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Abstract: Given the high number of vehicle-crash victims, it has been established as a priority to 

reduce this figure in the transportation sector. For this reason, many of the recent researches are 

focused on including control systems in existing vehicles, to improve their stability, comfort and 

handling. These systems need to know in every moment the behavior of the vehicle (state 

variables), among others, when the different maneuvers are performed, to actuate by means of the 

systems in the vehicle (brakes, steering, suspension) and, in this way, to achieve a good behavior. 

The main problem arises from the lack of ability to directly capture several required dynamic 

vehicle variables, such as roll angle, from low-cost sensors. Previous studies demonstrate that low-

cost sensors can provide data in real-time with the required precision and reliability. Even more, 

other research works indicate that neural networks are efficient mechanisms to estimate roll angle. 

Nevertheless, it is necessary to assess that the fusion of data coming from low-cost devices and 

estimations provided by neural networks can fulfill the reliability and appropriateness 

requirements for using these technologies to improve overall safety in production vehicles. 

Because of the increasing of computing power, the reduction of consumption and electric devices 

size, along with the high variety of communication technologies and networking protocols using 

Internet have yield to Internet of Things (IoT) development. In order to address this issue, this 

study has two main goals: 1) Determine the appropriateness and performance of neural networks 

embedded in low-cost sensors kits to estimate roll angle required to evaluate rollover risk 

situations. 2) Compare the low-cost control unit devices (Intel Edison and Raspberry Pi 3 Model 

B), to provide the roll angle estimation with this artificial neural network-based approach. To fulfil 

these objectives an experimental environment has been set up composed of a van with two set of 

low-cost kits, one including a Raspberry Pi 3 Model B, low cost Inertial Measurement Unit 

(BNO055 - 37€) and GPS (Mtk3339 - 53€) and the other having an Intel Edison System on Chip 

linked to a SparkFun 9 Degrees of Freedom module. This experimental environment will be tested 

in different maneuvers for comparison purposes. Neural networks embedded in low-cost sensor 

kits provide roll angle estimations very approximated to real values. Even more, Intel Edison and 

Raspberry Pi 3 Model B have enough computing capabilities to successfully run roll angle 

estimation based on neural networks to determine rollover risks situation fulfilling real-time 

operation restrictions stated for this problem. 

Keywords: Real-time estimation; IoT; Artificial Neural Network; Vehicle dynamics; Roll angle; 

low cost devices; Rasbperry Pi 3 Model B, Intel Edison, FANN. 

1. Introduction 
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The high rate of vehicle-crash victims has a fatal economic and social impact in today’s 

societies. That is why nowadays road vehicles incorporate safety systems in order to reduce 

accidents. In particular, road crashes where heavy vehicles are involved cause more severe damage 

because they are prone to rollover. For this reason, many researches are focused on developing RSC 

(Roll Stability Control) systems. 

Concerning the design of RSC systems with an adequate performance, it is mandatory to know 

the dynamics of the vehicle. One of the most important parameters related to rollover dynamics is 

the roll angle. The problem is that this angle cannot be measured directly using low-cost sensors, so 

that it is necessary to estimate it through the integration and processing of data acquired from low-

cost devices or from the sensors installed on current vehicles (sensor fusion) [1,2]. In previous 

works, roll angle is estimated using different sensor types: inertial angle sensor and a gyroscope [1], 

angular rate and accelerometer sensors [2], lateral accelerometers and gyroscope [3–5], lateral and 

longitudinal accelerometers and yaw rate and roll rate sensors [4,6–8], on-board vehicle sensors and 

low-cost GPS [9,10] and lateral tire force sensors [11]. These observers are based on Kalman filter 

[5,6,9–11], robust estimators [2,3,7,8] or artificial intelligence techniques [6,12]. 

The design of RSC systems is a complex task as they have to fulfill some requirements, mutual 

to other safety vehicle systems: 

1.-To acquire information from sensors which a high sampling frequency. 

2.-To process sensor information in hard real time. 

3.- To include actuators with fast-response time. 

4.-To use low-cost systems in order to minimize the implementation cost in commercial 

vehicles. 

5.- To develop an architecture which integrates all previous elements, guaranteeing high 

reliability and fault-tolerance. 

The increase of computing power, the reduction of consumption and electric devices size, 

along with the high variety of communication technologies and networking protocols using 

Internet have yield to Internet of Things (IoT) development, being applied nowadays not only in 

smart manufacturing, healthcare, smart cities, but also, in transportation and smart vehicles [13–18]. 

Also, some research works have focused on hardware and software architectural problems related 

to this trend, and applied to the vehicular environment described before [19–22]. 

