

1 Article

2 Study on the Construction of Landscape Ecological 3 Classification System for Large-Scale Coal-Power 4 Base in Semi-Arid Steppe Region

Zhenhua Wu¹; Shaogang Lei¹; Zhengfu Bian^{1*}

5 ¹School of Environment Science and Spatial Informatics, China University of Mining and Technology,
6 Xuzhou 221116, Jiangsu, China

*Corresponding author E-mail:wzhdjtc@126.com

7
8 **Abstract:** The ecological background condition of the semi-arid steppe region (SASR) is
9 extremely fragile. It is recognized that the development of coal and electricity power is a kind
10 of strong human interference behavior for regional landscape ecology. Landscape ecological
11 classification (LEC) is the premise of landscape ecology research of the mining area. The current
12 research on the SASR and grassland LEC of coal-power base is relatively less, but still remains
13 uncertainty concerning how to stratify and classify urban mining landscapes into units of
14 ecological significance at spatial scales appropriate for management. This study is based on
15 hierarchy theory, scale theory, landscape process, the patch-corridor-matrix model, the network,
16 the theory of multiple planning integration and the principle of remote sensing. According to
17 the comprehensive principle, principles of the combining of structure and function, principle
18 of the combining human-dominated and natural landscape, principle of emphasis, and principle
19 of combining qualitative analysis with quantitative research of LEC in large-scale coal-power
20 base(LSCPB). On the basis of occurrence method land classification, fully consider the
21 ecological attributes of the land, integration pattern, processes and function theory of the
22 landscape ecology, the LEC system of the LSCPB in the SASR has been constructed by using
23 top-down decomposition classification method. Empirical research of the Victory and Mindong
24 No.1 mining areas of Shenhua Group shows that the classification system constructed in this
25 paper can meet the requirements of LEC and fully reflect the status of landscape ecology of
26 LSCPB in SASR. This study can provide theoretical guidance for the landscape ecology of
27 LSCPB, while also supporting a theoretical reference for the LEC research.

28 **Keywords:** Semi-Arid Steppe Region•Large-Scale Coal-Power Base•Landscape Ecological
29 Classification

31 1. Introduction

32 Coal is the most important component of the world's energy structure and the most
33 important energy source for the Chinese economy (Edenhofer et al. 2015). With the
34 development of social economy, the demand for mineral resources is increasing, which has
35 pulled or stimulated the rapid development of the mining industry. In turn, the mining
36 industry has promoted the rapid development of social economy (Bian 2015). In order to further
37 meet China's energy demand, the Chinese government focused on the construction of Eastern

38 Inner Mongolia 14 other large-scale coal bases and 16 LSCPB in the "12th Five-Year" period. For
39 decades, rapid economic growth and the improvement of human living status for China—
40 the world's biggest population have been accomplished at the expense of environmental
41 integrity (Fu 2008). Grassland accounts for about 20% of the total land area of the world (Han
42 et al. 2012). Serious degradation of semiarid grasslands worldwide has negative consequences
43 for local, regional, and global ecosystem services (Chen et al. 2017). The long-term high
44 intensity mining of coal leads to the desertification of land, spread of pollution, landscape
45 fragmentation, degradation of habitat and landscape ecological functions, and ecological
46 imbalances in SASR. The mining area LEC is the basis of the analysis and simulation of
47 landscape pattern in the mining area, the basic way of clarifying the influence mechanism of
48 mineral exploitation on regional landscape ecology, is the premise to carry out the study on
49 landscape ecological restoration in mining area. The research on the theory and methodology
50 of LEC of the mining area, to a large extent, reflects the whole study level on landscape
51 ecological restoration of mining area.

52 The landscape classification is based on differences in the materials of the landsacape, the
53 energy distribution and forms of exchange, the influence of human activities on the landscape,
54 and the culture that people attach to the production and life of the landscape, depending on
55 the hydrothermal condition of the landscape system. According to specified principles, an
56 analysis of the natural attributes of the landscape, ecological functions and spatial
57 configuration characteristics was conducted, with a series of indicators to characterize these
58 differences. Then the landscape types were divided and merged, and the landscape ecology
59 classification system was conducted (Fu et al. 2001). In the field of LEC research, the Soviet
60 Union (А.Г.Исаченко 1992) and others understood landscape as a certain level of classification
61 units from the perspective of geography. The LEC for the North American School of (Forman
62 1986) and others transformed land use classification systems, because they paid attention to
63 research on landscape patterns and ecological functions. The European school was a birthplace
64 of LEC, Westerveld (et al. 1984), Naveh (et al. 1984) and others focused on landscape
65 classification systems based on the grade and strict LEC. Chinese scholars (Wang 1996), (Xiao
66 et al. 1998) and others introduced foreign LEC theory into China, then Cheng (2002),
67 Zhou(1999), Guo (et al. 2008) and Li (et al. 2005) and others put the theory into practice in order
68 to solve the problem of regional ecological environments. The current status of LEC research is
69 mostly limited to macroscopic classification of large and mesoscale landscapes, and less
70 involved in division of small scale landscape types, especially the classification of severe human
71 disturbance in mining areas. In recent years, the development and management of a single
72 mineral resource has produced a series of serious social and ecological consequences,
73 emphasizing that the ecological classification of mining scales according to ecological attributes
74 has gradually become a hot topic.

