

1 Article

2 **Trace gas retrieval from AIUS: Algorithm description**
3 and O₃ retrieval assessment4 Xiaoying Li¹, Tianhai Cheng^{1,*}, Jian Xu^{2,*}, Hailiang Shi³, Xingying Zhang⁴, Shule Ge⁵,
5 Mingmin Zou¹, Hongmei Wang¹, Yapeng Wang¹, Songyan Zhu¹ and Jing Miao¹6 1. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese
7 Academy of Sciences, Beijing 100101, China; lixy01@radi.ac.cn (X.L.)

8 2. Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, Germany

9 3. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui, 230031, China

10 4. National Satellite Meteorological Center, China Meteorological Administration

11 5. China Center for Resources Satellite Data and Application, China

12 * Correspondence: chength@radi.ac.cn (T.C.), jian.xu@dlr.de (J.X.)

13

14 **Abstract:** AIUS (Atmospheric Infrared Ultraspectral Sounder) is an infrared occultation
15 spectrometer onboard the Chinese GaoFen-5 satellite, which covers a spectral range of 2.4–13.3 μm
16 (750–4100 cm⁻¹) with a spectral resolution of about 0.02 cm⁻¹. AIUS is designed to measure and
17 study chemical processes of ozone (O₃) and other trace gases in the upper troposphere and
18 stratosphere around Antarctic. In this study, the corresponding retrieval methodology is described.
19 The retrieval simulations based on the simulated spectra of AIUS have been carried out, with a
20 focus on O₃. The relative difference between the retrieved and the true O₃ profiles is within 5% from
21 the 15km to 70km and about 10% below 15km. The corresponding averaging kernels illustrate that
22 the overall retrieval information mainly come from the spectra, not the a priori. The retrieval
23 experiments also demonstrate that the shape of the retrieved profiles resembles the shape of the
24 true profile even if the shape of the a priori profile is different from that of the true profile. Further,
25 we perform the O₃ retrieval from the real ACE-FTS (Atmospheric Chemistry Experiment-Fourier
26 Transform Spectrometer) measurements and compare the results with the official ACE-FTS Level-2
27 products. Overall, both profiles agree well in the stratosphere where the retrieval sensitivity is
28 high. The relative difference between both profiles is about 15% below 70km, which may due to the
29 measurement errors and different forward model parameters.30 **Keywords:** AIUS; Occultation; Retrieval algorithm; Microwindows; Ozone
3132 **1. Introduction**33 The annual occurrence of the Antarctic ozone hole has been well documented. For studying
34 ozone recovery, many efforts have been made to understand the chemical and dynamical processes
35 around Antarctic [1-3]. Occultation and limb sounding techniques have provided an important way
36 for remotely observing Earth's middle atmosphere. These measurements have greatly promoted our
37 understanding of the chemical process of atmospheric composition in the upper troposphere and
38 stratosphere by providing profiles measurements with different altitudes. As compared to
39 nadir-viewing measurements, occultation/limb sounding measurements have higher vertical
40 resolution, which can be used to derive vertical information of atmospheric components.
41 Furthermore, high-resolution atmospheric mid-infrared spectra are suitable for detection of many
42 trace species, since a wide variety of vibrational-rotational bands with molecular absorption lines are
43 found within this spectral range. Recently, many occultation observation/limb sounding sensors
44 have been developed and provided abundant profiles of trace gases, such as O₃, CO, H₂O, NO, etc
45 [4-9].

46 AIUS is one of six payloads onboard the Chinese GaoFen-5 satellite that is expected to launch in
 47 May, 2018. AIUS is the first occultation spectrometer developed in China, which is designed to
 48 detect the trace gases over the Antarctic. AIUS will operate in a solar synchronous orbit, with a
 49 nominal height of 700 km. The instrument is a Fourier transform infrared spectrometer and its main
 50 objective is to measure the O₃ and other species in the stratosphere and upper troposphere in order
 51 to study the ozone change over the Antarctic.

52 The aim of this study is to introduce the trace gas retrieval algorithm developed for AIUS and to
 53 assess its performance based on ozone retrievals. In Section 2, the instrument parameters and level 1
 54 processing of AIUS are introduced briefly. Section 3 describes the retrieval algorithm in detail.
 55 Integrated atmosphere profiles dataset is presented and a sensitivity analysis of atmosphere profiles
 56 is showed in Section 4. In Section 5, the simulated spectra and the ACE-FTS observation spectra are
 57 adopted to retrieve O₃ profiles and to assess the retrieval performance.

58 2. AIUS instrument

59 AIUS is a Fourier transform infrared spectrometer for the detection of occultation transmittance
 60 spectra in the middle and upper atmosphere, which has similar characteristics to ACE-FTS. Both
 61 instruments have a spectral resolution of 0.02 cm⁻¹. AIUS covers the spectral range from 750 cm⁻¹ to
 62 4100 cm⁻¹, while ACE-FTS covers 750--4400 cm⁻¹. It is a dual-band system composed of MCT
 63 (mercury cadmium telluride, 750--1850 cm⁻¹) and InSb (1850--4160 cm⁻¹). AIUS covers an altitude
 64 range from 8 to 100 km and has a field of view of 1.25 mrad. The latitude coverage of AIUS
 65 measurements is about 55° S to 90° S, which is mostly over Antarctica.

66 GF5-AIUS level 0 is original auxiliary and interferogram data in binary format and level 1 is
 67 HDF5 format file includes reconstructed spectra and processed auxiliary data. GF5-AIUS level 0 to
 68 level 1 processing includes three steps. The first step is the acquisition and processing of auxiliary
 69 data. By unpacketing the auxiliary data package, the information of observation, such as
 70 acquisition time, sun position and satellite position, is acquired. The geometric parameters, the
 71 height and the latitude and longitude coordinates, are calculated from the information of the sun
 72 and satellite. The second step is to reconstruct the spectra from the original interferogram. However,
 73 since the AIUS is an interferometer, the interferogram will contain some spikes produced by the
 74 effect of energetic particles due to space electromagnetic environment on orbit, which will
 75 contaminate the complete spectra. Thus, some processes have to be involved to correct these errors.
 76 The nonlinear behavior of the detectors is expected and characterized on-ground, which requires an
 77 additional correction. This nonlinearity correction will be consolidated in-flight using
 78 commissioning phase data. After that, the FFT is performed to compute the spectra. The last step is
 79 to evaluate the spectra's quality by standard deviation or mean value of imaginary part of the
 80 calculated spectra and then make the mark to show if the spectra is well reconstructed. "0" is for
 81 good quality and "1" for bad quality.

82 Level 1 data is the spectra data which are the relative intensities of each tangent heights using
 83 DN (digital number) values. Our inversion takes the transmittance converted from the Level 1 data.
 84 In addition to the observation of the Sun outside and inside the atmosphere, GF5-AIUS also observes
 85 the deep space to remove the instrumental emission. Commonly, the transmittance $\tau(h, \lambda)$ at
 86 tangent point h of wave number λ can be calculated by the following equation:

$$87 \quad \tau(h, \lambda) = \frac{D(h, \lambda) - B(\lambda)}{S(\lambda) - B(\lambda)}, \quad (1)$$

88 Where $D(h, \lambda)$, $S(\lambda)$ and $B(\lambda)$ are the digital counts of the observation of signal at tangent point h ,
 89 the solar radiation outside atmosphere and the deep space signal.

