Starch-Jute Fiber Hybrid Biocomposite Modified with Epoxy Resin Layer: Fabrication and Experimental Characterization

Akarsh Verma1,2, Kamal Joshi2, Amit Gaur2 and V. K. Singh2
1Indian Institute of Technology, Roorkee, India
2G. B. Pant University of Agriculture and Technology, Pantnagar, India

Abstract

In this article, bio-composites derived from starch-glycerol biodegradable matrix reinforced with jute fibers have been fabricated using the wet hand lay-up and compression moulding techniques. Samples having different weight percentages of jute fiber in the starch matrix have been analysed. The fibers surface was chemically treated by alkaline sodium hydroxide for improving the interphase bonding between fiber and matrix. Tensile test for the composites were done and the sample with highest tensile strength was selected for further tests that included water absorption, scanning electron microscopy and thermal analysis. It has been concluded that the ultimate tensile strength was found to be maximum for the composition of 15% fiber by weight composite as 7.547 MPa without epoxy coating and 10.43 MPa with epoxy coating. The major disadvantage of bio-composite is its high water absorption property, which in this study has been inhibited by the epoxy resin layer. Herein, the results of various tests done disclose a noteworthy improvement in the overall properties of bio-composite, in comparison to the neat biodegradable starch matrix.

Keywords: Jute fiber, Starch matrix, Epoxy resin, Biocomposite, Microstructure
1. **Introduction**

A composite is a structural material that consists of two or more combined constituents (matrix and reinforcement) at a macroscopic level and is not soluble in each other. In order to meet the ecological objects, both the matrix and reinforcement need to be fully biodegradable to avoid further annihilation of the environment. Although the presently accessible fully ‘Green’ composites (biocomposites), do not satisfy all the requirements for automotive components, but they tend to be the subsequent innovational materials in the upcoming future. There is growing urgency to develop and commercialize new crops, new bio-based products and other innovative technology which don’t rely on fossil fuel. That’s why biocomposites are becoming one of the most important factors in creating a more ecological future.

Bio composites are inexpensive, recyclable, possess low density and high strength to weight ratio [1, 2]. Cao et al. [3] investigated the mechanical properties of biodegradable composites reinforced with untreated and alkali treated bagasse fiber. Mechanical properties of the composite made from alkali treated fibers were superior to the untreated fibers. Approximately 13% improvement in tensile strength, 14% in flexural strength and 30% in impact strength had been found, respectively. Gilfillana et al. [4] studied the preparation and characterization of composites from starch and bagasse. Different types of tests were conducted on 5 weight percentage (wt%), 10wt% and 20wt% fiber composites which showed different properties. Addition of bagasse fiber significantly impacted on the Young’s modulus of the starch films.

Jute is multi-celled in structure and a lingo-cellulosic fiber as its chief chemical ingredients are cellulose and lignin. [5]. It is usually derived from jute plant stem and grows to about 2.5-4.5 metres. Amongst various natural fibers, jute fibers are effortlessly obtainable in fabric forms with decent mechanical and thermal properties [6]. River flats, depressions and saline-alkali soils are most appropriate for the jute plantation [7].
Excessive work has been published concerning the reinforcing potential of jute fiber with polymer composites. There are several factors to be considered when designing the composite materials [8]. Gassan and Bledzki [9] calculated the improvement in mechanical properties of jute fibers reinforced thermoset resin composites considering several parameters. Gowda et al. [10] assessed the tensile behaviour of jute-fabric reinforced polyester material in both the longitudinal and transverse directions. Mohanty et al. [11] considered the effect of jute fiber content on the tensile behaviour of jute fabrics-polyester amide composites. Albuquerque et al. [12] evaluated the effect of fiber surface wettability, alkali treatment and different ageing conditions on the tensile properties of longitudinally oriented jute reinforced polyester composites. Ray et al. [13] investigated the alkali treatment of jute fiber and composites in terms of tensile and flexural properties. Khondker et al. [14] considered the tensile behaviour of unidirectional jute/polypropylene composites fabricated by film stacking method. Cabral et al. [15] examined the mechanical response, water uptake, and dielectric properties of short jute fiber reinforced polypropylene composites. It was found that the Young’s modulus and tensile strength monotonically amplified with increasing the fiber volume fraction, whereas the impact resistance increased up to a critical value of the fiber volume fraction and then declined.