75 At present, most of the LEC of mining areas draws on the existing land cover and LEC
76 systems such as "the second national land survey technical regulations(TD/T1014-2007)"(Han
77 et al. 2012), or land use classification systems adapted to the actual research
78 needs(Hendrychová et al. 2016). The landscape is divided into four categories: natural
79 landscape (mountain, water, desert, grassland, forest vegetation, etc.), agricultural landscape
80 (farmland, artificial woodland, orchard and vegetable land), artificial landscape (mining
81 industrial buildings, workers' living area buildings, gangue heaps, open-pit mining, open-pit

82 mine dumping) and anthropogenic landforms (landslides, eroded landforms, desertified land,
83 coal mining subsidence ponds, swamps and hydro-water basins), according to the influence
84 and extent of human production and mining activities (He et al. 2000). According to the three
85 basic functions of biological production, environmental services and cultural support of
86 landscape ecosystems, the landscape ecology of mining areas is divided into three categories:
87 mining large agricultural area (farming area, commercial fruit-growing area, aquaculture area
88 and grassland area); capital construction areas (mining facilities, etc.); environmental
89 protection and service functions (after reclamation, tourism, etc.) (Wang et al. 2001). Wang et
90 al. (2007) had constructed three categories of landscape types (strong human disturbance
91 zones), landscape system (land cover zones), landscape components (geomorphology and soil
92 type zones) according to high diving coal mining area of eastern China by using high resolution
93 remote sensing images. Zhang et al. (2011) established a framework of spatial control planning
94 and design of landscape elements from "macro control, medium allocation and micro
95 optimization" for the purpose of managing and using these special landscape resources, then
96 divided mining landscapes into restoration landscapes (coal gangue, waste yards, surface
97 cracks, subsidence), limited restoration landscapes (watershed, settlement, industrial facilities,
98 roads) and protection landscapes (ancient, modern mining stope, modern mining equipment).
99 Zhang et al. (2011) conducted a case study in Wu'an city of Hebei Province. At present, there is
100 little research on the LEC in mining areas. In the theoretical domain, the landscape spatial
101 structure, ecological attributes and landscape functions have been emphasized, while ignoring
102 ecological processes. In the empirical research domain, most of the study has been focused on
103 high diving coal, semi-humid plains and abandoned mining areas, with a lack of research on
104 open pit mines, especially a lack of LSCPB LEC system construction research. In view of the
105 above problems, the aim of this study is to develop and propose an LEC system suitable for the
106 LSCPB in the SASR. Specifically, the purpose and significance of this study are: (1) a framework
107 of LEC based on multiple factors such as natural ecology, human disturbance and social
108 economy will establish; (2) the constructed classification system can provide theoretical
109 support for the landscape ecological management and planning of semi-arid steppe mining
110 area; (3) provide a theoretical reference for the study of LEC in grassland or other areas; (4)
111 provide the theoretical basis for the research of landscape ecological field in the mining areas,
112 especially the semi-arid steppe mining areas; (5) the constructed classification system will be
113 tested by open-pit and shaft mine LSCPB of Eastern Inner Mongolia.

114 2. Methods

115 Mining areas is a time and space scales of continuous human activities and strongly
116 disturbed regions. The LEC of LSCPB is a classification based on coal mining and power
117 development as the dominant landscapes, the occurrence mechanism, ecological processes,
118 basic theory, classification principle of its landscape ecological are different from the general
119 countryside, city and wetland landscapes.

120 2.1 Landscape ecological analysis of LSCPB in SASR

121 The LEC of LSCPB is the result of abstracting the whole attributes and characteristics of
122 complex coal mining and electric power development systems, and is a rational simplification
123 perspective process. Based on understanding of the occurrence and formation process of coal
124 mining and power development, the analysis of the landscape ecological types of LSCPB is the

125 premise of studying the LEC of LSCPB.

126 Due to the uneven distribution of resources in China, coal resources are mainly distributed
127 in the western and northern regions, whereas energy demand is distributed in the eastern and
128 southern regions. Large-scale, long-distance coal transportation has seriously increased
129 manpower, material, financial and environmental costs. Converting transportation coal into
130 transportation power is an effective way to solve this contradiction by building the LSCPB. The
131 idea of a coal-power base refers to the integration of coal reserves and production, with a
132 planned construction of power plants for external transmission (Zhou et al. 2014). Therefore,
133 the LSCPB is an area of strong human disturbance landscape ecology dominated by coal
134 mining and electric power development.

135 There are two main types of coal mining: shaft mining and open-pit mining. The method
136 of mining coal by underground excavation is called shaft mining. Open pit mining refers to the
137 method of mining the mineral resources directly after the overlying soil and rock are removed
138 (Du et al. 2014). In the process of open pit coal mining, the types of landscape are as follows:
139 the excavation type of landscape, the type of the occupied landscape, the type of piled up
140 landscape and the types of the undisturbed landscape (Cao et al. 2006). The type of excavation
141 is the large-scale mining pit formed by stripping the surface soil, the overburden or the middle
142 layer of the coal seam during the mining process to obtain the underground coal resources (Fig.
143 1a). The type of the occupied landscape mainly refers to the dump which is used for stacking
144 the stripped substance in the open-pit mine. The interior of the dump will pile up gangue,
145 weathered rock and soil, hard rock and mixed rock and soil, the surface of which will be
146 covered with a certain thickness of humus topsoil to grow vegetation. In the early stages of
147 exploitation, the stripping material will be stacked outside the open pit mining limit, called the
148 external dump (Fig. 1c). When the large mining pit is formed, the strip will be backfilled within
149 the open pit mining limit, which is called the internal dump (Fig. 1b). The type of the occupied
150 landscape includes the coal preparation plant, coal washing plant, coal transportation
151 corridor(Fig. 1f), railways, all kinds of roads, industrial square, built (structure) buildings,
152 pipelines and transmission lines, all of which are for coal development services.

153 The landscape types formed during the process exploitation by shaft mining include:
154 (1)mining facilities construction land landscape, mainly used for coal mining, screening and
155 transportation and other constructed sites, such as the mine, coal preparation plant, coal
156 transportation corridor[Fig. 1(f)] and so on; (2) mining office construction land landscape (Fig.
157 1e), mainly used for coal mine staff office and living places, such as office buildings, canteen,
158 workers' village, dormitory buildings, hall and so on; (3) the mining disturbance landscape is
159 formed by high intensity interference from coal mining, which mainly refers to the subsidence
160 land (Fig. 1h)and ground fissures (Fig. 1g); (4) the type of the occupied landscape refers to the
161 mining of solid mine waste discharge and abandoned land, mainly coal gangue dumps (Fig.
162 1j).