With the objective of design small and low-cost on-board systems for vehicle applications [19–

22], it is necessary that they have enough accuracy and small processing time to increase the vehicle 

safety by the inclusion both estimators and controllers. These small computers will not only acquire 

the data but also must process this data to estimate the study variables. Raspberry Pi 3 Model B and 

Intel Edison are two popular small single-board computers, because they have flexibility, low price 

and high support from the internet community. There are studies that use these systems like a 

processing device [23], in [24] a fusion data for autonomous and transportation systems was 

performed through a Raspberry Pi. In [25] Raspberry Pi is used for detecting E.coli in real time. In 

[26] the dynamics of a human-powered vehicles was acquired through a Raspberry Pi. Finally, in 

[27] a study about inherent capabilities of the Raspberry Pi was carried out. 

Like Raspberry Pi, there are many studies that use Intel Edison for the same purposes although 

it is not a single-board computer. In [28] integration with biomedical devices are used to acquired 

real-time vital parameters on neonates. In [29] a prototype to analyze geospatial data was created 

with Intel Edison. In [30] a system for smart home based on Intel Edison is proposed. 

Previous studies demonstrate that the previous low-cost devices can provide data in real-time 

with the required precision and reliability [23]. 

On the other hand, Artificial Neural Networks (ANN), have been used to estimate vehicular 

characteristics in previous studies, like [31] where an ANN is used to estimate truck static weights 

by fusing weight-in-motion data, [32] where an ANN is used to estimate friction coefficient of 

wheel and rail in trains, [33] where an ANN is used to predict intersection crashes, or [34] where an 

ANN is used to estimate the traffic density and vehicle classification. 
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With the increase of computational power in small and embedded devices, ANNs have 

become computationally feasible to be used in such systems. This enhances the capabilities that IoT 

devices can provide [35–37]. However, in most cases it is necessary to assess that the fusion of data 

coming from low-cost devices and estimations provided by ANNs can fulfil the reliability and 

appropriateness requirements for using these technologies to improve overall safety in production 

vehicles. 

The novelty reflected in this work is the analysis of the vehicle roll angle estimation using 

ANN and low-cost devices under high dynamic conditions, by following specific best practices and 

considerations. An architecture based on IoT has been developed integrating low-cost Inertial 

Motion Unit (IMU) and small single-board computer, that acquire the data from the IMU sensor 

and estimate the roll angle using ANNs. The outcome to the estimations have been compared with 

the measurements acquired by a high-end professional device (VBOX from Racelogic), used as the 

ground truth. Two different low-cost systems have been considered on this research systems 

(Raspberry Pi with IMU BNO0055 and Intel Edison with IMU LSM9DSO). These devices are 

compared in terms of estimation accuracy, processing time and reliability. 

This article is structured as follows. In Section 2, the methodology is presented, including the 

experimental testbed design, experiments’ definitions, and the data gathering and analysis. The 

experimental results and the calculation of the RMS error and processing time are presented in 

Section 3. Finally, in Section 4, the discussion and conclusion of the results and the method are 

exposed. 

2. Methodology 

This section begins with the description of the experimental testbed design defined to achieve 

the research goals; then, the experiments to gather the data required are specified; and finally, the 

data gathered to analyze real time estimators’ performance and reliability are presented, indicating 

the data analysis strategies adopted in order to identify relevant results and conclusions. 

2.1. Experimental Testbed Design 

 

This research work experimental testbed design can be analyzed from two perspectives: 

hardware and software. 

 

2.1.1 Hardware perspective 

The experimental testbed is based on a Internet of Things (IoT) architecture, embedded in a 

vehicle. The complete architecture is packaged in a product that can be integrated in any vehicle, in 

this particular case, for testing purposes, a Mercedes-Benz van was used. The motivation to use this 

vehicle was to compare the results obtained during this research with those described in [6]. 

 

To properly perform the comparative analysis, three kits of sensors were considered: 

● Reference, or ground truth kit. This kit is composed of a VBOX 3i GPS dual antenna data 

logger [38] connected to an IMU (Inertial Measurement Unit) from Racelogic. To 

accurately measure the roll angle, the two antennas form a 90-degree angle with respect 

to the traveling direction. For IoT kits’ synchronization and data gathering, the VBOX 

controller is connected to a laptop embedded in the vehicle [6]. The installed sensors 

provide measurements for lateral acceleration, aym, longitudinal acceleration, ax, yaw 

rate, ψ̇, roll rate φ̇ and roll angle, φ. Given the nature of Racelogic VBOX devices, they 

need to be physically connected by wire to the experiments manager and among 

themselves. 

