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Abstract: Advances in remote sensing have led to use of satellite-derived rainfall products to 9 
complement the sparse rain gauge data. Although globally derived and some regional bias 10 
corrected, these products often show large discrepancies with ground measurements attributed to 11 
local and external factors that require systematic consideration. Decreasing rain gauge network 12 
however inhibits continuous validation of these products. We propose to deal with this problem by 13 
the use of Bayesian approach to merge the existing historical rain gauge information to create a 14 
consistent satellite rainfall data that can be used for climate studies. Monthly Bayesian bias 15 
correction is applied to the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS 16 
v2) data to reduce systematic errors using a corresponding gridded (0.05°) rain gauge data over East 17 
Africa for a period of 33 (1981–2013) years of which 22 years are utilized to derive error fields which 18 
are then applied to an independent CHIRPS data for 11 years for validation. The bias correction is 19 
spatially and temporally assessed during the rainfall wet months of March-May (MAM), June-20 
August (JJA) and October–December (OND) in East Africa. Results show significant reduction of 21 
systematic errors at both monthly and yearly scales and harmonization of their cumulative 22 
distributions. Monthly statistics showed a reduction of RMSD (29–56)% and MAE (28–60)% and an 23 
increase of correlations (2–32) %, while yearly ones showed reductions of RMSD (9-23)%, and MAE 24 
(7–27)% and increase of correlations (4–77)% for MAM months, reduction of RMSD (15–35)% and 25 
MAE (16–41)% and increase in correlations (5–16)% for JJA months, and reduction of RMSD (3–35)% 26 
and MAE (9–32)% and increase of correlations (3–65)% for OND months. Systematic errors of 27 
corrected data were influenced by local processes especially over Lake Victoria and high elevated 28 
areas. Large-scale circulations induced errors were mainly during JJA and OND rainfall seasons and 29 
were reduced by the separation of anomalous years during training. The proposed approach is 30 
recommended for generating long-term data for climate studies where consistencies of errors can 31 
be assumed. 32 

Keywords: Bayesian bias correction; satellite rainfall; rain gauge; climate studies; East Africa 33 
 34 

1. Introduction 35 

High temporal and spatial rainfall distribution is vital for many applications such as climate 36 
studies, water resource management and agriculture. Rain gauges provide the most direct 37 
representations of rainfall, but their distribution over land is sparse, especially in mountainous 38 
areas [1], and being point observations, they lack spatial representativeness. Use of satellite rainfall 39 
products is increasing because of their high spatiotemporal coverage. However, these products 40 
often exhibit large discrepancies with ground measurements [2,3] and the errors need to be reduced 41 
to make the products more representative of the rainfall variability. This has been done at global 42 
scale (Krajewski et al., 2000; Huffman et al., 2007; Arkin and Xie, 1994) and some regional 43 
evaluations [4,5], but relatively few efforts have been made to reduce the often large errors that 44 
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occur at local scales. Studies have found that satellite rainfall products have systematic errors that 45 
cause overestimations/ underestimations [6] [7,8], especially on high elevated areas.  46 

Different bias correction approaches for improving the satellite rainfall estimates have been 47 
proposed. [7] applied bias correction using empirical cumulative distribution (CDF) maps on a 48 
seasonal basis for hydrological applications in the upper Blue Nile in Ethiopia. The choice of the 49 
seasonal scale was meant to reduce error related to temporal variability but in areas of high rainfall 50 
variabilities, seasonal scale may not capture such variabilities. It is worth noting that effectiveness 51 
of bias correction of rainfall products may differ from location to location and consideration of 52 
spatial scale is of great importance. This was observed by [9,10] who used of quantile mapping 53 
approach to bias correct model rainfall products and observed that the approach improves the 54 
estimates in some locations, while it degrades in others. 55 

[9] assessed the performance of two bias correction methods; successive correction method (SCM) 56 
and optimal interpolation. Qualitative analysis and visual inspections showed better results by 57 
SCM [11]. However, the study noted the limitation of this approach in defining the optimal weight 58 
of the error distributions. [12] evaluated satellite rainfall estimates combined with high-resolution 59 
rain gauge data using different bias correction methods based on additive and multiplicative 60 
approach. The evaluation was carried out on monthly basis in different rainfall seasons and with 61 
different rain gauge network and revealed that the choice of the temporal and spatial scale of the 62 
rain gauge data is vital for effective bias correction.  63 

[13] used probabilistic Bayesian approach which requires historical rain gauge and satellite data to 64 
create satellite estimates-rain gauge data relationship which is then applied in the absence of gauge 65 
data. The assumption of this approach is that error is consistent in time and the error weight 66 
derived from the climatology is, therefore, a representative of a given region. The study was carried 67 
on a high temporal resolution aimed at improving hydrological applications. One notable 68 
observation is the impact of rain gauge distribution used in training showed significant impact on 69 
the effectiveness of the approach.  70 

