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Abstract: Capsule endoscopy, which uses a wireless camera to take images of the digestive tract, is
emerging as an alternative to traditional colonoscopy. The diagnostic values of these images depend
on the quality of revealed underlying tissue surfaces. In this paper, we consider the problem of
enhancing the visibility of detail and shadowed tissue surfaces for capsule endoscopy images. Using
concentric circles at each pixel for random walks combined with stochastic sampling, the proposed
method enhances the details of vessel and tissue surfaces. The framework decomposes the image
into two detail layers that contain shadowed tissue surfaces and detail features. The target pixel
value is recalculated for the smooth layer using similarity of the target pixel to neighboring pixels
by weighting against the total gradient variation and intensity differences. In order to evaluate the
diagnostic image quality of the proposed method, we used clinical subjective evaluation with a rank
order on selected KID image database and compared to state of the art enhancement methods. The
result showed that the proposed method provides a better result in terms of diagnostic image quality
and objective quality contrast metrics and structural similarity index.

Keywords: capsule video endoscopy; stochastic sampling; random walks; color gradient; image
decomposition

1. Introduction

Capsule video endoscopy (CVE) has revolutionized the diagnostic work-up in the field of
esophagus, small bowel and colon imaging. The colon traditionally has been examined via optical
colonoscopy, a procedure perceived by many to be uncomfortable and embarrassing. Colon capsule
endoscopy (CCE) is an alternative way to visualize the colon. Some of commercially available CCE
devices include PillCam COLON I and II from Given Imaging. CCE devices are equipped with
miniaturized camera, LED light source, radio transmitter and battery contained in an easy-to-swallow
capsule. Unfortunately, due to power and volume limitations, capsule endoscopy does not provide
image quality equivalent to traditional colonoscopy. As the capsule progresses though the colon by
peristalsis of the digestive tract, orientation of the capsule is uncontrolled and images are taken under
low illumination. In addition, CCE images suffer from high compression ratio, noise from CMOS
(complementary metal-oxide semiconductor) image sensor and low image resolution (commonly 256
x 256). The problem of capsule image quality enhancement has been an active research topic since
capsules appeared commercially in 2006. The present review here is brief due to space limitations,
but is intended to highlight the broad categories of existing algorithms and to provide appropriate
background for our work.

We categorize CVE image enhancement techniques based on particular image attributes they
focus on for accurate diagnosis of pathologies. Regardless of the specific method, the goals of any CVE
image enhancement techniques can be categorized into four main objectives: making blood vessels
visible; removing or deemphasizing specular reflections and illumination variation; making tissues
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visible; keeping the original color tone (because where the colors are changed, the physician requires
re-training to view such images [1]).

Works on blood vessel detail enhancement mostly focus on exploiting optical properties of blood
vessels for enhancement of lesions and vascular patterns. For example, the 415 nm image channel
analyzes the fine surface architecture of the mucosa and the superficial capillary network, whilst the
540 nm image channel analyzes the collective vessels in the depth of the mucosa. Flexible spectral
imaging color enhancement(FICE) [2] takes white-light endoscopic images from the video processor
and processes them by emphasizing certain ranges of wavelengths by spectral decompositions. On the
other hand, Narrow Band Imaging (NBI) [3] uses a special set of filters that are interposed after the
light source to restrict the incident light to two narrow bands of wavelengths (blue centered on 415 nm
and green centered on 540 nm).

The other topic discussed in the literature is illumination variation across the image. The amount
of illumination from point sources incident on the scene being viewed changes slower than the
reflectance. Using this concept, Ramaraj et al. [4], proposed a homomorphic filtering technique. By
applying frequency domain transformation to the input image using DFT and appropriate design of
Butterworth filter they claimed to obtain an enhancement result compared to contrast limited adaptive
histogram equalization (CLAHE) [5]. More recently, Okuhata et al. [6] applied retinex theory to the
problem of CVE image enhancement. The authors modelled the problem with a total variational model
algorithm that was constructed to minimize the cost function in terms of reflectance and illuminance
images. On the other hand, in order to make tissue details visible, many methods have been proposed
to deal with image denoising and contrast enhancement. Palanisamy et al. [7] proposed CVE image
denoising using dual tree double density complex wavelet transform. By thresholding the wavelet
coefficients in all sub bands based on a maximum a posteriori probability estimator, the algorithm
calculated the denoised image. Liu et al. [8] proposed CVE image de-blurring using total variation
minimization. By incorporating the monotone fast iterative shrinkage or thresholding algorithm
(MFISTA) combined with the fast gradient projection algorithm (proposed recently by Beck et al.
[9]) total variation deblurring was extended to deal with multichannel (e.g. color) images for CVE.
Considering the importance of color for the assessment of abnormalities, contrast enhancement should
also preserve the color tones of CVE images. Vu et al. [10] proposes image enhancement techniques
that can preserve the original color tones. This work is based on the idea that the color gamut of
the human small bowel is generally restricted to a subspace of the imaging system’s color space
(e.g., 24 bit RGB), and which is more specific than that of typical natural images. Theoretically, an
image is considered more informative if its histogram resembles a uniform distribution over a color
space. Therefore, to preserve the original color tones a histogram equalization technique is applied
in the proposed gastro-intestine color space. Similarly, Imtiaz et al. [11] proposed endoscopic image
enhancement using an adaptive sigmoidal function and space-variant color reproduction. By using
texture information, a new chrominance component was generated modifying the old chrominance
component. The method was claimed to highlight some of the tissue and vascular patterns. Other
works on tissue detail enhancement include Li et al. [12], in which they propose enhancement via
adaptive contrast diffusion. This was done by applying diffusion in the contrast domain through
eigenvalues of the Hessian at the target pixel.

