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Abstract — Maximum hardness and hardened depth are the responses of interest in relation to the 

laser hardening process. These values define heat treatment quality and have a direct impact on 

mechanical performance. This paper aims to develop models capable of predicting the shape of 

the hardness profile depending on laser process parameters for controlling laser hardening quality 

(LHQ), or rather the response values. An experimental study was conducted to highlight hardened 

profile sensitivity to process input parameters such as laser power (PL), beam scanning speed (VS) 

and initial hardness in the core (HC). LHQ modeling was conducted by modeling attributes 

extracted from the hardness profile curve using two effective techniques based on the punctual and 

geometrical approaches. The process parameters with the most influence on the responses were 

laser power, beam velocity and initial hardness in the core. The obtained results demonstrate that 

the geometrical approach is more accurate and credible than the punctual approach according to 

performance assessment criteria. 

Keywords: Laser hardening; geometrical approach; punctual approach; Taguchi method; artificial 

neural network 

1. Introduction 
Since humans began using steel, they have developed heat treatment processes to achieve certain 

desirable mechanical conditions and / or properties. The basic principle of heat treatment is to 

carry out one or a combination of operations that involve heating and cooling of steel substrates 

while maintaining as much of their initial form and surface as possible. Depending on the heating 

pattern and cooling rate, steel can be subjected to a full range of heat treatments such as annealing, 

normalizing, hardening, tempering and surface hardening, as well as special treatments such as 

austempering, ausforming and cold treatment [1]. Among the types of heat treatment mentioned 

above, surface hardening is the process most frequently used to obtain an extremely hard surface 

when applied to ferrous alloys with more wear resistance, toughness and fatigue life. Several 
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engineering techniques can be used during the surface hardening process including coating, 

diffusion and selective hardening methods [2]. 

Surface hardening with a laser beam is a selective and a clean hardening technique widely 

employed on low and medium carbon steel, as is the induction heating process. The laser hardening 

process is characterized by its ability to provide specific treatment quality features, such as reduced 

distortion and cracking associated with through hardening of thick sections [3]. During the surface 

heat treatment, the surface layer of the hardened steel is exposed to a series of temperature 

variations due to the short process cycle time. As soon as the laser beam scans the mechanical part, 

the treated surface receives an amount of energy that can easily heat the surface layer beyond the 

austenitizing temperature Ac3. Figure 1 illustrates the metallographic cross-section image of an 

AISI 4340 steel plate hardened using a laser beam. In this example, the laser power was adjusted 

to 1 kW and the beam was scanned at 16 mm/s. The transformed region had an elliptical shape due 

to Gaussian distribution of the beam, which stipulates that the maximum energy be applied at the 

center of the spot. It is important to distinguish the both regions most exposed to the region not 

affected by the heat. As indicated in Figure 2, the laser beam may melt the scanned surface, 

creating an area called the melted region; otherwise and in ordinary cases, steel’s self-quenching 

effect dramatically reduces the surface layer temperature from the austenitizing temperature Ac3 

to the part’s interior temperature. This temperature gradient occurs in an extremely short period of 

time, forming a hardened region that contains hard, fine martensite and an over-tempered region 

between the hardened region and the material bulk that consists of tempered martensite with a 

small amount of retained austenite. The remaining region does not seem to be affected by the 

thermal flow during the laser hardening stage [4]. 

 
Figure 1. Metallographic cross-section of the hardened region 
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Figure 2. Representation of a typical cross-section of a laser-hardened plate  

Many studies have featured the laser hardening process, the majority of which were experimental 

studies limited to examining the effect of process input parameters on the treated layer [5-6]. Other 

studies have focused on theoretical and analytical aspects, trying to understand and quantify the 

thermal and microstructural mechanism during the phenomenon [7-8]. These studies were often 

focused on the maximum hardness surface treated (HH), which constitutes an interesting response 

and does not reflect the full picture of treatment quality. A typical hardness curve obtained by laser 

hardening is illustrated in Figure 3. This curve is characterized by the melted layer (1). It also 

includes a hardened region (2) that records a high hardness value and is a homogeneous 

microstructure with nearly constant hardness and compressive residual stress levels. The over-

tempered region (3) represents the hardness loss caused by a sharp drop in hardness to reach a 

minimum value. This region represents the hardness rise until it reaches the initial hardness value 

and is composed of a mixture of hard and over-tempered martensite since the temperature was 

between Ac1 and Ac3. The fourth region (4) records a constant hardness value that represents the 

tempered martensite constituting the initial microstructure in the part’s core before laser treatment. 