Because rain gauge distributions are decreasing [14] especially over the African countries because of 71 
their cost of maintenance this means availabilities of the rain gauge data to validate the increasing 72 
satellite rainfall products may be affected by inconsistencies of the rain gauge network. To solve 73 
this problem we propose an approach that can be used with the existing historical rain gauge 74 
information to create a consistent satellite rainfall data for climate studies. A long term temporal 75 
scale bias correction is therefore applied on the Climate Hazards Group Infrared Precipitation with 76 
Stations (CHIRPS v2) data to reduce systematic errors using a corresponding gridded (0.05o) rain 77 
gauge data. The choice of CHIRPS v2 product is based on its high spatial resolution and long 78 
coverage period suitable for climate studies. Furthermore, a recent study [6] over East Africa 79 
showed a close correspondence of CHIRPS v2 with ground observations. This study further 80 
spatially evaluates how CHIRPS rainfall estimates compare with the gridded rain gauge data after 81 
bias correction on monthly and yearly timescale during the wet rainfall months (March-May, June-82 
August, and October-December) over East Africa.  83 

This paper is arranged as follows. Description of study areas and data are given in section 2. 84 
Bayesian approach and methods of evaluation are described in section 3. Results and discussion are 85 
given in section 4, followed by summary and conclusion in section 5.  86 

 87 

 88 

 89 
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2. Study Region and Data 90 

Study Region 91 

Figure 1 shows the study area in East Africa that extends between 29°E and 42°E, and 12°S and 5°N 92 
and covers five countries: Kenya, Uganda, Tanzania, Burundi, and Rwanda. The region shows 93 
diverse topography delineated by the embedded elevation map. Two main rainy seasons are 94 
experienced during the months of March, April, and May (MAM) and October, November, and 95 
December (OND). The rainy seasons coincide with overlying of the low-pressure belt of the Inter-96 
Tropical Convergence Zone (ITCZ). The ITCZ migrates from 15°S to 15°N between January and 97 
July and is characterized by convective activities that lead to increased precipitation. A third rainfall 98 
season is the JJA and affects a small part of western Kenya and Uganda but significantly affects 99 
water resources within the region and surroundings of Lake Victoria. Satellite-derived rainfall 100 
estimates are nowadays widely used over the region because of their good spatial coverage and 101 
consistency in time. Further, the rain gauge distributions are decreasing and none represented over 102 
mountainous areas but the present rain gauge distribution are still useful in validating the satellite 103 
rainfall products.  104 

 105 

Figure 1: Map of East Africa, with Shuttle Radar Topography Mission (SRTM) 90 m digital 106 
elevation model. Highlighted are sections of areas of high rainfall amounts during March-May 107 
(Lake Victoria), June-August (Mt Elgon) and October-December (Mt Kenya) rainfall months. 108 

Rainfall data 109 

Two monthly rainfall data sets are used in this study and include CHIRPS v2.0 rainfall estimates 110 
and gridded (0.05o) rain gauge data.  111 

CHIRPS is a quasi-global dataset developed by the United States Geological Survey (USGS) Earth 112 
Resources Observations and Science Centre and the University of California Santa Barbara Climate 113 
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Hazards Group. It has a spatial resolution of 0.05°, and a daily/pentad/monthly temporal 114 
resolution. It uses TRMM multi-satellite precipitation analysis version 7 to calibrate the CCD 115 
rainfall estimates. The product covers the area between 50°N and 50°S, and data are available from 116 
January 1981 to the near present. CHIRPS v 2 data were used. Further details can be found in a 117 
study by [15,16], and an assessment of its performance relative to other products is provided in 118 
research by[5]. 119 

The gridded rain gauge data were provided by Intergovernmental Authority on Development 120 
(IGAD) Climate Prediction and Application Centre (ICPAC; available online at 121 
http://www.icpac.net). They applied interpolated, quality controlled available rain gauge 122 
measurements from 284 rainfall stations over East Africa. The GeoCLIM tool 123 
(http://wiki.chg.ucsb.edu/wiki/Geoclim) with the inverse distance weighting (IDW) (Zhang et al., 124 
2014) was utilized. The GeoCLIM tool was developed by Tamuka Magadzire of the United States 125 
Geological Survey (USGS) Famine Early Warning Systems Network (FEWSNET) for rainfall, 126 
temperature, and evapotranspiration analysis. The data has been used for climate studies over East 127 
Africa and used for evaluation of satellite rainfall data [6].  128 

Elevation data from the Shuttle Radar Topography Mission (SRTM) 90-m DEM (Digital Elevation 129 
Model) website (www. cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1) were used. The 130 
5° spatial resolution tiles were mosaicked over East Africa through Geographical Information 131 
System (GIS) functionality. All the data were changed to 0.05o for compatibility (see below for 132 
details in methodology). 133 

3 Methodology 134 

We first describe the Bayesian method and then explain the training and testing procedures. 135 

3.1 Bayesian method 136 

Bayesian method is a probabilistic approach that merges data from different sources (Carlin and 137 
Louis, 1996) to get optimal representative values from the input datasets. It is based on spatial 138 
transformation, using the variances of the input datasets. In this study, it is used to adjust CHIRPS 139 
satellite rainfall estimates using the gridded rain gauge data for a period of 33 years in two steps. 140 
First, data from 22 years training period (1981- 2002) are used to calculate bias fields for the multi-141 
annual monthly averages, yielding nine individual bias fields for each wet month. The monthly 142 
averaged bias fields are then used to correct an independent satellite rainfall estimates during an 11 143 
year (2003-2013) validation period. The Bayesian approach is carried out at a 0.05o x 0.05o spatial 144 
scale for both data but for compatibility, the CHIRPS data are resampled using nearest neighbour 145 
[17] interpolation to match the georeference of the rain gauge data. The resampling is more robust 146 
in reprocessing algorithms according to this study. 147 

