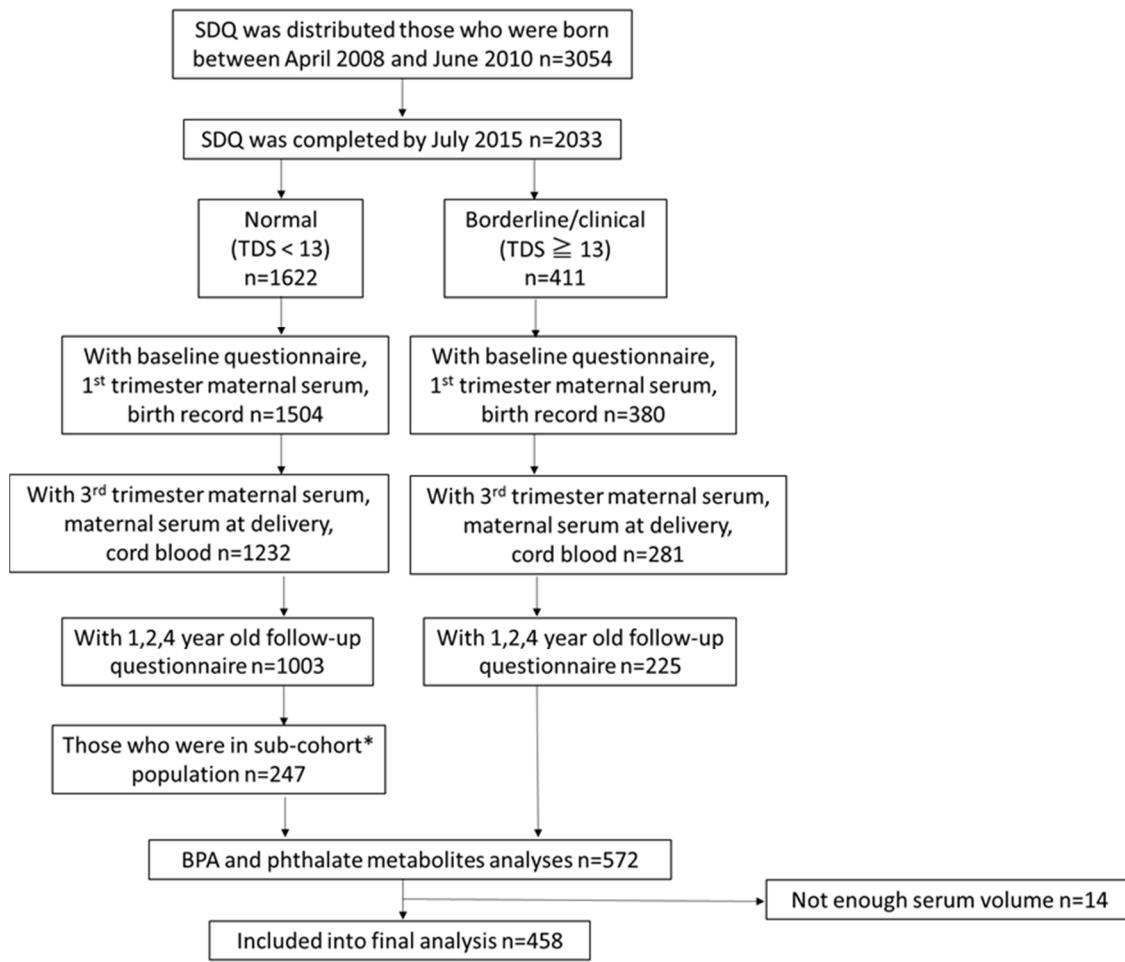
101 This study formed part of a prospective birth cohort study, the Hokkaido Study on Environment and
102 Children's Health. The details of cohort profile can be found in elsewhere ^{26,27)}. Briefly, the
103 subpopulation consisted of cohort study participants who were born between April 2008 and June
104 2010 were included in this study. Total 3054 SDQ were distributed via mail between October 2014
105 and June 2015 to the subpopulation. 2032 SDQ was successfully filled and returned by the end of July
106 2015 (response rate =66.6%). Among 2032 children with valid completed SDQ, 1622 were classified

107 into normal group and 411 were classified into borderline/clinical group based on total difficulties

108 score of SDQ. Then we applied criteria for selecting participants to conduct exposure assessment.

109 The criteria were follows; those who had maternal 1st trimester baseline questionnaire data, 1st and

110 3rd trimester maternal blood samples, maternal and cord blood samples at delivery, birth record,


111 follow-up questionnaires data at ages 1,2, and 4 years of age to use as covariates. Further, we decided

112 to include all the children in borderline/clinical group and randomly selected children in normal group

113 (n=572). Finally, 14 children were excluded due to not enough serum volume for exposure

114 assessment. This was nested case control study of 245 children in normal group as control and 213

115 children in borderline/clinical group as cases (Fig. 1).

116

117 Figure 1 Selection of study population.

118 *The sub-cohort of 4869 participants, which corresponded to 23.3% of all participants (n=20926) in
 119 the Hokkaido study were established. In this sub-cohort, 500 participants who were randomly
 120 selected from each enrollment year between 2003 and 2011, and all 369 participants from the
 121 enrollment year 2012 were include. The sub-cohort population was supposed to be representing
 122 original cohort population. The aim of establishing the sub-cohort population was for effective
 123 exposure assessments.

124

125 This study was conducted with the informed consent of all participants in written forms. The protocol

126 used in this study was approved by the Institutional Ethical Board for epidemiological studies at the

127 Hokkaido University Graduate School of Medicine and Hokkaido University Center for Environmental

128 and Health Sciences.

129 **Assessment of child behavior**

130 Japanese parent-report version of SDQ²⁸⁾ were distributed via mail to the participants. Parents were

131 asked to fill SDQ, which included 25 items on specific strengths and difficulties with an overall rating

132 of whether their child had behavioral problems. SDQ was designed for a broad range of children, age

133 3 to 16 years and well validated tool of childhood mental health^{25,29)}. Each item has three response

134 categories (0) not true, (1) somewhat true, (3) certainly true. It includes five subscales (conduct

135 problems, hyperactive/inattention, emotional problems, peer problems and prosocial behavior). All

136 subscale scores excluding prosocial behavior were summed as total difficulties score (ranged from 0

137 to 40²⁹⁾) to assess the behavioral problems. Higher scores denote greater problems. We applied score

138 bandings of the Japanese version of SDQ, children total difficulties with 0-12 were defined as normal,

139 13-15 were as borderline, and 16-40 were as clinical²⁸⁾. For the subscales, the following cut-offs were

140 applied; Conduct problems: 0-3 = normal, 4 = borderline, 5-10 = clinical; Hyperactivity/inattention:

141 0-5 = normal, 6 = borderline, 7-10 = clinical; Emotional problems; 0-3 = normal, 4 = borderline, 5-10

142 = clinical; Peer problems: 0-3 = normal, 4 = borderline, 5-10 = clinical; Prosocial behavior; 6-10 =

143 normal, 5 = borderline, 0-4 = clinical²⁸⁾. SDQ total and subscale scores were dichotomized comparing

144 the children with borderline and clinical scores with normal children.