In addition, several image and video processing algorithms (not tailored for a specific CVE
platform) have been proposed to enhance CVE images. Attar et al. [13] combined histogram
equalization with an edge preserving process to enhance WCE images. Other similar works include
[5,14,15]. Among recent computational methods that are proposed for capsule endoscopy image
enhancement include Rukundo et al. [16], where the authors proposed an algorithm that uses half-unit
weighted-bilinear filter for darker areas and threshold weighted-bilinear method to avoid overexposure
and enlargement of specular highlight spots while preserving the hue. Similar to Okuhata et al. [17],
proposed a real-time image enhancement technique that is based on the variational approach of the
Retinex theory [18]. Moreover, in order to deal with uneven illumination and poor contrast and to
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reduce highlighted areas as much as possible, gamma correction, masking and histogram equalization,
which are categorized into an image enhancement technique, can be found in the literature.

To summarize, most of the methods proposed for CVE image enhancement repurpose existing
methods of natural image enhancement and fail to preserve detail texture for different segment of
CVE images. In addition, they address the four requirements that we discussed earlier as separate and
independent problems.

This paper is based on previous works by Kolås et al. [19], Black et al. [20] and Estrada et al.
[21]. Kolås et al. [19] proposed a framework based on stochastic sampling for each pixel in the local
neighborhood, where the local reference lightness and darkness points in each chromatic channel are
calculated to find average estimate of the target pixel. On the other hand Black et al. [20] introduced
connection between random walks and robust anisotropic diffusion. Following that line, Azzabou et
al. [22] proposed random walks for image denoising on similar structures by recovering probabilistic
densities, capturing co-occurrences of visual appearances at scale spaces. Similarly, Estrada et al.
[21] proposed image denoising based on random walks across (unlike Azzabou et al. [22]) arbitrary
neighborhoods surrounding a given pixel. The size and shape of each neighborhood was determined
by the configuration and similarity of nearby pixels. By noting the connection between stochastic
sampling and random walks, the contribution of this work can be summarized as follows. Firstly, we
propose a method that can enhance shadows and detail structures for CVE images. Using concentric
circles for random walks and stochastic sampling, the proposed method captures similar structures,
together with local reference lightness and darkness points, simultaneously. The second contribution,
which is part of the detail enhancement, is edge-aware smoothing that is based on the similarity of the
target and neighboring pixels. This is estimated based on a new weighting function of total gradient
variation and intensity difference.

The outline of the article is as follows: in Section 2, we re-visit the subjects of random walks
and stochastic sampling. In Section 3, we present our approach and detail derivation by showing
both theoretically and numerically. In Section 4, we present implementation and pseudocode of
the proposed method. In Section 5, we evaluate the framework’s results both subjectively and with
objective metrics, along with comparison to other works. Finally, in Section 6 we present discussion
and conclusion respectively.