 148 

3.1.1 Training period 149 

 150 

The Bayes theorem [18] aims at getting the maximum likelihood of P(s|g), which is the conditional 151 
probability of the satellite estimates (s) given the gridded rain gauge data (g).  152 

𝑷(𝒔|𝒈) =
𝑷(𝒔)𝑷(𝒈|𝒔))

𝑷(𝒈)
                              (1) 153 

 154 
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Where, P(s), P(g|s) denotes the probability of satellite data and likelihood function of raingauge 155 
data given satellite estimates. 156 

Since the gridded rainfall data distribution is known, P(g) =1 then Eq. (1) reduces to Eq. (2): 157 

 158 

𝑷(𝒔|𝒈) = 𝑷(𝒈|𝒔)𝑷(𝒔)                   (2) 159 

 160 

Following Talagrand [19], the least squares estimation can be used to simplify data assimilation 161 
problems to linear relationships. Equation (2) can, therefore, be changed from the probabilistic form 162 
into independent variables. 163 

Assuming the monthly averaged errors (ε) of the satellite rainfall estimates and gridded rain gauge 164 
data to be unbiased and consistent in time and E the expected value as in Eq. (3).    165 

 166 

𝑬(𝜺𝒈) = 𝑬(𝜺𝒔) = 𝟎                                                          (3)            167 

                                                                                                                                                                                                                                                                                                                                                                                             168 

The variances (σ2) of each dataset can be related to the errors (ε), assuming the errors to be 169 
uncorrelated (Eq. (4) and (5). 170 

 171 

𝑬(𝜺𝒈
𝟐 ) = 𝝈𝒈

𝟐                                                                   (4)                                                                                                                                                                                    172 

 173 

𝑬(𝜺𝒔
𝟐) = 𝝈𝒔

𝟐                                                                  (5)      174 

 175 

Bias-corrected satellite estimates can then be represented as a linear combination of the gridded 176 
rainfall data and uncorrected satellite rainfall estimates. The weighing factors, 𝜶𝒈 and 𝜶𝒔, are 177 

dependent on the respective variances; the higher the variance of the respective dataset, the lower 178 
the corresponding weighting factor. This means that in areas where the variance of the reference 179 
gridded rain gauge dataset is high, the correction that is applied to the satellite data will be 180 
reduced. This is the case where large random errors from year to year are large during correction 181 
period and were not accounted for in the correction. 182 

 183 

 𝒔𝒄̅ = 𝜶𝒈𝒈̅ + 𝜶𝒔𝒔̅                                                             (6)      184 

 185 

With the overbars denoting the averaged values for each month in the 22 years learning training 186 
dataset. Equation (6) again assumes the bias-corrected satellite estimates (sc) to be unbiased as their 187 
errors are consistent during the training period.  This may not be the case when the data is used for 188 
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climate analysis because of the randomness of the errors arising from year to year. The training 189 
period is supposed to be long enough to include periodic external influences in error derivations. 190 
The sum of the satellite estimates' weighing factor, 𝜶𝒔, and the gridded rain gauge weighting factor, 191 
𝜶𝒈, equals one. 192 

 𝜶𝒈 + 𝜶𝒔 = 𝟏                                                                 (7)     193 

  194 

sc will best estimate g if the weighing factors αg and αs minimize the mean squared error of the 195 
variance of the corrected satellite estimates, 𝝈𝒄

𝟐, with respect to αg, following Eq. (8-10). 196 

𝝏𝝈𝒄
𝟐

𝝏𝜶𝒈
→ 𝟎                                                                        (8)      197 

 198 

 𝝈𝒄
𝟐 = (𝒔𝒄̅ − 𝒈̅)𝟐                                                                 (9) 199 

 200 

𝝈𝒄
𝟐 = 𝜶𝒈

𝟐 𝝈𝒈
𝟐 + (𝟏 − 𝜶𝒈)

𝟐
𝝈𝒔

𝟐                                                        (10)                                       201 

                                                                                                                                                                                  202 

This leads to 203 

 204 

𝜶𝒈 =
𝝈𝒔

𝟐

𝝈𝒈
𝟐 +𝝈𝒔

𝟐                                                                   (11)      205 

 206 

𝜶𝒔 =
𝝈𝒈

𝟐

𝝈𝒈
𝟐 +𝝈𝒔

𝟐                                                                   (12)      207 

 208 

Equation (11 and 12) imply that the weights of the satellite estimates and the corresponding rain 209 
gauge data are related to the inverse of their variances. Using these weighting factors, the average 210 
satellite estimates for each month in the 22 years training dataset can then be corrected using the 211 
linear relationship shown in Eq.(6).which can be rewritten as shown eqn.(13) 212 

                                                              213 

𝒔𝒄̅ = 𝒔̅ +
𝝈𝒔

𝟐

𝝈𝒔
𝟐+𝝈𝒈

𝟐 (𝒈̅ − 𝒔̅) = 𝒔̅ + 𝜶𝒈(𝒈̅ − 𝒔̅)                                            (13)      214 

   215 

Equation (13) implies that when the variance of the reference data is very high, i.e. 𝝈𝒔 ≫ 𝝈𝒈, then  216 

𝝈𝒈→𝟎 and sc approaches s, and that when 𝝈𝒔 ≪ 𝝈𝒈, 𝝈𝒈→𝟏and sc approaches g. 217 

 218 
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3.1.2  Testing period 219 

