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Abstract — Maximum hardness and hardened depth are the responses of interest in relation to the
laser hardening process. These values define heat treatment quality and have a direct impact on
mechanical performance. This paper aims to develop models capable of predicting the shape of
the hardness profile depending on laser process parameters for controlling laser hardening quality
(LHQ), or rather the response values. An experimental study was conducted to highlight hardened
profile sensitivity to process input parameters such as laser power (PL), beam scanning speed (Vs)
and initial hardness in the core (Hc). LHQ modeling was conducted by modeling attributes
extracted from the hardness profile curve using two effective techniques based on the punctual and
geometrical approaches. The process parameters with the most influence on the responses were
laser power, beam velocity and initial hardness in the core. The obtained results demonstrate that
the geometrical approach is more accurate and credible than the punctual approach according to
performance assessment criteria.

Keywords: Laser hardening; geometrical approach; punctual approach; Taguchi method; artificial

neural network

1. Introduction
Since humans began using steel, they have developed heat treatment processes to achieve certain
desirable mechanical conditions and / or properties. The basic principle of heat treatment is to
carry out one or a combination of operations that involve heating and cooling of steel substrates
while maintaining as much of their initial form and surface as possible. Depending on the heating
pattern and cooling rate, steel can be subjected to a full range of heat treatments such as annealing,
normalizing, hardening, tempering and surface hardening, as well as special treatments such as
austempering, ausforming and cold treatment [1]. Among the types of heat treatment mentioned
above, surface hardening is the process most frequently used to obtain an extremely hard surface

when applied to ferrous alloys with more wear resistance, toughness and fatigue life. Several
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engineering techniques can be used during the surface hardening process including coating,

diffusion and selective hardening methods [2].

Surface hardening with a laser beam is a selective and a clean hardening technique widely
employed on low and medium carbon steel, as is the induction heating process. The laser hardening
process is characterized by its ability to provide specific treatment quality features, such as reduced
distortion and cracking associated with through hardening of thick sections [3]. During the surface
heat treatment, the surface layer of the hardened steel is exposed to a series of temperature
variations due to the short process cycle time. As soon as the laser beam scans the mechanical part,
the treated surface receives an amount of energy that can easily heat the surface layer beyond the
austenitizing temperature Acs. Figure 1 illustrates the metallographic cross-section image of an
AISI 4340 steel plate hardened using a laser beam. In this example, the laser power was adjusted
to 1 kW and the beam was scanned at 16 mm/s. The transformed region had an elliptical shape due
to Gaussian distribution of the beam, which stipulates that the maximum energy be applied at the
center of the spot. It is important to distinguish the both regions most exposed to the region not
affected by the heat. As indicated in Figure 2, the laser beam may melt the scanned surface,
creating an area called the melted region; otherwise and in ordinary cases, steel’s self-quenching
effect dramatically reduces the surface layer temperature from the austenitizing temperature Acs
to the part’s interior temperature. This temperature gradient occurs in an extremely short period of
time, forming a hardened region that contains hard, fine martensite and an over-tempered region
between the hardened region and the material bulk that consists of tempered martensite with a
small amount of retained austenite. The remaining region does not seem to be affected by the