90 3. Retrieval methodology of AIUS

91 Accurate knowledge of pointing and p/T information is important to high-precision
 92 quantitative retrieval of abundances of atmospheric species from occultation observed
 93 transmittances. The tangent height correction for AIUS is carried out by employing the triangular

94 iteration with tangential strides technique in a microwindow of N₂ continuum absorption, whereas
 95 the scheme of *p/T* retrieval is by introducing the hydrostatic equation into the iterative process of
 96 optimal algorithm. Details of the design and development of these two algorithms are introduced in
 97 our other two papers in preparation.

98 *3.1. Inversion model*

99 The inversion algorithm employed in this study is based on OEM (Optimal Estimation
 100 Method) proposed by Rodgers [10]. Since OEM is generally applicable and facilitates a theoretical
 101 error analysis, this method has been widely used in the inversion of atmospheric state parameters
 102 using infrared and microwave remote sensing measurements, with nadir, occultation or limb
 103 viewing [11-16]. OEM stabilizes the inversion process by taking into account the statistical
 104 information about the atmospheric variability, which has been investigated by many studies
 105 [17-23].

106 Our inversion scheme is adapted from the retrieval software Qpack 2.0 [23] that uses LM
 107 (Levenberg—Marquardt) approach for a nonlinear least squares fitting. The LM iteration method
 108 adopted in the Qpack is the same as the LM iteration method modified by Rodgers [17]. By
 109 introducing a constraint factor γ , the next iterate is yielded by:

110
$$\mathbf{X}_{i+1} = \mathbf{X}_i + [(1 + \gamma) \mathbf{S}_a^{-1} + \mathbf{K}_i^T \cdot \mathbf{S}_e^{-1} \cdot \mathbf{K}_i]^{-1} \cdot \{\mathbf{K}_i^T \mathbf{S}_e^{-1} [\mathbf{Y} - \mathbf{F}(\mathbf{X})] - \mathbf{S}_a^{-1} [\mathbf{X}_i - \mathbf{X}_a]\}. \quad (2)$$

111 The inverse of the solution covariance in equation (2) is given by:

112
$$\mathbf{S}_x^{-1} = \mathbf{K}^T \cdot \mathbf{S}_e^{-1} \cdot \mathbf{K} \quad . \quad (3)$$

113 And the cost function $C(\mathbf{X})$ is given by:

114
$$C(\mathbf{X}) = [(\mathbf{Y} - \mathbf{F}(\mathbf{X}))^T \cdot \mathbf{S}_e^{-1} \cdot (\mathbf{Y} - \mathbf{F}(\mathbf{X})) + (\mathbf{X} - \mathbf{X}_a)^T \cdot \mathbf{S}_a^{-1} \cdot (\mathbf{X} - \mathbf{X}_a)]/n_y, \quad (4)$$

115 where \mathbf{F} is the forward model, \mathbf{Y} is a series of observations value, \mathbf{X} is the state of the
 116 atmosphere, \mathbf{S}_e is the covariance matrix of the observation error and \mathbf{K} is the matrix of weighting
 117 function. The a priori state vector is denoted by \mathbf{X}_a , with its covariance matrix \mathbf{S}_a And n_y is the
 118 number of \mathbf{Y} vector.

119 In our retrieval scheme, retrieval experiments are made based on many simulated spectra and
 120 ACE-FTS observation data to decide an optimal choice of γ . After statistical analysis, the factor of γ
 121 is defined as a linear scaled function to the cost function. It will be updated at each iteration, which
 122 is given by the following equation. Here, a is a constant and it is different for different
 123 atmospheric species.

124
$$\gamma_i = a \cdot C(\mathbf{X}_i) \quad . \quad (5)$$

125 The definition of the a priori covariance matrix \mathbf{S}_a follows Gaussian statistics and
 126 considers the correlation between different components of the state vector and the forward
 127 model vector. Different types of the correlation function [24] for computing the correlation
 128 have been tested based on the retrievals from simulated and observed ACE-FTS data. In
 129 this study, we employ the linear correlation function:

130
$$\mathbf{S}_a(i, j) = \max \{0, \sigma(i)\sigma(j) \left[1 - (1 - e^{-1}) \frac{2|z(i) - z(j)|}{lc(i) - lc(j)} \right] \} \quad , \quad (6)$$

131 where i and j are position indexes, z is the position, lc is the correlation length and $|*|$ signifies the
 132 absolute value. σ is the standard deviation calculated from the a priori.

133 In the retrieval scheme of AIUS, we adopt the “*dx*” in the Qpack 2.0 as the threshold of
 134 convergence. The iteration is considered converged in the condition that the value of *dx* is smaller
 135 than 0.01. The definition of *dx* is that:

136
$$dx = [(\mathbf{X}_{i+1} - \mathbf{X}_i)^T \cdot \mathbf{S}_x^{-1} \cdot (\mathbf{X}_{i+1} - \mathbf{X}_i)]/n_x, \quad (7)$$

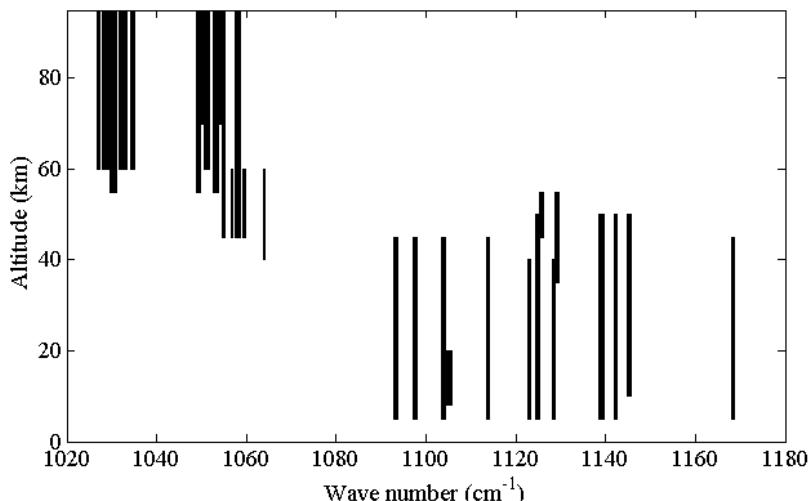
137 where n_x is the length of the state vector.