In this section, the Bayesian approach is described using the error fields derived during training on 220 
monthly data. Evaluation of the corrected satellite estimates in relation to a corresponding rain 221 
gauge data on monthly and yearly timescale is used. 222 

The bias fields were calculated from the satellite estimates for each wet month during MAM and 223 
OND rainfall season using Eq. (13).The subscript ‘i' stand for the time step. 224 

 225 

𝑩𝒊𝒂𝒔 =
𝟏

𝒏
∑ (𝒔𝒄𝒊 − 𝒈𝒊)

𝑵
𝒊                                                       (14) 226 

 227 

The bias is then subtracted from satellite data of each corresponding month (subscript ‘i’) using Eq. 228 
(15) 229 

 230 

𝒔𝒄𝒊 = 𝒔𝒊 − 𝒃𝒊𝒂𝒔                                                             (15) 231 

 232 

3.2 An assessment of the quality of bias corrected rainfall  233 

Validation of bias correction on CHIRPS satellite rainfall was carried out for a period of 11 years 234 
from 2003-2013. The corrected and raw data were compared with the gridded rain gauge data for 235 
the months of the rainy seasons (March-May, June-August and October-December). Continuous 236 
statistics of the correlation coefficient (cc), root mean square difference (RMSD), standard 237 
deviations (σ) (Eq. (16-17) and MAE (Eq. (18) were used to quantify their relationships and Taylor 238 
diagrams [20], spatial maps and plots used for visualization. 239 

 240 

𝒄𝒄 =
𝟏

𝑵
∑ (𝒔𝒊−𝒔̅)𝑵

𝒊=𝟏 (𝒈𝒊−𝒈̅)

𝝈𝒔𝝈𝒈
                                                          (16) 241 

 242 

𝐑𝐌𝐒𝐃 = √
𝟏

𝑵
∑ (𝒔𝒊 − 𝒈𝒊)

𝟐𝑵
𝒊=𝟏                                                      (17) 243 

 244 

where overbar stands for the respective mean satellite estimates (s) , gridded rain gauge datasets 245 
(g), and N the number of samples considered. 246 

 247 

 𝑴𝑨𝑬 =
𝟏

𝒏
∑ [𝒔𝒊 − 𝒈𝒊]

𝑵
𝒊=𝟏                                                         (18) 248 

 249 

3.3 Spatial distribution assessment of bias corrected rainfall estimates 250 
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Because East Africa rainfall is influenced by external factors that occurs inter-annually and they 251 
influence the occurrences of the systematic errors in rainfall products, the bias-corrected CHIRPS 252 
estimates were assessed spatially on yearly timescale using equations (16-18). Cumulative 253 
distributions of monthly averages for each validation year (2003-2011) were utilized. Further, 254 
analysis were carried on raingauge gauge weight correction factor (equation 11) to establish the 255 
impact of largescale circulations on satellite estimates’ systematic errors. The spatial distribution of 256 
bias corrected CHIRPS were assessed with respect to corresponding raingauge data during the 257 
validation period (2003-2013).  258 

4. Results and Discussion 259 

4.1 Evaluation of bias-corrected monthly CHIRPS 260 

Bias correction was carried for all the months from January to December but only the wet month of 261 
March to May, June-August and October to December are discussed in this paper. The months of 262 
January, February and September are generally dry for most of East Africa region and were 263 
therefore excluded in the analysis. Figure 2 shows the Taylor diagrams displaying the error metrics 264 
before and after bias corrections during the wet months of March to May, June-August and October 265 
to December with respect to rain gauge data over East Africa. It is illustrated in this figure that 266 
Bayesian approach significantly improved the accuracy of the CHIRPS estimates. This is indicated 267 
by reduced RMSD and increased correlations for all the months except the month of August. The 268 
overcorrection in this month was attributed to erroneous inconsistencies caused by 269 
misrepresentation of the rainfall regime by rain gauge data (more details later). The reduction of 270 
systematic errors showed dependence on rainfall amounts and were, therefore, more during the 271 
months of increased rainfall of April, May and November. This is in line with what was recently 272 
documented in (Kimani et al., 2017), that satellite rainfall products underestimate high rainfall 273 
amounts over the region. 274 
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 275 

Figure 2: Monthly Taylor diagrams displaying statistical comparison between uncorrected (red) and 276 
corrected (blue) CHIRPS estimates with corresponding rain gauge data as the reference. Only the 277 
wet months of the rainfall season (March-May and June-August, October-December) over a period 278 
of 11 years (2003–2013) were utilized. The azimuthal angle represents correlation coefficient; radial 279 
distance the standard deviation (mm/month) and green contours represent RMSD (mm/month). 280 

Figure 3 shows the spatial distribution of monthly averaged satellite rainfall estimates before and 281 
after bias corrections represented for each season and corresponding rain gauge data. The spatial 282 
patterns of bias-corrected (bc) display areas of improved rainfall estimates, and the change maps 283 
indicate the areas where correction of CHIRPS estimates was done. 284 