2. BACKGROUND

2.1. Edge-aware smoothing and random walks

Image enhancement can be achieved by a two-step process. First, the original image is
decomposed into base layer(smooth) and detail layer. On the second step, the base layer and detail
exaggerated layer are combined to give the final output image. This approach relies on accurate edge
preserving smoothing for estimating the base layer [23]. Some previous edge preserving smoothing
methods suffer from halo artifacts when they are applied for image enhancement [24]. Earlier
works in edge-aware smoothing include diffusion process [25]. Given a heat equation, described
by ∂I (x, y, t) /∂t = div (c (x, y, t)∇I) where I (x, y, 0) is the original image at time t = 0, ∇I is the
image gradient and c (x, y, t) is a constant conduction coefficient. By modifying the original formulation
to include a variable conduction coefficient c (x, y, t) = g (‖∇I‖) where g is a monotonically decreasing
function, they showed that edge aware smoothing could be obtained. Despite numerous advantages,
theoretical justification [20], and numerous provisions of such a method one can claim that it can not
deal with image textures [26]. Following this work many alternative formulation of diffusion process
have been formulated using a total variation approach [27] and iterative wavelet shrinkage [28,29].
Fattal et al. [30] proposed using bilateral filtering to compute the smooth layer. Bilateral filtering
provides an alternative approach to edge-aware image smoothing. It uses a local, non-iterative, explicit,
data dependent filter. Farbman et al. [31] propose to perform edge-preserving smoothing using the
weighted least square (WLS) framework. WLS computes the smooth component of the input image by
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Figure 1. Concentric sampling regions for the target pixel at the center to characterize local visual
context. As shown in the right-hand image, once the random walk is beyond the inner circle random
sampling is done, marked by the red dots. All of the samples are aggregated to form one chain.

optimizing a quadratic energy based on squared gradients with spatially-varying weights and solving
a large linear system. The most interesting alternative formulation of edge-aware filtering for our
current work involves random walks [20–22]. Black et al. [19] points out a connection between random
walks in neighborhoods and robust anisotropic diffusion. Consider image intensity difference between
target pixel s and neighboring pixel p. Within one of piecewise constant image regions, these neighbor
differences will be small, zero-mean, and normally distributed. Hence, an optimal estimator for the
"true" value of the image intensity s is equivalent to choosing the mean of the neighboring intensity
values. The neighbor differences will not be normally distributed, however, for an image region that
includes a boundary (intensity discontinuity).

2.2. Retinex-inspired Envelope with Stochastic Sampling

The Human Visual System (HVS) has complex and robust mechanisms to acquire useful
information from the physical environment. The intensity of a target pixel is heavily influenced
by neighboring pixel values. In [19] Kolås proposed a framework, where the random sprays were used
to calculate two envelope functions representing the local reference black and white points. Given
the two envelopes, target pixel s is adjusted by contrast stretching as S = s−Emin

Emax−Emin
, where S is the

modified intensity value, Emin and Emax are the minimum and maximum values of the envelope at the
target pixel. For further details see [19]. Inspired by anisotropic diffusion and stochastic sampling in
that work, a new method to enhance CVE image shadow and detail structures is presented. In the next
section, we discuss the proposed method.

3. STOCHASTIC CVE IMAGE ENHANCEMENT

The HVS uses saccades several times per second to move the fovea between points of interest and
build an understanding of our visual environment. This has been the origin of many local contrast
enhancement techniques. Different spatial sampling techniques have been applied to estimate the
relative value of the target pixel [19]. In this article, we propose a different type of sampling for the
neighborhood of the target pixel versus other image-wide regions.

Our approach involves exploring similar local neighborhood and lightness as well as darkness
pixel. Consider a target pixel at the center of the circle in Fig. (1). In order to smooth and
contrast-enhance the target pixel simultaneously, similar local neighborhood pixels are explored
through random walk within the inner circle, R1 whilst local lightness and darkness pixels are explored
in the outer circle, R2. Starting from each pixel, a random walk is initialized in a 3x3 neighborhood
until it passes the inner circle. This enables us to determine similar local texture. Once the random
walk is out of the inner circle, it samples randomly in-between the inner circle and outer circle to
estimate local lightness and darkness see Fig. (2). Finally, both the random walk and random sampling
are combined to estimate the final local lightness and darkness, which result in local contrast enhanced
image. In the next subsections, we will go through the details of the proposed sampling method.
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3.1. Smoothing

Given initial pixel position x0, the random walk explores the local neighborhood within the inner
circle. Let’s assume for a given iteration the random walk passed through the pixel positions x ∈ X,
where X is a set of all samples in a single chain ( N number of iteration is done for each pixel and in
subsequent sections, we refer the total number of samples in each iteration, as a chain). Since we are
interested in exploring similar texture in the neighborhood, the similarity of the target pixel and x
depends on the image gradient between the starting pixel, the neighboring pixel, and their intensity
difference. By noting this fact, for each chain m the similarity of neighboring pixel xj+1 and initial
pixel x0 can be expressed by Eq. (1). Introducing artifacts in smoothing could lead to artificial texture
on the tissue surface, which might result in inaccurate diagnosis. Hence, by using a structural tensor
description of the gradient features, which allows a more precise description of the local gradient, the
similarity is given as follows:

mwj+1
0 (x0|xj+1) = e

−
{∥∥∥∥ x0−xj+1

σI

∥∥∥∥
1
+
∥∥∥ TV(∇I)

σg

∥∥∥
1

}
(1)