Corrales et al. [16] studied the chemical modification of jute fibers using a fatty acid derivate (oleoyl chloride) to confer hydrophilicity and resistance to biofibers. Vilaseca et al. [17] evaluated the influence of the degree of adhesion at fiber-matrix interface to the mechanical properties of the starch based composites reinforced with jute strands. The alkali treatment was carried out for jute strands and the mechanical properties of the equivalent composite was determined. Akil et al. [18] considered the effects of water absorption on mechanical properties of jute fiber reinforced with unsaturated polyester. Das et al. [19] reported that the tensile strength of the biocomposite films (with 5, 10 and 15 wt% filler) increased by 51%, 130% and 197%, respectively in comparison to the unreinforced one, because of effective stress transfer.
at the interface between the constituents. Thitithanasarn et al. [20] investigated the reinforcement of commodity thermoplastic with various natural fibers. Hossain et al. [21] studied jute composites made with the vacuum assisted resin infiltration (VARI) techniques having different jute fiber preform stacking sequences. Hojo et al. [22] studied several kinds of composites with natural fiber mat as reinforcement (jute, kenaf and bamboo) and unsaturated polyester (UP) as matrix.

This article presents the development of fully ‘Green’ untreated jute fiber composites based on potato starch matrix. These composites are designed to obtain improved mechanical properties by modifying starch matrix (glycerol as plasticizer) with jute fiber. The aim of this investigation is to use a combination of natural fiber and starch, and fabricate bio-composites which would replace the expensive, hazardous or depleting materials.

2. Experimental Section

2.1. Materials

Starch has been used as the matrix material in the present study. Starch or amylum is a carbohydrate containing large number of glucose units linked by glycosidic bonds. It is the most common carbohydrate in the human diets and is found in great amounts in staple foods as such potatoes, wheat, maize, rice, and cassava. Pure starch is a white, tasteless and odorless powder that is insoluble in cold water or alcohol. Figure 1 shows the whitish appearance of starch. Different properties of starch are illustrated in table 1. Starch consists of two types of molecules; the linear and helical amylose and the branched amylopectin. Depending on the plant, starch generally contains 20-25% amylose and 75-80% amylopectin by weight.
Table 1: Properties of starch [23, 24]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular formula</td>
<td>(C6H${10}$O$_5$)$_n$</td>
</tr>
<tr>
<td>Molar mass</td>
<td>Variable</td>
</tr>
<tr>
<td>Appearance</td>
<td>White powder</td>
</tr>
<tr>
<td>Density</td>
<td>1.5 g/cm3</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>Insoluble</td>
</tr>
<tr>
<td>Auto ignition temperature</td>
<td>410 °C</td>
</tr>
<tr>
<td>Classification</td>
<td>Carbohydrate</td>
</tr>
</tbody>
</table>

Herein, potato starch has been utilized that contains approximately 800 ppm phosphate bound to the starch; this increases the viscosity and gives the solution a slightly anionic character, a low gelatinization temperature and high swelling power.
Jute fiber has been used as the reinforcing material in this study (Figure 2). The structure of the jute fiber is influenced by the climatic conditions, age and the fermentation process, which also influence their chemical composition (Table 2). The jute fiber holds moderately high specific strength and stiffness. Therefore, it is appropriate as a reinforcement in a polymeric resin matrix. Mechanical properties such as ultimate tensile strength (UTS) and initial modulus are related to the internal structure and chemical composition of fiber. Jute produced from plants of the genus Corchorus, is one of the cheapest natural fibers and is the fiber with the highest production volume in India, Bangladesh and China.