139 *3.2 Adopted forward model*

140 An accurate modeling of the radiative transfer through the atmosphere plays an important role
141 in the inversion. The forward model adopted in the retrieval algorithm of AIUS is the RFM
142 (Reference Forward Model) with the latest release version v4.36 [25]. RFM is a GENLN2-based
143 line-by-line radiative transfer model originally developed at AOPP, Oxford University, under an
144 ESA contract to provide reference spectral calculations for the MIPAS (The Michelson Interferometer
145 for Passive Atmospheric Sounding) instrument launched on the ENVISAT (Environmental Satellite)
146 in 2002. It has been subsequently developed into a general purpose code suitable for a variety of
147 different spectroscopic calculations. Von Clarmann [26] has compared five forward models
148 including the RFM. The inter-comparison experiment showed that the overall inter-consistency of
149 spectra for all participants is good, which also can demonstrate that the RFM works fine and reliable.

150 RFM can deal with various measurement conditions including nadir viewing, limb sounding,
151 occultation observation from different platforms (satellite /balloon /aircraft). Its main features are
152 listed below:

- 153 1. It has high flexibility when defining observation geometry (including scanning features) and
154 sensor characteristics.
- 155 2. It can provide Jacobians for p, T, VMR, line-of-sight pointing and surface temperature and
156 emissivity.
- 157 3. Cross sections can be computed from HITRAN (High-resolution Transmission) spectroscopic
158 database or read from external files.
- 159 4. Continua for H₂O, O₂, N₂ and CO₂ are included [27-31].

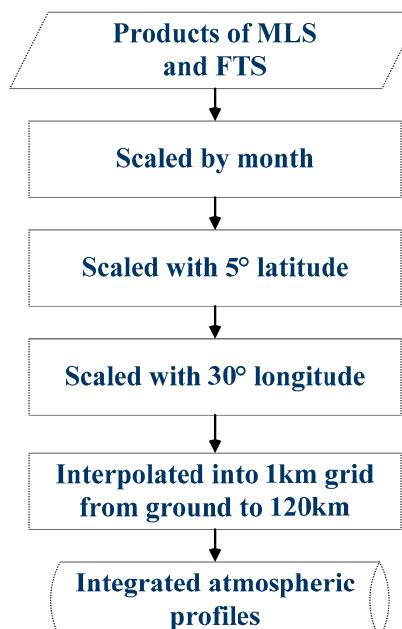

160 For all considered microwindows, scattering can be negligible and is not taken into account in our
161 retrieval scheme.

162 *3.3 Microwindows*

163 The spectral resolution of AIUS is about 0.02 cm⁻¹. Because of this, the number of data points
164 from each absorption band becomes unrealistic for an efficient inversion process. Furthermore, one
165 should avoid the effect of interfering species on the retrieval of the target species and have the best
166 information on the retrieval. Thus, the retrieval is performed using a set of narrow spectral interval
167 (called "microwindow") instead of an entire spectral band.

168 To select an appropriate set of microwindows, a sensitivity analysis with Jacobians is required.
169 First of all, we select the spectral points which are sensitive to the target gas on each cutting height
170 and are not sensitive to the interference gas according to the Jacobians of target and the interference
171 species. Then, the selected spectral points are grown on the basis of information entropy to generate
172 a series of continuous window. Finally, all the selected microwindows at different tangent height are
173 combined.

174 The absorption lines of O₃ in the infrared band are mainly located near 9.6 μm and the main
175 interfering gases of O₃ in this spectral band include CO₂, H₂O and N₂O. The chosen microwindows
176 for O₃ retrieval are shown in Figure 1. For O₃ retrieval, about 20 microwindows are selected, covering
177 from 5 km to 95 km. Microwindows in the range of 1000--1070 cm⁻¹ are sensitive at higher altitudes,
178 while others are sensitive at lower altitudes.


179

180

Figure 1 The microwindows selected for O₃ retrieval.181 **4. Sensitivity analysis of atmospheric profiles in forward model**182 *4.1 Integrated Atmospheric profiles*

183 The forward model generates a numerical simulation of measurements based on the given
 184 atmospheric state. In other words, the accuracy of the simulated measurements depends on the
 185 reliability of the atmospheric parameters used in the forward model. In our retrieval scheme, we
 186 compute a dataset of integrated atmospheric profiles based on MLS (Microwave Limb Sounder)
 187 level 2 products, ACE-FTS level 2 products and the profiles from AFGL(Air Force Geophysics
 188 Laboratory) atmospheric models.

189 The ACE-FTS level 2 v3.6 and the MLS level 2 (v4.2) products between 2014 and 2016 are
 190 considered. We classify and store the species profiles month by month for each set of products. Then,
 191 the monthly mean profiles are acquired and classified into different coordinate grids, which is
 192 discretized with a 5° latitude and 30° longitude spacing.. That is, both of two set of dataset are
 193 classified by month and coordinate grid. A diagram of constructing the integrated atmospheric
 194 profiles is shown in Figure 2.

195

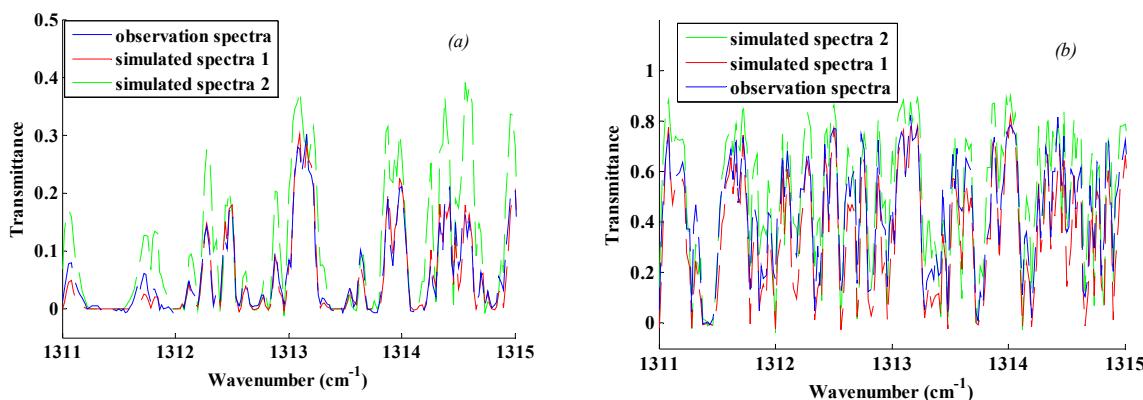
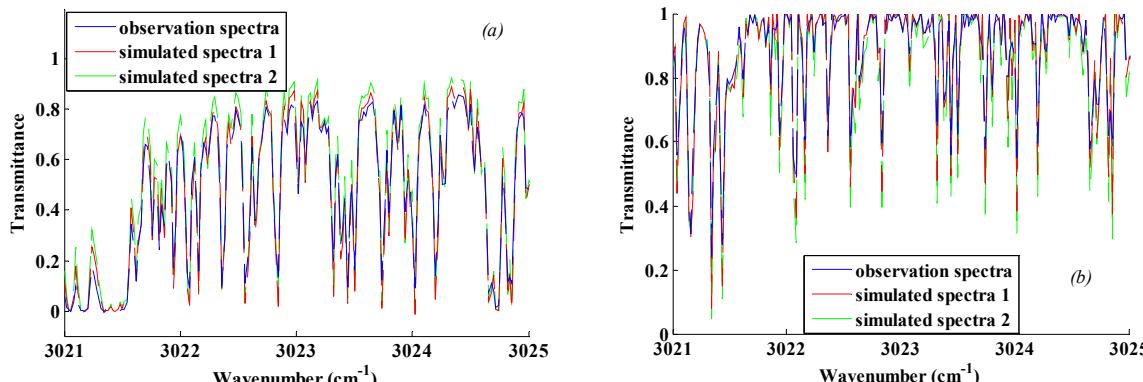

196

Figure 2 The technological process of constructing the integrated atmospheric profiles.