● First low-cost sensor kit is composed by a Raspberry Pi 3 Model B [39,40] plus a low-cost 

Inertial Measurement Unit Shield [41]. 
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● Second low-cost sensor kit is composed by an Intel Edison System-on-Chip [42] linked to 

a SparkFun “9 Degrees of Freedom” module [43]. 

 

The technical specifications of hardware elements considered for ground truth, Raspberry and 

Intel Edison kits are detailed in Table 1. 

 

Table 1. Technical specifications of hardware elements included in the study. 

 

 VBOX kit Raspberry Pi kit Intel Edison kit 

RAM 2 GB 1 1 GB 1 GB 

CPU Intel Core 2 Duo 

T8100 2.10GHz 1 

4xARM Cortex-A53, 

1.2 GHz 

4x Intel Atom 

Tangier x86 dual 

core processor 

+Intel Quark core 

Power 

consumption 

Max. 5.5 Watts 2 5 V @ < 1.5 W–6 Wo 3.3 V @ < 1 W 

Dimensions 170 × 121 × 41 mm 2 85.60 × 56.5 mm 35.5 × 25 mm 

Angular rate range ±150◦/s From ±125◦/s–±2000◦/s From ±245◦/s– 

±2000◦/s 

Acceleration range ±1.7 g From ±2 g–±16 g From ±2 g–±16 g 

Angular rate 

resolution 

0.01◦/s 16 bits 

(From 0.003◦/s for 

±125◦/s to 0.06◦/s for 

±2000◦/s) 

16 bits 

(From 0.007◦/s for 

±245◦/s to 0.06◦/s for 

±2000◦/s) 

Acceleration 

resolution 

0.01 g 14 bits 

(From 0.0002 g for ±2 g 

to 0.002 g for ±16 g) 

14 bits 

(From 0.0002 g for 

±2 g 

to 0.002 g for ±16 g) 

Price > 16.000 € 63,2 € 55,5 € 
1 This information corresponds to the laptop required to control the experiments ad register log information in 

the ground truth kit. 
2 Only VBOX logger and IMU. 

 

The IMU and the low-cost sensor kits were located in the vehicle’s center of mass, as is 

depicted in Figure 1. These three kits were also interconnected using a WiFi router which handles 

the communications among them, so the experiments can be synchronized, and the outcome of the 

tests can be gathered. According to [44], the accurate positioning of IMU and controller is essential 

for precision enhancement of low-cost kits. 
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Figure 1. Test vehicle (1) equipped with different low-cost systems (4, 5), VBOX data logger, 3 IMU 

sensors (2) and GPS dual-antenna (3). 

 

2.1.2 Software perspective 

A software architecture was designed to gather the data provided by the sensor kits in a 

synchronized way and to provide the datasets necessary to analyze the precision and performance 

of each kit considered for this research work. The main components of this architecture are shown 

in Figure 2. 

 

 
Figure 2. Testbed software design. 

 

The Experiments Manager has the responsibility to provide a user interface to let the researcher 

start and stop the experiments and register the information coming from the experimental kits. It is 

developed in C++. The specific classes included in this component are: 

● The experimental kits network bus is in charge of subscribing and unsubscribing the different 

experimental kits. Even more, it provides the possibility to send requests to the experimental 

kits (0, shutdown experimental kit; 1, keep running the experiment; 2, start the experiment; and 
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3, end the experiment) and to receive the information items provided by VBOX, Raspberry Pi 

and Intel Edison kits.  

● Dataset Manager that is in charge of taking the data coming from the kits and storing them in a 

CSV file. The information stored includes gyroscope and accelerator data gathered with a 

sampling rate of 50 Hz. 

● Experiments User Interface that provide the functionality to start and finish the experiments. It 

connects to the experimental kits network bus to start and finish an experiment in a synchronized 

way for all the experimental kits connected. 

 

The VBOX Component is in charge of gathering the information provided from the Racelogic 

IMU sensor and GPS dual antenna data. It is developed in C#. The specific classes included in this 

component are: 

● The VBOX kit connector oversees publishing the experimental kit, receiving the orders from the 

experimental kits orchestrator connected and send to it information obtained during the 

experiment. 

● The VBOX proprietary software is in charge of managing the information received during the 

experiment execution. 

 

The software to manage the Intel Edison experimental kit is in charge of gathering the 

information provided by gyroscope and accelerometer included in its hardware architecture. This 

component is implemented in C++. The specific classes included in this component are: 

● The kit bus that is in charge of publishing the experimental kits in the network, receiving the 

requests form experimental kits network bus and send to the kit orchestrator the orders for starting 

and stopping the experiment.  

● The kit orchestrator is in charge of creating an empty data structure to store the results in RAM 

memory after receiving the “start experiment” signal from the kit bus, and sending the data 

structure having the data gathered during the experiment to the Experiments Manager for 

storage purposes, after receiving the “end experiment” signal. The information sent is routed 

through the kit bus and the experimental kits network bus to reach the Dataset Manager in the 

Experiments Manager. 