It can be observed from rain gauge data high rainfall is over Mt Kenya, Lake Victoria and around 285 
Mt Elgon. CHIRPS estimates are able to capture those areas of highest rainfall but show 286 
overestimates over southern Tanzania. This overestimation is associated with the consistent high 287 
variance of the rain gauge, hence the corrected estimates approach the uncorrected ones. These 288 
findings are in line with (Tian et al., 2010) that used the probability distribution to adjust satellite 289 
rainfall estimates and associated with corrections to misrepresentation of rainfall variability by the 290 
rain gauge network. During JJA seasons represented by August month, the CHIRPS (bc) estimates 291 
overestimate rainfall amounts, especially over Mt Kenyan highlands. This again is attributed to 292 
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temporal inconsistencies of the patterns in rain gauge spatial rainfall that resulted in overcorrection. 293 
However, in November of OND season, the CHIRPS (bc) estimates are close to the rain gauge 294 
rainfall and (Kimani et al., 2017) reported CHIRPS underestimations on high elevated areas (over 295 
the same study areas) and it is credible that this approach adequately reduced these errors. 296 

 297 

Figure 3: Monthly rainfall averages (2003-2013) of rain gauge data and satellite rainfall estimates 298 
before (CHIRPS), after bias corrections (CHIRPS (bc)) and the difference between CHIRPS (bc) and 299 
CHIRPS. 300 

Figure 4 shows the CHIRPS systematic errors adjusted using empirical Cumulative Distribution 301 
Function (CDF) plots before and after bias corrections during MAM, JJA and OND rainfall seasons. 302 
Before corrections, CHIRPS overestimated the relatively low (<200 mm/month) rainfall amounts 303 
and underestimated high (>200 mm/month) amounts. This concurs with (Paredes-Trejo et al., 2017) 304 
that CHIRPS monthly estimates overestimate/underestimate low/high rainfall amounts. After bias 305 
correction, CHIRPS estimates in each of the nine months show significant change in spatial 306 
distribution close to the rain gauge data except in the month of August that show overcorrections. 307 

 308 
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 309 

Figure 4: Empirical Cumulative Distribution Function (CDF) of monthly rain gauge data, raw 310 
satellite rainfall estimates (CHIRPS), and bias-corrected (CHIRPS (bc)) over the validation period 311 
(2003–2013). 312 

Table 1 shows the monthly error statistics for all the wet months before and after bias corrections. 313 
The change of errors for each month is given in percentages. It is evident the bias corrected CHIRPS 314 
estimates show reductions in RMSD and MAE errors and increase of correlations. The overall 315 
monthly average reduction of RMSD (29-56) % and MAE (28-60) % and correlations increase (2-32) 316 
% is an indication of the high skill of the bias correction approach. It can be observed that the bias 317 
correction was successful for both high and low rainfall amounts. This is an indication that the 318 
dependence of corrected systematic errors not only on overall rainfall magnitudes but also on its 319 
distribution and regimes. 320 

The corrected errors also showed dependence on seasons and this was indicated by RMSD and 321 
MAE reduction patterns that are high during JJA rainfall season. Consequently, a reduction of 50% 322 
and 60% of RMSD and MAE respectively were observed in the month of June. These changes are 323 
attributed to the onset of south-east monsoon in May that ends by November. This shows the 324 
corrected CHIRPS errors follow the rainfall systems affecting rainfall variabilities over East Africa. 325 

 326 
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Table1: Statistics for the monthly spatial evaluation 327 

Months RMSD RMSD 

(bc) 

Change 

(%) 

MAE MAE 

(bc) 

Change 

(%) 

CC CC  

(bc) 

Change 

(%) 

Rainfall 

(mm) 

March 34.9 24.0 -31 24 16 -32 0.87 0.92 5 116 

April 57.7 25.6 -56 38 24 -37 0.49 0.65 32 135 

May 38.0 20.3 -47 29 14 -51 0.81 0.94 17 86 

June 18.7 9.4 -50 14 6 -60 0.87 0.97 11 36 

July 17.8 10.4 -42 11 6 -44 0.90 0.97 7 30 

August 23.5 51.3 118 15 97 545 0.90 0.43 -52 42 

October 31.0 16.1 -48 24 11 -53 0.81 0.94 17 75 

November 32.7 18.4 -44 24 13 -45 0.73 0.91 25 106 

December 24.5 17.4 -29 18 13 -28 0.94 0.96 2 114 

Performances of CHIRPS and CHIRPS (bc) with respect to rain gauge data were further compared 328 
over Lake Victoria, Mt Elgon and Mt Kenya during the wettest (April and November) of MAM, 329 
OND and driest (JJA) rainfall seasons. These areas are significant in that they experience rainfall of 330 
different regimes from local effects. Figure 5 shows the CDFs of the rain gauge data, CHIRPS and 331 
CHIRPS (bc) over those areas. It is evident the CDFs of CHIRPS (bc) is aligned closer to those of the 332 
rain gauge data in all the months. However, it is also evident in highly elevated areas of Mt Kenya 333 
the cumulative distributions of the rain gauge data and CHIRP (bc) were not well aligned. This was 334 
more evident during April and November. It is worth noting these two seasons are influenced by 335 
ITZC and this large-scale circulation was associated with observed fluctuations in rainfall. These 336 
results concur with Sun et al., (2015) study that used model simulation to study the relationship 337 
between rainfall over Lake Victoria and surface temperature that showed the relationship is 338 
associated to influences of large-scale circulations and orography to rainfall variability. This 339 
suggests the systematic errors in the uncorrected CHIRPS may be linked to these external factors. 340 
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 341 

