

1 *Type of the Paper (Article)*

2 **Smoking topography among Korean smokers: 3 intensive smoking behavior with larger puff volume 4 and shorter interpuff interval**

5 **Sungroul Kim** ^{1,*} and **Sol Yu** ^{1,2}

6 ¹ Department of Environment Health Sciences, Soonchunhyang University, Asan 31538, Korea;
7 sol0914@korea.kr.com (S.Y.)

8 ² (Currently) Division of Environmental Health Research, National Institute of Environmental Research,
9 Incheon 22689, Korea

10 * Correspondence: srkimehs@sch.ac.kr; Tel.: +82-41-530-1249

11

12 **Abstract:** The difference of smoker's topography has been found to be a function of sex,
13 personality, nicotine yield, cigarette type (i.e., flavored versus non-flavored) ethnicity and etc. We
14 evaluated the puffing behaviors of Korean smokers and its association with smoking-related
15 biomarker levels. A sample of 300 participants was randomly recruited from metropolitan areas,
16 South Korea. Topography measures during a 24-hour period were obtained using a CReSS pocket
17 device. Korean male smokers smoked two puffs less per cigarette, compared to female smokers
18 [15.0 (13.0–19.0) vs. 17.5 (15.0–21.0) as median (Interquartile range)], but had a significantly larger
19 puff volume [62.7 (52.7–75.5) mL vs. 53.5 (42.0–64.2) mL; $p = 0.012$]. The interpuff interval was
20 similar between men and women [8.9 (6.5–11.2) s vs. 8.3 (6.2–11.0) s; $p = 0.122$] but much shorter
21 than other study results. A dose-response association ($p = 0.0011$) was observed between daily total
22 puff volumes and urinary cotinine concentrations, after controlling for sex, age, household income
23 level, nicotine addiction level. Understanding of the difference of topography measures, especially, larger
24 puff volume and shorter interpuff interval of Korean smokers may help to overcome potential
25 underestimation of internal dose of hazardous substitutes of smoking or corresponding its health effect.

26 **Keywords:** Topography, Cotinine, Fagerstrom score, Addiction

27

28 **1. Introduction**

29 The adverse health effects of cigarette smoking are well documented. The rate of death from any
30 cause was 2 to 3 times as high among current smokers as among persons who never smoked [1]. In
31 many smoking-related studies, smoking related health effects or severity of smoking consumption
32 were mainly associated with the duration of smoking, number of cigarettes smoked per day, and
33 choice of brand [2,3], cigarette type [4] or topographical factors of smoking (e.g., puff count per
34 cigarette, puff duration, interpuff interval) [5,6].

35

36 Recently, one study reported that smokers of "ultra-low/low" nicotine-yield cigarettes exhibited
37 2.7-fold more intensive smoking behaviors ($p = 0.024$) to achieve the same salivary cotinine levels of
38 Japanese smokers of "medium/high" nicotine-yield cigarettes [7]. In the United States, a study
39 reported that Korean-Americans tended to exhibit higher average puff flows ($p = 0.05$), greater peak
40 puff flows ($p = 0.02$), and shorter interpuff intervals ($p < 0.001$), compared to Americans of Caucasian
41 descent [8]. Another study found that the higher levels of nicotine metabolites in men relative to

42 women were associated with the puff volumes, as well as the heights, weights, and nicotine
43 metabolism of smokers [9].
44
45 Furthermore, a recent study reported that the delivery of smoking-related carbonyls increased by
46 nearly two-fold when cigarettes were smoked according to the Health Canada Intense (HCI)
47 protocol, compared to the International Organization of Standardization (ISO) method [10]. This
48 finding was consistent with the two-fold difference in total puff volumes between the methods (ISO:
49 280–315 mL vs. HCI: 495–605 mL).
50
51 A smoker's topography with a tobacco is highly complex and distinct and the effect of the
52 difference of topographic measures may directly affect to internal dose of smoking related
53 substitutes inhaled. As we mentioned above, such difference of it may be a function of sex,
54 nicotine yield, cigarette type (flavored vs. none flavored) ethnicity and etc. [9, 11-13].
55
56 Although smokers' compensatory smoking behavior for nicotine-titration were reported in several
57 previous studies [14], explanations for topographic characteristics of Korean smokers and its
58 association to biomarker levels still have not been fully elucidated. Therefore, this study aimed to
59 evaluate the puffing behaviors of Korean smokers and to determine whether smoking-related
60 biomarker levels could be explained by differences in topography measures after controlling for the
61 nicotine addiction level.
62