The first part of the exponential term in Eq. (1) represents the l1 norm of the intensity difference
between the initial pixel and neighboring pixel normalized to a constant. The second term represents
the total variation of eigenvalues of the structural tensors at each pixel normalized to a constant.
The total variation term measures whether the random walk has crossed edges or not. Similar to
anisotropic diffusion, by controlling the normalization constant, edge aware smoothing is obtained.
The total variation of the gradient can be rewritten as

TV (∇I) =

∥∥∥∥∥
xj+1

∑
n=x0

√(
λn+1
+ − λn+1

−

)
−
√(

λn
+ − λn

−
)∥∥∥∥∥ = ‖DG‖1 (2)

where ‖.‖1 is the l1 norm, G is the gradient of the neighboring pixel along the random walk path
(chain) and D is given by

D =


1 −1

1 −1 • •
•

G=



(
λn+1
+ − λn+1

−

)
(
λn
+ − λn

−
)

•
•
•(

λ0
+ − λ0

−
)


(3)

Formulating the similarity of the target and neighboring pixels in this way gives us the flexibility
to quantify if the random walk is in a different regions or texture, since the total variation of the
gradient accumulates as the random walk moves to the next pixel. Moreover, regions of similar texture
with gradual intensity variation due to uneven illumination variation from the point light source
onboard the CVE are given equal weights when estimating the final value of the target pixel (see Fig.
(2) ).

As discussed in the introduction section, color distortions are undesirable in CVE image
enhancement. Therefore, smoothing is done on the luma channel only in the YCbCr color space. One of
the motivations for using a color gradient is the extra photometric information that is retained, which
would be lost by utilizing a luminance-based gradient. In addition, for isotropic structures, where
there is no preferred direction of gradient, as the directional derivative results in a zero magnitude.
Hence, for a given RGB image I, the structural tensor is given by Eq. (4).

H =

[
R2

x + G2
x + B2

x RxRy + GxGy + BxBy

RxRy + GxGy + BxBy R2
y + G2

y + B2
y

]
(4)
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(a) Stochastic sampling

(b) Weight estimation

Figure 2. (a) Stochastic sampling: Random walks capture low variance neighbors that are essential for
smoothing whilst random sampling captures high variance intensity variations that are essential for
local contrast enhancement Therefore, random walks are used for smoothing whilst random samples
weights are set to zero. (b) Weight estimation of random walks along path starting from target pixel.
Pixels inside the inner circle are assigned weights according to Eq. (1)

where Rx, Gx, Bx, Ry, Gy, By are horizontal and vertical spatial derivatives of RGB color channels
respectively. The eigenvalue analysis of the H leads to two eigenvalues λ+λ−, which can be solved
using standard techniques. Finally, given number of samples, and number of iterations, the final
smoothed estimate of the target pixel, can computed as a weighted sum of pixels in the chain as in Eq.
(5).

xden =

N
∑

n=1

M
∑

j=0

nw0
j+1(xj|xj+1)xj

N
∑

n=1

M
∑

j=0

nw0
j+1(xj|xj+1)

(5)

In computing the smoothed image, Fig. (3), we found that the contribution of pixels from the
random sampling was very small as might be expected and so they were set to zero for numerical
stability.

3.2. Local contrast enhancement

As discussed in the introduction section, local contrast enhancement is obtained by finding the
local darkness and lightness. From M samples using random walk and random sampling in chain X,
the minimum and maximum pixels of chain M are found as:

In
max =

M
max
i=0

xn
i

In
min =

M
min
i=0

xn
i

(6)

where In
max and In

min are maximum and minimum intensity values of chain n ∈ {1, ..., N} respectively.
It is noted that as the target pixel is also a sample point it is bounded by the maximum and minimum
intensity of the samples. Similar to [19] the variation intensity of the samples, the range,Rn , and the
relative value of the target pixel, Vn, is given as follows:
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(a) Y channel of input image (b) smoothed version

(c) Smoothed vs. original image intensity variation

Figure 3. (a) Y channel of input image. (b) shows the smoothed image using random walk. From the
intensity variation across, row 165 of the image, in (c) the smoothing preserves edges and smooths only
detail variation on the surface. Hence captures the surface texture of the tissues.