145 **Exposure assessment**

146 Maternal serum of the 1st trimester was collected and stored at – 80 °C till analyses. Blood samples
147 were analyzed for BPA and seven kinds of phthalate metabolites; mono-n-butyl phthalate (MnBP),
148 mono-isobutyl phthalate (MiBP), mono-2-ethylhexyl phthalate (MEHP), mono-benzyl phthalate
149 (MBzP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-2-ethyl-5-carboxypentyl phthalate
150 (MECPP) and mono (4-methyl-7-carboxyheptyl) phthalate (cx-MiNP) by isotope-diluted liquid
151 chromatography-tandem mass spectrometry (LC-MS/MS) for BPA analysis and ultra-performance LC-
152 MS/MS for phthalate metabolites analysis. The method detection limits (MDLs) of BPA, MnBP, MiBP,
153 MBzP, MEHP, MEHHP, MECPP, cx-MiNP were 0.011, 0.57, 0.44, 0.19, 0.31, 0.23, 0.11 and 0.12 ng/ml,
154 respectively. All the analyses were conducted at Idea Consultants Inc. (Shizuoka, Japan). The detailed
155 sample preparation for BPA analysis can be found from our previous report^{30,31}. Briefly to each serum
156 sample, BPA-d₁₆ β-glucuronidase spiking solution was added and shaken then β-glucuronidase and
157 0.2 M acetate buffer solution (pH 5.0) were added. Samples were held in an incubator at 37 °C for
158 1.5 hrs followed by solid phase extraction. The detailed phthalate metabolites analyses are described
159 in our previous article³¹. Briefly, serum samples for phthalate metabolites analyses were prepared as
160 follows. MnBP-d₄, MiBP-d₄, MBzP-d₄, MEHP-d₄, MEHHP-¹³C₄, MECPP-¹³C₄, cx-MiNP-d₄ were added as
161 surrogate and then 90 μL of 1M phosphoric acid was added to the serum sample (0.5 mL). After
162 mixing by vortex and ultrasonic irradiated for 10 minutes and consequently, 940 μL of acetonitrile
163 was added and centrifuged with 3,500 rpm for 5 min. Supernatants were transferred into new tubes

164 and added 1000 μ L of ammonium acetate buffer solution (100 mM, pH 9.1), 3,000 μ L of ammonium
165 acetate buffer solution (100 mM, pH 6.5), and 10 μ L of β -glucuronidase were added to each sample
166 for the enzymatic hydrolysis of the phthalate metabolites conjugates, and 100 mM ammonium
167 acetate solution were added. Samples were held in an incubator at 37 °C for 1.5 hrs followed by
168 solid phase extraction by Oasis MAX 96 well plate (30mg, 30um, Waters, Milford, MA, USA). After
169 solid phase extraction, a 500 μ L of elution was transferred into sample vials and added 500 μ L of
170 ultra-pure water and analyzed by UPLC (ACQUITY UPLC H-Class, Milford, MA, USA) coupled to triple
171 quadrupole tandem MS (QTRAP 6500, AB SCIEX, Framingham, MA). The insoluble particulates were
172 filtered by in-line filters (2.1 \times 5 mm, 1.7 um, Vanguard Phenyl column, Waters, Tokyo, Japan)
173 preceding the BEH Phenyl column (2.1 \times 50 mm, 1.7 um, Waters, Tokyo, Japan). The retention gap
174 technique was used by installing retention gap columns Atlantis T3 (2.1 \times 50 mm, 3 μ m, Waters, Tokyo,
175 Japan), which improved phthalate metabolites sensitivity by trapping mobile-phase phthalate
176 metabolites (contaminants) in the retention gap column. The column temperature was 40°C. The
177 total UPLC cycle time was 20 min including column re-equilibration. The calibration curve was linear
178 over a concentration ranging from 0.02 to 20 ng/ml with a coefficient of correlation (r^2) greater than
179 0.999. The procedural blank levels were determined using 0.5 mL of ultrapure water. The MDLs of
180 BPA and phthalate metabolites were calculated as follows according to the procedure of the manual
181 of Analyses of Chemicals by the Ministry of Environment of Japan³²⁾.

182 **Covariates**

183 Parental factors including ages, educational levels, maternal pre-pregnancy BMI, parity, and family
184 income were obtained from baseline questionnaire which was filled by participants during their
185 pregnancy. Additionally, maternal smoking status was examined from cotinine levels of third
186 trimester maternal blood measured by using high-sensitive enzyme-linked immunosorbent assay
187 (ELISA). The limit of detection (LOD) was 0.12 ng/ml. According to previous finding³³⁾, we defined
188 cotinine levels \leq 0.21 ng/ml as non-smokers, 0.22-11.47 ng/ml as passive smokers, and \geq 11.48
189 ng/ml as active smokers. Gestational age, birth weight and gender of children were obtained from
190 birth record.

191 **Data analysis**

192 Statistical analyses were performed using SPSS 22.0J (IBM Japan, Tokyo, Japan). Logistic regression
193 models were used to calculate odds ratios (ORs) for having borderline/clinical scores (cases) in
194 relation to maternal BPA and phthalates levels. The main analysis was case control study based on
195 total difficulties scores. Then, 4 of the component subscales of total difficulties score (conduct
196 problems, hyperactivity/inattention, emotional symptoms, and peer problems) were investigated as
197 sub-analyses. Prosocial behavior was not considered as outcome because it is not the component
198 subscales of total difficulties score, which was our main outcome. Maternal BPA and phthalates levels
199 were \log_{10} transformed and treated as continuous variables. The BPA and phthalates levels below

200 MDL were replaced half the values of MDLs for statistical analyses. MEHP and MECPP were combined
201 and expressed as the summation of DEHP metabolites (Σ DEHP_m). MEHHP was also a DEHP
202 metabolite; however, in this study population, the detection rate was low, and thus, it was not
203 included in the summation of DEHP metabolites. Similarly, MnBP and MiBP were combined and
204 expressed as the summation of DBP metabolites (Σ DBP_m). To combine the metabolites, the
205 summation of each metabolite expressed in molar concentration was multiplied with their respective
206 parent molecular weight (MW) as follows:

$$\Sigma \text{DEHP}_m = ((C_{\text{MEHP}}/\text{MW}_{\text{MEHP}}) + (C_{\text{MECPP}}/\text{MW}_{\text{MECPP}})) * \text{MW}_{\text{DEHP}}$$

$$\Sigma \text{DBP}_m = ((C_{\text{MnBP}}/\text{MW}_{\text{MnBP}}) + (C_{\text{MiBP}}/\text{MW}_{\text{MiBP}})) * \text{MW}_{\text{DBP}}$$

209 where C is the measured concentration (ng/ml) and MW is the molecular weight (ng/nmol)
210 The ORs were given for one-unit increase on \log_{10} scale. Covariate included in the final models were
211 identified a priori using directed acyclic graph: parental ages (continuous), maternal cotinine levels
212 (\leq 0.21ng/ml vs. 0.22-11.47ng/ml vs. \geq 11.48ng/ml), family income during pregnancy (< 5M vs.
213 \geq 5M) and birth order (first vs. not first). In addition to above mentioned covariates, we included
214 child sex and child age (months) at SDQ completed in the models based on previous literature.
215 Further analysis was conducted for stratification of child sex. P-value of <0.05 was considered
216 statistically significant.