thermal flow during the laser hardening stage [4].
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Figure 1. Metallographic cross-section of the hardened region
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Figure 2. Representation of a typical cross-section of a laser-hardened plate
Many studies have featured the laser hardening process, the majority of which were experimental
studies limited to examining the effect of process input parameters on the treated layer [5-6]. Other
studies have focused on theoretical and analytical aspects, trying to understand and quantify the
thermal and microstructural mechanism during the phenomenon [7-8]. These studies were often
focused on the maximum hardness surface treated (Hu), which constitutes an interesting response
and does not reflect the full picture of treatment quality. A typical hardness curve obtained by laser
hardening is illustrated in Figure 3. This curve is characterized by the melted layer (1). It also
includes a hardened region (2) that records a high hardness value and is a homogeneous
microstructure with nearly constant hardness and compressive residual stress levels. The over-
tempered region (3) represents the hardness loss caused by a sharp drop in hardness to reach a
minimum value. This region represents the hardness rise until it reaches the initial hardness value
and is composed of a mixture of hard and over-tempered martensite since the temperature was
between Aci and Acs. The fourth region (4) records a constant hardness value that represents the
tempered martensite constituting the initial microstructure in the part’s core before laser treatment.
The LQH is a feature that cannot be confined to a limited response, but rather a coherent set of
response results depending strongly on process parameters. In addition to the hardness values Huy,
laser hardening quality can be also estimated through the depth of the four regions described
previously, the melted region (dm), hardened region (du), over-tempered region (dr) and total
transformed region (dc). The hardness profile is a direct result of temperature distribution during
and after heating and could greatly affect part distortion, martensite microstructure and

compressive residual stresses resulting at the surface [9].
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Figure 3. Representation of LHQ elements through the hardness profile curve
dwm, du, dc and Hu can be controlled by input process parameters, so modeling these responses is a
successful means of attaining the desired quality process while avoiding time and cost limitations.
The modeling approach was the focus of several laser hardening or welding studies that were
generally based on the artificial neural network (ANN) technique and the multi-regression method.
Lambiase developed an expert model using the ANN technique to evaluate the temperature profile
and temperature history of a laser-treated part under different processing conditions [10]. As a
result, the measured hardness values showed relatively good correspondence with the predicted
temperature profile. Woo used both multi-regression and artificial neural network techniques to
develop models for assessing the hardened layer dimensions of SM45C steel, mainly the effect of
coating thickness parameters [11]. Bappa Acherjee highlighted the laser welding process by
predicting welding quality [12]. His work aimed to establish a correlation between laser
transmission welding parameters and output variables through a non-linear model based on
artificial neural networks. After studying the effect of the process parameters on the responses of
interest or LHQ, this study aims to develop models capable of predicting the hardness profile and
controlling the QHL according to input process parameters. The modeling technique is based
mainly on the choice of modeled attributes. Hardness profile attribute characterization is a
necessary step for modeling, so these attributes must provide a global representation of hardness

profile behavior. Two different approaches were used during this study to characterize the hardness
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profile according to process parameters such as laser power and scanning speed. The extracted
attributes were modeled using the artificial neural network based on multilayer perceptron (MLP).
The generated models were analyzed using special evaluation criteria to determine the appropriate

characterization approach for modeling the LHQ.

2. Experimental aspect

Experimental conditions

Steel heat treatment quality depends largely on the input factors. In the case of laser heat treatment,
machine parameters such as laser beam power (PL) and scanning speed (Vs) have the greatest
effect and make the most significant contributions to the required results. All other parameters that
were investigated in the relevant studies can be considered to have made fewer contributions when
comparing laser beam power and scanning speed. The experimental aspect of this study was
applying the laser heat treatment process to AISI 4340 steel to assess the parameters’ impact on
the quality of the hardened layer. In addition to laser power and laser beam velocity, with four
levels of each, the input parameters of the first experiment were restricted to initial steel hardness
(Hc) and surface roughness (Ra), with two levels of each. The power varied from 300 W to 1400
W with a step of 300 W, while the speed varied from 10 mm/s to 40 mm/s with 10 mm/s
incrementing. The initial hardness values were 40 HRC and 50 HRC, and the surface roughness

was tuned at 0.8 um and 2.4 um.