Figure 5: Empirical Cumulative Distribution Function (CDF) of monthly rain gauge data, satellite 342 
rainfall estimates (CHIRPS), and bias-corrected CHIRPS (bc) over the validation period (2003–2013). 343 
Shown are only areas within which high rainfall amounts are experienced during March-May (Lake 344 
Victoria), June-August (Mt Elgon) and October-December (Mt Kenya) as represented by the months 345 
of April, July and November respectively. 346 

4.2 Yearly spatial distribution of bias corrected CHIRPS  347 

In this section yearly CHIRPS and the CHIRPS (bc), estimates are described in cumulative 348 
distribution plots in Figures 6, 7, and 8 of the month of April, July and November respectively. 349 

In April (Figure 6), it is evident before bias corrections CHIRPS underestimates/overestimates 350 
low/high rainfall amounts. Underestimation was more evident in years 2004, 2006 and 2013, which 351 
are the wettest years during MAM season and were adjusted to align with rain gauge data. In July 352 
(Figure 7), rainfall amount is generally low and general overestimation before correction is 353 
observed. The bias correction significantly adjusted the rainfall distribution to match the rain gauge 354 
data. However in years 2004, and 2009-2013 the distribution plots show low skills in adjusting the 355 
rainfall estimates. From the rainfall averages, 2004 and 2009 are years with anomalous wet rain 356 
gauge records which explains the source of over-corrections. 357 
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Similar overcorrection is evident in Figure 8 in 2013 and this one of the driest year during the 358 
validation period in OND rainfall season. From these results, it is clear that during MAM more 359 
systematic errors were reduced that corresponds to years of high rainfall amounts. However, 360 
during JJA and OND changes in the frequency of extreme rainfall amounts relative to other years 361 
caused irregularities of errors and over corrections resulted. The seasonality of the anomalous years 362 
suggests external influences. 363 

 364 

Figure 6: Empirical Distribution Function (CDF) of rain gauge data raw satellite rainfall estimates 365 
(CHIRPS), bias-corrected CHIRPS (bc) over the validation period (2003–2013) of the month of April. 366 
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 367 

Figure 7:  The same as Figure 6, except for the month of July. 368 

 369 
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 370 

Figure 8:  The same as Figure 6, except for the month of November. 371 

The statistics of yearly evaluation are summarized in Table 2. The improvement in spatial pattern 372 
during the three rainfall seasons as represented by each month show reduced RMSD (mm/year) 373 
and MAE (mm/year), and the corresponding increase in correlations. It is evident, in April the 374 
corrected large systematic errors correspond with years of high rainfall and consequently, the dry 375 
years have fewer errors. The wettest year (2006) show the highest change in correlations (77%) and 376 
the driest year (2009) the least (<10%). In July, there is a significant reduction of errors but the 377 
approach showed low skills in eradicating errors of anomalous increased rainfall observed in the 378 
years 2004 and 2009. About four times rainfall magnitudes different from other validation years 379 
was observed during these two years leading to inconsistent errors. Similar to July, in November, 380 
significant errors were reduced but in the anomalous dry year in 2013, least errors were corrected 381 
and overcorrection was observed. RMSD and MAE increased, while correlations decreased 382 
meaning besides errors dependence on rainfall magnitudes the consistencies of the errors inter-383 
annually affect the performance. The randomness of the errors is evident in the inter-annual 384 
analysis. 385 

 386 

 387 
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 388 

Table2: Statistics for the yearly spatial evaluation 389 

April RMSD RMSD 

(bc) 

Change 

(%) 

MAE MAE 

(bc) 

Change 

(%) 

CC CC  

(bc) 

Change Rainfall 

2003 66.7 55.1 -17 49 40    -19  0.56 0.70 24 134 

2004 79.7 68.3 -14 56 44    -21  0.39 0.48 24 158 

2005 50.8 40.5 -20 37 28    -23  0.57 0.68 20 109 

2006 109.4 98.1 -10 77 68    -11  

 

0.09 0.15 77 179 

2007 51.5 40.9 -21 39 29    -25  0.63 0.74 18 117 

2008 64.9 54.4 -16 45 36    -21  0.60 0.67 12 123 

2009 61.6 56.2 -9 42 39     -7  0.61 0.66 8 116 

2010 65.5 50.2 -23 47 35     -27  0.61 0.73 19 135 

2011 80.3 73.5 -9 46 39     -13  

 

0.60 0.63 4 103 

2012 68.5 59.2 -13 49 41     -16  0.67 0.75 13 152 

2013 85.4 74.1 -13 60 51     -15  0.44 0.58 31 161 
           

July RMSD RMSD 

(bc) 

Change 

(%) 

MAE MAE 

(bc) 

Change 

(%) 

CC CC 

(bc) 

change Rainfall 

2003 23.8 15.4 -35 14 8 -41 0.85 0.94 10 30 

2004 17.1 15.6 -9 9 10 2 0.85 0.90 6 203 

2005 26.4 20.0 -24 15 11 -25 0.87 0.92 6 33 

2006 38.5 29.2 -24 22 18 -20 0.73 0.85 16 39 

2007 26.2 20.1 -23 16 11 -33 0.90 0.94 4 42 

2008 32.1 21.6 -33 17 12 -31 0.82 0.92 11 36 

2009 14.0 16.3 16 8 10 26 0.84 0.82 -2 164 

2010 22.1 14.1 -36 12 9 -25 0.88 0.95 8 28 

2011 26.8 22.6 -15 15 12 -19 0.84 0.91 8 30 

2012 29.8 30.5 3 14 15 4 0.84 0.88 5 24 

2013 22.9 18.5 -19 12 10 -16 0.88 0.92 5 28 
           

November RMSD RMSD 

(bc) 