197 The next step is to combine the two sets of profiles. Since ACE-FTS and AIUS have similar
 198 instrument characteristics, the ACE-FTS product is chosen in case that the profile of a particular
 199 species at the same geolocation and time can be found in both ACE-FTS and MLS datasets. Finally,
 200 profiles of the missing species are read from the AFGL dataset. The species profiles imported from
 201 AFGL dataset include NH₃, HBr, HI, PH₃, H₂S, F11, F12, F13, F21, F22, F114, F115 and HNO₄. These
 202 species profiles from FASCOD (Fast Atmospheric Signature Code) Model 1-6 are resampled and
 203 packed into the monthly geographic grids. In the end, the integrated atmospheric species profiles
 204 dataset is produced.

205 *4.2 Data simulation and sensitivity analysis*

206 A comparison between the integrated atmospheric and AFGL profiles is carried out by
 207 simulating the ACE-FTS spectra. The simulation is made with the geolocation and geometry
 208 parameters of the ACE-FTS instrument. Figures 3 and 4 compare the simulated ACE-FTS using the
 209 two atmospheric profiles database to the observed spectra in two spectra ranges.

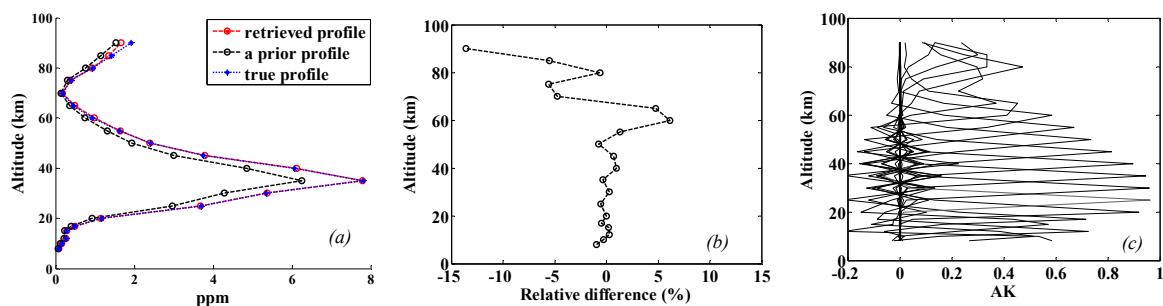
210 Figure 3 Comparison experiment between the integrated atmospheric and AFGL profiles (67.5°S,
 211 72.5°W, August 5, 2012). (a) Tangent height=10.71 km; (b) Tangent height=20.48 km.

212 Figure 4 Comparison experiment between the integrated atmospheric and AFGL profiles (77°S, 86°E,
 213 March 25, 2012). (a) Tangent height=16.16 km; (b) Tangent height=30.4 km.

214 The simulated spectra 1 and 2 stand for the ones using the integrated atmospheric and AFGL
 215 profiles, respectively. Figures 3 and 4 show that in both spectral ranges, the simulated spectra using
 216 the integrated atmospheric profiles are obviously more close to the ACE-FTS observed spectra than
 217 those using the AFGL atmospheric profiles. The two comparison experiments demonstrate that the
 218 simulated spectra are very sensitive to the atmospheric profiles and that the simulated spectra using
 219 the dataset of integrated atmospheric profiles agree well to the actual measurements.

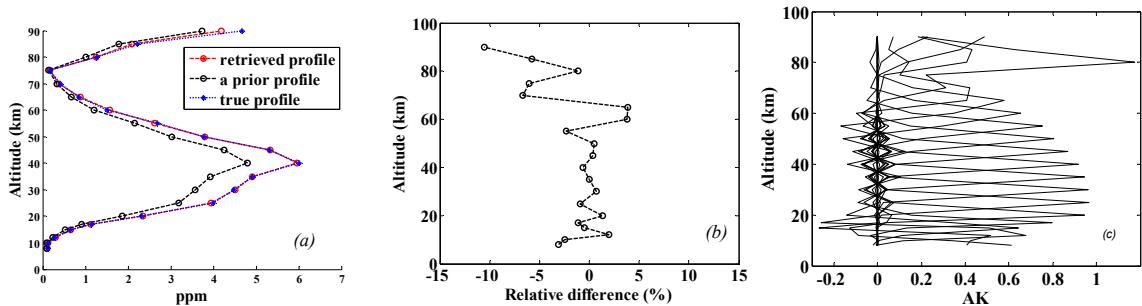
220
 221
 222

223 5. O₃ retrieval and assessment


224 5.1 Assessment of retrieval algorithm based on simulated spectra

225 Table 1 Retrieval configuration

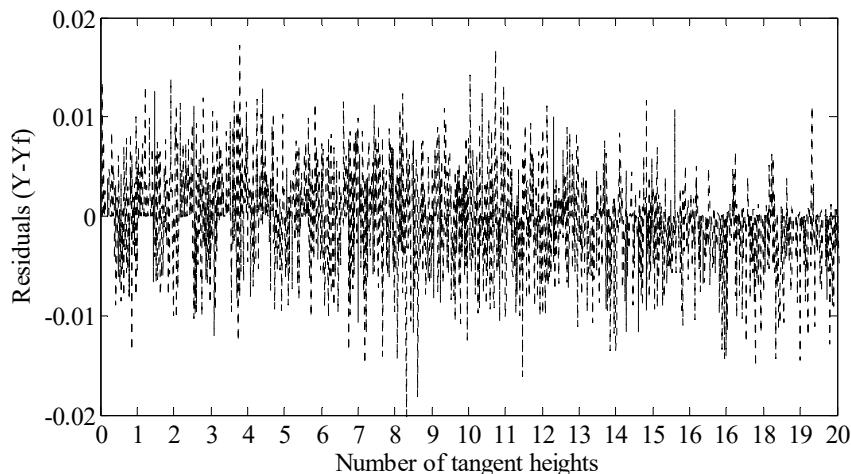
Parameters	Retrieval configuration
spectroscopic database	Hitran 2012 [32]
continua used	O ₂ , H ₂ O, N ₂
Retrieval altitude grids /km	8 10 12 15 17 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
altitude grids in the forward model	0-100 km with 1 km resolution
O ₃ true profiles (X_true)	Taken from integrated atmospheric database
X_a	$0.8 \cdot X_{true}$


226

227 The O₃ retrieval performance is first assessed by using simulated measurements. The
 228 microwindows selected in section 3.3 are adopted. Two O₃ profiles picked from two grids of the
 229 integrated atmospheric dataset (75°S, 150°W in October and 65°S, 90°E in March) are taken as the
 230 true profiles to simulate spectra of AIUS. Then, the artificial noise with SNR = 300 is added to the
 231 simulated spectra. Details of retrieval configuration are specified in Table 1. The retrieved profiles
 232 are shown in Figure 5 and 6.