![Fig. 2. Raw jute fiber](image)
Table 2: Chemical composition of jute fiber [25]

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Jute</th>
</tr>
</thead>
<tbody>
<tr>
<td>(in % of Dry Weight of the Fiber)</td>
<td>C. capsularis</td>
</tr>
<tr>
<td>Alphacellulose</td>
<td>60.0 – 63.0</td>
</tr>
<tr>
<td>Hemicellulose</td>
<td>21.0 – 24.0</td>
</tr>
<tr>
<td>Lignin</td>
<td>12.0 – 13.0</td>
</tr>
<tr>
<td>Fats & Waxes</td>
<td>0.4 – 1.0</td>
</tr>
<tr>
<td>Pectin</td>
<td>0.2 – 1.5</td>
</tr>
<tr>
<td>Proteins / Nitrogenous matter, etc.</td>
<td>0.80 – 1.9</td>
</tr>
<tr>
<td>Ash</td>
<td>0.7 – 1.2</td>
</tr>
</tbody>
</table>

Jute fiber is 100% biodegradable and recyclable and thus environmentally friendly. It is the cheapest natural fiber procured from the bast or skin of the plant's stem. It is the second most important natural fiber after cotton, in terms of usage, global consumption, production, and availability. It has been used in raw materials for packaging, textiles, non-textile, and agricultural sectors. It is also the most environment-friendly fiber starting from the seed to expired fiber, as the expired fibers can be recycled more than once.

Glycerol has been used as a plasticizer in the present study. Its function is to bind the starch molecules and water molecules strongly when heat is applied. Glycerol (glycerine/glycerin) is a simple polyol (sugar alcohol) compound, and is colorless, odourless and viscous liquid. In this study, glycerol is produced as a co-product in the production of long-chain carboxylate salts used as soaps. Properties of glycerol are listed in table 3.
Table 3: Properties of glycerol [23, 26]

<table>
<thead>
<tr>
<th>IUPAC name</th>
<th>Propane-1,2,3-triol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular formula</td>
<td>C₃H₈O₈</td>
</tr>
<tr>
<td>Appearance</td>
<td>Colorless liquid hygroscopic</td>
</tr>
<tr>
<td>Odor</td>
<td>Odorless</td>
</tr>
<tr>
<td>Density</td>
<td>1.261 g/cm³</td>
</tr>
<tr>
<td>Melting point</td>
<td>17.8°C</td>
</tr>
<tr>
<td>Boiling point</td>
<td>290°C</td>
</tr>
<tr>
<td>Viscosity</td>
<td>1.412 Pa-s</td>
</tr>
</tbody>
</table>

Citric acid (CA) is a weak organic (carboxylic) acid, which exists in greater than trace amounts in a variety of fruits and vegetables and due to its multi-carboxyl structure, it is recognized as a cross-linking agent for starch modification. CA is used in this study because it is recognized as nutritionally harmless as compared to other substances used for starch derivative. Properties of CA are shown in table 4.

Table 4: Properties of citric acid [23, 27]

<table>
<thead>
<tr>
<th>IUPAC name</th>
<th>2-hydroxypropane-1,2,3-tricarboxylic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular formula</td>
<td>C₆H₈O₇</td>
</tr>
<tr>
<td>Molar mass</td>
<td>192.12 g/mol</td>
</tr>
<tr>
<td>Appearance</td>
<td>Crystalline white solid</td>
</tr>
<tr>
<td>Odor</td>
<td>Odorless</td>
</tr>
<tr>
<td>Density</td>
<td>1.665 g/cm³</td>
</tr>
<tr>
<td>Melting point</td>
<td>156°C</td>
</tr>
<tr>
<td>Boiling point</td>
<td>310°C</td>
</tr>
</tbody>
</table>
Vinegar (acetic acid (CH₃COOH) and water) has been used in the present study as an anti-bacterial and anti-fungal substance. It is produced by the fermentation of ethanol by acetic acid bacteria and is mainly used as a household cleanser.