217

218 **Results**

219 Table 1 shows the comparison of characteristics of participants in two groups (normal vs.

220 borderline/clinical). Both maternal and paternal ages were younger in borderline/clinical group

221 compared to normal group. Maternal pre-pregnancy BMI was higher in borderline/clinical group.

222 Percentage of family income during pregnancy < 5 million Japanese Yen was higher in

223 borderline/clinical group. Percentage of maternal cotinine level \geq 11.48 ng/ml (active smokers)

224 was higher in borderline/clinical group. Child characteristics including gestational age, birth weight

225 and age at SDQ completed were not different between two groups. The percentages of being first

226 child and boy gender were higher in borderline/clinical group.

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Table 1 Basic characteristics of parents and their children.

Characteristics	Normal (n=245)	Borderline/clinical (n=213)	
Maternal age (years)	31.5 ± 4.3	29.8 ± 4.8	
Paternal age (years)	33.4 ± 5.5	31.3 ± 5.1	
Maternal pre-pregnancy BMI (kg/m²)	20.7 ± 2.5	21.4 ± 3.3	
Maternal cotinine levels at 3rd trimester (ng/ml)	≤ 0.21 (non-smoker) 0.22-11.47 (passive smoker) ≥ 11.48 (active smoker)	151 (61.6) 81 (33.1) 13 (5.3)	97 (45.5) 93 (43.7) 23 (10.8)
Maternal education (years)	≤ 12 ≥ 13 Missing	88 (35.9) 154 (62.8) 3 (1.2)	92 (43.2) 118 (55.4) 3 (1.4)
Paternal education (years)	≤ 12 ≥ 13 Missing	89 (36.3) 154 (62.9) 2 (0.8)	86 (40.4) 123 (57.7) 4 (1.9)
Family income during pregnancy (JPY)	< 5M ≥ 5M Missing	125 (51.0) 90 (36.7) 30 (12.2)	133 (62.4) 48 (22.5) 32 (15.0)
Family income at SDQ completed (JPY)	< 5M ≥ 5M Missing	111 (45.3) 123 (50.2) 11 (4.5)	111 (52.1) 88 (41.3) 14 (6.6)
Marital Status at SDQ completed	Married	236 (96.3)	198 (93.0)
Gestational age (days)		275.3 ± 8.2	275.4 ± 8.5
Birth weight (g)		3037 ± 339	3076 ± 383
Child Sex	Boy Girl	122 (49.8) 123 (50.2)	128 (60.1) 85 (39.9)
Birth order	First child	116 (47.3)	123 (57.7)
Age at SDQ completed (months)		67.3 ± 6.2	66.3 ± 6.3

246

Mean ± S.D. or n (%). JPY: Japanese Yen,

247

248

249

250

251 Table 2 presents distribution of BPA and phthalates levels in maternal blood of all participants and of
 252 two groups. The median concentrations of BPA, MnBP, MiBP, MBzP, MEHP, MEHHP, MECPP and cx-
 253 MiNP were 0.062, 26.0, 7.0, <MDL, 1.40, <MDL, 0.20, and <MDL ng/mL, respectively. The detection
 254 rates of BPA, MnBP, MiBP, MBzP, MEHP, MEHHP, MECPP and cx-MiNP were 94.0%, 100.0%, 100.0%,
 255 9.1%, 96.5%, 0.7%, 82.1% and 0.4%, respectively. The detection rates of MBzP, MEHHP and cx-MiNP
 256 were below 10%. Thus, these chemicals were excluded from the further analyses. The median
 257 concentration of BPA in borderline/clinical group was higher compared to that of the normal group.
 258 Contrary the median concentrations of MnBP and MiBP in borderline/clinical group were slightly
 259 lower compared to these of the normal group.

260

261 Table 2 Comparison of the distribution of BPA and phthalate metabolite levels in maternal blood between normal and
 262 borderline/clinical groups.

Exposure	MDL (ng/ml)	Detection rate (%)	Normal (n=245)		Borderline/clinical (n=213)	
			Median	IQR (25 th ,75 th)	Median	IQR (25 th ,75 th)
BPA	0.011	94.0	0.054	0.022, 0.207	0.086	0.032, 0.353
MnBP	0.57	100.0	26.7	17.7, 37.6	24.7	17.0, 34.0
MiBP	0.44	100.0	7.4	5.3, 9.9	6.7	5.1, 8.9
MBzP	0.19	9.1	<MDL	<MDL, <MDL	<MDL	<MDL, <MDL
MEHP	0.31	96.5	1.42	0.82, 9.07	1.35	0.71, 9.25
MEHHP	0.23	0.7	<MDL	<MDL, <MDL	<MDL	<MDL, <MDL
MECPP	0.11	82.1	0.20	0.11, 0.30	0.21	0.12, 0.33
cx-MiNP	0.12	0.4	<MDL	<MDL, <MDL	<MDL	<MDL, <MDL

263 ng/ml. MDL: method detection limit. IQR: Inter quartile range.

264

265 Table 3 presents adjusted odds ratios for ten folds increase of maternal BPA and individual and
266 summation of DBP and DEHP metabolite levels on having behavioral problems. BPA level was
267 associated with increased hyperactivity/inattention risk among girls after adjustment (OR=1.66, 95%
268 CI: 0.95-2.90) without statistical significance. MECPP level was significantly associated with an
269 increased risk of conduct problems (OR=2.78, 95% CI: 1.36-5.68). This association remained after
270 child sex stratification. MECPP level was also significantly associated with an increased risk of
271 hyperactivity/inattention among girls (OR=5.71, 95% CI: 1.41-23.1). Σ DBP_m level was associated
272 with decreased total difficulties risk overall and among girls (OR=0.48, 95% CI: 0.20-1.13, OR=0.24,
273 95% CI: 0.06-1.03, respectively) without statistical significance. There were no significant association
274 between Σ DEHP_m levels and any of the behavioral problem risks.