233

234 Figure 5 O₃ retrieval experiment based on simulated spectra at 75°S, 150°W in October. (a)Retrieved
 235 profile; (b) Relative difference between retrieved and true profiles; (c) Averaging kernel.

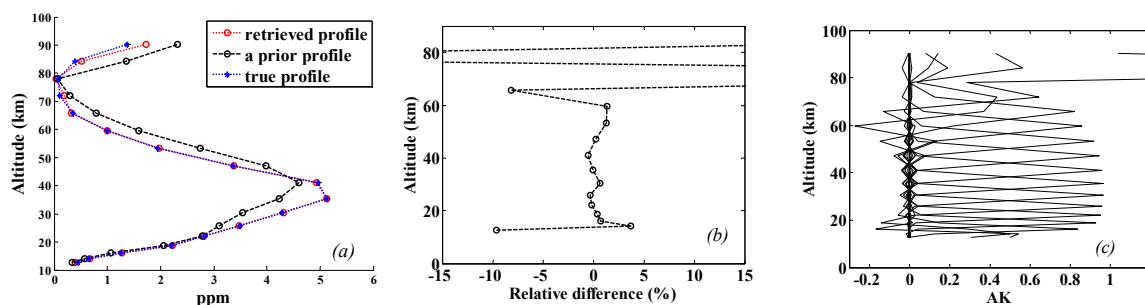

236

237 Figure 6 O₃ retrieval experiment based on simulated spectra at 65°S, 90°E in March. (a)Retrieved profile;
 238 (b) Relative difference between retrieved and true profile; (c) Averaging kernel.

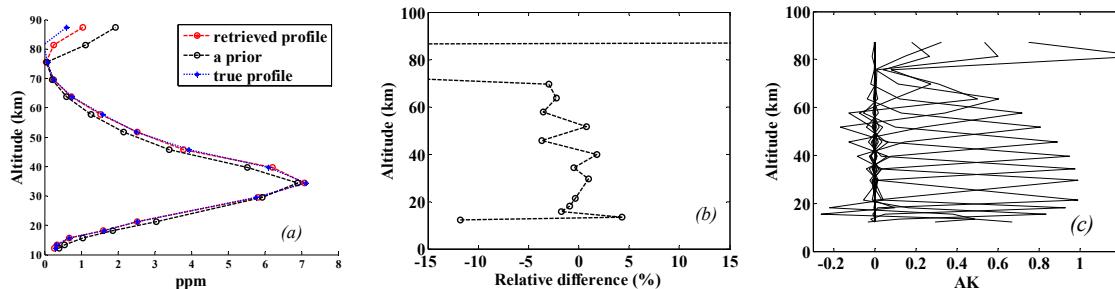
239

240 The a priori, true profile and retrieval profile of O₃ are shown in figure 5(a) and 6(a). The shape
 241 and the values of retrieval profiles are consistent with the true profiles. The relative difference
 242 between the retrieval and true profiles presented in figure 5(b) and 6(b) shows that it is within $\pm 5\%$
 243 below 60 km, within $\pm 7\%$ from 60 km to 80 km. The averaging kernels in figure 5(c) and 6(c) illustrate
 244 that the retrieval information mainly comes from the measurements.

245 As the residual in both experiments seems nearly identical, only the one in the first experiment
 246 is shown in Figure 7. The lowest to the highest tangent heights is from left to right. The residuals at
 247 each tangent height are within ± 0.02 , which are very small.


248
 249 Figure 7 The residuals of the first retrieval experiment.

250 In the above retrieval experiments, $X_a = 0.8 \cdot X_{true}$, but the shape is same. Thus, more
 251 retrieval experiments are made to assessment the dependence of the AIUS algorithm on the shape of
 252 the a prior profile. In this experiment, the ACE-FTS O₃ level 2 products are taken as the true profiles.
 253 The information of five products selected is shown in table 2. The a prior profiles are from the mean
 254 monthly profiles of MLS O₃ level 2 products, which indicates that the shape of the a prior profiles
 255 can be different from that of the true profiles.

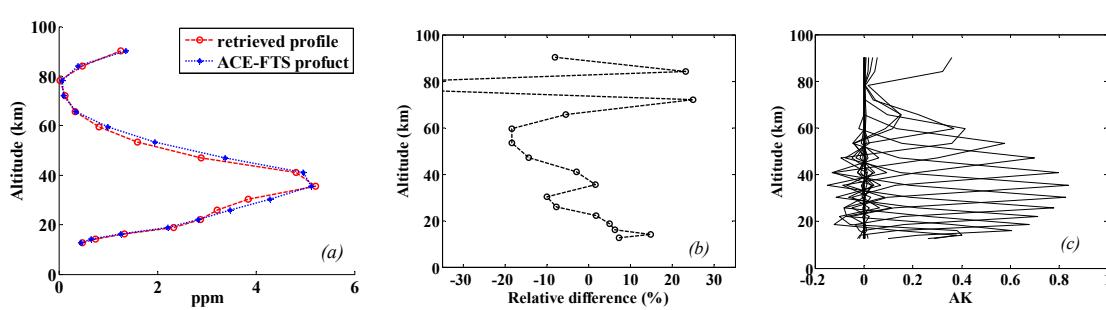

256 Table 2 Information of O₃ L2 products from ACE-FTS.

Scene ID	latitude	longitude	date
40993	-78	87	2012-3-25
39926	-68	131	2011-1-11
38154	63	-73	2010-9-13
43544	63	75	2011-9-14
43611	70	-119	2011-9-18

257 Similarly, the artificial noise with same SNR is added randomly to the simulated spectra. O₃
 258 retrieval is performed and the results for these five retrieval experiments are similar. Thus, only
 259 results of two retrieval experiments using the O₃ products from scenes of 40993 and 38154 are
 260 presented in Figures 8 and 9, respectively. The two scenes are located in Antarctica and Arctic,
 261 respectively.

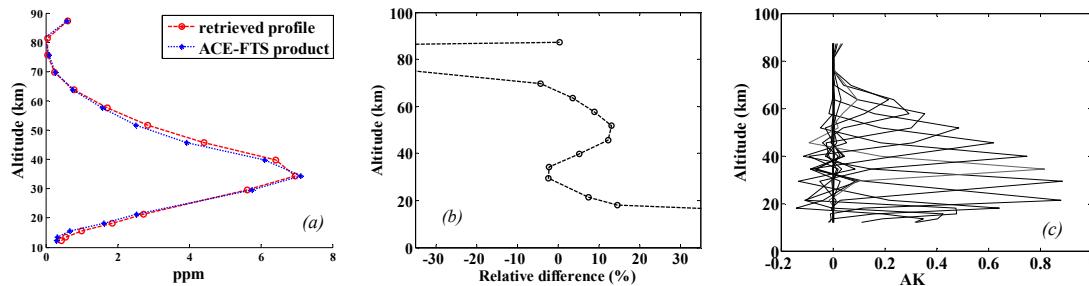
262
 263 Figure 8 O₃ retrieval experiment based on O₃ product from scene 40993 of ACE-FTS. (a)Retrieved profile;
 264 (b) Relative difference between retrieved and true profile; (c) Averaging kernel.