Epoxy resin (Araldite CY-230) has wide range of industrial applications because of its high strength and mechanical adhesiveness characteristic. Physical and chemical properties of Epoxy resin are shown in table 5.

Table 5: Physical and chemical properties of Epoxy resin (CY-230)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Epoxy Resin (Araldite CY-230)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Physical Properties</td>
</tr>
<tr>
<td></td>
<td>Yellow-brown coloured, odourless, tasteless, nontoxic, low shrinkage, and density=1150 kg/m³</td>
</tr>
<tr>
<td>2.</td>
<td>Chemical Properties</td>
</tr>
<tr>
<td></td>
<td>Product of reaction between bisphenol A and epichlorohydrin with some amount of toluene</td>
</tr>
<tr>
<td>3.</td>
<td>Chemical composition</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the current inspection, epoxy resin (CY-230) [28], diglycidyl ether of bisphenol-A (DGEBA, EPON 828), purchased from M/s CIBATUL Limited [29], India has been used as the matrix material. Hardener (HY-951) is a yellowish-green coloured liquid and was too purchased from M/s CIBATUL Limited, India; and acts as a curing agent for the experimentation. In the present investigation, a mixture of 100 parts by weight of DGEBA and 9 parts by weight of hardener (HY-951) has been used in all the materials developed. The wt% of hardener used in the existing analysis is as per the reference of Singh and Gope [30].
2.2. Methodology

The methodology used in this study for preparing starch-jute composite is as per the authors previous work on sisal fiber [23]; except the fiber used here is the jute fiber.

(i) Alkaline Treatment:
Firstly, the jute fibers were soaked in an alkaline solution of 2% sodium hydroxide (NaOH), at a temperature of 22 ± 2 °C for 24 hours. The authors have treated the jute fiber surface with NaOH (alkaline treatment) to boost the interfacial adhesion between biological fibers and polymers. Also, the alkaline treatment removes a definite quantity of oil, wax and impurity that coats the exterior surface of fiber. Then it is washed with distilled water and left for drying before being put in an oven for 15 hours at 70°C. Finally, the jute fibers were sliced into 2–3 mm length size.

(ii) Solvent-Cast Film Preparation Method:
Starch (30 g) and glycerol (∼9.9 g) were thoroughly mixed together; followed by adding 1000 mL distilled water to this mixture. As an anti-bacterial substance 5 mL of vinegar was used. This mixture was boiled while stirring for 1 hour, which is done on magnetic stirrer and allowed to cool to 75 °C. Followed by casting on a nonstick tray and placed in a 65 °C oven to dry. Finally, it was mixed with jute fibers and put in the mould. Starch solutions at the time of stirring and after stirring are shown in Figures 3 and 4, respectively.

(iii) Hot-Pressed Film Preparation Method:
Cast films were crushed and then hydrated to 25 wt% moisture, and then allowed to equilibrate for 24 hours. Films were made by hot-pressing the hydrated material in a steel plate mould (dimensions of 90×60×1 mm³) at different temperature and pressure in a compression moulding machine.
(iv) Epoxy Coating:

The jute fiber composite samples are dried at 80°C for 1 hr, prior to immersion in epoxy resin bath (DGEBA). After 2 minutes of immersion, the samples are hung-up and permitted to cure at room temperature for 2 days. Finally, the epoxy resin (CY-230) gets deposited on the jute fiber composite sample [31].

Fig. 3. Starch solution at the time of stirring

Fig. 4. Starch solution after stirring
2.3. Characterization

In this scrutiny, all the tensile tests are directed as per ASTM D638 and ASTM D3039 test procedures [32, 33]. According to these standards, dimensions of each test specimen were having width 25 mm, length 250 mm and thickness 2.5 mm (Figure 5). The tests are conducted on a 100 kN servo-hydraulic tensile testing machine (model 2008, ADMET, India) with a crosshead speed of 0.5 mm/min (temperature -30°C and relative humidity (RH) - 50%).