163 For the closure of the mine, the areas are generally reclaimed for agricultural land, gardens,
164 woodland, construction land, livestock land, aquaculture land or mine park. According to the
165 "China National Mine Park Construction Work Guide" (Geological Environment Department
166 of the Ministry of National Land and Resources, 2007)the relict mining landscapes are divided
167 into five categories: mineral geological relics, mining production relics, mining relics for social
168 life, mining products and mineral development literature history.

169 Thermal power plant landscapes (Fig 1d) mainly include: (1) coal transportation corridor,
170 road or railway; (2) construction land inside the thermal power plant including office space,
171 raw coal hopper, coal mill, rowder coal bunker, boiler, steam turbine, generator, chimney,
172 condensing tower, transformer and so on. (3) high voltage transmission network, (4) coal fly
173 ash dumps formed from coal combustion (Fig. 1i).

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1. Large-Scale Coal-Power Base in Semi-Arid Steppe Region

(a)Open Pit Mine; (b)Internal Dump; (c)External Dump; (d)Thermal Power Plant; (e)Shaft Mine Industrial Square; (f)Coal Transportation Corridor; (g)Ground Fissure; (h)Subsidence Land; (i)Coal Fly Ash Dumps; (j) Coal Gangue Dumps.

174 2.2 Theoretical basis of LSCPB LEC

175 The theory, principle and method of LEC of LSCPB are the macroscopic theoretical basis
 176 of establishing a scientific, perfect and practical mining landscape classification system, mainly
 177 including hierarchy theory, scale theory, landscape processes, the patch-corridor-matrix model,
 178 the network, the theory of multiple planning integration and the principle of remote sensing.
 179

2.2.1 Hierarchy theory

180 Hierarchical theory applies to complex system structure, function and dynamics (Wu 2000).
 181 Any biological system has a hierarchical structure. LSCPB is a complex and orderly system
 182 structure composed of several units. Complex systems often have hierarchical forms. A
 183 complex system consists of interrelated sub-systems, which are made up of their own sub-
 184 systems, and so on until the lowest level (Simon, H.A., 1962). High-level classification requires
 185 a broad and comprehensive generalization. Low-level classification needs to determine the
 186 differences between small-scale landscape units, and can fully highlight the characteristics of
 187 each landscape element. In an LSCPB landscape ecological gradation with non-nested
 188 characteristics, for example, mining and non-mining areas both have construction land
 189 landscapes. The hierarchical system has a vertical structure and horizontal structure. For
 190 example, the "Mining Landscape → Mining Construction Land Landscape → Thermal
 191 Power Plant Construction Land" belongs to the vertical structure, "Mineral Geological Relics -
 192 Mining Production Relics - Mining Relics for Social Life" belongs to the horizontal structure.
 193

2.2.2 Scale Theory

194 The time and space scales are included in the ecological processed of any landscape (Wiens,
 195 J.A., 1989). At different time scales and spatial scales, the same landscape will show
 196 homogeneity and heterogeneity at the same time. The level of landscape ecology and the level
 197 of hierarchy are also dependent on the size of the spatial scale, so the study of LEC must take
 198 into account the role of scale. Ecological scale has three aspects: dimension, category and
 199 composition. The dimensions include time scales, spatial scales, and organizational scales. For
 200 LSCPB, the time scale can take into account the whole life cycle of the mining area, the space
 201 scale is coal-power base, and the organization scale is the landscape scale.

202 2.2.3 Landscape processes

203 Landscape processes are within the scope of the time and space scales, operating in the
204 landscape, showing the interrelated, interdependent interactions among the landscape
205 elements, emphasizing the occurrence and development of events or phenomena, and are
206 important in affecting the variation of landscape pattern. Landscape-scale processes are driven
207 by many elements and are associated with other processes in more restricted areas. The overall
208 landscape process is the result of the interaction of both natural and man-made factors, and
209 with economic development, technological progress and population growth, the influence of
210 human factors is getting bigger and bigger(Yu 2006). In the prehistoric period, primitive human
211 beings lived on the grassland by hunting, survived equally with other animals, and were not
212 the dominant species that affected the landscape ecology of the area. With the development of
213 human civilization and its productive forces, humans learned to domesticate grazing animals,
214 and the nomadic people were born. Commodity trading and political demand increased as
215 urban landscapes continued to grow and develop in the grasslands. By the late 18th century,
216 the industrial revolution made coal the most extensively used industrial production fuel, and
217 mining landscapes were born.

218 2.2.4 Patch-corridor-matrix model

219 Patch-corridor-matrix landscape spatial mosaic pattern laid the foundation for the study
220 of the combination of landscape areas of LSCPB. The matrix is the most widely distributed
221 background structure in the landscape. The SASR coal-power base is added to the native
222 grassland as the matrix. The introduction of an artificial patch into the grassland matrix formed
223 the urban landscape patch, and the urban landscape patch originated from the human nature
224 of the natural ecosystem. The obvious features are: (1) the ecological structure in the settlements
225 depends on the biological type that replaces the natural ecosystem. (2) the persistence of highly
226 humanized settlements depends partly on the extent and permanence of human management.
227 The mining landscape is a disturbance patch formed by high intensity disturbance over a
228 period of time, which is different from the matrix of grassland and urban landscape (Zhang
229 2014). The urban landscape patch and the mining landscape patch are different from the
230 grassland matrix in appearance or nature, and have some internal heterogeneity. In addition,
231 LSCPB of SASR has rivers and other environmental resources corridors, coal transportation
232 corridor and other disturbance corridors, natural grasslands remaining along railways and
233 other remnant corridors, shelters and other planting corridors. On the one hand, corridors are
234 the channels for the transmission and migration of energy, matter and species, while on the
235 other hand, are obstacles for the movement of species in the grassland matrix. So it is necessary
236 to set up a passage through the corridors for these species (Fig. 1f).