265


266 Figure 9 O₃ retrieval experiment based on O₃ product from scene 38154 of ACE-FTS. (a)Retrieved profile;
267 (b) Relative difference between retrieved and true profile; (c) Averaging kernel.
268

269 Figures 8(a) and 9(a) show that the shape of the retrieval profiles is almost the same with the
270 true profiles even that the shape of the a priori profiles is different from that of the true profiles.
271 Figures 8(b) and 9(b) illustrate that the relative difference between the retrieval O₃ profiles and the
272 true O₃ profiles is almost within 5% from 10 km to 70 km, about 10% near 10 km. However, the
273 relative difference will reach beyond 30%. The reasons may be due to the low concentration of O₃
274 profiles and the retrieval above 70 km is dominated by the a priori information. The averaging
275 kernels in Figures 8(c) and 9(c) are similar as those in Figures 5(c) and 6(c), which indicate that the
276 retrieval information mainly comes from the measurement in the troposphere and stratosphere. We
277 also check the residuals of these five retrieval experiments, which are consistent with the residuals in
278 Figure 7. All residuals of these five retrieval experiments are within ± 0.02 .

279 The retrieval experiments using synthetic AIUS spectra demonstrate that the algorithm
280 produces reasonable results and sufficient retrieval sensitivity.


281 5.2 O₃ retrieval based on ACE-FTS measurements

282 Under real-world conditions, in addition to the thermal noise of the instrument, the actual
283 measurements are influenced by more factors. To evaluate the influence of various uncertainties on
284 the retrieval algorithm of AIUS, we adopt the level 1 products of ACE-FTS to perform the O₃
285 retrieval experiments, as AIUS expects to perform measurements with similar characteristics. All the
286 a priori profiles of O₃ and other species are taken from the dataset of integrated atmospheric profiles.
287 The level 1 products used are those five scenes of ACE-FTS observation data in table 2. Since the
288 results for these five retrieval experiments are similar, only results of two retrieval experiments from
289 scene 40993 and 38154 are presented.
290

291

292 Figure 10 O₃ retrieval experiment based on FTS observation spectra from scene 40993. (a)Retrieved profile;
293 (b) Relative difference between retrieved and FTS level 2 product; (c) Averaging kernel.
294

295
296 Figure 11 O₃ retrieval experiment based on FTS observation spectra from scene 38154. (a)Retrieved profile;
297 (b) Relative difference between retrieved and FTS level 2 product; (c) Averaging kernel.
298

299 The retrieval profiles, the relative difference and averaging kernels are shown in figure 10 and
300 11. The retrieval profiles presented in figure 10(a) and 11(a) show that the shape of the retrieval O₃
301 profiles agree well to those of ACE-FTS level 2 products. However, the relative difference in figure
302 10(b) and 11(b) is bigger than that in figure 8(b) and 9(b). The relative difference of these two
303 retrieval experiment below 70 km is mainly within 10%, with some points reach 15%-20%. The
304 relative difference here is larger mainly because of the uncertainties in the measurements and
305 different forward model parameters. The bias of the ACE-FTS O₃ products is +1 to +8% in the
306 stratosphere (16–44 km) and can be up to +40% (+20% on average) above 45 km (Jones A., et al., 2012;
307 Dupuy E., et al., 2009). Although the averaging kernels in Figures 10(c) and 11(c) are somewhat
308 broader than those in Figures 8(c) and 9(c), it still reveals that the retrieval information mainly comes
309 from the measurement in the stratosphere. The statistical analysis of the residuals demonstrate that
310 about 90% residuals are within ± 0.02 , with some points reaching ± 0.06 , demonstrating the retrieval
311 fits very well. Our algorithm dedicated to AIUS performs stable and delivers comparable results
312 using ACE-FTS real measurements.

313 6. Discussion and conclusions

314 In this study, we have introduced a retrieval algorithm developed for an infrared occultation
315 spectrometer called AIUS. The retrieval algorithm comprises a forward model based on RFM and
316 an OEM framework adapted from Qpack, which employs the LM iteration method. The retrieval
317 experiments of ozone retrievals were carried out based on simulated spectra and ACE-FTS
318 measurements.

319 In the condition of experiments on simulated spectra, there are some differences depending
320 on the profile shape of the a prior. When the shape of the a prior is the same as the true profile, the
321 relative difference between the retrieval profile and the true profile is within $\pm 5\%$ below 60 km and
322 within 7% in the range of 60-80 km. When the shape of the a prior is and the true profile is different,
323 the retrieval profile shape still keep close to the true profile. The relative difference is a litter bigger.
324 It is mainly within 5% below 60 km, but can reach 10% near 10 km and 10-15% from 60 km to 70 km.
325 However, the relative difference is in a reasonable range. And the averaging kernels achieved
326 illustrate that the retrieval information mainly comes from the simulated observation spectra. Thus
327 the retrieval experiments based on simulated spectra indicate that the retrieval algorithm of AIUS
328 work fine and successful.

329 When it comes to experiments based on ACE-FTS observation data, the retrieval algorithm of
330 AIUS also behaves well. The retrieval experiments show that the relative differences between them
331 are greater than those in the retrieval experiments using simulated spectra. The greater relative
332 differences may be produced by the following reasons. Firstly, although the instrument parameters
333 AIUS and FTS are similar, there must be different in some of the details. Thus, some errors will be
334 brought by using ACE-FTS observation spectra as the AIUS observation spectra. Secondly, the
335 ACE-FTS levels are not the true profiles. They also have uncertainties, which will make the relative
336 difference greater. The last and the most important reason is the greater uncertainty of the observed
337 spectra, which will generate some errors between the simulated spectra by the forward model and

338 the observation spectra in the retrieval process. Nevertheless, the retrieval profiles still agree well
339 with the ACE-FTS level 2 products and the range of the relative differences is satisfactory.

340 All the retrieval experiments based on the simulated spectra and the measured spectra of
341 ACE-FTS indicate that the retrieval algorithm of AIUS is reliable and robust. Overall, the retrieval
342 profiles agree well with the true profiles or the ACE-FTS level 2 profiles. However, the uncertainties
343 of the retrieval profiles at lower tangent height are still requiring further investigations. After the
344 instrument is launched, we will improve the retrieval algorithm by fine-tuning the forward model
345 parameters according to the characteristics of the AIUS observed spectra and the instrument
346 performance. In addition, an extensive retrieval error characterization is on-going and will be
347 consolidated during the operational phase.