275

Table 3 Adjusted odds ratios for ten folds increase of maternal BPA and phthalates levels on having behavioral problems.

	Number of children in borderline/clinical	BPA	MnBP	MiBP	MEHP	MECPP	$\sum DBP_m$	$\sum DEHP_m$
All	OR (95% CI)							
Total difficulties (≥ 13)	213	1.28 (0.94, 1.74)	0.51 (0.22, 1.18)	0.42 (0.17, 1.03)+	0.93 (0.65, 1.33)	1.13 (0.58, 1.13)	0.48 (0.20, 1.13)+	0.93 (0.63, 1.38)
Conduct problems (≥ 4)	142	1.15 (0.84, 1.58)	1.33 (0.55, 3.20)	1.37 (0.53, 3.58)	0.81 (0.56, 1.18)	2.78 (1.36, 5.68)*	1.34 (0.54, 3.33)	0.82 (0.55, 1.24)
Hyperactivity/inattention (≥ 6)	126	1.06 (0.75, 1.51)	1.10 (0.42, 2.84)	0.93 (0.33, 2.65)	1.22 (0.82, 1.84)	1.52 (0.71, 3.29)	1.04 (0.39, 2.80)	1.25 (0.81, 1.95)
Emotional symptoms (≥ 4)	116	0.92 (0.66, 1.27)	0.83 (0.35, 1.98)	0.57 (0.22, 1.45)	0.86 (0.59, 1.27)	0.65 (0.33, 1.31)	0.77 (0.31, 1.88)	0.85 (0.56, 1.28)
Peer problems (≥ 4)	64	0.99 (0.65, 1.52)	0.92 (0.30, 2.87)	0.45 (0.14, 1.49)	0.78 (0.47, 1.29)	0.90 (0.36, 2.25)	0.79 (0.25, 2.54)	0.76 (0.44, 1.44)
Boy	OR (95% CI)							
Total difficulties (≥ 13)	128	1.26 (0.82, 1.95)	0.54 (0.18, 1.61)	0.43 (0.13, 1.46)	0.82 (0.49, 1.35)	0.62 (0.24, 1.60)	0.50 (0.16, 1.58)	0.79 (0.46, 1.37)
Conduct problems (≥ 4)	83	1.32 (0.86, 2.03)	1.14 (0.36, 3.55)	0.95 (0.27, 3.30)	0.79 (0.48, 1.31)	2.85 (1.07, 7.57)*	1.09 (0.33, 3.56)	0.78 (0.45, 1.36)
Hyperactivity/inattention (≥ 6)	85	0.80 (0.50, 1.28)	1.03 (0.32, 3.32)	0.87 (0.24, 3.14)	1.05 (0.63, 1.76)	0.92 (0.35, 2.44)	0.98 (0.29, 3.31)	1.06 (0.61, 1.85)
Emotional symptoms (≥ 4)	77	0.89 (0.56, 1.42)	0.78 (0.24, 2.53)	0.52 (0.14, 1.86)	0.97 (0.57, 1.63)	0.65 (0.24, 1.75)	0.71 (0.21, 2.43)	0.95 (0.54, 1.68)
Peer problems (≥ 4)	40	0.96 (0.54, 1.72)	0.74 (0.17, 3.32)	0.50 (0.10, 2.53)	0.67 (0.34, 1.31)	0.68 (0.20, 2.37)	0.67 (0.14, 3.18)	0.64 (0.31, 1.33)
Girl	OR (95% CI)							
Total difficulties (≥ 13)	85	1.30 (0.83, 2.03)	0.26 (0.06, 1.06)+	0.25 (0.06, 1.09)+	1.10 (0.64, 1.88)	2.37 (0.87, 6.42)+	0.24 (0.06, 1.03)+	1.16 (0.65, 2.08)
Conduct problems (≥ 4)	59	1.03 (0.63, 1.67)	0.90 (0.19, 4.16)	1.46 (0.29, 7.40)	0.91 (0.50, 1.63)	4.04 (1.31, 12.5)*	0.98 (0.20, 4.78)	0.96 (0.51, 1.82)
Hyperactivity/inattention (≥ 6)	41	1.66 (0.95, 2.90)+	1.05 (0.17, 6.38)	0.95 (0.14, 6.50)	1.68 (0.84, 3.37)	5.71 (1.41, 23.1)*	0.99 (0.15, 6.41)	1.79 (0.84, 3.81)
Emotional symptoms (≥ 4)	39	0.93 (0.57, 1.51)	0.45 (0.10, 1.95)	0.34 (0.07, 1.64)	0.77 (0.43, 1.37)	0.84 (0.30, 2.33)	0.41 (0.09, 1.86)	0.76 (0.41, 1.41)
Peer problems (≥ 4)	24	1.08 (0.56, 2.09)	0.64 (0.09, 4.66)	0.18 (0.02, 1.33)+	1.06 (0.47, 2.39)	1.24 (0.30, 5.20)	0.47 (0.06, 3.54)	1.09 (0.46, 2.62)

276

Adjusted for parental ages, maternal cotinine levels, family income during pregnancy, child sex, birth order (first child or not), and child age at SDQ complete.

277

* $p < 0.05$, + $p < 0.10$.

278 **Discussion**

279 Recent reviews have shown that environmental chemicals may play a role in the etiology of
280 behavioral and developmental disorders^{34,35)}. In our study, prenatal exposure to BPA and phthalates
281 were measured in maternal blood of 1st trimester and child behavioral problems at 5 years of age
282 were assessed using the SDQ. Our analyses found no significant association between BPA or
283 summation of phthalate metabolite levels and an increased risk of any of the behavioral problems at
284 5 years of age, however, suggested possible association between MECPP levels and increased risk of
285 conduct problems. Stratification by child sex analyses found that maternal MECPP level was
286 associated with an increased risk of hyperactivity/inattention problems only in girls with a large
287 confidence interval. This could be due to a number of individual was too small in some categories of
288 the adjustment factors, since the crude model found no statistical significance (OR=1.32, 95% CI:
289 0.70-2.48). Thus, the interpretation of findings from adjusted model should be carried out cautiously.
290 SDQ scores of 2032 children in this study was 8.7 and was similar to the other previous studies in UK
291 (5-10 years old) and Japan (4-6 years old), which showed average scores of 8.3 and 8.6,
292 respectively^{28,36)}. The BPA level in this study was similar range to previous report of Japanese
293 pregnant women³⁰⁾ and lower compared that of pregnant women in other studies³⁷⁻³⁹⁾.
294 There have been several prospective cohort studies that investigated associations between prenatal
295 exposure to BPA and child behavioral problems^{14,15,17-20,40-43)}. Our group assessed child behavioral