237 2.2.5 Network

238 Corridors intersect each other to form a network that complicates the interaction of
239 corridors with patches and matrix. The function of the network is similar to the corridor, but it
240 is more extensive and close to the matrix. The landscape ecological network connects the
241 different landscape components effectively, serving as a rapid channel of material flow, energy
242 flow and information flow. In the mining landscape, a variety of road networks, railway
243 networks, water networks, and high-voltage power grid networks may be arranged in a
244 crisscross pattern, these networks may have similarities in structure, and are closely linked with
245 the mining landscape patches, but the function is very different.

246 2.2.6 Theory of multiple planning integration

247 The particularity of the LEC in the mining area, as reflected in the characteristics of the
248 dynamic nature of mining development should be considered fully, that is, in the classification,
249 not only the current stable subsidence land, coal gangue dumps, coal fly ash dumps, open-pit
250 mine and dumping site and other landscape patch types, but also the landscape patch types
251 that will soon form in the near future, should be considered. Mining landscapes are different
252 from closed systems, and their ecosystems are always open. Due to the constant input and
253 output of material flow, energy flow, information flow and so on, the boundary of the internal
254 patch in the mining landscape has always changed. So we should consider the US Geological
255 Survey land cover classification system (Anderson et al. 1976), the second national land survey
256 technical regulations, urban land classification and land use standards for planning and
257 construction, land use planning, mineral resources planning, reclamation planning for mining
258 areas, mine environmental protection and comprehensive treatment plans and other planning
259 or programs.

260 2.2.7 Principle of remote sensing

261 Because of its multi-platform, multi-band, multi-field, multi-phase, multi-angle and multi-
262 polarization characteristics, remote sensing technology has gradually become the main means
263 of LEC mapping. Remote sensing images with various degrees of spatial resolution can be used
264 to classify different levels of landscape ecology. The spectral characteristics of different
265 landscape components are different, so there is a best band for each study. The quantitative
266 study of landscape characteristics and their ecological processes can be carried out by means
267 of obtaining surface parameters by using remote sensing data. Therefore, quantitative remote
268 sensing can further assist the mining LEC mapping, in order to enhance the precision and
269 accuracy.

270 2.3 Principles of LEC in mining area

271 Through the analysis of landscape ecology of LSCPB in SASR, combined with the relevant
272 fundamental theories of LEC. The following operational principles of LEC for LSCPB in SASR
273 are put forward:

274 2.3.1 Comprehensive principle

275 The LSCPB is a regional synthesis composed of various landscape elements; the formation
276 of the landscape is the result of the combined effect of a variety of factors, and thus classification
277 should reflect the characteristics of the complex. Comprehensive inspection can be conducted
278 from the landscape ecosystem spatial form, spatial heterogeneity combination, occurrence
279 processes and ecological functions of the four aspects of the characteristics. A study of the LEC
280 of LSCPB must take into account all the factors that affect the formation of the landscape. Only
281 in this way can we have a macro grasp of the landscape ecology in the study area, avoid the
282 omission of some landscape elements, and cause an unreasonable construction of the
283 classification system.

284 2.3.2 Principle of the combination of structure and function

285 Structure is the basis of function, function is the reflection of structure. The LSCPB
286 landscape ecosystem is composed of multiple interrelated elements, mutual restrained, with
287 an orderly internal structure of the complex geography. The LEC includes unit determination
288 and type merging. The unit determination is based on the functional relationships, and type
289 merging takes the spatial form as the index. LEC is actually focused on the function that inheres

290 to the structure, to divide landscape ecosystem types. Through the establishment of the
291 classification system, we fully reflect the spatial differentiation and organizational association
292 of certain regional landscapes, thereby revealing its spatial structure and ecological function.

293 2.3.3 Principle of the combination of human dominated and natural landscape

294 High-intensity mining and power development of coal are the main factors in the change
295 associated with the coal-power base, which has a profound impact on the natural landscape,
296 and the urban landscape affects the grassland matrix in a similar way. For millions of years,
297 there has been almost no type of landscape that is completely unaffected by human activities
298 in the SASR. Therefore, the LEC of LSCPB must adhere to the principle of human dominance.
299 In addition, the landscape is a regional complex synthesis of the regional natural environment
300 and human social interference; its formation and development factors are complex and diverse,
301 while vegetation and hydrology and other natural elements can directly reflect the different
302 characteristics of different types of landscape, they are important indicators for the
303 classification of landscape ecosystem types (Fu et al. 2001). Human dominance is mainly
304 embodied in the functional classification of the landscape, and the natural representation is
305 mainly embodied in the structural classification of the landscape. The division of landscape
306 ecological types of LSCPB in SASR needs to follow the principle of the combination of human
307 dominated and natural landscapes.

308 2.3.4 Principle of emphasis

309 The classification of landscape ecological types provides a tool for subsequent analysis and
310 simulation of landscape pattern evolution, landscape ecological planning and evaluation. Even
311 for the study of the same area of landscape ecology, for different research purposes, the focus
312 of research is very different, which will lead to different classification results. Therefore,
313 landscape ecology classification needs to highlight the research focus. For example, in the study
314 of urban landscape ecology, LSCPB can only be used as a part of the industrial and mining
315 storage landscape, but in this study, the mining landscape is the most important. In addition,
316 we should pay attention to the process of the influence of the LSCPB on the regional landscape
317 ecology, and take the human activities and the interference factors into account

318 2.3.5 Principle of combining qualitative analysis with quantitative research

319 Qualitative analysis can have a macroscopic grasp and understanding of the landscape
320 ecology of LSCPB, and determine its landscape composition and structure. Qualitative analysis
321 is the basis and prerequisite for quantitative analysis. Quantitative analysis can clearly put
322 forward the boundaries of LSCPB of landscape types, to quantify the large coal base landscape
323 indices, with qualitative and quantitative approaches combining and learning from each other,
324 resulting in the flexibility needed use in order to obtain the best classification results.