Experimental design

A test plan that contains all possible combinations of all input factors is known as a fully crossed
design and is considered the best approach for carrying out such experiments, based on its credible
results. However, due to time and cost limitations, it is not widely used and only a few experiments
have been carried out using a fully crossed design. Alternatively, the orthogonal arrays (OA)
developed by Taguchi represent a judicious and robust fractional factorial design [13]. Used in
most experimental studies similar to this paper, this strategy can achieve a high-quality level
process while reducing the number of tests that are strictly necessary to collect all statistically
significant data [14]. Based on the number of considered parameters and their levels, Lie
orthogonal arrays were an adequate test strategy for this study, while Ls remained an appropriate

choice for validation tests.
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Experimental set-up

The steel used in this study was AISI 4340 machined to parallelepiped plates (50 mm x 30 mm x
5 mm) to facilitate its handling during treatment. The parallelepiped steel plates were subjected to
several prior preparations, such as pre-heat treatment to achieve the desired initial hardness levels,
as well as a plate surface texture preparation using CAMI-Grit-100 sandpaper with an average
particle diameter of 140 pm to obtain a surface roughness (Ra) of approximately 2.4 um and
CAMI-Grit-200 sandpaper with an average particle diameter of 68 pm to obtain a surface
roughness (Ra) of approximately 0.8 um. The laser beam was provided by a Nd:YAG system, and
the value range levels of machine parameters such as beam power and scanning speed were taken
to ensure the complete austenitization of the steel layer during the heat treatment (Table 1). Once
the treatment was performed, the hardness profile was characterized by using a Clemex
microhardness measurement machine, which provided the hardness profile shape of each test in
the experiment.

Table 1: Scratching parameters of the process and their levels

Parameters Levels
Power (kW) 0.4,0.7,1.0and 1.3
Speed (mm/s) 10, 20, 30 and 40
Initial hardness (HRC) 40, 50
Surface roughness (Ra) 0.8,2.4

Experimental results analysis

Effective modeling relies overwhelmingly on the selection of parameters with the most influence
on the phenomenon. For this reason, the statistical study of process results is required before
modeling to determine the impact of the parameters and the contribution of each. Several statistical
tools can be used, though the most frequently used is the analysis of variation (ANOVA). ANOVA
analysis is a computational technique that reveals all the necessary information about the process
parameters that can help determine the impact of each parameter and its contribution to the
controlling response. Information provided by ANOVA analysis includes degrees of freedom, sum
of squares, mean square, P-value and F-value; based on this information, the process parameters
were ranked according to their importance in the experiment. The response surface methodology
(RSM) model corresponding to the measured case depth (du) was established according to the
analytic methods depicted above. ANOVA analysis was performed with a stepwise mode, which

automatically eliminate the insignificant terms. Table 2 presents the detailed statistical analysis


http://dx.doi.org/10.20944/preprints201804.0347.v1
http://dx.doi.org/10.3390/coatings8060226

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 April 2018 d0i:10.20944/preprints201804.0347.v1

confirming that F-value is important for almost all factors except the roughness surface and a P-
value of less than 0.09. In this case, the laser power (PL), scanning speed (Vs) and initial hardness
(Hc) were all significant model terms. Based on the ANOV A results, the parameters predominantly
affecting the LHQ were laser beam power (52.76%) and beam scanning speed (32.92%). The
contribution of initial hardness was less than 5%, and the factor related to surface roughness had
no effect on the case depth in that situation. However, the contribution of the total error was about
8.73%. This result means that the process responses were somehow not controlled by the all-
important input parameters. The coefficient of determination (R?) is mainly used to measure the
relationship between experimental data and measured data. In this case, R* was equal to 91.26%,
proving a high correlation between experimental results and predicted results. The predicted R? of
54.34% was in reasonable agreement with the adjusted R? of 81.27%. Adequate precision
measures the signal to noise ratio. The standard deviation related to the case depth prediction model
was evaluated at 0.3201.
Table 2. ANOVA results for factors including Ra

Source DF Sum of Mean F-Value P-Value Contributions

Squares Square (%)

PL (kW) 3 0.81125 0.27042 14.09 0.002 52.76

Vs (mm/s) 3 0.50625 0.16875 8.79 0.009 32.92
Hc (HRC) 1 0.07562 0.07562 3.94 0.088 491
Ra (um) 1 0.01000 0.01000 0.52 0.494 0.65
Error 7 0.13437 0.01920 8.73
Total 15 1.53750 100