296 problems at 3.5 years of age using CBCL and found that cord blood BPA level was positively associated
297 with internalizing problem and development problem scores⁴³⁾. Braun et al. assessed child behavior
298 at different ages using the prospective birth cohort in the US (HOME Study)^{17,18,40)}. In their study,
299 among girls, higher maternal urinary BPA was associated with increased aggression and hyperactivity
300 at age 2¹⁷⁾. The follow-up of the same cohort at 3 years of age found that higher maternal urinary BPA
301 was associated with more anxiety and depression of behavioral Assessment System for Children-
302 Second Edition (BASC-2) and poorer emotional control of Behavior Rating Inventory of Executive
303 Function-Preschool (BREIF-P) only among girls¹⁸⁾. In our study, we did not find the statistical
304 significance, however, increased odds of hyperactivity/inattention among girls in association with
305 increased BPA level was consistent with findings from Broun et al^{17,18)}. Another birth cohort study in
306 the US (CCCEH) also investigated association between maternal urinary BPA and child behavior^{14,42)}.
307 The results of their study showed that higher levels of maternal BPA were associated with higher
308 scores on emotionally reactive and aggressive behavior subscales of CBCL among boys at 5 years of
309 age¹⁴⁾. A follow-up of the same cohort at 7-9 years of age found that higher maternal BPA levels were
310 associated with more anxiety and depression in boys⁴²⁾. Harley et al. investigated association
311 between maternal urinary BPA and school aged child behavior in the birth cohort study
312 (CHAMACOS)¹⁵⁾. They found that higher maternal BPA was associated with higher depression and
313 anxiety in boys. Evans et al. reported that higher maternal BPA was associated with higher level of

314 aggression, anxiety, oppositional/defiant problems and conduct problems in boys using CBCL at ages

315 6-10 years in a birth cohort study (SFF II)⁴⁴⁾. Most of the previous studies found sex-specific effects of

316 BPA exposure on child behavioral development and problems, while this study did not find any

317 significant adverse effect of BPA exposure on the risk of child behavioral problems even after

318 stratification of child sex. Inconsistent findings from the previous studies could be due to different

319 exposure assessment timings among studies. The critical period of exposure to BPA during pregnancy

320 on child neurobehavioral development is still not evident, thus using maternal blood samples of the

321 1st trimester may not well evaluate associations between prenatal exposures and outcomes. Braun

322 et al. reported relationship between maternal urinary BPA and child behavior and the relationship

323 was stronger with urine samples of \leq 16 weeks of gestation compared to that of 26 weeks of

324 gestation, which suggested a possible critical period for BPA exposure on neurobehavior

325 development¹⁷⁾. Our result indicated that the 1st trimester BPA level was associated with increased

326 risk of hyperactivity/inattention among girls without significance, which is in line with the previous

327 findings¹⁷⁾. Further investigation is required to elucidate critical exposure period of BPA exposure and

328 its influence on child behavioral development.

329 Various study population background may also be a reason for inconsistent findings. For example,

330 maternal education levels > high school in this study was 62.8%, whereas it varied from low to high

331 (21.6%¹⁵⁾ to 85%⁴⁴⁾) in the previous studies that found association between BPA exposure and child

332 behavioral problems. It has been reported that maternal education level was a predictor of BPA levels
333 ^{18,45)}. Thus, it may have contributed to inconsistent findings. Similarly, income is inversely associated
334 with BPA levels according to NHANES data ⁴⁶⁾ and thus, different cultural background such as poverty
335 rate, ethnicity could be a reason for inconstancy.

336 There have been several reports from birth cohort studies regarding child behavioral development in
337 association with prenatal phthalates exposure. Results from birth cohort studies have suggested that
338 low molecular weight (LMW) phthalate such as DBP and DEP exposures might increase behavioral
339 problems^{20,21,41,47)}. Whyatt et al. assessed child behavioral problems using CBCL at 3 years old in
340 association with maternal urine phthalate levels²¹⁾. In their study, MnBP, MiBP and MBzP were found
341 to be associated with increased behavioral problems. However, no association was found between
342 maternal urinary DEHP metabolites and child behavioral problems. Engel et al., investigated
343 associations between maternal phthalate metabolites and child behavior at 4-9 years old using
344 Behavior Assessment System for Children-Parent Rating Scale (BASC-PRS)⁴⁷⁾. Increased levels of LMW
345 phthalate metabolites were associated with various behavioral problems including aggression,
346 conduct problems, attention problems and depression. The same group also used Social
347 Responsiveness Scale (SRS) to assess child behavior at ages 7-9 years of age⁴¹⁾. It was found that LMW
348 phthalates were also associated with poorer social cognition, social communication and social
349 awareness. In our study, we did not find any association between LMW phthalates and child

350 behavioral problems. Kobrosly et al. examined child neurobehavior using CBCL among children at 6-

351 10 years of age²²⁾. They found increased 3rd trimester maternal urine MiBP was associated with

352 attention problems and aggressive behavior and the association was mostly observed among boys.

353 Lien et al. assessed child behavior at 8-9 years of age using CBCL²³⁾. In their study, 3rd trimester

354 maternal MBP and MEOHP were associated with delinquent behavior and aggressive behavior scores

355 at 8 years old. Recently, Gascon et al. assessed child behavioral problems using CBCL at 4 and SDQ at

356 7 years in the INMA-Sabadell birth cohort study⁴⁸⁾. They found that the average concentrations of the

357 sum of 4 kind of DEHP metabolites (MEHHP, MEHP, MEOHP, and MECPP) in maternal urine of 1st and

358 3rd trimester were associated with increased social competence scores at 4 years. Contrary, they

359 found that MEP concentrations were associated with a reduced risk of inattention symptoms at 4

360 years. One previous study reported that maternal MECPP level was inversely associated with child

361 motor development at age 24-36 months only in girls⁴⁹⁾. In their study, not only MECPP but also the

362 sum of DEHP metabolites and other DEHP metabolites (MEHHP, MEHP, MEOHP) were negatively

363 associated with child motor development, which was inconsistent with our results. Overall, our

364 findings from this study was not in line with these previous studies, as most of the studies reported

365 effects of LMW phthalate exposures.

366 A number of factors including assessment tools for outcome measurements and age at assessment,

367 timing of exposure assessment, and genetic and demographic variety of study populations, as well

368 as other unknown factors could explain the inconstancies among studies. Different levels of exposure
369 among studies could also explain the different findings. Most of the previous studies used maternal
370 urine samples during pregnancy for exposure assessment, whereas we used maternal serum. Even
371 though a study reported correlation between serum and urine MECPP levels⁵⁰, direct comparison of
372 exposure levels with other studies were not possible. It also should be noted that measurable levels
373 are much higher in urine compared to blood samples for bisphenol A and phthalate metabolites.
374 Regarding BPA measurement using blood samples, it possibly be overestimated due to external
375 contamination. In this study, we used glass cartridge to reduce background levels and no free BPA
376 was detected³⁰, which was indication of null possible external contamination. Additionally,
377 background level was measured and confirmed that the influence of external contamination was null.
378 Hydrolytic enzymes are present in blood samples and may be responsible for diester to monoester
379 conversion after the blood sample is drawn⁵¹. Analysis of monoester may yield higher levels because
380 of monoester conversion of ex-vivo contamination during sampling, storage, and handling process.
381 To minimize the influence of enzyme activity, the blood samples were immediately stored at -80°C
382 and acid was added immediately after thawing. We still cannot rule out possible external
383 contamination during the process of sample drawing, storage and measurement. Using secondary
384 metabolites of phthalates was recommended. In this study, we found behavioral problems in
385 association with MECPP, which is a secondary metabolite of DEHP.