The LQH is a feature that cannot be confined to a limited response, but rather a coherent set of 

response results depending strongly on process parameters. In addition to the hardness values HH, 

laser hardening quality can be also estimated through the depth of the four regions described 

previously, the melted region (dM), hardened region (dH), over-tempered region (dL) and total 

transformed region (dC). The hardness profile is a direct result of temperature distribution during 

and after heating and could greatly affect part distortion, martensite microstructure and 

compressive residual stresses resulting at the surface [9]. 
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Figure 3. Representation of LHQ elements through the hardness profile curve 

dM, dH, dC and HH can be controlled by input process parameters, so modeling these responses is a 

successful means of attaining the desired quality process while avoiding time and cost limitations. 

The modeling approach was the focus of several laser hardening or welding studies that were 

generally based on the artificial neural network (ANN) technique and the multi-regression method. 

Lambiase developed an expert model using the ANN technique to evaluate the temperature profile 

and temperature history of a laser-treated part under different processing conditions [10]. As a 

result, the measured hardness values showed relatively good correspondence with the predicted 

temperature profile. Woo used both multi-regression and artificial neural network techniques to 

develop models for assessing the hardened layer dimensions of SM45C steel, mainly the effect of 

coating thickness parameters [11]. Bappa Acherjee highlighted the laser welding process by 

predicting welding quality [12]. His work aimed to establish a correlation between laser 

transmission welding parameters and output variables through a non-linear model based on 

artificial neural networks. After studying the effect of the process parameters on the responses of 

interest or LHQ, this study aims to develop models capable of predicting the hardness profile and 

controlling the QHL according to input process parameters. The modeling technique is based 

mainly on the choice of modeled attributes. Hardness profile attribute characterization is a 

necessary step for modeling, so these attributes must provide a global representation of hardness 

profile behavior. Two different approaches were used during this study to characterize the hardness 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2018                   doi:10.20944/preprints201804.0347.v1

Peer-reviewed version available at Coatings 2018, 8, 226; doi:10.3390/coatings8060226

http://dx.doi.org/10.20944/preprints201804.0347.v1
http://dx.doi.org/10.3390/coatings8060226


profile according to process parameters such as laser power and scanning speed. The extracted 

attributes were modeled using the artificial neural network based on multilayer perceptron (MLP). 

The generated models were analyzed using special evaluation criteria to determine the appropriate 

characterization approach for modeling the LHQ.   

2. Experimental aspect 
Experimental conditions 

Steel heat treatment quality depends largely on the input factors. In the case of laser heat treatment, 

machine parameters such as laser beam power (PL) and scanning speed (VS) have the greatest 

effect and make the most significant contributions to the required results. All other parameters that 

were investigated in the relevant studies can be considered to have made fewer contributions when 

comparing laser beam power and scanning speed. The experimental aspect of this study was 

applying the laser heat treatment process to AISI 4340 steel to assess the parameters’ impact on 

the quality of the hardened layer. In addition to laser power and laser beam velocity, with four 

levels of each, the input parameters of the first experiment were restricted to initial steel hardness 

(HC) and surface roughness (Ra), with two levels of each. The power varied from 300 W to 1400 

W with a step of 300 W, while the speed varied from 10 mm/s to 40 mm/s with 10 mm/s 

incrementing. The initial hardness values were 40 HRC and 50 HRC, and the surface roughness 

was tuned at 0.8 μm and 2.4 μm. 