A similar experiment was performed with the same input parameters, except that the surface
roughness parameter (Ra) was replaced by surface nature (Sx) (as treated (1) - finished (2)); as a
result, the error contribution dropped to 2.47%. Some similarities were noted regarding F-value
and P-value concerning the analysis considering Ra. In fact, F-value was very important,
exceeding 10 for the least significant factor (SN), and the P-value was less than 0.015 for SN again.
It was also clear that scanning speed has the largest effect on the response value, laser power has
less of an effect and revolution speed has the least effect. The three interaction terms affected the
case depth less but were not ignored. This study allows for determination of the various effects
and the ranking of each effect on the case depth (du). Based on the data in Table 3, the variation

in the three characteristics represents each parameter’s degree of influence on the response. It was
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confirmed by analyzing their contributions that the power affects du by more than 58.66% and that
scanning speed contributes to the overall variation by more than 16%. The initial hardness
influences the case depth by about 19% with an error of less than 2.5%. Most of the parameters
were therefore taken into account during this study. It is important to note the non-presence of
interactions between the four factors used in this study. The coefficient of determination (R?) was
about 96.03%, proving a high correlation between experimental results and predicted results. The
predicted R? of 79.26% was in reasonable agreement with the adjusted R? of 91.49%. Adequate
precision measures the signal to noise ratio. The standard deviation related to the case depth
prediction model was evaluated at 0.3240.

Table 3. ANOVA results for factors including S

Characteristic DoF Sum of Mean F-Value P-Value Contributions

Squares Square (%)

PL (kW) 3 0.94092 0.31364 55.94 0 58.66
Vs (mm/s) 3 0.25717 0.08572 15.29 0.002 16.03
Hc (HRC) 1 0.30526 0.30525 54.45 0 19.03
Sn 1 0.06126 0.06125 10.93 0.013 3.81
Error 7 0.03924 0.00560 2.47
Total 15 1.60384 100

Figures 4 and 5 present the average effect graphs certifying that the four parameters affected the
case depth to different degrees. du increased with power and initial hardness and decreased with
speed and surface roughness. du also increased with power and initial hardness and decreased with
speed and surface nature. The drawn points match up to the averages of the observations for each
factor level. These results confirm the relative importance of the contribution of different factors
in the variation of du. The effects of the four factors in both cases (Ra and Sn) do not follow the
same tendencies. Overall, the case depth recorded maximum values at 1.3 kW, 10 mm/s, 50 HRC
and Ra of approximately 0.8 um. However, the minimum value was recorded at 0.4 kW, 40 mm/s
and 40 HRC when the surface roughness was adjusted to 0.8 um. The case depth recorded
maximum values at 1.3 kW, 10 mm/s and 50 HRC when the surface was treated. However, the

minimum value was recorded at 0.4 kW, 40 mm/s and 40 HRC when the surface was polished.


http://dx.doi.org/10.20944/preprints201804.0347.v1
http://dx.doi.org/10.3390/coatings8060226

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 April 2018 d0i:10.20944/preprints201804.0347.v1

P (kw) V (mm/s) H (HRC) Ra (pum)

0.9
0.8 -
0.7 -
0.6 - / —
0.5 -

0.4

0.3 -

04 07 10 13 10 20 30 40 40 50 0.8 2.4
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Figure 5. Parameter effects (including surface nature S) on du
The information above shows that the surface nature (Sx) of the treated plate had a greater impact
on du and on the other output response than surface roughness (Ra). The error contribution of the
second experiment, in which the surface nature was considered as a fourth input parameter, was
relatively small compared to the first experiment. This proves that the second experiment
considered the important parameters and that laser hardening quality is strongly controlled by these
parameters compared to the first experiment. Since the error contribution was less when Ra was
replaced by Sx in the ANOVA analysis, the selection of Pr, Vs, Hc and S as input parameters is
promising and constitutes an effective choice for LHQ element models. Consequently, elaboration
process using the best selection of parameters based on its effect and contribution decrease the

modeling and the validation errors.