386 Limitations of this study should also be discussed. First, our exposure assessment was based on the
387 single measurement which could not represent exposure of entire pregnancy period due to short
388 half-lives of BPA and phthalates. Thus, the critical period of exposure might not be well captured in
389 this study. Other limitation was that we had no information on factors that might have influence on
390 the outcomes such as family psychopathology, exposure to psychosocial environmental stressors.

391 Sample size can be another limitation of this study especially in sex specific analyses. Some of the
392 subscales of SDQ showed small number of children in borderline/clinical group (Table S2). This was
393 due to the study design. This was a nested case control study based on SDQ total difficulties score,
394 but not on subscale scores. Wide range of 95% CIs observed in sex-stratification analyses indicated
395 that the sample size was too small. It also should be noted that there might be a chance that
396 associations may possibly be identified due to the number of chemicals tested.

397 It should be noted that we did not measure postnatal exposures in this study. Some of the cross-
398 sectional and birth cohort studies reported associations between postnatal exposure to BPA or
399 phthalates exposures and child neurobehavioral development⁵²⁻⁵⁷). However, two of the prospective
400 studies revealed that only gestational but not childhood BPA was associated with child behavior^{14,18}).
401 Thus, we considered effects of prenatal exposure was more influential on child behavioral
402 development. The Characteristics of participants in this study (n=458) and those who completed SDQ
403 (n=2032) were compared in the Table S1. Population in this study showed higher percentage of non-

404 smokers based on maternal cotinine levels and heavier mean birth weight. This implied that healthier
405 mothers and children tended to be included in this study and thus, the effect of prenatal exposure to
406 BPA and phthalates on child behavioral problems might have been underestimated and findings of
407 this study should be interpreted with caution.

408 In conclusion, we found no significant association between BPA or summation of phthalate
409 metabolite levels and any of the behavioral problems, however, suggested possible association
410 between MECPP levels and increased risk of conduct problems.

411

412 **Supplementary Materials**

413 Table S1: Characteristics of participants in this study (n=458) and those who completed SDQ (n=2032).

414 Table S2: SDQ score distribution stratified by child sex.

415

416 **Acknowledgement**

417 We thank all the mothers and their children who participated in the study, and all the staff at hospitals.

418 This work was supported by Grant-in Aid from the Ministry of Health, Labour and Welfare of Japan,

419 JSPS KAKENHI Grant Numbers JP16H02645 and JP16K16619 and the Environment Research and

420 Technology Development Fund (5-1454) from the Ministry of the Environment, Japan.

421

422 **Author Contributions**

423 Conceptualization, R.K.; Formal Analysis, M.M.; Investigation, J.Y., Y.O., K.O., and T.M.; Writing –

424 Original Draft Preparation, M.M.; Writing – Review & Editing, S.I., K.Y., A.A., C.Y., N.T.; Supervision,

425 R.K.; Funding Acquisition, M.M, R.K.

426

427 **Conflicts of Interest**

428 The authors declare no conflict of interest.

429

430

431

432

433

434

435

436

437

438

439

440 **References**

- 441 1. Boyle CA, Boulet S, Schieve LA, Cohen RA, Blumberg SJ, Yeargin-Allsopp M, Visser S, Kogan MD. Trends in the prevalence of developmental disabilities in US children, 442 1997-2008. *Pediatrics* 2011;127(6):1034-42.
- 443 2. Pastor PN, Reuben CA, Duran CR. Identifying emotional and behavioral problems in 444 children aged 4-17 years: United States, 2001-2007. *Natl Health Stat Report* 445 2012(48):1-17.
- 446 3. Dobrzynska MM. Phthalates - widespread occurrence and the effect on male gametes. 447 Part 1. General characteristics, sources and human exposure. *Rocznik Panstw Zakl Hig* 448 2016;67(2):97-103.
- 449 4. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Bisphenol-A and 450 the great divide: a review of controversies in the field of endocrine disruption. *Endocr Rev* 451 2009;30(1):75-95.
- 452 5. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to 453 bisphenol A (BPA). *Reprod Toxicol* 2007;24(2):139-77.
- 454 6. Jurewicz J, Hanke W. Exposure to phthalates: reproductive outcome and children 455 health. A review of epidemiological studies. *Int J Occup Med Environ Health* 456 2011;24(2):115-41.
- 457 7. Balakrishnan B, Henare K, Thorstensen EB, Ponnampalam AP, Mitchell MD. 458 Transfer of bisphenol A across the human placenta. *Am J Obstet Gynecol* 459 2010;202(4):393.e1-7.
- 460 8. Mose T, Knudsen LE, Hedegaard M, Mortensen GK. Transplacental transfer of 461 monomethyl phthalate and mono(2-ethylhexyl) phthalate in a human placenta 462 perfusion system. *Int J Toxicol* 2007;26(3):221-9.
- 463 9. Ejaredar M, Lee Y, Roberts DJ, Sauve R, Dewey D. Bisphenol A exposure and 464 children's behavior: A systematic review. *J Expo Sci Environ Epidemiol* 465 2017;27(2):175-183.
- 466 10. Ejaredar M, Nyanza EC, Ten Eycke K, Dewey D. Phthalate exposure and childrens 467 neurodevelopment: A systematic review. *Environ Res* 2015;142:51-60.
- 468 11. McCaffrey KA, Jones B, Mabrey N, Weiss B, Swan SH, Patisaul HB. Sex specific 469 impact of perinatal bisphenol A (BPA) exposure over a range of orally administered 470 doses on rat hypothalamic sexual differentiation. *Neurotoxicology* 2013;36:55-62.
- 471 12. Wolstenholme JT, Rissman EF, Connelly JJ. The role of Bisphenol A in shaping the 472 brain, epigenome and behavior. *Horm Behav* 2011;59(3):296-305.
- 473 13. Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE,

475 Vandenberg JG, Walser-Kuntz DR, vom Saal FS. In vivo effects of bisphenol A in
476 laboratory rodent studies. *Reprod Toxicol* 2007;24(2):199-224.

477 14. Perera F, Vishnevetsky J, Herbstman JB, Calafat AM, Xiong W, Rauh V, Wang S.
478 Prenatal bisphenol a exposure and child behavior in an inner-city cohort. *Environ
479 Health Perspect* 2012;120(8):1190-4.