![Tensile test specimens](image)

Fig. 5. Tensile test specimens

It is important to study the behaviour of composites when they are exposed to environmental conditions such as temperature and humidity. The natural particle reinforced composites are light weight, reasonably strong, free from natural hazards and degradable with some disadvantages like poor moisture resistance and low strength compared to synthetic fibers. Tests were conducted under water soaking conditions. Specimens were immersed in water having a pH of 7.1. Specimens were first dried in oven and then submerged in water at room temperature. To determine water absorption electronic weighing machine (least count 0.001
gram). Before each reading the surface of the specimen was wiped by a tissue paper. Water absorption (WA) is calculated by the equation 1 [34]:

\[
WA(\%) = \left(\frac{W_2 - W_1}{W_1} \right) \times 100
\]

where, \(W_1 \) = initial specimen weight, in grams

\(W_2 \) = specimen weight after ‘N’ hours of water soaking, in grams

In this work, the scanning electron microscopy (SEM) study has been done to see the dispersion of jute fiber in biodegradable resin. The images are obtained through microscopic investigation with LEO435V6. To obtain SEM images square samples are cut from the cast material and are gold coated to avoid the artifacts associated with sample charging and then placed inside a chamber in which an electron beam with an accelerated voltage of 10 kV falls on the material.

Thermal analysis is the branch of science where the properties of materials are studied as they change with temperature [35]. In thermal analysis section, Thermo Gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) are done. The thermal analysis was carried out using TG analyzer (EXSTAR TG/DTA 6300) at IIT, Roorkee by heating the samples in still air (200 mL/min) at 10°C/min from 0°C to 250°C. Thermo gravimetry (TG) is the branch of thermal analysis which examines the mass change of a sample as a function of temperature in the scanning mode or as a function of time in the isothermal mode. TG is most useful for dehydration, decomposition, desorption and oxidation processes. Another widely used thermal method of analysis is Differential Thermal Analysis (DTA). In DTA, the temperature of a sample is compared with that of an inert reference material during a programmed change of temperature [36].
3. Results and discussion

Tensile test, water absorption test, SEM, and TGA/DTA were performed on starch-jute fiber based composite. Results for the above performed tests are discussed in subsequent section.

3.1. Tensile Test

The tensile properties were carried out on 100 kN ADMET made servo-controlled Universal Testing Machine (UTM) at a fixed strain rate of 0.5 mm/min under displacement control mode [37]. Tensile tests were conducted for various compositions of jute fiber. Samples were prepared according to the ASTM D638 standard. Stress-strain curves obtained for different wt% of jute fiber prepared by compression at different temperatures and pressures have been shown in this section.

![Stress-Strain curve](image)

Fig. 6. Stress-Strain curve for samples prepared at 60°C temperature and 70 bar pressure
Figure 6 shows the stress-strain curve for samples prepared by compression at 60°C temperature and 70 bar pressure. Three samples containing 5wt%, 10wt% and 15wt% of jute fiber are plotted. The tensile strength rises with increasing fiber content and sample containing 15wt% of jute fiber shows the maximum strength. UTS obtained for sample containing 15wt% of jute fiber is 5.768 MPa, for 10wt% of jute fiber is 3.375 MPa and for 5wt% of jute fiber is 1.93 MPa; as compared to 1.78 MPa for the neat starch matrix.

![Figure 6. Stress-Strain Curve for samples prepared at 60°C temperature and 70 bar pressure.](image)

Figure 7 shows the stress-strain curve for samples prepared by compression at 70°C temperature and 70 bar pressure. Three samples containing 5wt%, 10wt% and 15wt% of jute fiber are plotted. The tensile strength is found to be maximum for sample containing 15 % fiber by weight. UTS for sample containing 15wt% of fiber is 7.547 MPa, for 10wt% of fiber is 6.063 MPa and for 5wt% of fiber is 3.96 MPa.