325 3. Results

326 Based on the theory and methodology of landscape classification as the basic principle,
327 following the LSCPB of LEC principle, on the basis of occurrence method land classification,
328 fully considering the ecological attributes of the land, integration patterns, processes and
329 functional theory of landscape ecology, the LEC system of the LSCPB in the SASR has been
330 constructed by using a top-down decomposition classification method. According to the
331 hierarchical nomenclature of biological classification, the four levels of landscape ecology
332 classification of this study are named landscape Kingdom, landscape Class, landscape Family

333 and landscape species. Species in order of increasing specificity. The levels include 4, 20, 67,
334 and more than 200 landscape types, respectively.

335 Landscape Kingdom: According to the interference process of humans in the natural
336 matrix landscape and the functions of the patches formed after the disturbance, the LSCPB in
337 the SASR is divided into grassland landscape, mining landscape, town landscape and network
338 landscape. Grassland landscape is a natural or semi-natural matrix landscape, with less human
339 disturbance, maintaining the natural condition, mainly used for animal husbandry and
340 agriculture. Its function is primarily biological production and environmental services. The
341 urban landscape is a residential area with a certain scale of industry and commerce, its main
342 function is cultural support. The mining landscape is based on the development of mineral
343 resources as the main function of the region. Generally speaking, the mining landscape belongs
344 to the industrial and mining storage landscape in the urban landscape, but for the purposes
345 and needs of this study, it is upgraded to one of the primary landscapes. The network landscape
346 is a fast channel of material flow, energy flow and information flow, connected by corridors
347 and nodes.

348 Landscape Class: According to the status of land cover, land use and landscape processes
349 in the landscape area, the two levels were classified. The mining landscape, includes open-pit
350 landscape, inner dumping landscape, the external dumping landscape, mining construction
351 land landscape, mining relics landscape, and mining disturbance landscape introduced
352 previously in section 2.1. The town landscape includes town construction land landscape,
353 industrial and storage land landscape, greenbelt landscape and under construction landscape
354 in town. The grassland landscape includes grassland landscape, farmland landscape, garden
355 landscape, forest landscape, wetland landscape, degraded landscape of agricultural and
356 livestock husbandry. The grassland landscape is the matrix landscape of the study area, based
357 on the natural formation, and provides a variety of primary products. The degraded landscape
358 of agricultural and livestock husbandry which is caused by over utilization of human being
359 and deterioration the of natural environment is a kind of landscape type formed by the
360 degradation of grassland matrix. Networks include those formed naturally, such as water
361 networks, as well as constructed networks such as road, railways and power grids.

362 Landscape Family and Species: Landscape Family and Species are respectively more
363 specific divisions of the upper classification levels. In order to highlight the impact of coal
364 resource exploitation on regional landscape ecology and the needs of a series of subsequent
365 research work on the evolution, simulation, planning and restoration of the mining landscape,
366 it is necessary to take full account of the various ecological effects brought by coal resource
367 exploitation. For example, changes in topography caused by coal mining will lead to changes
368 in land ecology, which will affect and influence the evolution of the landscape. In order to
369 analyze the direct impact of resource development disturbance on the landscape, terrain
370 changes (slope, etc.) can be included in the classification system as a classification of the signs,
371 such as the open-pit landscape is divided into open-pit-slope and open-pit-flat. In addition, it
372 is necessary to set up the unique landscape types of LSCPB, such as coal gangue dumps, coal
373 gangue dumps, subsided land, ground fissure, thermal power plant and so on. Landscape
374 Family and Species are the basic units of classification, and it is also a unit using high-resolution
375 remote sensing image mapping. It is mainly applied to small-scale landscape classification,
376 which can be combined with digital elevation model and field investigation.

Table 1. Landscape Ecological Classification System of Large-Scale Coal-Power Base in the Semi-Arid Steppe Region

Landscape Kingdom	Landscape Class	Landscape Family	Landscape Species
Mining Landscape	Open-Pit Landscape	Open-Pit-Slope Landscape	Working Face/ Non-Working Face-Slope
		Open-Pit-Flat Disk Landscape	Working Face/ Non-working Face-Flat Disk
	Internal Dumping Landscape	Internal Dumping Vegetation-covered Area Landscape	Dense/ middle /Low-Vegetation-covered Area
		Internal Dumping Non Vegetation-Covered Area Landscape	Road/Non-Road
	External Dumping Landscape	External Dumping Slope Landscape	Vegetation-Covered Area / Non Vegetation-Covered Area
		External Dumping Platform Landscape	Vegetation-covered Area / Non Vegetation-covered Area
		Stacking Outside Dumping Landscape	Vegetation-Covered Area / Non Vegetation-Covered Area
	Mining Construction Land Landscape	Thermal Power Plant Construction Land Landscape	Road/ Office Space / Raw Coal Hopper/ Coal Mill / Powder Coal Bunker / Boiler / Steam Turbine / Generator / Chimney /Condensing Tower/Transformer Etc.
		Mining Facilities Construction Land Landscape	Mine/ Coal Preparation Plant/ Coal Transportation Corridor Etc.
		Mining Office Construction Land Landscape	Road/ Office Building/ Canteen/ Workers Village/ Dormitory Building/ Hall Etc.
	Mineral		Typical Deposit and Its Geological

	Mining Relics Landscape	Geological Relics Landscape	Profile / Prospecting Criteria and Flags / Mining Space Relics / Landform and Geological Landscape / Geological Environment Change and the Geological Disaster Relics
		Mining Production Relics Landscape	Exploration Relics /Mining Relics /Beneficiation Relics /Smelting Processing Relics
		Mining Relics for Social Life Landscape	Site of Social Life and Belief Activities Place or Relics / Miners Clothing and Articles Remains / Social Customs Remains /Institutions, Facilities, Equipment and Related Remains of Social Management or Relics
	Mining Disturbance Landscape	Mining Waste Bare Landscape	Pollution-free/ Contaminated
		Subsided Land Landscape	Stable Subsidence / Unstable Subsidence
		Ground Fissure Landscape	Stable / Unstable
		Coal Fly Ash Dumps Landscape	Bead Particle / Slag Particle
		Coal Gangue Dumps Landscape	Stop Stacking Gangue Dumps / Stacking Gangue Dumps
	Town Landscape	Town Residential Areas Construction Land Landscape	Urban/ Township /Country / Village Residential Areas Construction Land
		Business Service Construction Land Landscape	Commercial Land / Business Affairs Land / Recreation and Sports Land/Public Facilities Outlets Land /Other Business Service land
		Public Management and Public Service Construction Land	Administration /Culture/Education/ Sports/ Sanitary Construction Land Etc.