Vn =

{
1
2 if Rn = 0
x−Imin

Rn otherwise

Rn = In
max − In

min

(7)

The final estimate of local contrast enhanced target pixel and range is obtained by averaging to
the total number of iterations.

v =
1
N

N

∑
n=1

Vn

r =
1
N

N

∑
n=1

Rn

(8)

The extremal envelopes can simply be constructed from the estimated average and pixel value as
follows:

Emin = x0 − vr

Emax = x0 + (1− v)r = Emin + r
(9)

3.3. Image decomposition

Exploiting the information provided by local contrast enhancement of the shadow details in the
image and edge preserving smoothing, our framework is based on two key observations. Firstly,
Shadow details are characterized by a large variation in the contrast-enhanced image and secondly,
detail vessel texture is characterized by local intensity variation in the original image. Hence, the two
layers containing vessel detail texture D1 and shadow details D2 are given as

D1 = Io − Irws

D2 = ICE − Irws
(10)

where Io, ICE, Irws and are the original, local contrast enhanced (using Eq. (8)) and smoothed image
(using random walk Eq. (5)) respectively. The final detail and shadow tissue texture enhanced image
Ienh is obtained by convex linear combination of the two layers of detail and adding them back to the
smoothed image as follows:
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Input and enhanced image
(c) Intensity variation of enhanced image compared to
the details

Figure 4. (a) Input image from PillCam COLON camera showing a Polyp of 9 mm size (b) Enhanced
image using proposed method, in which color tone is kept whilst the details are enhanced. Compared
to the original it can be seen that lumen and shadow details of the surface texture are more visible on
the enhanced image. (c) Shows different layers of image decomposition D1, D2, and D of Eq. (10) as
compared to the original and enhanced image Eq. (11). As it is shown the two detail layers captures
low contrast shadows and surface details.

D = γD1 + (1− γ)D2

Ienh = KD + Irws
(11)

where γ is a mixing coefficient that controls the amount of shadow details against tissue details and K
is a scalar constant. Fig. (4) shows the enhanced image along its smooth , detail, and shadow layers.

4. Implementation

The proposed framework was tested with the following parameter settings. Denoising and local
contrast enhancement can be controlled by choosing appropriate parameters as follows. The number
of samples and iterations controls the robustness of the estimated local contrast and smoothed pixel
value. For our experiment, we used N = 50 iterations and M = 150 sample pixels per iteration.
Edge aware smoothing was controlled though intensity and gradient normalization constants σI and
σg respectively. σI controls intensity difference, while σg controls how total variation of gradient
penalizes crossing edges. Moreover, it is possible to control the locality of smoothing and local contrast
enhancement by choosing appropriate sampling dimensions for R1 and R2. For this experiment R1
is set to 10 and R2 is set to length of the diagonal of the image. We will go into more details about
parameter settings in Section (5.5). The Pseudo-code for the proposed method is given in algorithm (1).

5. RESULT AND EVALUATION

5.1. Experimental setup and procedure

Subjective image quality assessment is the most reliable way to evaluate the visual quality of
digital images perceived by trained medical doctor. To assess the performance of the proposed
method for clinical application, rank order, an ordinal scaling method were used. The observers,
who are trained physicians, were asked to rank the image samples in order of, from best to worst
along diagnostic value of an image. The images were positioned side by side in a random order
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Data:

• Ycbcr : Input image
• R1, R2 : Inner and outer sampling circles, Fig. (1)
• N, M : Number of samples and total number of iterations

Result: Enhanced image
PROCEDURE:
G = color gradient Eq. (4)
foreach pixel do

Sampling:
foreach sample n=1:N do

foreach chain < M do
while (random walk <R1)

do random walk
end
random sampling

end
save to chain m
Enhancing and smoothing:
foreach chain m=1:M do

• x = Y pixel intensity values of chain m
• G = Pixel color gradients Eq. (4) of chain m
• W = weight using Eq. (1). For chain pixels less than R1
• Imin = Minimum of chain m Eq. (6).
• Imax = Maximum of chain m Eq. (6).
• Find range and relative value Eq. (7).

end
end

• Smoothed pixel estimate, Eq. (5);
• Contrast enhanced pixel estimate, Eq. (8).
• Apply Eq. (10) & Eq. (11) to estimate the enhanced image

end
Algorithm 1: Stochastic CVE image enhancement

position as shown on Fig. (5). The images are shown side by side to make it easy for the observers
to find the detail difference between the candidate images. Four images were placed side by side for
comparison. The test images are reproductions of the same original image using proposed, Bilateral
[30] and weighted least square (WLS) [31] image decomposition techniques. The methods selected for
subjective experiment are based on similarity of their approaches, i.e. image decomposition technique
and their full-reference image quality metric evaluation. The experiments took place in a controlled
room simulating a colonoscopy examination room. We used BENQ BL series display, with screen
resolution of 3840 x 2160. The display is color managed for sRGB with luminance level of 80 cd/m2 .
Moreover, to measure screen uniformity, a middle gray patch is used, and three points are sampled
from left to right of the display. Our benchmark shows a 3.8 standard deviation in CIE XYZ values. To
measure color uniformity different patches of red, green and blue patches were measured along black
and white patches with average CIE2000 value of 1.57, which is on the order of the just noticeable
difference (JND).