63 **2. Materials and Methods**

64 *2.1 Study Population*

65 The study protocol was approved by the Soonchunhyang (SCH) University Institutional Review
66 Board on March 15, 2016 (no. 1040875-201601-BR-003), and informed consent was received from
67 individuals who agreed to participate in the study. A total of 300 participants (250 men, 50 women)
68 from the Bucheon, Cheonan and Seoul metropolitan areas were recruited into this convenience
69 based study through advertisements at outpatient centers of SCH Bucheon hospitals, in local
70 newspapers, and outside of various commercial establishments (e.g., grocery stores and markets).
71 Self-reported users of nicotine replacement therapy and users of smokeless or chewing tobacco were
72 excluded from the study. Pregnant women and individuals with asthma, chronic obstructive
73 pulmonary disease (COPD), or asthma–COPD overlap syndrome were also excluded.
74

75 *2.2 Data Collection*

76 An interviewer-administered questionnaire was used to collect information about demographic
77 characteristics (e.g., age, sex, education level, and race/ethnicity), smoking behaviors (self-reported
78 smoking status, daily smoking amount, nicotine dependence based on the Fagerstrom score,
79 cigarette brand name, number of packages smoked daily), and socioeconomic status. A Clinical
80 Research Support System (CReSS) pocket device (BORGWALDT, Richmond, VA, USA) was used to
81 collect data containing the distributions of puff volumes, puff durations, and interpuff intervals
82 from cigarette smoking during a 24-hour period. Urine samples were collected from participants
83 who completed topography analyses and subjected to measurements of cotinine, OH-cotinine, and
84 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) concentrations using liquid

85 chromatography-tandem mass spectrometry. Each recipient received US\$100 at his/her second visit
86 upon returning the device and providing a urine specimen.

87

88 2.3 Topography

89 We used the CReSS Pocket device (a portable version of the CReSS Laboratory system) to collected
90 24-hour data of puffing behaviors; puff volumes (0–150 ml), puff durations (0–28 s), interpuff
91 intervals (0–1200 s), puff flow (0–150 ml/s), puff counts per cigarette (0–40 puffs), and times to peak
92 puff flow. At Visit 1, each participant received instruction according to user manual of a CReSS
93 Pocket device and was required to continue using CReSS with their usual brand of cigarettes during
94 24 hours. For every usage, each participant was instructed to wait until they heard a beeping sound
95 after inserting a cigarette into the device and to record the number of cigarettes smoked with the
96 device during the 24-hour period. At Visit 2, the pocket device was returned and the data were
97 downloaded.

98

99 After downloading the data, we used a data cleaning procedure (Plowshare Technologies) to
100 identify erroneous puff measure; if the total number of puffs per cigarette was less than five, we
101 considered the data erroneous and excluded the value from our analysis. Our final topography
102 measures included the puff count, total and average puff volumes (ml), average puff duration (s),
103 average puff flow (ml/sec), average peak puff flow (ml/s), and average interpuff interval (s) per
104 cigarette, as well as the number of cigarettes smoked during the recording period (~24 hours). The
105 daily total puff volume was calculated by multiplying the median puff volume per cigarette, the
106 corresponding median puff count per cigarette, and the total number of cigarettes smoked using the
107 device during the 24-hour period. The CReSS was calibrated prior to each use by comparing the puff
108 volume of CReSS with a test cigarette connected to a syringe providing suction volume.

109

110 2.4 Statistical analysis

111 Descriptive statistics (frequencies, percentages, means, medians, and interquartile ranges) were used
112 to characterize the study population and smoking behaviors. Differences in demographic and
113 smoking-related characteristics by sex were determined using Fisher's exact test and the Mann–
114 Whitney *U* test (Wilcoxon rank-sum test). Statistical significance was defined as a *p* value <0.05.

115

116 A log-transformed linear regression analysis of outcome variables was conducted to account for the
117 right-skewed distribution. The regression coefficients were back-transformed to estimate the
118 geometric mean ratios when comparing different levels of the independent variable. Additionally,
119 we conducted a sensitivity analysis among a subset of the population with low puff counts. As we
120 observed no substantial differences in the findings, the full population is reported herein. Variables
121 that were significant (or borderline significant) in the univariate models were included in the
122 multivariate regression model. All analyses were conducted in SAS version 9.1 (SAS Institute, Cary,
123 NC, USA).