480 15. Harley KG, Gunier RB, Kogut K, Johnson C, Bradman A, Calafat AM, Eskenazi B.
481 Prenatal and early childhood bisphenol A concentrations and behavior in school-aged
482 children. *Environ Res* 2013;126:43-50.

483 16. Casas M, Forns J, Martinez D, Avella-Garcia C, Valvi D, Ballesteros-Gomez A, Luque
484 N, Rubio S, Julvez J, Sunyer J, Vrijheid M. Exposure to bisphenol A during pregnancy
485 and child neuropsychological development in the INMA-Sabadell cohort. *Environ Res*
486 2015;142:671-9.

487 17. Braun JM, Yolton K, Dietrich KN, Hornung R, Ye X, Calafat AM, Lanphear BP.
488 Prenatal bisphenol A exposure and early childhood behavior. *Environ Health
489 Perspect* 2009;117(12):1945-52.

490 18. Braun JM, Kalkbrenner AE, Calafat AM, Yolton K, Ye X, Dietrich KN, Lanphear BP.
491 Impact of early-life bisphenol A exposure on behavior and executive function in
492 children. *Pediatrics* 2011;128(5):873-82.

493 19. Perera F, Nolte EL, Wang Y, Margolis AE, Calafat AM, Wang S, Garcia W, Hoepner
494 LA, Peterson BS, Rauh V, Herbstman J. Bisphenol A exposure and symptoms of
495 anxiety and depression among inner city children at 10-12 years of age. *Environ Res*
496 2016;151:195-202.

497 20. Philippat C, Nakiwala D, Calafat AM, Botton J, De Agostini M, Heude B, Slama R.
498 Prenatal Exposure to Nonpersistent Endocrine Disruptors and Behavior in Boys at 3
499 and 5 Years. *Environ Health Perspect* 2017;125(9):097014.

500 21. Whyatt RM, Liu X, Rauh VA, Calafat AM, Just AC, Hoepner L, Diaz D, Quinn J,
501 Adibi J, Perera FP, Factor-Litvak P. Maternal prenatal urinary phthalate metabolite
502 concentrations and child mental, psychomotor, and behavioral development at 3
503 years of age. *Environ Health Perspect* 2012;120(2):290-5.

504 22. Kobrosly RW, Evans S, Miodovnik A, Barrett ES, Thurston SW, Calafat AM, Swan
505 SH. Prenatal phthalate exposures and neurobehavioral development scores in boys
506 and girls at 6-10 years of age. *Environ Health Perspect* 2014;122(5):521-8.

507 23. Lien YJ, Ku HY, Su PH, Chen SJ, Chen HY, Liao PC, Chen WJ, Wang SL. Prenatal
508 exposure to phthalate esters and behavioral syndromes in children at 8 years of age:
509 Taiwan Maternal and Infant Cohort Study. *Environ Health Perspect* 2015;123(1):95-
510 100.

511 24. Kim S, Eom S, Kim HJ, Lee JJ, Choi G, Choi S, Kim S, Kim SY, Cho G, Kim YD, Suh
512 E, Kim SK, Kim S, Kim GH, Moon HB, Park J, Kim S, Choi K, Eun SH. Association
513 between maternal exposure to major phthalates, heavy metals, and persistent
514 organic pollutants, and the neurodevelopmental performances of their children at 1
515 to 2 years of age- CHECK cohort study. *Sci Total Environ* 2018;**624**:377-384.

516 25. Goodman R. The Strengths and Difficulties Questionnaire: a research note. *J Child
517 Psychol Psychiatry* 1997;**38**(5):581-6.

518 26. Kishi R, Kobayashi S, Ikeno T, Araki A, Miyashita C, Itoh S, Sasaki S, Okada E,
519 Kobayashi S, Kashino I, Itoh K, Nakajima S. Ten years of progress in the Hokkaido
520 birth cohort study on environment and children's health: cohort profile--updated 2013.
521 *Environ Health Prev Med* 2013;**18**(6):429-50.

522 27. Kishi R, Araki A, Minatoya M, Hanaoka T, Miyashita C, Itoh S, Kobayashi S, Ait
523 Bamai Y, Yamazaki K, Miura R, Tamura N, Ito K, Goudarzi H. The Hokkaido Birth
524 Cohort Study on Environment and Children's Health: cohort profile—updated 2017.
525 *Environmental Health and Preventive Medicine* 2017;**22**(1):46.

526 28. Matsuishi T, Nagano M, Araki Y, Tanaka Y, Iwasaki M, Yamashita Y, Nagamitsu S,
527 Iizuka C, Ohya T, Shibuya K, Hara M, Matsuda K, Tsuda A, Kakuma T. Scale
528 properties of the Japanese version of the Strengths and Difficulties Questionnaire
529 (SDQ): a study of infant and school children in community samples. *Brain Dev*
530 2008;**30**(6):410-5.

531 29. Goodman R. Psychometric properties of the strengths and difficulties questionnaire.
532 *J Am Acad Child Adolesc Psychiatry* 2001;**40**(11):1337-45.

533 30. Yamamoto J, Minatoya M, Sasaki S, Araki A, Miyashita C, Matsumura T, Kishi R.
534 Quantifying bisphenol A in maternal and cord whole blood using isotope dilution
535 liquid chromatography/tandem mass spectrometry and maternal characteristics
536 associated with bisphenol A. *Chemosphere* 2016;**164**:25-31.

537 31. Minatoya M, Araki A, Miyashita C, Ait Bamai Y, Itoh S, Yamamoto J, Onoda Y,
538 Ogasawara K, Matsumura T, Kishi R. Association between prenatal bisphenol A and
539 phthalate exposures and fetal metabolic related biomarkers: The Hokkaido study on
540 Environment and Children's Health. *Environ Res* 2017;**161**:505-511.

541 32. Ministry of the Environment GoJ. Guidelines Establishing Test Procedures for the
542 Analysis of Pollutants. Japan, 2009.

543 33. Sasaki S, Braimoh TS, Yila TA, Yoshioka E, Kishi R. Self-reported tobacco smoke
544 exposure and plasma cotinine levels during pregnancy--a validation study in
545 Northern Japan. *Sci Total Environ* 2011;**412-413**:114-8.

546 34. Jurewicz J, Polanska K, Hanke W. Exposure to widespread environmental toxicants

547 and children's cognitive development and behavioral problems. *Int J Occup Med*
548 *Environ Health* 2013;**26**(2):185-204.

549 35. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity.
550 *Lancet Neurol* 2014;**13**(3):330-8.

551 36. Marryat L, Thompson L, Minnis H, Wilson P. Exploring the social, emotional and
552 behavioural development of preschool children: is Glasgow different? *Int J Equity*
553 *Health* 2015;**14**:3.