Experimental design 

A test plan that contains all possible combinations of all input factors is known as a fully crossed 

design and is considered the best approach for carrying out such experiments, based on its credible 

results. However, due to time and cost limitations, it is not widely used and only a few experiments 

have been carried out using a fully crossed design. Alternatively, the orthogonal arrays (OA) 

developed by Taguchi represent a judicious and robust fractional factorial design [13]. Used in 

most experimental studies similar to this paper, this strategy can achieve a high-quality level 

process while reducing the number of tests that are strictly necessary to collect all statistically 

significant data [14]. Based on the number of considered parameters and their levels, L16 

orthogonal arrays were an adequate test strategy for this study, while L8 remained an appropriate 

choice for validation tests. 
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Experimental set-up 

The steel used in this study was AISI 4340 machined to parallelepiped plates (50 mm x 30 mm x 

5 mm) to facilitate its handling during treatment. The parallelepiped steel plates were subjected to 

several prior preparations, such as pre-heat treatment to achieve the desired initial hardness levels, 

as well as a plate surface texture preparation using CAMI-Grit-100 sandpaper with an average 

particle diameter of 140 µm to obtain a surface roughness (Ra) of approximately 2.4 μm and 

CAMI-Grit-200 sandpaper with an average particle diameter of 68 µm to obtain a surface 

roughness (Ra) of approximately 0.8 μm. The laser beam was provided by a Nd:YAG system, and 

the value range levels of machine parameters such as beam power and scanning speed were taken 

to ensure the complete austenitization of the steel layer during the heat treatment (Table 1). Once 

the treatment was performed, the hardness profile was characterized by using a Clemex 

microhardness measurement machine, which provided the hardness profile shape of each test in 

the experiment. 
Table 1: Scratching parameters of the process and their levels 

Parameters Levels 

Power (kW) 0.4, 0.7, 1.0 and 1.3 

Speed (mm/s) 10, 20, 30 and 40 

Initial hardness (HRC) 40, 50 

Surface roughness (Ra) 0.8, 2.4 

Experimental results analysis 

Effective modeling relies overwhelmingly on the selection of parameters with the most influence 

on the phenomenon. For this reason, the statistical study of process results is required before 

modeling to determine the impact of the parameters and the contribution of each. Several statistical 

tools can be used, though the most frequently used is the analysis of variation (ANOVA). ANOVA 

analysis is a computational technique that reveals all the necessary information about the process 

parameters that can help determine the impact of each parameter and its contribution to the 

controlling response. Information provided by ANOVA analysis includes degrees of freedom, sum 

of squares, mean square, P-value and F-value; based on this information, the process parameters 

were ranked according to their importance in the experiment. The response surface methodology 

(RSM) model corresponding to the measured case depth (dH) was established according to the 

analytic methods depicted above. ANOVA analysis was performed with a stepwise mode, which 

automatically eliminate the insignificant terms. Table 2 presents the detailed statistical analysis 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 April 2018                   doi:10.20944/preprints201804.0347.v1

Peer-reviewed version available at Coatings 2018, 8, 226; doi:10.3390/coatings8060226

http://dx.doi.org/10.20944/preprints201804.0347.v1
http://dx.doi.org/10.3390/coatings8060226


confirming that F-value is important for almost all factors except the roughness surface and a P-

value of less than 0.09. In this case, the laser power (PL), scanning speed (VS) and initial hardness 

(HC) were all significant model terms. Based on the ANOVA results, the parameters predominantly 

affecting the LHQ were laser beam power (52.76%) and beam scanning speed (32.92%). The 

contribution of initial hardness was less than 5%, and the factor related to surface roughness had 

no effect on the case depth in that situation. However, the contribution of the total error was about 

8.73%. This result means that the process responses were somehow not controlled by the all-

important input parameters. The coefficient of determination (R2) is mainly used to measure the 

relationship between experimental data and measured data. In this case, R2 was equal to 91.26%, 

proving a high correlation between experimental results and predicted results. The predicted R2 of 

54.34% was in reasonable agreement with the adjusted R2 of 81.27%. Adequate precision 

measures the signal to noise ratio. The standard deviation related to the case depth prediction model 

was evaluated at 0.3201. 