124

125

126

127 **3. Results**128 *3.1 Demographic characteristics of the study subjects*

129 The demographic characteristics of a total of 250 male smokers and 50 female smokers were
 130 summarized by sex in Table 1. The age distributions were similar between male and female
 131 subjects, with a majority of subjects younger than 30 years of age. In our sample, 22.0% of women
 132 and 50.0% of men had a higher-than-college education level and the difference was significant ($p =$
 133 0.001). Among women, 80% of the subjects had a monthly household income level of \$5000 or
 134 higher, in contrast to 58.4% of men ($p = 0.004$).

135

136 Table 1. Proportion of study subjects according to age, household income, education level,
 137 residential area, marital status, smoking status and Fagerstrom nicotine addiction level.

		Overall (n=300)		Male (n=250)		Female (n=50)		p-value*
		N	(%)	N	(%)	N	(%)	
Age (year)	≤24	94	(31.3)	73	(29.2)	21	(42.0)	0.115
	25 - 29	68	(22.7)	62	(24.8)	6	(12.0)	
	30 - 39	53	(17.7)	46	(18.4)	7	(14.0)	
	≥40	85	(28.3)	69	(27.6)	16	(32.0)	
Monthly household income	≤\$5000	114	(38.0)	104	(41.6)	10	(20.0)	0.004
	>\$5000	186	(62.0)	146	(58.4)	40	(80.0)	
Education level	University	136	(45.3)	125	(50.0)	11	(22.0)	0.001
	College	164	(54.7)	125	(50.0)	39	(78.0)	
Residential area	Seoul & Bucheon	256	(85.3)	212	(84.8)	44	(88.0)	0.824
	Chungnam	38	(12.7)	33	(13.2)	5	(10.0)	
	Others	6	(2.0)	5	(2.0)	1	(2.0)	
Marital status	Married	100	(33.3)	85	(34.0)	15	(30.0)	0.583
	Unmarried	200	(66.7)	165	(66.0)	35	(70.0)	
No. of cigarette per day	0~5	35	(11.7)	22	(8.8)	13	(26.0)	0.0132
	6~10	119	(39.7)	100	(40.0)	19	(38.0)	
	11~15	89	(29.7)	78	(31.2)	11	(22.0)	
	16~20	43	(14.3)	38	(15.2)	5	(10.0)	
	>20	14	(4.6)	12	(4.8)	2	(4.0)	
Fagerstrom score	1~2	91	(30.3)	75	(30.0)	16	(32.0)	0.7676
	3~4	127	(42.3)	109	(43.6)	18	(36.0)	
	5~7	76	(25.4)	61	(24.4)	15	(30.0)	
	≥8	6	(2.0)	5	(2.0)	1	(2.0)	

138 * Chi-square test to compare male's frequency with female's one

139

140 As shown in Table 1, the amount of smoking per day differed significantly between female and
141 male subjects ($p = 0.0132$). According to the Fagerstrom index, 26.4% and 32.0% of male and female
142 smokers, respectively, were considered to highly nicotine-dependent (score of ≥ 5). The difference of
143 the proportion of study participants was not significant ($p = 0.7676$).
144

145 3.2 Comparison of puffing behaviors between male and female smokers

146 In this study, a median of seven cigarettes were smoked using the CReSS device, and this number
147 did not differ significantly by sex ($p = 0.8143$) (Figure 1). Female smokers in our study [17.5 (15.0–
148 21.0)] were likely smoke two more puffs, compared to men [15.5 (13.0–19.0)] ($p=0.012$) but the puff
149 volumes of women were significantly ($p = 0.002$) smaller than those of men [53.5 (42.0–64.2) mL vs.
150 62.7 (52.7–75.5) mL]. In addition, women had an approximately 10% slower puffing speed than that
151 of men [36.4 (30.0–43.7) mL/s vs. 41.2 (33.1–52.2) mL/s; $p = 0.0304$]. In addition, women had a
152 shorter puff duration ($p = 0.058$) than men, but it was not statistically significant [1.4 (1.2–1.8) s vs.
153 1.6 (1.2–1.9) s]. However, the interpuff interval did not differ significantly between men and women
154 [8.9 (6.5–11.2) s vs. 8.3 (6.2–11.0) s; $p = 0.122$]. (Supplementary Table 1)