3. LHQ assessment model
Returning to the objective mentioned above, this study aims to develop potent laser hardening
quality models allowing for accurate prediction of key quality elements such as dw, du, dc and Hu
depending on the input variables using systematic and rigorous approaches. It is well known that

the modeling process is based on two important pillars, the type and number of variables to include
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in the model and the technique used to develop the robust model. According to ANOVA results
and as mentioned earlier, the error of modeling and validation due to process input variables is
expected to be minimal in the present study, which guarantees the success of the first modeling
pillar to some extent. Regarding development of the model approaches, which are generally
divided into two categories, theoretical modeling is an undesirable modeling option because of the
complexity of the phenomena and the lack of understanding of fundamental laser hardening
process behavior. In this case, empirical modeling is an appropriate means of reaching the study’s
objective. The advantage of using the empirical approach is its ability to develop robust models

with easily available information on the variables to include in the model.

Two famous modeling techniques are used in the relevant studies. The first is the multivariate or
multivariable regression method; the second, the artificial neural network technique, was used in
this study. The artificial neural network technique was adopted because of its ability to model the
identified elements according to large numbers of controlling variables, even if the relationship
between the identified element and the variables is non-linear. ANN contains several types of
networks, such as feedforward neural networks (FNN), radial basis function networks (RBF),
Kohonen self-organizing networks (KSON), learning vector quantization (LVQ) and the most

popular technique used, multilayer perceptron (MLP).

In the present study, effective modeling is the result of a set of systematic and rigorous sequences
that begin by carrying out the experimental tests according to a well-defined combination of
variables (PL, Vs, Hc and Sn). This combination of variables was proposed by Taguchi’s OAs
(L16), which were included in the models. Once the tests were done, response result data collection
for modeling began; the data collection was done using specific techniques that will be explained
later in the paper. A statistical analysis procedure to determine the impact, contribution and
relationship between the process input variables and the data collected was carried out while taking
into account all the conditions that could influence the modeling. The crucial step in the modeling
sequences was the choice of technique for modeling and performance criteria. Once this step has
been completed, it will the time to train the generated models, followed by the performance
evaluation [15]. Based on certain performance evaluation criteria such as mean square error
(MSE), a comparative study was carried out to compare the model’s credibility and the accuracy

of the modeled LHQ to that measured in this study.
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Modeling techniques

Two LHQ modeling techniques were used in this study. Both techniques have a relationship with
the hardness profile curve and how it can be characterized. The first technique involves directly
extracting certain points along which the hardness profile curve can be drawn. This technique is
called the punctual approach (Figure 6); each point extracted from the curve contains an abscissa
and ordinate (Hwm, dwm), (Hn, dn), (Hr, dv) and (Hc, dc). The coordinate values depend on the process
input variables, and the variations in these points in relation to the process variables define
hardened profile sensitivity. Modeling the hardness profile curve with this technique means that

LHQ will also be modeled.

The second technique is called the geometrical approach. This technique extracts all amplitudes,
slopes and peaks from the hardness profile curve that can provide an image of its shape, in which
the mentioned attributes have a relationship with the LHQ. The ambiguous attributes considered
in the geometrical approach are mi, m> and ms3, which represent the slopes, by means of which
certain quality elements such as du and dc can be calculated (Figure 7). mi is the result of dividing
the difference between Hu and Hwm and the difference between du and dm (Equation 1). ma is the
result of dividing the difference between HL and Hu and the difference between du and dm
(Equation 2). ms is the result of dividing the difference between Hc and Hr and the difference
between dc and d. (Equation 3). Note that the slopes mi and m3 are positive and mz is negative.
Using these approaches to model the hardness profile is an effective way to model the LHQ.

Otherwise, in this study, the LHQ modeling process is defined by dwm, du, dc and Hu modeling.