● The Sensors Handler is responsible of registering data items from sensors attending to the pre-

configured sampling rate (50 Hz for this research work).  

● The Roll Angle Estimator is a software component that implements an ANN to estimate the roll 

angle corresponding to the lateral acceleration, aym, the longitudinal acceleration, ax, the yaw 

rate, ψ̇, and the roll rate φ̇ as input variables. A more detailed description of this estimator is 

provided in 2.1.3. 

● The NTP Client is in charge of registering the actual date-time in the hardware controller of the 

experimental kit to ensure that all the kits in the testbed have the same date-time. This enables 

and eases comparison of results during the data analysis stage in this research work. 

 

The Raspberry Pi kit has the same class structure as the Intel Edison kit. Sensors drivers were 

developed in C++ due to the recommendations provided in [23], and trying to keep the code as 

much similar as possible to maximize objectivity in the comparison of performance results against 

other devices with different hardware architectures (as the Intel Edison). 

 

Raspberry Pi 3 and Intel Edison kits present wireless communication interfaces that ease the 

connectivity among components and allow to place them in virtually any point of the vehicle 

without worrying about setting up specific communication wires. Even more, the sensors used by 

these low-cost platforms are straightforwardly attached to the development boards by using the 

GPIO ports. By means of a wireless (IEEE 802.11g) access point, they can be connected to the 

experiments manager, which signals them their operation mode via a TCP socket connection. 
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2.1.3 Vehicle Roll Angle Estimator using Neural Networks 

This software component uses ANNs to estimate the vehicle roll angle. The proposed model 

employs a Back-Propagation (BP) algorithm, which is one of the most widely-used methods for 

training a neural network. The specific neural network considered has been implemented as 

described in [6]. The architecture of the BP neural network is shown in Figure 3. The ANN has a 

single hidden layer of 15 neurons, four inputs (the lateral acceleration, aym, the longitudinal 

acceleration, ax, the yaw rate, ψ̇ and the roll rate φ̇) and one output (the vehicle roll angle, φ). 

 

 
 

Figure 3. Artificial neural network architecture. 

 

The contribution provided by this research work to the Neural Network considered in [6] is its 

implementation in C++ using the FANN framework [45] to obtain an estimator component able to 

satisfy the real-time restrictions related to embed this estimator in a control unit installed in an 

operating vehicle. 

2.2. Experiments Definition 

The hypotheses to evaluate during this research work are the following: 

● H1: The roll angle estimated (φe) by the low-cost sensor kits is similar to the roll angle 

provided (φa) by expensive experimental kits (i.e., VBOX-based kits). 

● H2: The performance of the low-cost sensor kits (i.e., Raspberry Pi 3 Model B and Edison 

Kits) estimating the roll angle achieves the levels required for real-time processing 

embedded in operating vehicles. 

 

To evaluate the previous hypothesis, five controlled experiments were executed several times 

(see Table 2). The experiments consider typical maneuvers such as J-turn and lane change 

maneuvers. These maneuvers are the most common used to test the vehicle’s behavior. 

Furthermore, a long test simulating a general execution has been done. In the experiments carried 

out, the lateral acceleration and the roll rate are the variables that have suffered higher variation, 

and for this reason, these variables are considered in order to analyze the accuracy of different 

devices. 
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The experimental tests have been carried out in Leganes (Madrid, Spain) using a Mercedes 

Sprinter, as can be seen in Figure 4 during a period were the setting had no traffic restrictions 

interfering with the appropriate execution of the considered experiments. 

 

Table 2. Experiments proposed. 

 

Id Description Times Purpose Variables to 

Observe 

1 Vehicle simulates a normal 

circulation behavior, between 

20 and 50 Km/h. Several curves 

were taken, and the vehicle was 

at the most appropriate speed 

for the road and conditions 

1 
(1) Estimator Accuracy 

(2) Estimator Performance 
aym, ax, ψ̇, φ̇, φa, φe 

2 Vehicle takes a roundabout 

with a radius of around 20 m at 

a constant speed inferior to 40 

Km/h. 

3 
(1) Estimator Accuracy 

(2) Estimator Performance 
aym, ax, ψ̇, φ̇, φa, φe 

3 Vehicle takes a roundabout 

with a radius of around 20 m at 

a constant speed higher than 40 

Km/h. 

3 
(1) Estimator Accuracy 

(2) Estimator Performance 
aym, ax, ψ̇, φ̇, φa, φe 

4 Vehicle performs a lane change 

a constant speed inferior to 40 

Km/h. 