5.2. Dataset

Several guidelines have been given in the literature for the selection of images for psychophysical
experiments. Holmet al. [32] recommend the use of a broad range of images as well as test charts to
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Figure 5. Psychometric experimental setup for subjective evaluation of diagnostic quality of an image.
The observer gives letters from A (best) to D (worst) quality image for diagnosis.

reveal the quality issues. 30 sample images were chosen by a medical doctor from the KID dataset
[33] with pathologies and normal images from different parts of the colon. The sample images are
selected based on lack of clarity and details for visual diagnosis and should be enhanced for better
visualization. The images were taken by GivenImaging Pillcam COLON and Mirocam capsules with a
resolution of 576 x 576. In addition, three sample images from Pillcam COLON II were also included
having a resolution of 256 x 256.

5.3. Subjective evaluation

Five medical doctors who specialized in colonoscopy imaging participated in the subjective
experiment. Observers were asked the standard question "Decide which image has the best diagnostic
image quality. Once you make a decision click on the letters below each image indicating their
rank. ’A’ being the best image and ’D’ being the worst image. And no tie is allowed". The user
interface for the subjective evaluation is shown on Fig. (5). The rank order data were converted to into
pairwise comparison for ease of analysis. The pairwise raw scores were used compute z-score ranking
with Montag confidence interval [36]. The z-score ranking result from the subjective experiment is
summarized on Fig. (7).

The subjective evaluation across different observers were also consistent. As it shown on Fig.
(8), the proposed method performed better for the sample images in the dataset. In general, it can
be deduced from Fig. (7) and Fig. (8) that image enhancement provides a better image quality as
compared to original image for diagnosis.

5.4. Objective evaluation and comparison

Vision research does not offer an answer as which objective image quality metrics corresponds
to diagnostic qualities of capsule images. Most of existing state-of-the-art objective quality metrics
are designed for natural images. In this section, we present our evaluation of existing natural image
quality metrics. Our objective here is to show how existing natural image quality metric compare
with the subjective evaluation result presented in sub-section 5.3. Table 1 shows evaluation result
using weighted-level framework(WLF) [37], structural similarity index (SSIM) [38], feature-similarity
(FSIM) index [39] and information content weighted structural similarity measure (IW-SSIM) [40]
metrics. Assuming the readers are familiar with SSIM, we limit the discussion to WLF. WLF is a
no reference image contrast metric, which measure perceptual contrast by computing the global
contrast. WLF is used as it has a good correlation in relation to observer perceived contrast. It is
done by subsampling each channel separately into a pyramidal structure and obtaining a contrast
map of each level. The overall measure of each channel is a weighted recombination of the average
contrast for each level. IW-SSIM is an extension of SSIM index which adopts a new information content
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(a) Input image (b) Proposed (c) WLS[31] (d) L0 Gradient
Minimization [34]

(e) Local Extrema [35] (f) Bilateral[30] (g) CLAHE[23]

Figure 6. Comparison of different methods on PillCam COLON images. (a). Input image showing
a splenic flexure (b) It is visually easy to see that our framework enhances the local contrast and the
details of the tissue surface simultaneously. On both images, the proposed method gives a consistent
result under different illumination variation. Bilateral [30] (f) image decomposition technique enhances
the details, but creates a halo effect on edges which appear to widen the blood vessels and other tissue
surfaces. Moreover, (g) enhances the local contrast but the details of the tissue surface are lost.
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Figure 7. Rank order z-score showing observer preference for diagnostic image quality.
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Figure 8. Average observers preference for the sample images selected for the subjective experiment.

weighting-based quality score pooling strategy. FSIM [39] uses phase congruency and the gradient
magnitude to compute the local similarity map and utilized the phase congruency map as a weighting
function. The CIE2000 metric is applied to understand the perceived color difference between the
enhancement and the original image. Given the subjective evaluation result for image decomposition
techniques such as Bilateral [30], weighted least square (WLS) [31] and the proposed method, we
compared the objective quality metrics. Furthermore, we evaluate contrast limited adaptive histogram
equalization (CLAHE) [41], which represent detail and contrast enhancement techniques, using the best
discriminative objective image quality metric with the subjective experiment. The average performance
is summarized in Table 1. The WLF value displayed in Table 1, is a ratio of average WLF value of
the method to the WLF value of the original image. As it can be seen from Table 1 and Fig. (7), WLF
ratio and IW-SSIM are better discriminative with subjective experiment and could provide better
image quality predictors for capsule endoscopy images. From Table 1 and Fig. (6g), CLAHE enhanced
images scored the smallest value in-terms of IW-SSIM as they lack details of tissue surfaces. It is
interesting to note that based on a single objective quality metric it difficult to assess the diagnosis
values of these images in relation to the subjective evaluation of these images by medical doctors.
Many of other related works in capsule image enhancement use standard natural image quality metrics
[5–8]. However, these metrics are proposed for natural images where relative smoothness is preferred.
Therefore, further research is required to investigate a single image quality metrics for visual inspection
of capsule endoscopy images. As the capsule images exist in smaller color space and are taken under
low light conditions, quantifying the diagnostic value of these images is essential. More results can be
downloaded from http://www.ansatt.hig.no/mariusp/ColonCapsuleImages.zip.