Change 

(%) 

MAE MAE 

(bc) 

Change 

(%) 

CC CC 

(bc) 

change Rainfall 

2003 50.6 32.8 -35 32 22 -32 0.67 0.86 28 88 

2004 51.4 39.9 -22 39 30 -23 0.44 0.59 35 115 
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Further analysis was carried out to determine the influence of large-scale circulations to satellite 390 
rainfall systematic errors in CHIRPS. This was done by assessing the impact of excluding 391 
anomalous wet years (1997/1998) during El Niño. Figure 9 and 10 show the spatial and temporal 392 
distribution of bias correction weight when the El Niño years of 1997/1998 are included (w) and 393 
excluded (wc) and the difference (wc-w) respectively. From the weight distribution map in figure 9 394 
during MAM and JJA rainfall months of April and July respectively, no significant difference occurs 395 
in bias correction weight. However, in November, increased performance after correction of 396 
systematic errors is evident particularly over Lake Victoria, southwestern Tanzania and Eastern 397 
Kenya. These changes are supported by temporal analysis in figure 10 where significant changes 398 
are observed from the month of August and including the OND rainfall months. It can be depicted 399 
that general circulations related to El Niño are associated with CHIRPS systematic errors observed 400 
inter-annually. These findings concur with the study (Indeje et al., 2000) that during this period 401 
influences of El Niño–Southern Oscillation (ENSO) are experienced over East Africa. The rainfall 402 
variabilities in Lake Victoria are also linked to largescale circulations (Sun et al., 2015). It is therefore 403 
evident that the interannual systematic errors of CHIRPS and any other satellite-derived rainfall 404 
estimates can be reduced more effectively by a prior knowledge of the external factors influencing 405 
the rainfall variabilities. 406 

2005 29.2 23.1 -21 21 17 -22 0.72 0.82 14 583 

2006 81.9 66.2 -19 62 51 -19 0.67 0.76 12 205 

2007 34.6 27.9 -19 26 21 -19 0.77 0.85 10 79 

2008 50.4 36.1 -28 36 27 -25 0.38 0.62 65 108 

2009 36.5 32.5 -11 28 25 -9 0.76 0.79 3 97 

2010 30.5 24.3 -20 21 18 -16 0.78 0.88 13 66 

2011 75.4 59.1 -22 51 43 -17 0.63 0.75 20 176 

2012 45.1 43.7 -3 33 30 -9 0.62 0.64 4 97 

2013 58.2 63.9 10 43 45 3 0.41 0.35 -16 77 
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 407 

Figure 9: Spatial distributions of raingauge correction weights before (w) and after (wc) exclusion of 408 
El Niño years (1997/1998) during training in the three rainfall season months of April, July and 409 
November. The weights are derived from the variances of the rain gauge data and those of the 410 
corresponding satellite rainfall estimates. Mean (1981-2013) wind patterns are embedded on the 411 
maps and the arrows point in the direction of wind flow and the size of the arrow represents the 412 
wind speed. 413 

 414 

Figure 10: Temporal changes of bias correction weights before (w) and after (w c) exclusion of El 415 
Niño years (1997/1998) during training in the three rainfall season months of April, July and 416 
November. The weights are derived from the variances of the rain gauge data and those of the 417 
corresponding satellite rainfall estimates. 418 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2018                   doi:10.20944/preprints201804.0225.v1

Peer-reviewed version available at Remote Sens. 2018, 10, 1074; doi:10.3390/rs10071074

http://dx.doi.org/10.20944/preprints201804.0225.v1
http://dx.doi.org/10.3390/rs10071074


 

 

5. Conclusions 419 

Rain gauge distributions are on the decline and satellite rainfall estimates are increasingly used to 420 
complement the sparse rain gauge data. However, rain gauge data is used as reference data to 421 
validate the incoming satellite products but with the decreasing trend, the quality of this validation 422 
may be compromised. To solve this problem Bayesian approach is hereby applied to the existing 423 
historical rain gauge information to create a consistent satellite rainfall data that can be used for 424 
climate studies. A long term temporal scale (monthly) bias correction is therefore applied on 425 
Climate Hazards Group Infrared Precipitation with Stations (CHIRPS v2) data to reduce systematic 426 
errors using a corresponding gridded (0.05o) rain gauge data over East Africa. The gridded rain 427 
gauge data was developed by ICPAC intergovernmental organization to safeguard the decreasing 428 
network. The choice of CHIRPS was based on its close correspondence with rain gauge data over 429 
the region [6] and its period of long coverage suitable for climate studies. Satellite rainfall products 430 
exhibit systematic errors and although CHIRPS show good performance over East Africa, reducing 431 
these errors would increase its performances for climate studies, and agricultural and water 432 
management. The study aimed at temporally and spatially evaluating how CHIRPS rainfall 433 
estimates compare with the gridded rain gauge data in magnitude and distributions after bias 434 
correction. Only the wet rainfall months of MAM, JJA and OND are utilized for a period of 33 years 435 
of which 22 years were for calibration and 11 years for validation.  436 