348

349

350 **Acknowledgments:** This study was supported in part by the project 41571345 supported by National Natural
351 Science Foundation of China, the National Key Research and Development Program of China (Grant No.
352 2016YFB0500705), the project supported by the Special Foundation for Free Exploration of State Laboratory of
353 Remote Sensing Science (Grant No. Y1Y00202KZ), and the project supported by Major Projects of High
354 Resolution Earth Observation System (Grant No. 32-Y20A18-9001-15-17-1). The ACE-FTS data were provided
355 by ACE-FTS team. ACE, also known as SCISAT, is a Canadian-led mission mainly supported by the Canadian
356 Space Agency (CSA). And Thanks to Professor Anu Dudhia for providing the RFM source code and help.

357 **Author Contributions:** Xiaoying Li, Tianhai Cheng and Jian Xu conceived and designed the experiments;
358 Mingmin Zou, Hongmei Wang, Yapeng Wang, Songyan Zhu and Jing Miao performed the experiments;
359 Xiaoying Li, Tianhai Cheng, Jian Xu, Hailiang Shi, Xingying Zhang and Shule Ge analyzed the data; Xiaoying
360 Li wrote the paper.

361

362 **References**

- 363 1. Manney, G.L.; Santee, M.L.; Livesey, N.J.; Froidevaux, L.; Read, W.G.; Pumphrey, H.C.; Waters, J.W.;
364 Pawson, S. EOS Microwave Limb Sounder observation of the Antarctic polar vortex breakup in 2004.
365 *Geophysical Research Letters*. **2005**, *32*(L12811), 1-5, DOI: 10.1029/2005GL022823.
- 366 2. Santee, M.L.; Manney, G.L.; Livesey, N.J.; Froidevaux, L.; MacKenzie, I.A.; Pumphrey, H.C.; Read, W.G.;
367 Schwartz, M.J.; Waters, J.W.; Harwood, R.S. Polar processing and development of the 2004 Antarctic
368 ozone hole: First results from MLS on Aura. *Geophysical Research Letters*. **2005**, *32*(L12817), 1-4, DOI:
369 10.1029/2005GL022582.
- 370 3. Gattinger, R. L.; McDade, I. C.; Alfaro Suzan, A. L. ; Boone, C. D.; Walker, K.A.; Bernath, P.F.; Evans, W.F.
371 J.; Degenstein, D.A.; Yee, J.-H.; Sheese, P.; Llewellyn, E. NO₂ air afterglow and O and NO densities from
372 Odin-OSIRIS night and ACE-FTS sunset observations in the Antarctic MLT region. *Journal of Geophysical
373 Research*. **2010**, *115* (D12) , 1256-1268, DOI: 115. 10.1029/2009JD013205.
- 374 4. Russell, J.M.; Gordley, L.L.; Park, J.H.; Drayson, S.R.; Hesketh, W.D.; Cicerone, R.J.; Tuck, A.F.; Frederick,
375 J.E.; Harries, J.E.; Crutzen, P.J. The Halogen Occultation Experiment. *Journal of Geophysical
376 Research-Atmospheres*. **1993**, *98*(D6), 10777-97.
- 377 5. Gunson, M.R.; Abbas, M.M.; Abrams, M.C.; Allen, M.; Brown, L.R.; Brown, T.L.; Chang, A.Y.; Goldman,
378 A.; Irion, F.W.; Lowes, L.L.; Mahieu, E.; Manney, G.L.; Michelsen, H.A.; Newchurch, M.J.; Rinsland, C.P.;
379 Salawitch, R.J.; Stiller, G.P.; Toon, G.C.; Yung, Y.L.; Zander, R. The Atmospheric Trace Molecule
380 Spectroscopy (ATMOS) experiment: Deployment on the ATLAS Space Shuttle missions. *Geophysical
381 Research Letters*. **1996**, *23*(17), 2333-2336.
- 382 6. Bovensmann, H.; Burrows, J.P.; Buehwitz, M.; Frerick, J.; Noel, S.; Rozanov, V.V. SCIAMACHY: Mission
383 Objectives and Measurement Modes. *Journal of the atmospheric sciences*. **1999**, *56*(2), 127-150.
- 384 7. Beer, R.; Glavich, T.A.; Rider, D.M. Tropospheric emission spectrometer for the Earth Observing System's
385 Aura Satellite. *Applied Optics*. **2001**, *40*(15), 2356-67.
- 386 8. Bernath P.F.; McElroy C.T.; Abrams M.C.; Boone, C.D.; Butler, M.; Camy-Peyret, C.; Carleer, M.; Clerbaux,
387 C.; Coheur, P.-F.; Colin, R.; DeCola, P.; DeMazie're, M.; Drummond, J. R.; Dufour, D.; Evans, W. F. J.; Fast,
388 H.; Fussen, D.; Gilbert, K.; Jennings, D.E.; Llewellyn, E. J.; Lowe, R.P.; Mahieu, E.; McConnell, J.C.;
389 McHugh, M.; McLeod, S.D.; Michaud, R.; Midwinter, C.; Nassar, R.; Nichitiu, F.; Nowlan, C.; Rinsland,
390 C.P.; Rochon, Y.J.; Rowlands, N.; Semeniuk, K.; Simon, P.; Skelton, R.; Sloan, J.J.; Soucy, M.-A.; Strong, K.;
391 Tremblay, P.; Turnbull, D.; Walker, K. ; Walkty, I.; Wardle, D.A.; Wehrle, V.; Zander, R.; Zou, J.
392 Atmospheric Chemistry Experiment (ACE): Mission overview. *Geophysical Research Letters*. **2005**, *32*,
393 L15S01, doi:10.1029/2005GL022386.
- 394 9. Fischer, H.; Birk, M.; Blom, C.; Carli, B.; Carlotti, M.; Clarmann, T.von; Delbouille, L.; Dudhia, A.; Ehnhalt,
395 D.; Endemann, M.; Flaud, J.M.; Gessner, R.; Kleinert, A.; Koopman, R.; Langen, J.; Lopez-Puertas', M.;
396 Mosner, P.; Nett, H.; Oelhaf, H.; Perron, G.; Remedios, J.; Ridolfi, M.; Stiller, G.; Zander, R.. MIPAS: an
397 instrument for atmospheric and climate research. *Atmos Chem Phys*. **2008**, *8*(8), 2151-88.
- 398 10. Rodgers, C.D. Retrieval of atmospheric temperature and composition from remote measurements of
399 thermal radiation. *Reviews of Geophysics and Space Physics*. **1976**, *14*(4), 609-624.
- 400 11. Urban, J.; Baron, P.; Lautie, N.; Schneider, N.; Dassas, K.; Ricaud, P.; de la Noë, J. Moliere (v5): a versatile
401 forward- and inversion model for the millimeter and sub-millimeter wavelength range. *Journal of
402 Quantitative Spectroscopy and Radiative Transfer*. **2004**, *83*(3/4), 529-554, DOI: 10.1016/S0022-4073(03)00104-3.
- 403 12. Boone, C.D.; Nassar, R.; Walker, K.A.; Rochon, Y.; McLeod, S.D.; Rinsland, C.P.; Bernath, P.F. Retrievals
404 for the atmospheric chemistry experiment Fourier-transform spectrometer. *Applied Optics*. **2005**, *44*(33),
405 7218-31.
- 406 13. Raspollini, P.; Belotti, C.; Burgess, A.; Carli, B.; Carlotti, M.; Ceccherini, S.; Dinelli, B.M.; Dudhia, A.;
407 Flaud, J.-M.; Funke, B.; Hopfner, M.; Lopez-Puertas, M.; Payne, V.; Piccolo, C.J.; Remedios, J.; Ridolfi, M.;
408 Spang, R. MIPAS level 2 operational analysis. *Atmos. Chem. Phys.* **2006**, *6*, 5605–5630.
- 409 14. Livesey, N.J.; Snyder, W.V.; Read, W.G.; Wagner, P. A. Retrieval Algorithms for the EOS Microwave Limb
410 Sounder (MLS). *IEEE Transactions on Geoscience and Remote Sensing*. **2006**, *44*(5), 1144-1155.
- 411 15. Bowman, K.W.; Rodgers, C.D.; Kulawik, S.S.; Worden, J.; Sarkissian, E.; Osterman, G.; Steck, T.; Lou, M.;
412 Eldering, A.; Shephard, M.; Worden, H.; Lampel, M.; Clough, S.; Brown, P.; Rinsland, C.; Gunson, M.;
413 Beer, R. Tropospheric Emission Spectrometer: Retrieval Method and Error Analysis. *IEEE Transactions on
414 Geoscience and Remote Sensing*. **2006**, *44*(5), 1297-1307.