Hy — Hy
=y W
H, — Hy
L — 2
m; d, — dy (2)
H;—H
m, = C L (3)
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Figure 7. Geometrical technique for extracting attributes
As was previously mentioned, the modeling process was performed using a multilayer perceptron
(MLP) ANN technique that is known for its forecasting ability, simplicity and flexibility for
modeling. MLP consists of three layers with each layer containing a certain numbers of neurons;
the number of first- and third-layer neurons is equal to the input variables and number of modeling
attributes respectively. Concerning the hidden layer, modeling training performance depends on
the size of this layer. To establish the size of the hidden layer, certain criteria must be taken into
consideration, such as the number of input and output neurons and the complexity of the estimated
parameters to evade the overfitting that can affect the model’s credibility and accuracy. After

several training attempts, 12 neurons in the hidden layer met the best accuracy of generated models
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according to the assessment and performance criteria selected in the case of modeling punctual
approach attributes (Figure 8). In the other case, and to generate geometrical attribute models with
maximum accuracy, the best MLP architecture was with a hidden layer containing 14 neurons
(Figure 9). While both the geometrical and punctual approaches based on MLP had the same
number and nature of input variables, interpreting the difference in the number of neurons in the
hidden layer may return to the complexity of the output variables so that adding two neurons to
the hidden layer of the geometrical approach MLP when comparing it to the punctual geometric
case MLP was the best solution for optimizing training performances.

Output layers
Hidden layers

Hy
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Input layers o H
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N7 Ch) Ti\&‘,:.,\ H,
Vs \\?"&’/ - —
W
% d
Y —
Hc A ‘
> XN dy
s & -
e \
d
—
dc
—
Figure 8. Punctual ANN model architecture
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Figure 9. Geometrical ANN model architecture
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4. Results and discussion

The below tables present an assessment of the geometrical and punctual attribute models based on
certain performance criteria. As is shown in the tables below, the mean absolute error (MAE),
maximum relative error (XRE), mean square error (MSE), total square error (TSE) and total square
error (MRE) were considered in this study. Tables 4 and 5 show the results of the punctual and
geometrical models by exhibiting MAE, XRE, MSE and TSE values. When using the geometrical
approach, the convergence relationship between the modeled and eventual variables or MAE
values were somewhat larger than when the punctual approach was used in both the training (T)
and validation (V) tests cases.

Table 4. Model performance criteria summary using the punctual approach

MAE XRE MSE TSE

Variables
T A% T \Y% T \% T VvV

Hu 0.219 | 0.0640 | 1.149 0.497 0.0801 0.022154 | 1.2816 | 0.022154

Hwm 0.2656 | 0.1234 1.1 0.7709 | 0.099818 | 0.046141 1.5971 | 0.415267

Hp 0.2219 | 0.0816 | 0.893 | 0.5932 0.0689 0.035358 1.1026 | 0.318228
dm 0.0131 | 0.0098 | 0.075 | 0.0493 | 0.000315 | 0.000187 | 0.00505 | 0.001688
du 0.0295 | 0.012 0.141 | 0.0626 0.00138 0.000374 | 0.02208 | 0.003367
do 0.0386 | 0.0117 | 0.173 | 0.0605 | 0.002342 | 0.000264 | 0.03747 | 0.002384
dc 0.0303 | 0.0065 | 0.137 | 0.0258 | 0.001444 | 0.000006 | 0.02311 | 0.000539

Table 5. Model performance criteria summary using the geometrical approach

MAE XRE MSE TSE

Variables
T \'% T \'% T \% T \%

Hy 0.1529 | 0.05290 | 0.81 | 0.3248 | 0.040455 | 0.008447 | 0.647286 | 0.076024
Hwm 0.2465 | 0.09083 | 1.56 | 0.3969 | 0.148896 | 0.013468 | 2.382342 | 0.121213
Hp 0.2068 | 0.24019 | 1.14 | 1.4457 | 0.081355 | 0.154602 | 1.301689 | 1.391424
dm 0.0094 | 0.00844 | 0.06 | 0.0463 | 0.000191 | 0.000179 | 0.003058 | 0.001618
m 0.5264 | 0.41324 | 2.35 | 1.7062 | 0.411062 | 0.321390 | 6.577006 | 2.892513
my 0.00034 | 0.00031 0 0.0020 | 1.95E-07 | 2.57E-07 | 3.12E-06 | 2.83E-07
m3 0.49373 | 0.25813 | 2.31 | 1.0456 | 0.359161 | 0.106389 | 5.746584 | 0.957505