Monthly analysis showed CHIRPS estimates have systematic errors mainly of underestimations 437 
and application of the Bayesian method adequately reduced such errors. The remaining errors after 438 
correction showed dependence on rainfall magnitudes and hence increased with increase in rainfall 439 
amounts. The highest change in correlation coefficients of 32% in April, and 25% in November 440 
which are the peak rainfall months of MAM and OND rainfall seasons were observed. Cumulative 441 
distributions plots revealed that in areas of low rainfall (<200mm/month) the corrected errors were 442 
associated with overcorrections beyond which underestimations were dominant. Remarkably the 443 
approach significantly reduced these errors except in August when the presence of a different 444 
rainfall regime produced irregular errors in rain gauge data that were observed as overcorrections.  445 

The corrected CHIRPS estimates showed dependence on seasons and this was indicated by patterns 446 
of reduction in RMSD and MAE that were highest during JJA rainfall season. Consequently, a 447 
reduction of RMSD (50%), and MAE (60%) were observed in the month of June. These changes 448 
coincide with the onset of south-east monsoon that peak in the month of May of MAM season and 449 
includes JJA rainfall season. This shows the bias corrected CHIRPS follow the rainfall systems 450 
affecting rainfall variabilities over East Africa. The overall monthly RMSD and MAE are reduced 451 
between (26-48) % and (28-60) % respectively and correlations increase between 2-32 %. It can be 452 
concluded that the Bayesian approach reduced CHIRPS errors of monthly scale which were locally 453 
induced, like topographic and lake processes. 454 

The areas of highest systematic error reductions include the high elevated areas especially Mt 455 
Kenya, Mt Elgon and Lake Victoria region. These areas are also significant because of the mixed 456 
rainfall regimes influenced by local effects. Performances of CHIRPS and CHIRPS (bc) with respect 457 
to rain gauge data were further compared over these areas (Figure1) during the wettest (April and 458 
November) and driest (July) months of MAM, OND and JJA rainfall seasons respectively. The 459 
results showed that even though the areas differ in the amount of rainfall in each season, the bias 460 
correction aligned the CHIRPS cumulative distribution closer to that of the rain gauge data. 461 
However, on highly elevated areas of Mt Kenya, the cumulative distributions of the rain gauge data 462 
and CHIRP (bc) were not well aligned. This was more evident during April and November, of 463 
MAM and OND rainfall seasons and this was associated with largescale influences as the two 464 
seasons are experienced during ITCZ overpass. 465 
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Interannual CHIRPS bias correction assessments were carried out with respect to rain gauge data 466 
for the months of April, July and November to represent MAM, JJA and OND rainfall seasons. 467 
Spatial rainfall patterns revealed that systematic errors exist in yearly estimates mainly of 468 
underestimation which increased with increase in rainfall magnitudes. However cumulative 469 
distribution analysis showed CHIRPS estimates bias correction adjusted 470 
underestimations/overestimations of low/high rainfall amounts. Underestimation was more during 471 
extreme wet years (2004, 2006 and 2011), which were shown in error statistics with highest rainfall 472 
amounts. However, the bias correction adjusted the CHIRPS estimates to align with rain gauge 473 
data. Similar to monthly analysis, MAM interannual systematic errors were mainly related to 474 
rainfall magnitudes and rainfall distributions and were effectively reduced. 475 

During JJA and OND rainfall seasons CHIRPS systematic errors associated with rainfall magnitude 476 
and distribution were reduced. However, over corrections were observed in extreme wet and dry 477 
years which were attributed to irregularities of rainfall patterns that were not well captured by the 478 
rain gauge data. The overall monthly statistics measures a reduction of RMSD (29-56) % and MAE 479 
(28-60) % and an increase of correlations (2-32) %. For yearly analysis they are reductions of RMSD 480 
(9-23) %, and MAE (7-27) % and increase of correlations (4-77) % for MAM months, reduction of 481 
RMSD (15-35) % and MAE (16-41) % and increase in correlations (5-16)% for JJA months, and 482 
reduction of RMSD (3-35) % and MAE (9-32) % and increase of correlations (3-65)% for OND 483 
months. 484 

The impacts of largescale phenomena on systematic errors in CHIRPS were assessed by exclusion of 485 
known anomalous wet years (El Niño) of 1997/1998 over East Africa. The result showed a 486 
significant spatial reduction of these errors more evident from the month of August (13%) and 487 
OND (between 2-6%) rainfall months. Minimal (1%) impacts were observed during MAM rainfall 488 
months and were observed mainly in areas around Lake Victoria, Eastern Kenya and southwest 489 
Tanzania. These are areas associated with large-scale circulation of ENSO (Lake Victoria) and low-490 
level Turkana jet (Eastern Kenya). In conclusion, the bias corrected CHIRPS estimates are more 491 
representative of the rainfall magnitude and distribution. Further, these data and the associated 492 
errors are more informative of local and large-scale influences over East Africa and can, therefore, 493 
be used for climate studies. The approach is recommended for other areas and to other products. 494 
However, prior long-term analysis is advised to exclude anomalous years and correct them 495 
separately. The approach is suitable for long-term data correction where consistencies of errors can 496 
be assumed. 497 

Supplementary Materials: Bayesian Bias Corrected Rainfall generated data in this study.  498 
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