3 
(1) Estimator Accuracy 

(2) Estimator Performance 
aym, ax, ψ̇, φ̇, φa, φe 

5 Vehicle performs a lane change 

a constant speed higher than 40 

Km/h. 

3 
(1) Estimator Accuracy 

(2) Estimator Performance 
aym, ax, ψ̇, φ̇, φa, φe 

 

 

 
 

Figure 4. Experiments’ context (Map scale 1:7800 cm). 

 

2.3. Data Gathering and Analysis 

The data obtained for each of the previously-defined experiments (see Table 2) were stored by 

the controller of each kit in a CSV formatted file, identifying the experiment and its execution date 

and time. The variables considered were the lateral acceleration, aym, the longitudinal acceleration, 

ax, the yaw rate, ψ̇ and the roll rate φ̇, the actual roll angle φa (only obtained in VBOX kit, that acts 
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as the ground truth, together with the GPS coordinates) and the estimated roll angle, φe (only 

calculated by low-cost sensor kits). 

The measures were gathered according to the sampling rate stated for the experiments, which 

was 50 Hz. Figure 5 and 6 present an example of the data gathered in each experiment. 

 

 
 

Figure 5. Example of CSV file contents for data registered by VBOX kit during the experiments’ 

execution. 

 

 
 

Figure 6. Example of CSV file contents for data registered by low cost sensor kits during the 

experiments’ execution. 

 

The accuracy of roll angle estimation using NN and data collected by low-cost sensor kits was 

calculated comparing these data against the roll angle obtained from GPS-dual antenna by the 

Racelogic VBOX (Ground Truth). In Section 3, the results obtained in the different tests will be 

presented. 

 

2.4. Threats to Validity 

To analyze the validity of the results obtained in this experimental work, several threats were 

considered prior to the experiments’ execution: 
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● Internal validity is the extent to which a causal conclusion based on the experiments defined is 

appropriate avoiding the introduction of systematic errors in the data used to determine the 

results and conclusions. 

● External validity is the extent to which the results of a study can be generalized to other 

situations. 

 

(A) Internal validity: In this research, the only factor contributing to internal validity is related 

to the specific sensors used to configure each low-cost kit and the software components 

implemented to manage the required data: 

● The first threat was mitigated using two different kits for each type, in order to prevent possible 

errors produced by sensors that may provide incorrect values. Even more, all the kits 

considered were tested in a static environment, preconfiguring the corresponding calibrations 

to assure that specific sensors included were providing appropriate data.  

● Regarding the software components, the possible threats were mitigated implementing an 

exhaustive unit testing process. It ensures that each functionality is properly processing the 

received values and that synchronization among devices is correctly implemented. 

● The ANN based estimators were properly trained and compared with information coming 

from experiments carried out in previous research works [6,23]. 

● To verify the validity of the results, each maneuver was repeated, at least, three times 

consecutively. 

 

(B) External validity: In the scope of this research, the factors that influence the external 

validity are related to the replication of this experiment. These replications must consider several 

relevant factors: sensors and controllers included in the experimental kits, their location in the 

vehicle and road conditions: 

● Regarding sensors and controllers, the possible threats were mitigated using sensors and 

controllers available on the market having regular features [46–48]. On this regard, the 

conclusions obtained are valid for the low-cost sensors currently available on the market, and 

as the technology is always improving the prior conditions, the conclusions can be applied in 

forthcoming low-cost sensors. 

● Regarding vehicle conditions, the threats were related to the appropriate location of 

experimental kits in order to ensure equal conditions among them. This threat was mitigated 

creating a box to put the three sensor kits in a 3D printed enclosure (See Figure 1, box 4) that 

was located in the vehicle gravity center. These issues are important to replicate this experiment 

properly in other vehicles. In this research, as the experiments have been carried out with a real 

vehicle, it has been difficult to maintain the same exact driving conditions related to steering 

wheel angle and velocity. In spite of this problem, similar tests for typical maneuvers have been 

carried out. 

● Regarding road conditions and experiments execution, the threats were related to the 

representativeness of the scenarios considered. This threat was mitigated considering a road 

without relevant slope variations and including different experiments with different types of 

directions, constant and variable speed. 
 

3. Results 

As is indicated in Section 2, a Mercedes Sprinter was used for this work (see Figure 1). Three 

different kind of experiments were carried out: two different maneuvers, J-Turn and lane change, 

and a normal circulation test. For J-Turn and lane change maneuvers, five similar tests were 

performed in order to assess the validity of the results. 
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3.1 Test 1. J-turn 

The first test is performed in a roundabout with a radius of 22 m (see Figure 7) at a constant 

speed (close to 40 Km/h). Figure 8 shows the roll angle estimated by the Raspberry Pi (blue) and 

Intel Edison (green). In order to verify the estimation accuracy, results have been compared with 

the roll angle measured with the VBOX GPS dual antenna (yellow), which is considered as the 

ground truth. Estimations are very similar in both devices, and that the usage of low-cost devices 

do not impact in the ANN estimator performance. 