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

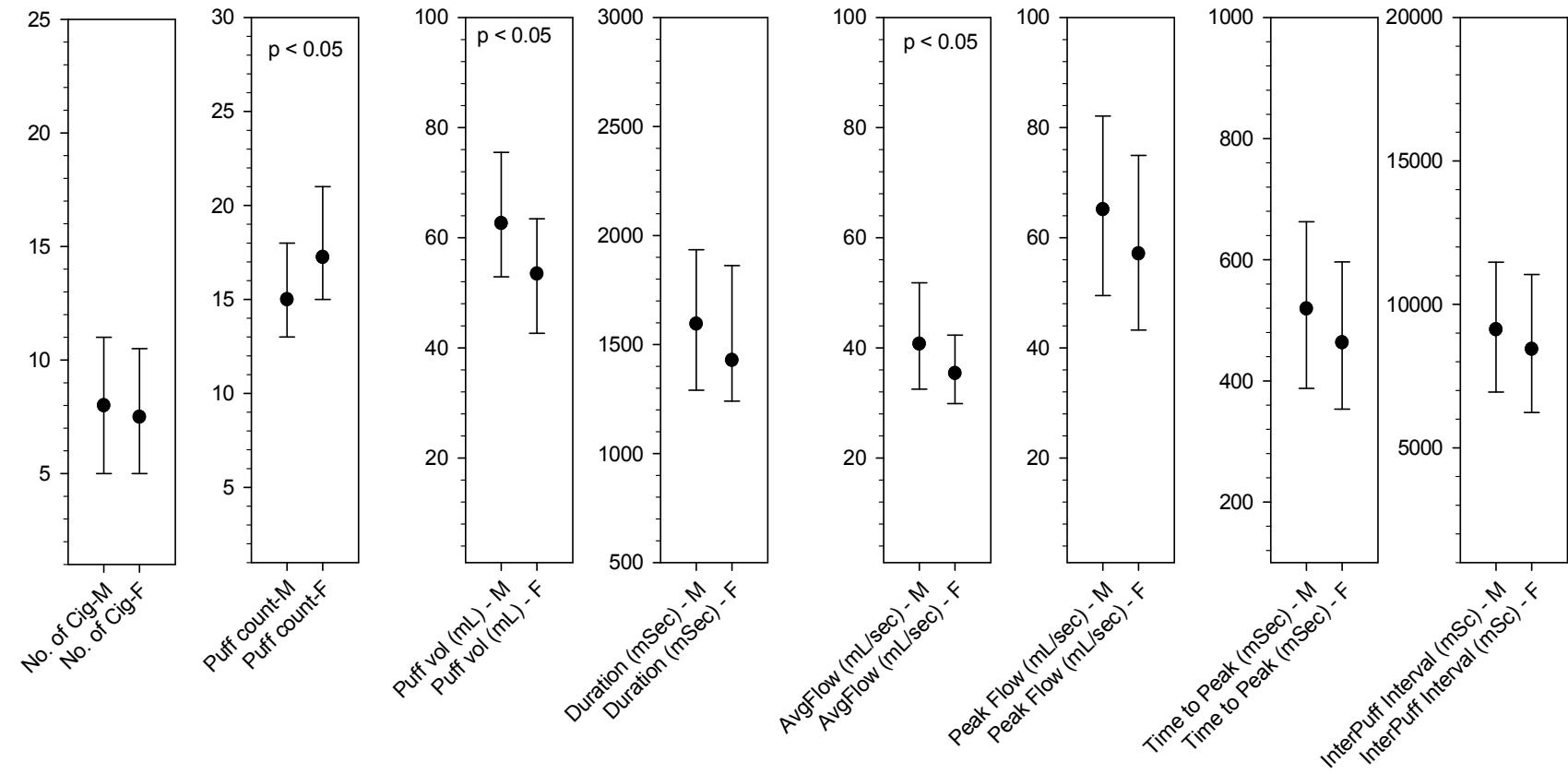
171

172

173

174

175


176

177

178

179

180

181

182 Figure 1. Comparison of puff measures (medina (interquartile range)) between male and female smokers (puff count per cigarette, puff volume, puff duration,
183 average flow rate, peak flow rate, interpuff interval.

3.3 Comparison of puffing behaviors according to Fagerstrom nicotine addiction levels

We also compared the puffing behaviors of subjects stratified by Fagerstrom nicotine addiction levels [low and low-mid (1~4) vs. moderate and high (5 or higher)] (Table 2). Between the two groups, we observed no differences in most puffing behaviors (e.g., puff count per cigarette, puff volume, puff duration, average flow rate, interpuff interval).

Table 2. Comparison of puff behavior according to the Fagerstrom nicotine addiction levels.