5.5. The effect of parameter selection

Sampling method controls the way the algorithm enhances the contrast and details texture
features. The number of iteration, M and samples N, affect the locality of the method. Large number
of samples and iteration gives smoother and better result. This is due to a high number of samples
give a robust representative of the neighborhood pixel values. The effect of number of iteration and
samples in presented in Fig (9). To get a better estimate of the local lightness and blackness together
with smooth estimate of the target pixel, the sampling process is iterated several times and averaged
as given in Eq.(8). This strongly decreases the noise level at the cost of increased time of computation.
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Table 1. Average performance of different methods using WLF, SSIM, CIE2000, FSIM, IW-SSIM metrics
respectively. SSIM, FSIM and IW-SSIM represent full reference and WLS representes no-reference
image quality metric.

Average performance of enhancement methods based on objective quality metrics
Methods WLF Ratio SSIM CIE2000 FSIM IW-SSIM
Bilateral [30] 1.06 0.92 3.03 0.95 0.93
WLS [31] 1.28 0.92 3.29 0.94 0.92
CLAHE [41] 2.65 0.82 3.60 0.89 0.83
Proposed 1.48 0.90 3.45 0.92 0.93

N = 5 N = 25 N = 50

M = 10

M = 50

M = 100

Figure 9. The effect of number of samples (N) and iteration (M). The input image is size of 174x294. R1
and R2 are set to 3 and 200 respectively with σI = 9 and σg = 4.

The radius parameter is the maximum distance from the pixel where the stochastic sampling can be
done. It is set in similar way to [19] and controls the locality of the spatial maxima and minima for
the adjustment. It is not a critical parameter as long as it is large enough to sample reasonably across
the entire image. The inner radius R1, determines the size of the random walk. It defines the size
of the neighborhood circular window for exploring similar textural features. If R1 = 0 , the method
performs only contrast enhancement similar to [19]. The other parameters that are closely related to
R1 are the σI and σg. Taking smaller values of σI gives lower weights for pixels that have different
intensity values from the target pixel. On the other hand, small values of σg weights on edges crossed
during the random walk. For a pixel position that is similar to the target pixel but located on different
texture or across edges are given less weights in computing the final estimate of the smoothed image.
Large values of R1 with large values of σI and σg result in mean value of the image. Fig. (11) shows
how the value of σI and σg influence the estimation of the base (smooth) layer. As it can be seen large
values of σI and σg smooth the details and tend to smooth the edges. Hence, we set these parameters
to optimal values σI = 9 for intensity and σI = 4 for gradient normalization. These parameters do not
require changing from image to image and were kept the same for all our experiment.
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Table 2. PSNR values of different denoising algorithms for a Gaussian noise with a standard deviation
σ.

Denoising
σ value Bilateral filter Anisotropic diffusion Random walks
σ = 0.03 36.08 27.59 35.17
σ = 0.09 33.40 27.29 32.45
σ = 0.27 19.41 32.45 23.85

5.6. Base layer estimation

In order to elaborate more on estimation of the base layer i.e. smoothing, we tested the proposed
method discussed in Section 3.1 against bilateral filtering for a Gaussian noise type. Smoothing
a Gaussian type noise could be required in texture-pattern extraction. These patterns could be
capillaries on tissue surface or vascular patterns. Detail textures are critical in defining the progress
of inflammatory bowel diseases such as Ulcerative colitis in CVE. The proposed formulation for
smoothing, E.q. (5), preserves texture and fine details along prominent edges that are inherent in CVE
images. The level of smoothing can be controlled by choosing appropriate values of R1, σIand σg

which controls region for the random walk, and penalty for intensity and total gradient variation as
the random walk progress from the target pixel to neighboring pixels as defined Section (3).

(a) Input image (b) Noisy image (c) Pixel intensity

(d) Bilateral Filtering (e) Proposed denoising (f) Zoomed comparison on edges

Figure 10. Comparison of smoothing methods: (a) Input image. (b). A Gaussian noise of σ = 0.09 is
added on the input image (c). Shows intensity variation across row 165 of noisy image and smoothed
image using bilateral filtering and the proposed method. From (d,e,f) we can see that the proposed
method gives a better edge-aware filtering compared to bilateral filtering. Moreover, it is easier to see
that bilateral filtering creates a halo effect around edges.