554 37. Lee YJ, Ryu HY, Kim HK, Min CS, Lee JH, Kim E, Nam BH, Park JH, Jung JY, Jang
555 DD, Park EY, Lee KH, Ma JY, Won HS, Im MW, Leem JH, Hong YC, Yoon HS.
556 Maternal and fetal exposure to bisphenol A in Korea. *Reprod Toxicol* 2008;**25**(4):413-
557 9.

558 38. Zhang T, Sun H, Kannan K. Blood and urinary bisphenol A concentrations in children,
559 adults, and pregnant women from china: partitioning between blood and urine and
560 maternal and fetal cord blood. *Environ Sci Technol* 2013;**47**(9):4686-94.

561 39. Kosarac I, Kubwabo C, Lalonde K, Foster W. A novel method for the quantitative
562 determination of free and conjugated bisphenol A in human maternal and umbilical
563 cord blood serum using a two-step solid phase extraction and gas
564 chromatography/tandem mass spectrometry. *J Chromatogr B Analyt Technol Biomed*
565 *Life Sci* 2012;**898**:90-4.

566 40. Braun JM, Kalkbrenner AE, Just AC, Yolton K, Calafat AM, Sjodin A, Hauser R,
567 Webster GM, Chen A, Lanphear BP. Gestational exposure to endocrine-disrupting
568 chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-
569 old children: the HOME study. *Environ Health Perspect* 2014;**122**(5):513-20.

570 41. Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, Calafat AM, Wolff MS.
571 Endocrine disruptors and childhood social impairment. *Neurotoxicology*
572 2011;**32**(2):261-7.

573 42. Roen EL, Wang Y, Calafat AM, Wang S, Margolis A, Herbstman J, Hoepner LA, Rauh
574 V, Perera FP. Bisphenol A exposure and behavioral problems among inner city
575 children at 7-9 years of age. *Environ Res* 2015;**142**:739-45.

576 43. Minatoya M, Araki A, Nakajima S, Sasaki S, Miyashita C, Yamazaki K, Yamamoto J,
577 Matumura T, Kishi R. Cord blood BPA level and child neurodevelopment and
578 behavioral problems: The Hokkaido Study on Environment and Children's Health.
579 *Sci Total Environ* 2017;**607-608**:351-356.

580 44. Evans SF, Kobrosly RW, Barrett ES, Thurston SW, Calafat AM, Weiss B, Stahlhut R,
581 Yolton K, Swan SH. Prenatal bisphenol A exposure and maternally reported behavior
582 in boys and girls. *Neurotoxicology* 2014;**45**:91-9.

583 45. Casas M, Valvi D, Luque N, Ballesteros-Gomez A, Carsin AE, Fernandez MF, Koch
584 HM, Mendez MA, Sunyer J, Rubio S, Vrijheid M. Dietary and sociodemographic
585 determinants of bisphenol A urine concentrations in pregnant women and children.
586 *Environ Int* 2013;**56**:10-8.

587 46. LaKind JS, Naiman DQ. Temporal trends in bisphenol A exposure in the United
588 States from 2003-2012 and factors associated with BPA exposure: Spot samples and
589 urine dilution complicate data interpretation. *Environ Res* 2015;**142**:84-95.

590 47. Engel SM, Miodovnik A, Canfield RL, Zhu C, Silva MJ, Calafat AM, Wolff MS.
591 Prenatal phthalate exposure is associated with childhood behavior and executive
592 functioning. *Environ Health Perspect* 2010;**118**(4):565-71.

593 48. Gascon M, Valvi D, Forns J, Casas M, Martinez D, Julvez J, Monfort N, Ventura R,
594 Sunyer J, Vrijheid M. Prenatal exposure to phthalates and neuropsychological
595 development during childhood. *Int J Hyg Environ Health* 2015;**218**(6):550-8.

596 49. Tellez-Rojo MM, Cantoral A, Cantonwine DE, Schnaas L, Peterson K, Hu H, Meeker
597 JD. Prenatal urinary phthalate metabolites levels and neurodevelopment in children
598 at two and three years of age. *Sci Total Environ* 2013;**461-462**:386-90.

599 50. Hines EP, Calafat AM, Silva MJ, Mendola P, Fenton SE. Concentrations of phthalate
600 metabolites in milk, urine, saliva, and Serum of lactating North Carolina women.
601 *Environ Health Perspect* 2009;**117**(1):86-92.

602 51. Kato K, Silva MJ, Brock JW, Reidy JA, Malek NA, Hodge CC, Nakazawa H, Needham
603 LL, Barr DB. Quantitative detection of nine phthalate metabolites in human serum
604 using reversed-phase high-performance liquid chromatography-electrospray
605 ionization-tandem mass spectrometry. *J Anal Toxicol* 2003;**27**(5):284-9.

606 52. Kim BN, Cho SC, Kim Y, Shin MS, Yoo HJ, Kim JW, Yang YH, Kim HW, Bhang SY,
607 Hong YC. Phthalates exposure and attention-deficit/hyperactivity disorder in school-
608 age children. *Biol Psychiatry* 2009;**66**(10):958-63.

609 53. Cho SC, Bhang SY, Hong YC, Shin MS, Kim BN, Kim JW, Yoo HJ, Cho IH, Kim HW.
610 Relationship between environmental phthalate exposure and the intelligence of
611 school-age children. *Environ Health Perspect* 2010;**118**(7):1027-32.

612 54. Chopra V, Harley K, Lahiff M, Eskenazi B. Association between phthalates and
613 attention deficit disorder and learning disability in U.S. children, 6-15 years. *Environ*
614 *Res* 2014;**128**:64-9.

615 55. Hong SB, Hong YC, Kim JW, Park EJ, Shin MS, Kim BN, Yoo HJ, Cho IH, Bhang SY,
616 Cho SC. Bisphenol A in relation to behavior and learning of school-age children. *J*
617 *Child Psychol Psychiatry* 2013;**54**(8):890-9.

618 56. Huang HB, Chen HY, Su PH, Huang PC, Sun CW, Wang CJ, Chen HY, Hsiung CA,

619 Wang SL. Fetal and Childhood Exposure to Phthalate Diesters and Cognitive
620 Function in Children Up to 12 Years of Age: Taiwanese Maternal and Infant Cohort
621 Study. *PLoS One* 2015;10(6):e0131910.

622 57. Won EK, Kim Y, Ha M, Burm E, Kim YS, Lim H, Jung DE, Lim S, Kim SY, Kim YM,
623 Kim HC, Lee KJ, Cheong HK, Kang HT, Son M, Sakong J, Oh GJ, Lee CG, Kim SY,
624 Ryu JM, Kim SJ. Association of current phthalate exposure with neurobehavioral
625 development in a national sample. *Int J Hyg Environ Health* 2016;219(4-5):364-71.
626