		Landscape	
		Reconstruction Land of Mining Area Landscape	Reconstruction Residential Areas/ Business Service/ Public Management and Public Service / Special Land of Mining Area
		Special Construction Land Landscape	Military Affairs /Security Land
Industrial and Storage Land Landscape		Industrial Land Landscape	A/B/C Class Industrial Land
		Reconstruction Industrial Land of Mining Area Landscape	Reconstruction Industrial, Storage and Surface Pipeline Transportation Land of Mining Area
		Storage Land Landscape	Commonly / Special Storage Land
		Surface Pipeline Transportation Land Landscape	Oil and Natural Gas Etc. Surface Pipeline Transport Land and Affiliated Facilities
Greenbelt Landscape		Park Greenbelt Landscape	Comprehensive Park / Community Park / Theme park / Belt Park / Other Park Greenbelt
		Reconstruction Greenbelt of Mining Area Landscape	Reconstruction Park /Public/ Production Greenbelt Etc.
		Road Greenbelt Landscape	Road Green Belt / Traffic Island Greenbelt / Parking Greenbelt/Other Road Greenbelt
		Residential Areas and Units Attached Greenbelt Landscape	Residential Areas / Units Attached Greenbelt
		Production and Defense Greenbelts Landscape	Pure Productive Greenbelts / Comprehensive Production Greenbelts/ Urban Shelterbelt / Sanitary Isolation Belt / Safety Shelterbelt / Urban High Pressure Corridor Green Belt /City Group Isolation Belt Etc.

		Public Greenbelt Landscape	Small Garden / Group Greenbelt / Other Public Greenbelt
Under Construction Landscape in Town	Idle Hardened Ground in Town Landscape	Idle Road /Abandoned Square Etc.	
	Construction and Demolition Site Landscape	Construction/Demolition Site	
Grassland Landscape	Grassland Landscape	Natural Pasture Landscape	Caragana Microphylla / Stipa Grandis + Leymus Chinensis / Leymus Chinensis / Stipa krylovii Roshev + Leymus Chinensis / One or two year cluster / Stipa krylovii Roshev / Splendid Achnatherum + Leymus Chinensis / Splendid Achnatherum/ Stipa Grandis Etc.
	Improved Grassland Landscape		High / Moderate/ Low-Vegetation Cover
	Artificial Herbage Land Landscape		High / Moderate/ Low-Vegetation Cover
	Reclaimed Grassland of Mining Area Landscape		High / Moderate/ Low-Vegetation Cover
	Other Grassland Landscape		High / Moderate/ Low-Vegetation Cover
Farmland Landscape	Dry Land Landscape		Corn/Soybean/ Wheat/Naked Oats/ Potato/ Flax/Hill Potherb /Beet/Mixed Beans/Carrot and Other Dry Land
	Irrigation Land Landscape		Paddy Field Etc.
	Reclaimed Farmland of the Mining Area Landscape		Reclaimed Dry Land/ Irrigation Land /Vegetable Greenhouse Etc.
	Vegetable Greenhouse Landscape		Simple Greenhouse / Arched Steel Tube Vegetable Greenhouse / Solar Greenhouse / The Steel Structure of

			Multi Span Greenhouse / High-Grade Multi-Span Stripping Vegetable Greenhouse
Garden Landscape	Reclaimed Garden of the Mining Area Landscape		Reclaimed Hazelnut/ Blueberry/ Watermelon/ Sunflower/Chinese Medicinal Herb Garden Etc.
	Orchard Landscape		Hazelnut/ Blueberry/ Watermelon Garden Etc.
	Other Garden Landscape		Sunflower/Chinese Medicinal Herb Garden Etc.
Forest Landscape	Natural Forestland Landscape		Quercus Mongolica Forest/ Birch Forest / Aspen Grove / Pinus Sylvesteris Forest /Valley Forest Etc.
	Artificial Forestland Landscape		Artificial Pinus Tabulaeformis/Nursery Etc.
	Reclaimed Forestland of the Mining Area Landscape		Reclaimed Artificial Pinus Tabulaeformis/Nursery Etc.
Wetland Landscape	Natural Wetland Landscape		Riverine/ Lake/Marsh Etc.
	Constructed wetland Landscape		Reservoir/Urban Artificial Landscape/Excavating or Collapse Wetland
Degraded Landscape of Agricultural and Livestock Husbandry	Saline Land Landscape		Mild/Moderate/Severe Saline Land
	Desertification Landscape		Mild/Moderate/Severe Desertification Land
	Bare Rock Landscape		Human Disturbance/ Natural Degraded Bare Rock
	Bare Land Landscape		Human Disturbance/ Natural Degraded Bare Land
Network landscape	Water Landscape	Graff Landscape	Natural River/Artificial Channel
		Lake Landscape	Natural Lake/Artificial Reservoir
		Swag Landscape	Natural/ Artificial Swag
	Railway Landscape	Special Railway of Mining	Special Railway of Mining

		Landscape	
		Other Railway Landscape	National/ Local/Joint-Venture Railway Etc.
Road Network Landscape	Special Road of Mining Landscape	Paved/ Non-Paved Special Road of Mining	
	Highway Landscape	Expressway/First /Second /Third /Fourth Class Highway	
	Urban Road Landscape	Expressway/Main/Subsidiary/Branch Road	
	Country Road Landscape	Paved/ Non-Paved Country Road	
Power Network Landscape	Transmission Network of Coal-Power Bases Landscape	Ultra-High /Super-High/High/ Medium Voltage Grid	
	Other Transmission Network Landscape	Ultra-High /Super-High/High/ Medium Voltage Grid	

377

378 **4. Case study**379 **4.1 Overview of the study area**

380 Eastern Inner Mongolia includes Hulunbeier City, Xing'an League, Tongliao City, Chifeng
 381 City, Xilin Gol League 5 League or city in the eastern part of Inner Mongolia. The region is in
 382 the eastern part of the Eurasian Continental steppes, with a total area of 664,900 square
 383 kilometers. Eastern Inner Mongolia has a temperate, semi-arid continental monsoon climate,
 384 arid in the spring, with short warm summers, early autumn frosts, and cold winters.