Table 2. ANOVA results for factors including Ra 

Source DF Sum of 
Squares 

Mean 
Square F-Value P-Value Contributions 

(%) 
PL (kW) 3 0.81125 0.27042 14.09 0.002 52.76 

VS (mm/s) 3 0.50625 0.16875 8.79 0.009 32.92 

HC (HRC) 1 0.07562 0.07562 3.94 0.088 4.91 

Ra (μm) 1 0.01000 0.01000 0.52 0.494 0.65 

Error 7 0.13437 0.01920   8.73 

Total 15 1.53750    100 

A similar experiment was performed with the same input parameters, except that the surface 

roughness parameter (Ra) was replaced by surface nature (SN) (as treated (1) - finished (2)); as a 

result, the error contribution dropped to 2.47%. Some similarities were noted regarding F-value 

and P-value concerning the analysis considering Ra. In fact, F-value was very important, 

exceeding 10 for the least significant factor (SN), and the P-value was less than 0.015 for SN again. 

It was also clear that scanning speed has the largest effect on the response value, laser power has 

less of an effect and revolution speed has the least effect. The three interaction terms affected the 

case depth less but were not ignored. This study allows for determination of the various effects 

and the ranking of each effect on the case depth (dH). Based on the data in Table 3, the variation 

in the three characteristics represents each parameter’s degree of influence on the response. It was 
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confirmed by analyzing their contributions that the power affects dH by more than 58.66% and that 

scanning speed contributes to the overall variation by more than 16%. The initial hardness 

influences the case depth by about 19% with an error of less than 2.5%. Most of the parameters 

were therefore taken into account during this study. It is important to note the non-presence of 

interactions between the four factors used in this study. The coefficient of determination (R2) was 

about 96.03%, proving a high correlation between experimental results and predicted results. The 

predicted R2 of 79.26% was in reasonable agreement with the adjusted R2 of 91.49%. Adequate 

precision measures the signal to noise ratio. The standard deviation related to the case depth 

prediction model was evaluated at 0.3240. 

Table 3. ANOVA results for factors including SN 

Characteristic DoF Sum of 
Squares 

Mean 
Square F-Value P-Value Contributions 

(%) 
PL (kW) 3 0.94092 0.31364 55.94 0 58.66 

VS (mm/s) 3 0.25717 0.08572 15.29 0.002 16.03 

HC (HRC) 1 0.30526 0.30525 54.45 0 19.03 

SN 1 0.06126 0.06125 10.93 0.013 3.81 

Error 7 0.03924 0.00560   2.47 

Total 15 1.60384    100 

Figures 4 and 5 present the average effect graphs certifying that the four parameters affected the 

case depth to different degrees. dH increased with power and initial hardness and decreased with 

speed and surface roughness. dH also increased with power and initial hardness and decreased with 

speed and surface nature. The drawn points match up to the averages of the observations for each 

factor level. These results confirm the relative importance of the contribution of different factors 

in the variation of dH. The effects of the four factors in both cases (Ra and SN) do not follow the 

same tendencies. Overall, the case depth recorded maximum values at 1.3 kW, 10 mm/s, 50 HRC 

and Ra of approximately 0.8 μm. However, the minimum value was recorded at 0.4 kW, 40 mm/s 

and 40 HRC when the surface roughness was adjusted to 0.8 μm. The case depth recorded 

maximum values at 1.3 kW, 10 mm/s and 50 HRC when the surface was treated. However, the 

minimum value was recorded at 0.4 kW, 40 mm/s and 40 HRC when the surface was polished. 
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Figure 4. Parameter effects (including surface roughness Ra) on dH 

 

Figure 5. Parameter effects (including surface nature S) on dH 

The information above shows that the surface nature (SN) of the treated plate had a greater impact 

on dH and on the other output response than surface roughness (Ra). The error contribution of the 

second experiment, in which the surface nature was considered as a fourth input parameter, was 

relatively small compared to the first experiment. This proves that the second experiment 

considered the important parameters and that laser hardening quality is strongly controlled by these 

parameters compared to the first experiment. Since the error contribution was less when Ra was 

replaced by SN in the ANOVA analysis, the selection of PL, VS, HC and SN as input parameters is 

promising and constitutes an effective choice for LHQ element models.  Consequently, elaboration 

process using the best selection of parameters based on its effect and contribution decrease the 

modeling and the validation errors. 