We tested the proposed method for smoothing on 30 sample images from KID dataset against
bilateral filtering [35] and anisotropic diffusion [25]. A Gaussian noise with standard deviation σ is
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Input Image NoiseImage(σ = 0.44) Visualization

σI = 0.5 σI = 1 σI = 5 σI = 10

σg = 0.5

σg = 1

σg = 5

σg = 10

Figure 11. Parameter setting for σI and σg. The top row shows the input setup. The first image is
noise free image input image size 255× 255. A Gaussian noise of σ = 0.44 is added to the image. We
converted the image to color for better visualization. Smaller value of σI and σg gives smaller weight to
neighboring pixels intensity and gradient respectively. With higher values of σI and σg the neighboring
pixels have higher weights Eq. (5) and could result in blurring the edges. Hence, any value of σI > σg

and σg > 5 gives reasonable estimate of the base layer of the image.
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added to Y channel of the input image. We used PSNR to measure the perceived quality improvement.
The parameters of all methods were set initially and were averaged for all test images. The proposed
method parameters were set to N = 50 and M = 150 with σI = 9, σg = 4 . For bilateral filtering
we used σs = 5, σr = 0.1, and w 1

2
= 5 for spatial, range standard deviation and half window size

respectively. Anisotropic diffusion was done for 15 iterations. The results are summarized in Table 2.
As it can be seen in Fig. (10), the proposed method results in smooth images yet has no halo effect

on edges. As it is noted in Fig. (6a) and in [23] methods such as bilateral filter and weighted least
square (WLS) filter tend to blur edges. As shown in Fig. (10c), intensity variation across the sharp
edge varies gradually for bilateral filtering hence blurring the edges. Bilateral filter parameters are
fine-tuned for a best result with window size of 5. The proposed method has minimal blurring. The
small intensity variation of proposed method shown in Fig. (10c), which are not present in the original
image can be avoided by choosing appropriate values of R1, σI and σg, which acts as a trade-off
parameter between keeping the texture and smoothing the noise.

5.7. Applicability the proposed method and computational cost

CVE is the best method to evaluate the entire mucosal surface of the small bowel and it plays a
key role in evaluation of obscure gastrointestinal bleeding. However, the diagnostic yield of CVE can
be affected by many factors, such as indications, bowel preparation, technical errors, view mode and
frame rate during interpretation, reviewers experience, and etc [42]. Contrast enhancement techniques
such as flexible spectral imaging color enhancement (FICE) have been reported to improves detection of
angioectasia [43]. Moreover, the new contrast image capsule endoscope (CICE) developed by Olympus
medical systems has been shown to improved the visibility of minute structures of adenomatous
polyps [44]. Hence, enhancement methods are helpful in increasing the visibility and demarcate
lesions.

In terms of computational cost, Matlab implementation of the proposed method takes close to
30 seconds per CVE image. The random walk and stochastic sampling is done only once for a given
image and the samples are saved. For the remaining frames, we used the saved sample points to speed
up the computation of random walk. As a future work, inspired by recent works in deep edge aware
filtering [45], we are working towards training a deep neural network on the proposed enhancement
method to speed up the computation. In addition, recent works in generalized random walk [46] for
image smoothing could also be used to speed-up the proposed method. Moreover, currently CVE
videos are examined off-line and enhancement methods are provided as optional feature in addition
to original frame. Therefore, the proposed method can be used in clinical setting as optional view to
provide detail and shadow enhanced view of GI tract.

6. CONCLUSION AND FUTURE WORK

In this work, we have proposed a framework that could enhance detail and shadow texture of
tissues for CVE images. Based on stochastic sampling and edge-aware smoothing the proposed method
delivers a state-of-the-art result for clinical applications. Computational complexity is a limitation of
the method. Smaller random walk circle substantially reduces the time required as a trade-off between
the number of samples and the level of the details that will be enhanced. To this end, random walk
problem has been posited as solving a Dirichlet problem for image segmentation [47]. For our future
work, similar approach could be used to reformulate the proposed method for faster implementation.
Moreover, we are planning to investigate the effect of enhancement for automated detection of polyps
and ulcerative colitis.
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Abbreviations

The following abbreviations are used in this manuscript:

CVE Capsule video endoscopy
CCE Colon capsule endoscopy
CLAHE Contrast limited adaptive histogram equalization
CMOS Complementary metal-oxide semiconductor)
DFT Discrete Fourier transform
FICE Flexible spectral imaging color enhancement
HVS Human Visual System
JND Just noticeable difference
NBI Narrow Band Imaging
SSIM Structural similarity index
WLF Weighted-level framework
WLS weighted least square
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