	Fagerstrom category (Low & Low-mid) (n=218)	Fagerstrom category (Moderate, High) (n=82)	p-value*
No. Cigarettes with CReSS	7.0 (5.0-20.0)	10.0 (7.0-13.0)	0.0001
Puff count / Cig	15.0 (13.5-18.5)	16.0 (13.0-18.5)	0.3041
Puff vol (mL) / Cig	62.1 (52.1-74.1)	58.2 (47.0-72.3)	0.2362
Duration (mSec)/ Cig	1572.4 (1285.4-1928.5)	1573.9 (1254.6-1918.9)	0.8958
Average Flow (mL/sec) / Cig	40.3 (32.5-50.2)	38.6 (30.8-48.1)	0.2384
Peak Flow (ml/Sec) / Cig	65.1 (49.3-81.5)	61.1 (49.1-79.4)	0.3591
Time to Peak (mSec) / Cig	495.5 (370.5-655.3)	556.1 (405.6-637.8)	0.3591
Inter Puff Interval (mSec) / Cig	8927.6 (7375.6-11281.1)	9122.6 (6460.0-11468.1)	0.6943

* p-value from Mann-Whitney test.

However, according to our further study, those who smoked non-flavored cigarettes were more likely to have higher Fagerstrom scores (i.e., higher nicotine dependence), compared to those who smoked flavored cigarettes (31.2% vs. 13.6%, $p = 0.0155$) (Supplementary Table 2). In addition, the puff count per cigarette was lower (two puffs) among smokers of high-nicotine-dose cigarettes relative to smokers of low-nicotine-dose cigarettes [15.0 (13.0–18.0) times vs. 17.0 (15.0–21.0) times; $p = 0.0011$]. In addition, high-nicotine-dose cigarette smokers had a 6.1-mL smaller puff volume relative to low-dose cigarette smokers [59.5 (49.3–71.4) mL vs. 65.6 (54.6–77.4) mL; $p = 0.0758$] (Supplementary Figure 1).

3.4 Associations of daily total puff volume levels and urinary cotinine concentrations

Supplementary Table 3 divides smokers into four quarters by the daily total puff volume with regard to their quartile value. Here, we found that an increased daily total puff volume was significantly associated with an increased cotinine concentration in a dose-dependent manner ($p = 0.0011$). The median urinary cotinine concentrations among subjects with total puff volumes <4542.0 mL, 4542.1~7071.0 mL, 7071.1~11556.0 mL, and ≥ 11556.1 mL were 905.4 (432.5–1413.2) ng/mL, 933.1 (594.4–1486.2) ng/mL, 1089.9 (787.0–1650.9) ng/mL, and 1271.0 (889.5–1808.9) ng/mL, respectively.

A dose response association of daily total puff volume levels and urinary cotinine concentrations was further evaluated by adjusting for the Fagerstrom index, daily total puff volume (mL), nicotine contents (mg) of a usual cigarette, urinary OH-cotinine concentration, and nicotine ($\mu\text{g/mL}$) concentration as the major independent variables (Table 3). And the association were did not changed even after additional controlling for sex, age, household income level and the time interval between bio-sample delivery and last cigarette smoked [i.e., recent smoking (min)] (Table 3). Our final multivariate regression analysis showed that the concentrations of urinary cotinine were significantly higher ($p < 0.05$) in groups with high total puff volumes, compared to the reference. Furthermore, we observed a dose-response relationship ($p < 0.05$) between urinary cotinine levels and the Fagerstrom nicotine dependence index. Furthermore, male smokers had 34% higher cotinine levels relative to female smokers ($p < 0.05$). Although it was not statistically significant, the higher the nicotine content in the cigarettes, the more likely it was a positive relationship. The explanatory power of the independent variables in our model is approximately 40%.

Table 3. Determinants of urinary cotinine concentration; Associations with daily total puff volume.