![Figure 7. Stress-Strain Curve for samples prepared at 70°C temperature and 70 bar pressure.](image)
Figure 8 shows the stress-strain curve for samples prepared by compression at 70°C temperature and 70 bar pressure. Three samples containing 5wt%, 10wt% and 15wt% of jute fiber are plotted. UTS obtained for sample containing 15wt% of fiber is 6.592 MPa, for 10wt% of fiber is 4.147 MPa and for 5wt% of fiber is 3.147 MPa.
Figure 9 shows the stress-strain curve for samples prepared by compression at 90°C temperature and 70 bar pressure. Three samples containing 5wt%, 10wt% and 15wt% of jute fiber are plotted. UTS obtained for samples containing 15wt% of fiber is 6.58 MPa, for 10wt% of fiber is 6.05 MPa and for 5wt% of fiber is 2.803 MPa. From the above performed tests, it can be concluded that the highest UTS was shown by the samples prepared at 70°C temperature and 70 bar pressure with UTS = 7.547 MPa (for sample containing 15% jute fiber by weight). Therefore, the samples prepared at 70°C temperature and 70 bar pressure are considered for further investigation.

As already stated, these natural composites lack the capability to resist the moisture environment. That’s why the authors have considered an epoxy resin coating over it. Samples
containing 5wt%, 10wt% and 15wt% jute fiber and prepared by compression at 70°C temperature and 70 bar pressure are coated with a thin layer of epoxy. Tensile test is then performed on the samples containing a thin layer of epoxy. Figure 10 shows the graph plotted between stress and strain. UTS obtained for sample containing 15wt% of fiber is 10.46 MPa, for 10wt% of fiber is 10.28 MPa and for 5wt% of fiber is 4.68 MPa.

Figure 10 shows the graph plotted between stress and strain. UTS obtained for sample containing 15wt% of fiber is 10.46 MPa, for 10wt% of fiber is 10.28 MPa and for 5wt% of fiber is 4.68 MPa.

![Stress-Strain curve](https://example.com/fig10.png)

Fig. 10. Stress-Strain curve for samples prepared at 70°C temperature and 70 bar pressure with epoxy coating

Figure 11 shows a comparison between UTS and wt% of fiber composites. Three samples containing 5%, 10% and 15% jute fiber by weight with epoxy coating and without coating of epoxy (samples prepared at 70°C temperature and 70 bar pressure) are plotted. The UTS for samples containing 15wt% of fiber is 10.46 MPa, for 10wt% of fiber is 10.28 MPa and for 5wt% of fiber is 4.68 MPa with epoxy coating and UTS for samples containing 15wt% of fiber is 10.46 MPa.
is 7.547 MPa, for 10wt% of fiber is 6.063MPa and for 5wt% of fiber is 3.96 MPa without epoxy coating. It can be clearly seen from the above graph that the UTS for samples containing epoxy coating is higher than the samples without epoxy coating.

As can be seen from the Figure 11, the UTS for samples without epoxy coating (5%, 10% and 15% jute fiber by weight) rises gradually. For samples with epoxy coating the UTS is higher than the samples without epoxy coating. However, for samples 10% fiber by weight and 15% fiber by weight the difference in the UTS is not much. The rise in the UTS of samples coated with epoxy resin is due to the absorption of epoxy and enhanced cross-linking that occurs between the epoxy and starch molecules. The absorption of epoxy resin depends upon two factors: (i) the number of voids present in the matrix, and (ii) the absorption of epoxy resin by the fiber. At 5wt% of fiber the voids in the matrix of composite are low and also the fiber content is low, hence the increase in the UTS is not much. At 10wt% of fiber, the number of
voids in the matrix increase and also the fiber content rises; therefore, the sample absorbs more resin and hence the strength improves significantly. At 15wt% of fiber, amount of fiber in the matrix is very high due to which the space available for absorption of epoxy is not enough. Hence, the strength of the sample rises; but, the increase is not as high as it was for sample containing 10wt% of fiber. Table 6 shows the comparison of UTS for samples without epoxy coating and with epoxy coating.