 

Figure 7. Test 1: Map and vehicle trajectory (Map scale 1:2100 cm) 

To quantify this impact, the norm, the root mean square (RMS) and maximum errors have 

been calculated. The norm error as a function of time is calculated as follows [7]: 

𝐸𝑡 =
𝜀𝑡

𝜎𝑡
∙ 100 (1) 

Where 

𝜀𝑡
2 = ∫ (𝜃𝐺𝑇 − 𝜃𝑙𝑐)2

𝑇

0

𝑑𝑡 

𝜎𝑡
2 = ∫ (𝜃𝐺𝑇 − 𝜇𝐺𝑇)2

𝑇

0

𝑑𝑡 

(2) 

θGT represents the ground truth data, θlc represents the low-cost sensor data and µGT is the 

mean value of the ground truth data obtained during the period T. 

Table 3 contains the errors measured. To verify the validity of the results, three similar tests for 

the J-turn maneuver have been carried out. To quantify the dispersion of data values, the standard 
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deviation has been included for the RMS error (see Table 3). The results show that the error is very 

similar in both devices and it is higher than the estimated roll angle using VBOX IMU data. The 

difference between Raspberry Pi 3 Model B and Intel Edison for the norm and RMS error is about 

3% and 0.05⁰, respectively. Concerning the maximum errors, the difference is about 0.3⁰. 

 

Table 3. Test 1. Errors of estimated roll angle on Raspberry Pi and Intel Edison compared with the 

measured roll from VBOX (ground truth). 

 Roll angle 

 Norm Error RMS error Maximum Error 

 (%)  (⁰)  (⁰) 

Raspberry Pi 3 Model B 62.09 0.7405±0.0823 3.54 

Intel Edison 

Racelogic VBOX IMU 

65.74 

52.22 

0.7965±0.0743 

0.5792±0.0322 

3.84 

2.74 

 

 
Figure 8. ANN estimated + ground truth roll angle for J-Turn maneuver 

 

An important aspect to consider in this kind of system is the temporal performance and real 

time constraints. For the given case, the system needs to be able of processing the inputs and apply 

the ANN estimator in less than 20 ms, corresponding to the sampling rate of 50 Hz forced by the 

low-cost sensors. 

Figures 9 and 10 show the relationship between the sensors’ measured data processing time 

(normalization + ANN estimation + denormalization) for both Intel Edison and Raspberry Pi 3 

Model B respectively, and the established threshold corresponding to the sampling rate (50 Hz). 

In table 4, a comparison of time performance between Intel Edison and Raspberry Pi 3 Model B 

is presented. To quantify the performance of the devices, the mean and maximum processing times 

have been calculated. It has been also calculated the mean deviation to assess the stability of the 

devices. Results show that both devices estimate roll angle four orders of magnitude lower than the 

required sample rate threshold of 20 ms. Results show that the processing times for Raspberry Pi 3 

Model B are higher than the Intel Edison ones. Concerning the mean and maximum times, the 

differences are about 0.5e-3 ms and 12 ms respectively. Regarding Mean Deviation, the difference is 

about 0.008 ms, so it is possible to conclude that results are homogeneous as far as performance and 

response times are concerned. 
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Table 4. Test 1. Processing time on Raspberry Pi and Intel Edison. 

 Processing Time 

 Maximum Mean Mean deviation 

 (ms) (ms) (ms) 

Raspberry Pi Model 3 13.09 18.06e-3 13.1e-3 

Intel Edison 1.19 13.87e-3 5.1e-3 

 

 

 
Figure 9. Test 1. Processing time of each iteration for Raspberry Pi 

 

 
Figure 10. Test 1.  Processing time of each iteration for Intel Edison 

3.2 Test 2. Double Lane Change 

The second test is carried out in a straight line when the vehicle does a slalom at constant 

speed (See Figure 11). Figure 12 shows the roll angle estimated by the Raspberry Pi (blue), Intel 

Edison (green) and the data provided by the Racelogic IMU (yellow). In order to verify the accuracy 

of the estimation, they have been compared with the roll angle measured with the GPS dual 

antenna of VBOX, which is considered as the ground truth. It can be seen that the estimation is very 

similar in both cases and that using low-cost devices do not impact in the ANN performance. 