	Univariate			Multivariate 1 (R ² = 0.283)			Multivariate 2 (R ² = 0.398)		
	GM Ratio	95% CL		GM Ratio	95% CL		GM Ratio	95% CL	
Fagerstrom index									
1~2 (Ref)									
3~4	1.62*	1.26	2.08	1.43*	1.12	1.81	1.27*	1.02	1.59
5~7	2.40*	1.82	3.17	2.01*	1.52	2.66	1.77*	1.36	2.28
8+	2.36*	1.13	4.92	2.28*	1.13	4.57	2.06*	1.08	3.90
Total volume (mL) / day									
≤4715.0 (Ref)									
4715.1~7245.0	1.47*	1.09	1.98	1.53*	1.17	2.01	1.48*	1.16	1.90
7245.1~11791.0	1.81*	1.35	2.44	1.63*	1.23	2.14	1.65*	1.28	2.12
≥11791.1	2.06*	1.53	2.77	1.72*	1.30	2.28	1.64*	1.26	2.12
Nicotine contents (mg)									
~ 0.1 (Ref)									
> 0.1	1.23	0.96	1.57	1.20	0.95	1.51	1.17	0.95	1.45
OH-cotinine (ug/mL)	1.15*	1.11	1.18				1.11*	1.08	1.15
Nicotine (ug/mL)	1.22*	1.13	1.32	1.20*	1.11	1.29	1.10*	1.02	1.18
Sex									
Female (Ref)									
Male	1.46*	1.09	1.96	1.39*	1.08	1.81	1.34*	1.06	1.70
Age (years)									
29 or less (Ref)									
> 29	1.04	0.83	1.29	0.98	0.79	1.21	1.07	0.88	1.30
Household income (10000 Won)									
> 500 (Ref)									
500 or less	0.78*	0.62	0.98	0.79	0.65	0.97	0.80	0.66	0.96
Recent smoking (Min)									
> 30 (Ref)									
30 or less	1.30*	1.02	1.66	1.16	0.93	1.45	1.12	0.91	1.37

GM = geometric mean; Ref = reference group; *: p<0.05

1 **4. Discussion**

2 The outcome of our study demonstrated a similar puff volume, puff durations, average puff flow
3 rates, and peak flow rates obtained from US-dwelling Korean immigrants and American citizens
4 used the same type of topograph measuring device. However, it demonstrated that Korean smokers
5 tended to smoke much intensively; the interpuff interval of 8.9 s among Koreans participating in our
6 study was much shorter than that of Americans (25 s) or Korean immigrants living in the USA (13.5
7 s) [8].

8

9 We also found that Korean smokers tend to have strong compensatory smoking behavior for
10 nicotine self-titration. Like our study results, in a recent study of 101 smokers in Japan [7],
11 high-nicotine-dose cigarette users similarly had a lower puff count and puff volume (12.6 times, 53.8
12 mL). Furthermore, a cross-sectional study conducted in the USA in 2015 also observed smaller puff
13 count numbers and puff volumes among high-nicotine-dose cigarette users relative to low-dose
14 cigarette users, although the interpuff intervals were relatively long [15].

15

16 The International Standard Organization has set a puff volume of 35 mL and interpuff interval of 60
17 seconds as the operating parameters of intense smoking regime [16]. However, according to our
18 study results, we consider that this international setting may not reflect the smoking behaviors of
19 Korean smokers. Health Canada currently uses a puff volume of 55 mL, interpuff interval of 30
20 second, and puff duration of 2 second. The results of our study demonstrate that the puff volumes
21 and puff durations of Korean smokers were relatively close to Health Canada guideline, rather than
22 ISO. However, still, Korean smokers' interpuff interval was even 2 to 3 times shorter 8.9 (6.5–11.2)
23 seconds for male vs. 8.3 (6.2–11.0) seconds for female smokers) than those from patients of bipolar
24 disorders (18.4 seconds) [17] or WHO Standard operating procedure (30 seconds) for method of
25 intense smoking of cigarette [18].

26

27 Our results also demonstrated that male smokers had a lower puff count but higher puff volume
28 relative to female smokers, which might explain the similar median total daily puff volumes of male
29 and female smokers. In other words, the daily total puff volumes did not differ between the sexes,
30 despite differences in various measures of puff parameters (especially volume and frequency).
31 Therefore, we considered that men and women likely inhaled the same amounts of harmful
32 substances if the cigarette type is same.

33

34 Furthermore, our multivariate regression analysis demonstrated a dose-response relationships of
35 the daily total puff volume with the urinary cotinine level did not changed even after controlling for
36 and demographic (age, sex), socioeconomic variables (monthly house income level) and the interval
37 between urine sample delivery. We observed that the urinary cotinine concentrations derived for
38 male and female smokers in this study were similar to those reported by the Korea National Health
39 and Nutrition Evaluation study [19]. Therefore, we considered that our results reflected general
40 amount of smoking and its puffing characteristics.

41

42 However, a similar multivariate regression analysis of the influencing factors of NNAL found no
43 association with the daily total puff volume (data not shown). We attribute this difference between

44 the biomarkers to the differences in the half-lives of NNAL (~1 month) and cotinine (~1 day) or
45 heterogeneity in the levels of toxins (e.g., NNK) or nicotine (mg) among Korean cigarette brands [20].
46

47 A recent study reported that more intensive puffing regimens associated with the use of low nicotine
48 concentration e-liquids could lead to higher levels of carbonyl generation in the aerosol [21].