Figure 2. Location of the Study Area

385 4.2 LEC mapping

386 On the basis of the LEC system of LSCPB, additional LEC mapping is an important part
 387 of the research in the area. The mapping can be used to visualize the performance of landscape
 388 classification results, to comprehensively reflect the interrelationship among landscape
 389 elements, and reflect the spatial distribution of landscape elements, and to further test and
 390 evaluate the validity of the classification system. Based on the remote sensing data of Landsat
 391 8, Resource No. 1 and Resource No. 3 in 2015 and 2016, the LEC system of LSCPB in SASR
 392 constructed by this paper is combined with supervised classification, visual interpretation and
 393 field investigation, respectively, to map the landscape Kingdom, Class, Family of the Victory
 394 and Mindong No.1 mining areas. Data sources are shown in Table 2, and the remote sensing
 395 image after classification is shown in Fig. 3.

Table 2. The Victory and Mindong No.1 Mining Area LEC Data Source

Mine Grade	Victory Mining Area			Mindong No.1 Mining Area		
Kingdom	Landsat8	30m*30m	20161018	Landsat8	30m*30m	20150705
Class	Landsat8	30m*30m	20161018	Landsat8	30m*30m	20150705
Family	Resource No. 1 02C	Panchromatic 5m / Multispectral 10m	20160923	Resource No. 3	Emmetropia Panchromatic 2.1m/ Multispectral 5.8m	20150810

Figure 3. (a) Landscape Kingdom of Victory Mining Area; (b) Landscape Class of Victory Mining Area; (c) Landscape Family of Victory Mining Area; (d) Landscape Kingdom of Mindong No.1 Mining Area; (e) Landscape Class of Mindong No.1 Mining Area; (f) Landscape Family of Mindong No.1 Mining Area

396 5. Discussion and Conclusions

397 The SASR of LSCPB is located in the frigid and arid region. The plant growth period is
 398 short, the biomass is low, the biological chain is simple, the processes of material circulation
 399 and energy conversion in the ecosystem are slow, which makes the regional ecological
 400 environment fragile. High-intensity, large-scale coal power development and utilization is
 401 considered to be the main cause of landscape ecological change in grassland mining area.
 402 Therefore, it is necessary that the basic research on the landscape ecological structure, function
 403 and process of the steppe coal-power base under high-intensity mining disturbance is
 404 conducted systematically. Research and development for the key technologies of landscape
 405 ecological restoration for the coal-power base in the SASR, have important roles in the
 406 sustainable development of the coal-power base and regional ecological security. Landscape
 407 restoration and reconstruction is for landscape degradation, the landscape degradation from
 408 the form of expression can be divided into landscape structure degradation and landscape
 409 function degradation (Guan et al. 2003). The objective of ecosystem classification is to reduce
 410 the structural and functional complexity of ecosystems in models while quantifying key social
 411 and ecological processes involved in shaping current ecosystem conditions (Steenberg et al.
 412 2015). The degradation or restoration of certain key nodes, patches and corridors in the
 413 landscape plays a vital role in the sustainable development of regional ecology. The

414 construction of the LEC system can identify these key elements from the large region, and
415 provide top-level guidance for subsequent of landscape ecology research in mining areas.

416 The LEC system constructed in this study fully considers differences in landscape pattern,
417 function, process and grade. Planning needs a system of classification of the landscape, which
418 is consistent and reflects the natural patterns, the potential capacity and the limits of natural
419 units, and the history of human use (Haase 1989); to some extent is a subjective process. The
420 author hopes that the LEC constructed by this research can provide theoretical support for
421 decision makers, government, engineering construction personnel and other researchers (Wu
422 et al. 2017). Each landscape patch unit is a discrete system generated by grid and geology,
423 geomorphology, soil, vegetation, climate, wildlife, water, man and many other factors (Cullum
424 et al. 2016). Not all landscapes can be (easily) decomposed into a set of structural-functional
425 units that can be clearly and unambiguously delineated and linked to explanatory conceptual
426 models (Cullum et al. 2016). Moreover, any ecosystem is a complex system that is constantly
427 changing, and the ecological attributes and boundaries of any landscape patches have the
428 potential for change, and may even produce new landscape types. Therefore, the dynamic
429 changes of regional landscapes should be taken into full consideration, and the study of LEC
430 needs to be improved and adjusted constantly.