415 16. Takahashi, C.; Ochiai, S.; Suzuki, M. Operational retrieval algorithms for JEM/SMILES level 2 data
416 processing system. *Journal of Quantitative Spectroscopy & Radiative Transfer*. **2010**, *111*, 160–173.

417 17. Rodgers, C.D. *Inverse Methods for Atmospheric Sounding: Theory and Practice, Series on Atmospheric Oceanic and*
418 *Planetary Physics-Vol. 2*, World Scientific Publishing Co. Pte. Ltd: P O Box 128, Farrer Road, Singapore,
419 2000; pp. 92-93, ISBN: 981-02-2740-X.

420 18. Eriksson, P. Analysis and comparison of two linear regularization methods for passive atmospheric
421 observations. *Journal of Geophysical Research*. **2000**, *105(D14)*, 18,157-18,167.

422 19. Doicu, A.; Schreier, F.; Hess, M. Iteratively regularized Gauss – Newton method for atmospheric remote
423 sensing. *Computer Physics Communications*. **2002**, *148*, 214–26.

424 20. Steck, T. Methods for determining regularization for atmospheric retrieval problems. *Applied Optics*. **2002**,
425 *41*(9), 1788-1797.

426 21. Jiang, D.M.; Dong, C.H. A review of optimal algorithm for physical retrieval of atmospheric profile.
427 *Advances in Earth Science*. **2010**, *25*(2), 133-139.

428 22. Zou, M.M.; Chen, L.F.; Li, S.S.; Fan, M.; Tao, J.H.; Zhang, Y. An improved constraint method in optimal
429 estimation of CO₂ from GOSAT SWIR observations. *Science China Earth Sciences*. **2016**, DOI:
430 10.1007/s11430-015-0247-9.

431 23. Xu, J.; Schreier, F.; Doicu, A.; Trautmann, T. Assessment of Tikhonov-type regularization methods for
432 solving atmospheric inverse problems. *Journal of Quantitative Spectroscopy & Radiative Transfer*. **2016**, *184*,
433 274–286.

434 24. Eriksson, P.; Jimeneza, C.; Buehler, S.A. Qpack, a general tool for instrument simulation and retrieval
435 work. *Journal of Quantitative Spectroscopy & Radiative Transfer*. **2005**, *91*, 47-64.

436 25. REFERENCE FORWARD MODEL. Available online: <http://eodg.atm.ox.ac.uk/RFM/index.html>.

437 26. Von Clarmann, T.; Hopfner, M.; Funke, B.; Lopez-Puertas, M.; Dudhia, A.; Jay, V.; Schreier, F.; Ridolfi, M.;
438 Ceccherini, S.; Kerridge, B.J.; Reburn, J.; Siddans, R. Modelling of atmospheric mid-infrared radiative
439 transfer: the AMIL2DA algorithm intercomparison experiment. *Journal of Quantitative Spectroscopy &*
440 *Radiative Transfer*. **2003**, *78*, 381-407.

441 27. Clough, S.A.; Kneizys, F.X.; Davies, R.W. Line shape and the water vapor continuum. *Atmos. Res.* **1989**,
442 *23*, 229-241, DOI: 10.1016/0169-8095(89)90020-3.

443 28. Mlawer, E.J.; Payne, V.H.; Moncet, J.-L.; Delamere, J.S.; Alvarado, M.J.; Tobin, D.C. Development and
444 recent evaluation of the MT-CKD model of continuum absorption. *Philosophical Transactions of the*
445 *Royal Society A: Mathematical, Physical and Engineering Sciences*. **2012**, *370* (1968), 2520-2556, DOI:
446 10.1098/rsta.2011.0295.

447 29. Thibault, F.; Menoux, V.; Le Doucen, R.; Rosenmann, L.; Hartmann, J.-M.; Boulet, Ch. Infrared
448 collision-induced absorption by O₂ near 6.4 μm for atmospheric applications: measurements and
449 empirical modeling. *Appl. Opt.* **1997**, *36*, 563-567.

450 30. Lafferty, W.J.; Solodov, A.M.; Weber, A.; Olson, W.B.; Hartmann, J.-M. Infrared collision-induced
451 absorption by N₂ near 4.3 μm for atmospheric applications: measurements and empirical modeling.
452 *Appl. Opt.* **1996**, *35*, 5911-5917.

453 31. Clough, S.A.; Kneizys, F.X.; Rothman, L.S.; Gallery, W.O. Atmospheric Spectral Transmittance And
454 Radiance: FASCOD1 B. *Proc. SPIE* 0277, *Atmospheric Transmission*. **1981**, *277*(12), 152-166 DOI:
455 10.1117/12.931914.

456 32. Rothman, L.S.; Gordon, I.E.; Babikov, Y; Barbe, A.; Chris Benner, D.; Bernath, P.F.; Birk, M.; Bizzocchi, L.;
457 Boudon, V.; Brown, L.R.; Campargue, A.; Chance, K.; Cohen, E.A.; Coudert, L.; Malathy Devi, V.; Drouin,
458 B.; Fayt, A.; Flaud, J.-M.; Gamache, R.; Wagner, G. The HITRAN 2012 Molecular Spectroscopic Database.
459 *Journal of Quantitative Spectroscopy and Radiative Transfer*. **2013**, *130*, 4-50.