3. LHQ assessment model 
Returning to the objective mentioned above, this study aims to develop potent laser hardening 

quality models allowing for accurate prediction of key quality elements such as dM, dH, dC and HH 

depending on the input variables using systematic and rigorous approaches. It is well known that 

the modeling process is based on two important pillars, the type and number of variables to include 
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in the model and the technique used to develop the robust model. According to ANOVA results 

and as mentioned earlier, the error of modeling and validation due to process input variables is 

expected to be minimal in the present study, which guarantees the success of the first modeling 

pillar to some extent. Regarding development of the model approaches, which are generally 

divided into two categories, theoretical modeling is an undesirable modeling option because of the 

complexity of the phenomena and the lack of understanding of fundamental laser hardening 

process behavior. In this case, empirical modeling is an appropriate means of reaching the study’s 

objective. The advantage of using the empirical approach is its ability to develop robust models 

with easily available information on the variables to include in the model.  

Two famous modeling techniques are used in the relevant studies. The first is the multivariate or 

multivariable regression method; the second, the artificial neural network technique, was used in 

this study. The artificial neural network technique was adopted because of its ability to model the 

identified elements according to large numbers of controlling variables, even if the relationship 

between the identified element and the variables is non-linear. ANN contains several types of 

networks, such as feedforward neural networks (FNN), radial basis function networks (RBF), 

Kohonen self-organizing networks (KSON), learning vector quantization (LVQ) and the most 

popular technique used, multilayer perceptron (MLP).  

In the present study, effective modeling is the result of a set of systematic and rigorous sequences 

that begin by carrying out the experimental tests according to a well-defined combination of 

variables (PL, VS, HC and SN). This combination of variables was proposed by Taguchi’s OAs 

(L16), which were included in the models. Once the tests were done, response result data collection 

for modeling began; the data collection was done using specific techniques that will be explained 

later in the paper. A statistical analysis procedure to determine the impact, contribution and 

relationship between the process input variables and the data collected was carried out while taking 

into account all the conditions that could influence the modeling. The crucial step in the modeling 

sequences was the choice of technique for modeling and performance criteria. Once this step has 

been completed, it will the time to train the generated models, followed by the performance 

evaluation [15]. Based on certain performance evaluation criteria such as mean square error 

(MSE), a comparative study was carried out to compare the model’s credibility and the accuracy 

of the modeled LHQ to that measured in this study. 
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Modeling techniques 

Two LHQ modeling techniques were used in this study. Both techniques have a relationship with 

the hardness profile curve and how it can be characterized. The first technique involves directly 

extracting certain points along which the hardness profile curve can be drawn. This technique is 

called the punctual approach (Figure 6); each point extracted from the curve contains an abscissa 

and ordinate (HM, dM), (HH, dH), (HL, dL) and (HC, dC). The coordinate values depend on the process 

input variables, and the variations in these points in relation to the process variables define 

hardened profile sensitivity. Modeling the hardness profile curve with this technique means that 

LHQ will also be modeled. 

The second technique is called the geometrical approach. This technique extracts all amplitudes, 

slopes and peaks from the hardness profile curve that can provide an image of its shape, in which 

the mentioned attributes have a relationship with the LHQ. The ambiguous attributes considered 

in the geometrical approach are m1, m2 and m3, which represent the slopes, by means of which 

certain quality elements such as dH and dC can be calculated (Figure 7). m1 is the result of dividing 

the difference between HH and HM and the difference between dH and dM (Equation 1). m2 is the 

result of dividing the difference between HL and HH and the difference between dH and dM 

(Equation 2). m3 is the result of dividing the difference between HC and HL and the difference 

between dC and dL (Equation 3). Note that the slopes m1 and m3 are positive and m2 is negative. 