To quantify this impact, the norm, RMS and maximum errors have been calculated (see Table 

5). To verify the validity of the results, three similar tests for the Lane Change maneuver have been 

carried out. To quantify the dispersion of data values, the standard deviation has been included for 

the RMS error. The results show that the errors are very similar in both devices and they are higher 

than the estimated roll angle using VBOX IMU data. The difference between Raspberry Pi 3 Model 

B and Intel Edison for the norm and RMS errors are about 0.6% and 0.03⁰, respectively. Concerning 

the maximum errors, the difference is about 0.2⁰. 
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Figure 11. Test 2: Map and vehicle trajectory (Map scale 1:2100 cm) 

 

 

Table 5. Test 2. Errors of estimated roll angle on Raspberry Pi and Intel Edison compared with the 

measured roll from VBOX (ground truth). 

 

 Roll angle 

 Norm Error RMS error Maximum Error 

 (%)  (⁰)  (⁰) 

Raspberry Pi Model 3 85.37 0.5302±0.0681 2.54 

Intel Edison 

Racelogic VBOX IMU 

85.98 

72.84 

0.5075±0.0432 

0.4521±0.0215 

2.36 

1.95 

 

 

 
 

Figure 12. ANN estimated + ground truth roll angle for double lane change 
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Figures 13 and 14 show the relationship between the sensors’ measured data processing time 

(normalization + ANN estimation + denormalization) for both Intel Edison and Raspberry Pi 3 

Model B, respectively, and the established threshold corresponding to the sampling rate (50 Hz). 

 

In Table 6, a time performance comparison between Intel Edison and Raspberry Pi 3 Model B 

is presented. To quantify this performance for both devices, the mean and maximum processing 

times have been calculated. It has been also calculated the mean deviation in order to assess the 

stability of the devices. Results show that both devices estimate roll angle four orders of magnitude 

lower than the required sample rate threshold of 20 ms. Results show that the processing times for 

Raspberry Pi 3 Model B are higher than the Intel Edison ones. Concerning to mean and maximum 

times the difference is about 0.7e-3 ms and 7.9 ms. Regarding mean deviation, the difference is about 

3.8e-3 ms, so it is possible to conclude that results are homogeneous as far as performance and 

response times are concerned. 

Table 6. Test 2. Processing time on Raspberry Pi and Intel Edison. 

 

 Processing Time 

 Maximum Mean Mean deviation 

 (s)  (s)  (s) 

Raspberry Pi Model 3 8.02e-3 12.32e-6 6.1e-6 

Intel Edison 0.13e-3 11.59e-6 2.3e-6 

 

 

 
 

Figure 13. Test 2.  Processing time of each iteration for Raspberry Pi 

 

 

 
 

Figure 14. Test 2. Processing time of each iteration for Intel Edison 
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3.3. Test 3. General Circulation 

This lasts test is carried out in the circuit shown in Figure 4. In this test not only J-Turn and 

Lane Change maneuvers are performed, but also the course of a real circuit under usual circulation 

conditions. The vehicle is driven at every moment with the most appropriate speed for the road and 

the situation, doing severe maneuvers at low and medium speed circulation (between 20 and 60 

Km/h), and smooth movements. 

Figure 15 shows the roll angle estimated by the Raspberry Pi (blue), Intel Edison (green) and 

the data provided by the Racelogic IMU (yellow) that is considered as ground truth. In this test the 

calculated error is higher than the other two tests. This kind of tests are prone to suffer noise, and as 

is indicated in [23], the low-cost sensors used are very sensitive to noise. Table 7 shows that the 

error is higher in Intel Edison than in Raspberry Pi, in this case Intel Edison present some atypical 

data. The difference of the norm and RMS error is about 96% and 0.9⁰ respectively. Concerning the 

maximum errors, the difference is about 3⁰. 

 

Table 7. Test 3. Errors of estimated roll angle on Raspberry Pi and Intel Edison compared with the 

measured roll from VBOX (ground truth). 

 

 Roll angle 

 Norm Error RMS error Maximum Error 

 (%)  (⁰)  (⁰) 

Raspberry Pi Model 3 107.91 1.0321 5.92 

Intel Edison 135.87 1.3297 4.41 

Racelogic VBOX IMU 92.09 0.9431 5.29 

 

 
Figure 15. ANN estimated + ground truth roll angle for general circulation 

 

Figures 16 and 17 show the relationship between the sensors measured data processing time 

(normalization + ANN estimation + denormalization) for both Intel Edison and Raspberry Pi 3 

Model B respectively, and the established threshold corresponding to the sampling rate (50 Hz). 