The maximum relative errors or XRE of dm and Hu models using the geometrical approach were

less than the maximum relative errors of the punctual model, while the opposite is the case for Hu
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and Hr. Considerable values of XRE in m1 and ms, which represent the passage from (dm, Hwm) to
(dn, Hu) and from (dv, Hr) to (dc, He) respectively, can be explained by the Hv and Hw error effect
while training models using ANN. Concerning mz, the XRE value was infinitely small due to the
small size of the transition region compared to the corresponding hardness variation. The mean
square error MSE and total square error TSE criteria provide the same information on model

performances but with different values.

Table 6 summarizes all results concerning laser hardening modeling such as Hu, dm, du and dc.
The mean absolute percentage error MRE (%) is considered in order to evaluate the accuracy of
the LHQ models and to compare the modeled attributes according to the characterization approach
used to extract them. Using the geometrical approach, da and dc were not included in the list of
extracted attributes. du and dc models were not generated directly, but were rather the result of
modeling other attributes. After observing the results of Table 4 and based on the MRE value, the
laser hardening quality variable models present better accuracy when the geometrical approach

was adopted than when the punctual approach was adopted; the difference is too small.

Table 6. Geometrical and punctual model MRE comparison

Q-Element Geometrical approach Punctual approach
Hu 0.2537 0.3626
dwm 3.7599 5.1309
! du 0.9377 4.7073
dc 0.9425 3.0091
Hu 0.08836 0.1080
dm 2.77873 3.1369
v du 0.73379 1.9079
dc 1.29508 0.6520

Figure 10 presents a comparison between the modeled LHQ elements through both approaches
and the measured results. The same comparison but in term of curves, the figure contains three
curves; the black curve represents the hardness profile (kW, mm/s, HRC and polished) while the
other curves represent the modeled hardness profiles using the punctual approach (blue dashed
line) and the geometrical approach (red segmented line). The peaks of the red curve match the

corresponding point of the measured hardness profile. There is an extremely small difference
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between the measured hardness profile and the hardness profile provided by the punctual model.
The results of these figures provide an idea for modeling the LHQ element using both the
geometrical and the punctual approach and then deciding on the most appropriate modeling

technique to obtain the best and most promising results.
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Figure 10. Comparison between the measured and modeled hardness profile curves

5. Conclusion

After performing the laser hardening process on 4340 steel during which the parameters of laser
power, beam scanning speed, initial hardness and surface roughness were considered and for which
the testing strategy was designed according to the Taguchi method (OA), the analysis of variance
indicated that the machine parameters (laser power and beam scanning speed, in order of
importance) have the greatest impact on process quality, followed by initial hardness, while the
impact of surface roughness was quite low compared to the rest of the variables. By repeating the
same experimental process and exchanging the surface roughness variable for surface nature, it
was determined that for a certain defined interval, surface nature has more of an impact than
surface roughness; the experiment’s total error contribution decreased when surface nature was
used. The results of the experiment’s second process were considered for the modeling process in
this study.

Structured approaches were adopted to model the LHQ variables according to the second
experiment parameters using a multilayer perceptron ANN calculation model. The generated
models were evaluated through performance evaluation criteria, and the results allowed us to

conclude the following. Modeling the extracted attributes from the hardness profile curve using
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both approaches is an ingenious way to model LHQ elements with excellent accuracy. According
to the accuracy of the generated models, the geometrical attributes are the most appropriate
variables for LHQ modeling, rather than the punctual attributes. However, both approaches

proposed are effective techniques that provide promising LHQ models.
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