Using these approaches to model the hardness profile is an effective way to model the LHQ. 

Otherwise, in this study, the LHQ modeling process is defined by dM, dH, dC and HH modeling. mଵ = ுܪ − ெ݀ுܪ − ݀ெ  (1) mଶ = ௅ܪ − ு݀௅ܪ − ݀ு  (2) mଷ = ஼ܪ − ௅݀஼ܪ − ݀௅  (3) 
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Figure 6. Punctual technique for extracting attributes 

 
Figure 7. Geometrical technique for extracting attributes 

As was previously mentioned, the modeling process was performed using a multilayer perceptron 

(MLP) ANN technique that is known for its forecasting ability, simplicity and flexibility for 

modeling. MLP consists of three layers with each layer containing a certain numbers of neurons; 

the number of first- and third-layer neurons is equal to the input variables and number of modeling 

attributes respectively. Concerning the hidden layer, modeling training performance depends on 

the size of this layer. To establish the size of the hidden layer, certain criteria must be taken into 

consideration, such as the number of input and output neurons and the complexity of the estimated 

parameters to evade the overfitting that can affect the model’s credibility and accuracy. After 

several training attempts, 12 neurons in the hidden layer met the best accuracy of generated models 
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according to the assessment and performance criteria selected in the case of modeling punctual 

approach attributes (Figure 8). In the other case, and to generate geometrical attribute models with 

maximum accuracy, the best MLP architecture was with a hidden layer containing 14 neurons 

(Figure 9). While both the geometrical and punctual approaches based on MLP had the same 

number and nature of input variables, interpreting the difference in the number of neurons in the 

hidden layer may return to the complexity of the output variables so that adding two neurons to 

the hidden layer of the geometrical approach MLP when comparing it to the punctual geometric 

case MLP was the best solution for optimizing training performances. 

 
Figure 8. Punctual ANN model architecture

 
Figure 9. Geometrical ANN model architecture 
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4. Results and discussion   
The below tables present an assessment of the geometrical and punctual attribute models based on 

certain performance criteria. As is shown in the tables below, the mean absolute error (MAE), 

maximum relative error (XRE), mean square error (MSE), total square error (TSE) and total square 

error (MRE) were considered in this study. Tables 4 and 5 show the results of the punctual and 

geometrical models by exhibiting MAE, XRE, MSE and TSE values. When using the geometrical 

approach, the convergence relationship between the modeled and eventual variables or MAE 

values were somewhat larger than when the punctual approach was used in both the training (T) 

and validation (V) tests cases. 
Table 4. Model performance criteria summary using the punctual approach 

Variables 
MAE XRE MSE TSE 

T V T V T V T V 

HH 0.219 0.0640 1.149 0.497 0.0801 0.022154 1.2816 0.022154 

HM 0.2656 0.1234 1.1 0.7709 0.099818 0.046141 1.5971 0.415267 

HL 0.2219 0.0816 0.893 0.5932 0.0689 0.035358 1.1026 0.318228 

dM 0.0131 0.0098 0.075 0.0493 0.000315 0.000187 0.00505 0.001688 

dH 0.0295 0.012 0.141 0.0626 0.00138 0.000374 0.02208 0.003367 

dL 0.0386 0.0117 0.173 0.0605 0.002342 0.000264 0.03747 0.002384 

dC 0.0303 0.0065 0.137 0.0258 0.001444 0.000006 0.02311 0.000539 

Table 5. Model performance criteria summary using the geometrical approach 

Variables 
MAE XRE MSE TSE 

T V T V T V T V 

HH 0.1529 0.05290 0.81 0.3248 0.040455 0.008447 0.647286 0.076024 

HM 0.2465 0.09083 1.56 0.3969 0.148896 0.013468 2.382342 0.121213 

HL 0.2068 0.24019 1.14 1.4457 0.081355 0.154602 1.301689 1.391424 

dM 0.0094 0.00844 0.06 0.0463 0.000191 0.000179 0.003058 0.001618 

m1 0.5264 0.41324 2.35 1.7062 0.411062 0.321390 6.577006 2.892513 

m2 0.00034 0.00031 0 0.0020 1.95E-07 2.57E-07 3.12E-06 2.83E-07 

m3 0.49373 0.25813 2.31 1.0456 0.359161 0.106389 5.746584 0.957505 

The maximum relative errors or XRE of dM and HH models using the geometrical approach were 