49 Furthermore, it was reported that in electronic cigarettes, nicotine consumption and puffing
50 topography could be changed due to power setting of electronic cigarettes [22]. As the prevalence of
51 e-cigarette use among adult smokers (older than 19 years) had increased from 2013 to 2015 (0.9% to
52 2.6%) in South Korea while that of tobacco cigarette use had decreased from (19.3% to 17.5%)
53 according to Korea National Health and Nutrition Examination Survey (KNHANES) data (2013-
54 2015) [23], a new topography study with new E-cigarette or heat-not-burn (HNB) cigarette is highly
55 recommended.

56

57 We note that our study had some limitations, and therefore our results should be interpreted
58 cautiously. This study population was not nationally representative, but rather involved a
59 convenience-based random sample of volunteers who were solicited via advertisements and agreed
60 to participate. Although the subjects were not representative of the population, we assumed
61 smoking rates of approximately 40% and 8% among men and women, respectively, and thus aimed
62 to include a number of male smokers (n=250) approximately 5 times larger than of female smokers
63 (n=50). As mentioned above, the levels of urinary cotinine were ultimately similar to those reported
64 in the Korea National Health and Nutrition Survey. Therefore, we do not believe that systemic errors
65 occurred in terms of our study population recruitment and outcomes.

66

67 When we conducted our study, very few of the participants reported that they had used electronic
68 cigarettes and common cigarettes together (n=3 out of 300), but not during the study period, and
69 therefore topographical data of electronic cigarettes could not be presented. Furthermore, in this
70 study, according to Tukey's fences outline test, those subject (n=14) reported more than 30 puffs per
71 cigarettes were considered anomalous outliers and excluded from the final multivariate regression
72 analysis [24]. However, we observed no differences in the distributions (median with interquartile
73 range) of puffing parameters, including the daily total puff volume, before and after excluding the
74 outliers.

75 5. Conclusions

76 Despite these limitations, our study provided quantitative evidence of Korean smokers'
77 compensatory smoking behavior to reach nicotine titration with much intensive puffing behavior : 3
78 times faster interpuff interval than that of international intense smoking regime guideline probably
79 obtained from Western population. The application of the ISO or HCl guideline as parameter of
80 Korean population's smoking behavior would underestimate the actual daily total puff volume [up
81 to 200% by the difference in puff volume (35 mL vs. 65 mL: ISO, 55 mL vs. 65 mL: HCl) and 300% by
82 the difference in interpuff interval (30 s vs. 9.2 second: ISO and HCl)]. This may result in
83 underestimation of the inhalation amount of smoking-related chemicals, internal doses, and
84 potential health effects per of smoking.

85

86 **Author Contributions:** Sungroul Kim conceived of the idea of this paper and prepared this draft. Sol Yu
87 performed the data analyses and made the figures. All authors contributed to the revision of the manuscript and
88 approved the final version for submission.
89

90 **Funding:** Financial support was provided by the Korea Center for Disease Control (Project # 2015-P34007-00).
91 The authors declare they have no actual or potential competing financial interests.
92

93 **Acknowledgments:** The authors acknowledge the voluntary participation of the study subjects.
94