Table 6: Comparison of UTS for uncoated and coated samples

<table>
<thead>
<tr>
<th>wt% of jute fiber</th>
<th>UTS Uncoated (MPa)</th>
<th>UTS Coated (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3.96</td>
<td>4.68</td>
</tr>
<tr>
<td>10</td>
<td>6.063</td>
<td>10.28</td>
</tr>
<tr>
<td>15</td>
<td>7.547</td>
<td>10.46</td>
</tr>
</tbody>
</table>

3.2. Water Absorption Test

The water absorption (WA) test provides information about the adhesion between the fibers and matrix in the interface region [38]. WA test was done by dipping all the samples in water and then weighing them in time intervals of 10 minutes. Figure 12 shows the WA% for samples without epoxy coating. As expected the prepared green composite has highly hydrophilic character which is confirmed by the WA test. It can be observed from the figure that in the beginning WA for samples (5wt%, 10wt% and 15wt% of jute fiber) without coating is very high. The rate of absorption of the water decreases with time of immersion of the sample in water. WA increases with increasing the fiber content as jute is highly hydrophilic; hence, the increase of WA with increasing fiber content is justified.
Figure 13 shows the WA% for samples with epoxy coating. As can be observed from the graph the rate of WA has slowed down for different wt%. The amount of water absorption as well as the high rate of absorption has been controlled to a large extent. Figure 14 shows the WA (%) for all samples (coated and uncoated).
Fig. 13. WA for samples with epoxy coating

Fig. 14. WA of all the samples (coated and uncoated)
Figure 15 shows comparison between the water absorbed by different wt% of jute fiber for samples without and with epoxy coating. As can be concluded from the WA test, a thin coating of epoxy reduces the water absorption by a large amount. Water absorbed by sample without epoxy coating is very high, for 5wt% of fiber is 72.22%, for 10wt% of fiber is 88.13% and for 15wt% of fiber is 112.69%. Water absorption for samples prepared with an epoxy coat is low as compared to the samples prepared without epoxy coat. Water absorption for coated samples containing 5% fiber by weight is 21.45%, for 10% fiber by weight is 33.21% and for 15% fiber by weight is 45.23%. Reduction in water absorption for 15wt% sample is 149%, for 10wt% sample is 165.37% and for sample containing 5wt% is 236.68%.

3.3. Scanning Electron Microscopy analysis

The cross-sectional views of the fabricated green composite material consisting of starch, different wt% of jute fiber, are presented in Figures 16-23. The SEM images are taken to
observe the interfacial properties, internal cracks and internal structure of the fractured surfaces of composite materials. Figure 16-23 show the SEM photographs of surfaces of different composite materials investigated in the present work fractured under the tensile loading. Figures 16, 17 and 18 shows the SEM of 15wt% jute fiber composite material with coating at a magnification of 500X, 100X and 50X, respectively. Figure 19 shows the SEM for 10wt% jute fiber composite material with coating at 100X magnification. Figure 20 shows the SEM for 5wt% jute fiber composite material with coating at 50X magnification. Figure 21 shows the SEM for 15wt% jute fiber composite material without coating at 500X magnification. Figure 22 shows the SEM for 10wt% jute fiber composite material without coating at 100X magnification. Figure 23 shows the SEM for 5wt% jute fiber composite material without coating at 100X magnification.