less than the maximum relative errors of the punctual model, while the opposite is the case for HM 
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and HL. Considerable values of XRE in m1 and m3, which represent the passage from (dM, HM) to 

(dH, HH) and from (dL, HL) to (dC, HC) respectively, can be explained by the HM and HL error effect 

while training models using ANN. Concerning m2, the XRE value was infinitely small due to the 

small size of the transition region compared to the corresponding hardness variation.  The mean 

square error MSE and total square error TSE criteria provide the same information on model 

performances but with different values. 

Table 6 summarizes all results concerning laser hardening modeling such as HH, dM, dH and dC. 

The mean absolute percentage error MRE (%) is considered in order to evaluate the accuracy of 

the LHQ models and to compare the modeled attributes according to the characterization approach 

used to extract them. Using the geometrical approach, dH and dC were not included in the list of 

extracted attributes. dH and dC models were not generated directly, but were rather the result of 

modeling other attributes. After observing the results of Table 4 and based on the MRE value, the 

laser hardening quality variable models present better accuracy when the geometrical approach 

was adopted than when the punctual approach was adopted; the difference is too small.  

 Table 6. Geometrical and punctual model MRE comparison  

Q-Element Geometrical approach Punctual approach 

T 

HH 0.2537 0.3626 

dM 3.7599 5.1309 

dH 0.9377 4.7073 

dC 0.9425 3.0091 

V 

HH 0.08836 0.1080 

dM 2.77873 3.1369 

dH 0.73379 1.9079 

dC 1.29508 0.6520 

Figure 10 presents a comparison between the modeled LHQ elements through both approaches 

and the measured results. The same comparison but in term of curves, the figure contains three 

curves; the black curve represents the hardness profile (kW, mm/s, HRC and polished) while the 

other curves represent the modeled hardness profiles using the punctual approach (blue dashed 

line) and the geometrical approach (red segmented line). The peaks of the red curve match the 

corresponding point of the measured hardness profile. There is an extremely small difference 
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between the measured hardness profile and the hardness profile provided by the punctual model. 

The results of these figures provide an idea for modeling the LHQ element using both the 

geometrical and the punctual approach and then deciding on the most appropriate modeling 

technique to obtain the best and most promising results. 

 
Figure 10. Comparison between the measured and modeled hardness profile curves 

 

5. Conclusion 
After performing the laser hardening process on 4340 steel during which the parameters of laser 

power, beam scanning speed, initial hardness and surface roughness were considered and for which 

the testing strategy was designed according to the Taguchi method (OA), the analysis of variance 

indicated that the machine parameters (laser power and beam scanning speed, in order of 

importance) have the greatest impact on process quality, followed by initial hardness, while the 

impact of surface roughness was quite low compared to the rest of the variables. By repeating the 

same experimental process and exchanging the surface roughness variable for surface nature, it 

was determined that for a certain defined interval, surface nature has more of an impact than 

surface roughness; the experiment’s total error contribution decreased when surface nature was 

used. The results of the experiment’s second process were considered for the modeling process in 

this study. 

Structured approaches were adopted to model the LHQ variables according to the second 

experiment parameters using a multilayer perceptron ANN calculation model. The generated 

models were evaluated through performance evaluation criteria, and the results allowed us to 

conclude the following. Modeling the extracted attributes from the hardness profile curve using 
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both approaches is an ingenious way to model LHQ elements with excellent accuracy. According 

to the accuracy of the generated models, the geometrical attributes are the most appropriate 

variables for LHQ modeling, rather than the punctual attributes. However, both approaches 

proposed are effective techniques that provide promising LHQ models. 
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