95 **Conflicts of Interest:** The authors declare no conflict of interest.
96

References

1. Carter, B.D.; Abnet, C.C.; Feskanich, D.; Freedman, N.D.; Hartge, P.; Lewis, C.E.; Ockene, J.K.; Prentice, R.L.; Speizer, F.E.; Thun, M.J. et al. Smoking and mortality beyond established Causes. *N Engl J Med.* **2015**, 372, 631-640.
2. Thielen, A.; Klus, H.; Muller, L. Tobacco smoke: unraveling a controversial subject. *Exp. Toxicol. Pathol.* **2008**, 60, 141-156.
3. Schuman, L.M. Patterns of smoking behavior. *NIDA Res Monogr.* **1977**, 17, 36-66.
4. Apelberg, B.J.; Hepp, L.M.; Avila-Tang, E.; Kim, S.; Madsen, C.; Ma, J.; Samet, J.M.; Breysse, P.N. Racial differences in hair nicotine concentrations among smokers. *Nicotine Tob Res.* **2012**, 14, 933-941.
5. Rosenberry, Z.R.; Pickworth, W.B.; Koszowski, B. Large cigars: Smoking topography and toxicant exposure. *Nicotine Tob Res.* **2018**, 20, 183-191.
6. Hammond, D.; Fong, G.T.; Cummings, K.M.; Hyland, A. Smoking topography, brand switching, and nicotine delivery: results from an in vivo study. *Cancer Epidemiol. Biomarkers Prev.* **2005**, 14, 1370-1375.
7. Matsumoto, M.; Inaba, Y.; Yamaguchi, I.; Endo, O.; Hammond, D.; Uchiyama, S.; Suzuki, G. Smoking topography and biomarkers of exposure among Japanese smokers: associations with cigarette emissions obtained using machine smoking protocols. *Environ Health Prev Med.* **2013**, 18, 95-103.
8. Chung, S.; Kim, S.S.; Kini, N.; Fang, H.J.; Kalman, D.; Ziedonis, D.M. Smoking topography in Korean American and white men: preliminary findings. *J Immigr Minor Health.* **2015**, 17, 860-866.
9. Chen, A.; Krebs, N.M.; Zhu, J.; Sun, D.; Stennett, A.; Muscat, J.E. Sex/Gender differences in cotinine levels among daily smokers in the Pennsylvania adult smoking study. *J Womens Health (Larchmt).* **2017**, 26, 1222-1230.
10. Reilly, S.M.; Goel, R.; Bitzer, Z.; Elias, R.J.; Foulds, J.; Muscat, J.; Richie, J.P. Jr. Effects of topography-related puff parameters on carbonyl delivery in mainstream cigarette smoke. *Chem Res Toxicol.* **2017**, 30, 1463-1469.
11. Farris, S.G.; Aston, E.R.; Abrantes, A.M.; Zvolensky, M.J. Tobacco demand, delay discounting, and smoking topography among smokers with and without psychopathology. *Drug Alcohol Depend.* **2017**, 179, 247-253.

128 12. Watson, C.V.; Richter, P.; de Castro, B.R.; Sosnoff, C.; Potts, J.; Clark, P.; McCraw, J.; Yan, X.;
129 Chambers, D.; Watson, C. Smoking behavior and exposure: results of a menthol
130 cigarette cross-over study. *Am J Health Behav.* **2017**, *41*, 309-319.

131 13. Benowitz, N.; Pérez-Stable, E.; Herrera, B.; Jacob, P. African American-Caucasian differences in
132 nicotine and cotinine metabolism. *Clinical Pharmacology and Therapeutics*, **1995**, *57*, 159.

133 14. Scherer, G. Smoking behavior and compensation: a review of the literature. *Psychopharmacology*
134 (*Berl.*) **1999**, *145*, 1-20.

135 15. Appleton, S.; Liu, J.; Lipowicz, P.J.; Sarkar, M. Effect of cigarette design on biomarkers of
136 exposure, puffing topography and respiratory parameters. *Inhal Toxicol.* **2015**, *27*, 174-180.

137 16. ISO, ISO and Health Canada intense smoking parameters
138 <https://www.iso.org/obp/ui/#iso:std:iso:tr:19478:-2:ed-1:v1:en> [Accessed 15th January 2018].

139 17. Williams, J.M.; Williams, J.M.; Gandhi, K.K.; Lu, S.E.; Steinberg, M.L.; Benowitz, N.L. Nicotine
140 intake and smoking topography in smokers with bipolar disorder, *Bipolar Disord.* **2012**, *14*,
141 618-627.

142 18. WHO, Standard operating procedure for intense smoking of cigarettes, *WHO TobLabNet official*
143 *method SOP 01*, **2013**, Switzerland.

144 19. Kim, S.R.; Jung, A. Optimum cutoff value of urinary cotinine distinguishing South Korean Adult
145 Smokers from Nonsmokers using data from the KNHANES (2008~2010). *Nicotine Tob Res.* **2013**,
146 *15*, 1608-1616.

147 20. Hammond, D.; Wiebel, F.; Kozlowski, L.T.; Borland, R.; Cummings, K.M.; O'Connor, R.J.;
148 McNeill, A.; Connolly, G.N.; Arnott, D.; Fong, G.T._Revising the machine smoking regime for
149 cigarette emissions: implications for tobacco control policy. *Tob Control.* **2007**, *16*, 8-14.

150 22. Farsalinos, K.; Poulas, K.; Voudris, V. Changes in puffing topography and nicotine consumption
151 depending on the power setting of electronic cigarettes. *Nicotine Tob Res.* **2017**. Available from:
152 doi.10.1093/ntr/ntx219.

153 23. KCDC. Korea national health and nutrition examination survey (KNHANES).
154 <https://knhanes.cdc.go.kr/knhanes/index.do>. [Accessed 15th January 2018].

155 24. Wikipedia, Outlier, <https://en.wikipedia.org/wiki/Outlier> [Accessed 15th January 2018].

156

157

158