Figures 16, 17 and 18 show the fractured surface of 15 wt% fiber with coating of epoxy at a magnification of 500X, 100X and 50X, respectively. As it can be seen from these figures that due to higher wt% of fiber in the matrix, more fibers can be seen on the fractured surface. The higher wt% of fiber has increased the tensile strength of composite as compared to the strength of uncoated material. In Figure 18, the tangling of the fibers in matrix due to higher wt% is clearly visible. Figure 19 shows the fractured surface of 10 wt% of fiber coated with epoxy at a magnification of 100X. Due to low wt% (10wt%) of fiber, it can be seen that the tangling of fibers is low as compared to sample containing higher (15wt%) fiber content. Figure 20 shows the fractured surface of 5 wt% of fiber coated with epoxy at a magnification of 50X. As can be perceived from this figure, the fibers are not evenly distributed and the bonding with matrix is low which leads reduced strength. Figure 21 shows the fractured surface of 15 wt% fiber composite without coating of epoxy at a magnification of 500X. As can be seen due to high fiber content clusters of fibers are formed. The interaction between the matrix and fibers is reduced and all fibers
do not bond with matrix instead forming clusters of fiber leading to reduced tensile strength in comparison to coated material of same wt%. This formation of clusters leads to accumulation of fibers in the matrix; thereby, reducing the UTS. Figure 22 shows the fractured surface of 10 wt% fiber composite without coating at a magnification of 100X. The surface is not so good and the fibers are not arranged in a proper way, so that the tensile strength is reduced in comparison to coated material of same wt%. Figure 23 shows the fractured surface of 5 wt% fiber composite with coating at a magnification of 100X. The fiber content is very low (clearly evident from the image) which makes the bonding amongst fibers and matrix weak. Hence, the tensile strength in comparison to coated material is low.

Fig. 16. SEM for (15% jute fiber by weight) composite material with coating at 500X
Fig. 17. SEM for (15% jute fiber by weight) composite material with coating at 100X

Fig. 18. SEM for (15% jute fiber by weight) composite material with coating at 50X
Fig. 19. SEM for (10% jute fiber by weight) composite material with coating

Fig. 20. SEM for (5% jute fiber by weight) composite material with coating
Fig. 21. SEM for (15% jute fiber by weight) composite material without coating

Fig. 22. SEM for (10% jute fiber by weight) composite material without coating
Thermal analysis has been done for the sample with epoxy coating containing 15% jute fiber by weight. For thermal analysis, the samples were prepared in powder form by crushing them and the weight of samples were nearly 10.44 mg. The base material was alumina powder, which was mixed with composite samples in equal amount and the medium in which the tests were conducted was air flowing at 200 mL/min. The rate of change of temperature was 10°C/min and range of temperature was room temperature to 250°C. Figure 24 shows the thermo gram of starch-jute fiber based composite coated with epoxy. Decomposition of this material has been accomplished at 181°C. The rate of decomposition of the material is 109 µg/min. Prior to
150°C, the weight loss of 6.5% may be attributed to the expulsion of the moisture, low molecular mass molecules and volatile matter associated with the material. In the initial stage of decomposition material absorbs energy (upto 50°C) and after that it releases energy as revealed by the DTA curve. The decomposition of the material has been concluded at 252°C leaving the material 78.83% of the initial weight.

Fig. 24. Thermal analysis of coated sample (15% fiber by weight)
4. Conclusions

These experimental investigations on jute fiber filled starch bio-composite have led to the following conclusions:

1. Successful fabrication of jute fiber filled starch composite with hand lay-up technique followed by compression is possible.

2. Addition of jute fiber to the starch matrix has improved its UTS. Highest tensile strength was shown by composite containing 15% fiber by weight. The prepared composite has very low density and is lightweight.

3. The green composite prepared has very high water absorption due to highly hydrophilic character of both jute fiber and starch. With increasing fiber content, the water absorption rises gradually and composite containing highest fiber content shows maximum water absorption.

4. Coating the prepared composite with a thin layer of epoxy further enhances the UTS and also reduces the water absorption by a large amount.

5. Through SEM, we could actually see the fibers dispersion in the matrix and their bonding with it. At higher wt%, fibers form clusters and affect the bonding; and also reveal the composite failure due to fiber pull out and splitting of fiber increases.

6. Thermal analysis reveals that the decomposition of the material is achieved at 181°C and the maximum rate of decomposition of the material is 109 µg/min.

Acknowledgement

Financial support from the Department of Science and Technology, New Delhi, India is gratefully acknowledged.
References