Acknowledgement: The Seventh Project " Key Technologies of Landscape Ecological Restoration of Large-scale Coal-power Bases (Project Number: 2016YFC0501107) " of The National Key Research and Development Program of China " Ecological Restoration and Comprehensive Remediation Technology and Demonstration of Large-scale Coal-power Bases in Eastern Grassland (Item Number: 2016YFC0501100) "

References:

1. Anderson, J.R., et al (1976) A Land Use and Land Cover Classification System for Use with Remote Sensor Data: U.S. Geological Survey Professional Paper. Professional Papers - U.S. Geological Survey (USA). No. 964, 964: p. 964.
2. А.Г.Исаченко (1992) Landscape Science: Theoretical Foundations and Logical Mathematical Methods. Beijing: Commercial Press
3. Bian ZF (2015) Introduction to Mine Ecology. Beijing: Coal Industry Press
4. Cao YG, Cheng Y, Bai ZK. The Changes of Landscape Structure and the Principles of Land Reclamation in the Aantaibao Open Cast Area. Resources and Industries 8(5): p. 7-11
5. Carola Cullum, Gary Brierley, George L.W. Perry, Ed T.F. Witkowski (2016) Landscape archetypes for ecological classification and mapping: The virtue of vagueness. DOI: 10.1177/0309133316671103
6. Carola Cullum, Kevin H. Rogers, Gary Brierley, Ed T.F. Witkowski (2016) Ecological classification and mapping for landscape management and science: Foundations for the description of patterns and processes. Progress in Physical Geography. DOI: 10.1177/0309133315611573
7. Cheng WM (2002) A Brief Discussion on Landscape Ecological Classification and Mapping. Journal of Earth Information Science 4(2): P. 61-65
8. Chen Q, David U. Hooper, Li H, Gong XY, Peng F, Wang H, Klaus Dittert, Lin S (2017)

Effects of resource addition on recovery of production and plant functional composition in degraded semiarid grasslands. *Oecologia* p. 1-12.

- 9. Du JP, Meng XR (2014) Mining Science. Xuzhou: China University of Mining and Technology Press
- 10. Fu BJ (2008) Blue Skies for China. *Science* 321(5889): p. 611
- 11. Fu BJ, Chen LD, Ma KM, Wang YL (2001) Principles and applications of landscape ecology. Beijing: Science Press
- 12. Geological Environment Department of the Ministry of National Land and Resources (2007) China National Mine Park Construction Work Guide. Beijing: China Land Press.
- 13. Guan WB, et al (2003) A vital method for constructing regional ecological security pattern: landscape ecological restoration and rehabilitation. *Acta Ecological Sinica* 23(1): p. 64-73
- 14. Guo L, Xu SX, Xu YD (2008) Study on Landscape Pattern and Ecological Security of Mount Tai. Beijing: China Environmental Science Press
- 15. Haase, G (1989) Medium scale landscape classification in the German Democratic Republic. *Landscape Ecology* 3(1): p. 29-41.
- 16. Han WB, Jia W, Sun TS (2012) Change of Land Use and Landscape Pattern in Pingshuo Open Coal Mines Based on the 3S Technology. *China Land Sciences* 26(4): P. 60-65
- 17. Han XG, Li LH (2012) Mechanisms for Maintaining Inner Mongolian Grassland Ecosystems. Beijing: China Agricultural University Press
- 18. Hendrychová, M, M. Kabrna (2016) An Analysis of 200-year-long Changes in a Landscape Affected by Large-scale Surface Coal Mining: History, Present and Future. *Applied Geography* 74: p. 151-159.
- 19. He RX, Hu ZQ, Wei ZY, Jiang J (2000) Discussion on Some Problems of Landscape Planning in Coal Mine Area. China Coal Institute Youth Science and Technology Symposium
- 20. M, F.R.T.T. (1986) Landscape Ecology. New York: John Wiley&Sons
- 21. Li ZP, Liu LM, Xie HL (2005) Methodology of Rural Landscape Classification: A Case Study in Baijiatuan Village, Haidian District, Beijing. *Resources Science* 27(2): P. 167-173
- 22. Ottmar Edenhofer (2015) Energy. King Coal and the Queen of Subsidies. *Science* 349(6254): p. 1286-1287
- 23. Simon, H.A (1962) The Architecture of Complexity. Springer US. 467--482.
- 24. Steenberg, J.W., et al (2015) Neighbourhood-scale urban forest ecosystem classification. *Journal of Environmental Management* 163: p. 134.
- 25. Wang XF, Han BP, Wang YJ, Du PJ, Sun JY (2007) Landscape Eco-Classification in Mining Area Based on RS. *Journal of Liaoning Technical University* 26(5): P. 776-779
- 26. Wang YL, et al (2001) Landscape Ecological Planning and Design of Degraded Mining Land. *Land Degradation & Development* 12(5): p. 449-459.
- 27. Wang YL (1996) Theoretical Methods of Landscape Ecological Classification. *Journal of Applied Ecology* (S1): P. 121-126
- 28. WG Westerveld, GBM Pedroli, MVD Broek, JM Spoek (1984) Classification in Landscape Ecology: An Experimental Study. *Catena* 11(1): p. 51-63
- 29. Wiens, J.A (1989) Spatial Scaling in Ecology. *Functional Ecology* 3(4): p. 385-397.

30. Wu JJ (2000) *Landscape Ecology—Pattern, Process, Scale and Hierarchy*. Beijing: Higher Education Press
31. Wu M, Che Y, Lv YP, Yang K (2017) Neighbourhood-scale urban riparian ecosystem classification. *Ecological Indicators* 72: p. 330-339.
32. Xiao DN, Zhong LS (1998) Ecological Principles of Landscape Classification and Evaluation. *Journal of Applied Ecology* (2): P. 217-221
33. Yu XX, et al (2006) *Landscape Ecology*. Beijing: Higher Education Press
34. Zhang JJ, et al (2011) Land Use-Based Landscape Planning and Restoration in Mine Closure Areas. *Environmental Management* 47(5): p. 739-750.
35. Zhang N (2014) *Landscape Ecology*. Beijing: Science Press
36. Zhou HR (1999) A Preliminary Study on Landscape Classification of the Northern Xinjiang Region—A Case Study of Shawan County. *Chinese Journal of Ecology* (4): P. 69-72
37. Zhou ZD, et al (2014) Evaluation Index System on Ecological Effect of National Large-Scale Coal-Fired Power Base Based on the Dpsir Conceptual Model. *Acta Ecological Sinica* 34(11): p. 2830-2836
38. Z Naveh, AS Lieberman (1984) *Landscape Ecology: Theory and Application*. The Quarterly Review of Biology (Volume 59, Number 4)