In table 8, a comparison of time performance between Intel Edison and Raspberry Pi 3 Model B 

is presented. To quantify the performance of the devices, the mean and maximum processing time 

have been calculated. It has been also calculated the mean deviation in order to assess the stability 

of the devices. As in previous tests, it is observed that both devices estimate the roll angle four 
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orders of magnitude lower than the required sample rate. Results show that the processing times 

for Raspberry Pi 3 Model B are higher than the Intel Edison ones. Concerning the mean and 

maximum times, the difference is about 0.7e-3 ms and 5.1 ms, respectively. Regarding Mean 

Deviation, the difference is about 0.1e-6 s, so it is possible to conclude that results are homogeneous 

as far as performance and response times is concerned. 

Table 8. Test 3. Processing time on Raspberry Pi and Intel Edison. 

 

 Processing Time 

 Maximum Mean Mean deviation 

 (ms) (ms) (ms) 

Raspberry Pi Model 3 14.88 14.58e-3 5.8e-3 

Intel Edison 9.54 15.09e-3 5.9e-3 

 

 

 
Figure 16. Test 3. Processing time of each iteration for Raspberry Pi 

 

 

 
 

Figure 17. Test 3. Processing time of each iteration for Intel Edison 

 

4. Discussion 

The following discussion is focused on the precision and the performance of the low-cost 

devices. 

 

4.1. Precision 

 

Results show the estimation of the roll angle obtained from low-cost devices is like the 

measurements directly obtained from Racelogic VBOX. Figure 15 shows that there exists noise in 

the estimated values. One reason is that the low-cost sensors are more prone to noise as is indicated 
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in [23] and ANNs are very sensitive to noise. As future work, it is planned to integrate filters via 

software components to solve the noise related issue. 

Despite the noise influence, the average RMS error in Intel Edison and in Raspberry Pi is 0.8⁰.  

 

4.2. Processing capability 

 

The temporal performance and real time constraints are main aspects to consider in order to 

integrate estimators and controllers in embedded low-cost devices. The results show that the 

processing time to get the data, execute its normalization, perform the roll angle estimation via 

ANN and the denormalization of the outcome, is four orders of magnitude lower than the required 

sample rate threshold of 20 ms. The average mean processing time is 14.5e-3 ms for Raspberry Pi 3 

Model B and 13e-3 ms for Intel Edison. This difference allows to integrate filters in order to reduce 

the noise in data collected from the sensors as it is indicated in 4.1 and to develop and embed more 

complex estimators and controllers. 

To minimize the processing time and allow an objective performance comparison among the 

low-cost kits, some optimizations were considered before deploying and executing the software 

components. The most relevant optimizations include: 

● Development of same C++ source code for Intel Edison and Raspberry Pi 3 Model B. Usage 

of same compiler (gcc version 6.3.0) in both platforms, and the same linker and compiler 

flags, considering the maximum optimization level for speed (-O3 [49]). These additional 

optimizations perform, among others, predictive commoning optimization, this is, reusing 

computations (especially memory loads and stores) performed in previous iterations of 

loops, with result beneficial considering the processor caches in both Intel Edison and 

Raspberry Pi 3 Model B. 

● Usage of light and optimized Fast Artificial Neural Network Library (FANN [45]), version 

2, compiled directly in the platforms using cmake, and the last source code revision from 

GitHub [50], that present among its multiple benefits the cache optimization for extra 

speed. 

● Multiple revisions of source code to keep it clean and simple. Algorithmic optimizations to 

keep a low-profile memory usage, and increased performance (i.e. avoiding copies of 

objects, like the ANN instance, by passing it by reference). 

5. Conclusions 

In accordance to the results obtained, it can be concluded that low-cost experimental kits 

including embedded ANN estimators provide roll angle estimations very close to actual values. 

Even more, Intel Edison and Raspberry Pi 3 Model B have enough computing capabilities to 

successfully run roll angle estimation based on ANNs to determine rollover risks situation fulfilling 

real-time operation restrictions stated for this problem.  

The results can be used to design, implement and test an efficient, versatile and scalable low-

cost hardware/software architectures able to be integrated in commercial vehicles. 

Even more, the performance levels achieved indicate the possibility to embed, in the low-cost 

experimental kits, more complex estimators using a sensor fusion approach to obtain roll angle 

estimations closer to the actual values based on Kalman filters, combining neural networks and 

Kalman filters and considering deep learning techniques including other parameters obtained from 

other sources (i.e. road characteristics). In this line, more complex estimators for other variables 

(such side slip, etc.) could be integrated in low-cost experimental kits to improve the vehicle 

stability control in real time. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

ANN Artificial Neural Network 

FANN Fast Artificial Neural Network (software library) 

GPS Global Positioning System 

IMU Inertial Measurement Unit 

IoT Internet Of Things 

RMS Root Mean Square 

RSC Roll Stability Control (system) 
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