Pentanuclear Hetero-bimetallic 3d-4f Complexes of the $\mathrm{Ln}_{2} \mathrm{Ni}_{3}$ type: $\mathrm{Pr}_{2} \mathrm{Ni}_{3}$ and $\mathrm{Gd}_{2} \mathrm{Ni}_{3}$

Jana König, ${ }^{1}$ Alexandra Kelling, ${ }^{1}$ Uwe Schilde, ${ }^{1}$ Peter Strauch, ${ }^{1, \dagger}$ and Andreas Taubert 1,*
1 University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
* Correspondence: University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany, ataubert@uni-potsdam.de; Tel.: +49-331-977-5773
+ This work was performed as a part of the PhD thesis of Dr. Jana König under the supervision of Prof. Peter Strauch. Peter Strauch passed away prematurely on July 15, 2017. We dedicate this article to the memory of our long-time supervisor, collaborator, colleague, and friend.

Abstract

In aqueous solution planar bis(1,2-dithiooxalato)nickelates(II), $\left[\mathrm{Ni}(\mathrm{dto})_{2}\right]^{2-}$ react with lanthanide ions $\left(\mathrm{Ln}^{3+}\right)$ to form pentanuclear, hetero-bimetallic complexes of the general composition $\left.\left[\left\{\mathrm{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}\right\}_{2}\{\mathrm{Ni}(\mathrm{dto}))_{2}\right\}_{3}\right] \cdot x \mathrm{H}_{2} \mathrm{O}(\mathrm{n}=4$ or $5 ; \mathrm{x}=9$ - 12). Two complexes of this series, $\left[\left\{\operatorname{Pr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right\}_{2}\left\{\mathrm{Ni}(\mathrm{dto})_{2}\right\}_{3}\right] \cdot 11 \mathrm{H}_{2} \mathrm{O}, \mathrm{Pr}_{2} \mathrm{Ni}_{3} 1$ and $\left[\left\{\mathrm{Gd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right\}_{2}\left\{\mathrm{Ni}(\mathrm{dto})_{2}\right\}_{3}\right] \cdot 11 \mathrm{H}_{2} \mathrm{O}, \mathrm{Gd}_{2} \mathrm{Ni}_{3} 2$ were synthesized and characterized by single crystal X-ray structure analysis, X-ray powder diffraction, and IR spectroscopy. All $\mathrm{Ln}_{2} \mathrm{Ni}_{3}$ complexes crystallize as monoclinic crystals in the space group $P 2{ }_{1} / c$.

Keywords: lanthanides, 1,2-dithiooxalate, crystal structure, nickel(II)

1. Introduction

During the last decades molecular hetero-bimetallic 3d-4f complexes with transition metals and trivalent lanthanide ions have attracted increasing interest for their magnetic properties [1-16]. Besides magnetism, 3d-4f complexes are promising precursors for e.g. catalysts [17, 18] and luminescent materials [18-23]. Since lanthanide ions have a large angular momentum and the $\mathrm{f}-\mathrm{f}$ transition is less influenced by the ligand field compared to the spin-orbit coupling, f-elements show a magnetic behavior that is different from the transition metals [1]. Although the scientific and technological interest of d-f hybrids is evident, the design and construction of extended heteronuclear d-f complexes with a well-defined, discrete multinuclear organization is still a synthetic challenge and new approaches towards these interesting materials are highly sought after. A few df hybrids were synthesized in organic media, mostly because the ligands were not water-soluble [24, 25]. Most of the syntheses were done under hydrothermal conditions, usually using longer reaction times of a few days [18, 20, 22, 26-29].

A ligand of interest for the synthesis of d-f hybrids is 1,2-dithiooxalate [30], a small bridging ligand with S, S and O, O donor sites which specifically enable the combination of transition metals with lanthanide ions at moderate conditions (reaction times of 15 minutes and temperatures of about $50{ }^{\circ} \mathrm{C}$). Indeed, a series of pentanuclear, hetero-bimetallic 3d-4f complexes with 1,2-dithiooxalate (dto) as the bridging ligand with the general composition $\left[\left\{\mathrm{Ln}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}\right\}_{2}\left\{\mathrm{Ni}(\mathrm{dto})_{2}\right\}_{3}\right] \cdot \times \mathrm{H}_{2} \mathrm{O}$. ($\mathrm{n}=4$ or 5 ; $x=9-12$) was first described by Trombe et al. [31,32]. These authors reported that the decreasing ionic radii of the lanthanide ions favor the formation of different types of crystal structures. With
larger lanthanide ions (La - Dy), monoclinic crystals form while with smaller ions (Er, Yb) triclinic crystals are observed. The solid state conductivities of these compounds is on the order of 10^{8} to 2 . $10^{9} \Omega^{-1} \cdot \mathrm{~cm}^{-1}[31]$.

More recently, Strauch and coworkers have provided further data on these compounds [33-36]. The nickel-holmium analogue has been considered as the borderline case between the monoclinic and the triclinic forms until recently. A recent study [37], however, has shown that this particular compound also crystallizes in the monoclinic space group $P 2_{1} / \mathrm{c}$ and cannot longer be regarded as a borderline case. Instead, this case confirms that the larger lanthanide ions lead to monoclinic rather than triclinic crystals. The current study further completes the series and demonstrates that
 in the monoclinic space group $P 2_{1} / c$. These data further confirm the hypothesis by Trombe et al. [31, 32] and the current study further broadens the pool of d-f hybrids based on the 1,2-dithiooxalate ligand.

2. Results

As stated in the introduction, pentanuclear hetero-bimetallic complexes with larger lanthanide ions $\left(\mathrm{Ln}=\mathrm{La}^{3+-} \mathrm{Ho}^{3+}\right)$ are isostructural and crystallize in the monoclinic space group $P 22^{1 / c}$ [33-36]. In contrast, pentanuclear complexes with smaller lanthanide ions ($\mathrm{Ln}=\mathrm{Er}^{3+}-\mathrm{Lu}^{3+}$) crystallize in the triclinic space group $P \overline{1}[33,36]$. In addition to X-ray diffraction, both subgroups can be distinguished by X-ray powder diffraction (XRD) and IR spectroscopy [33-36]. We will thus first present the crystallographic information and the IR data and finally also show the magnetic susceptibility data.

2.1.Single crystal X-ray structures

Single crystals of the complexes $\operatorname{Pr}_{2} \mathrm{Ni}_{3} \mathbf{1}$ and $\mathrm{Gd}_{2} \mathrm{Ni}_{3} 2$ were obtained from aqueous solutions covered with hexane leading to the precipitation of dark purple crystals with a prismatic habit. Table 1 summarizes the crystallographic data and refinement parameters for the complexes.

Table 1. Crystallographic data and refinement parameters for the complexes $\mathbf{1}$ and 2.

Compound	1	2
CCDC No.		

Empirical formula	$\mathrm{C}_{6} \mathrm{H}_{21} \mathrm{Ni} 1.5 \mathrm{O}_{16.5} \mathrm{PrS}_{6}$	$\mathrm{C}_{6} \mathrm{H}_{21} \mathrm{GdNi}_{1.5} \mathrm{O}_{16.5} \mathrm{~S}_{6}$
$\mathrm{M} / \mathrm{g} \cdot \mathrm{mol}^{-1}$	778.56	794.90
Crystal system	monoclinic	monoclinic
Space group	P21/c	P21/c
a / \AA	10.1212(4)	10.3170(6)
b / \AA	11.4036(5)	11.3872(7)
c / A	20.6044(9)	20.5911(14)
$\alpha /^{\circ}$	90	90
$\beta 1{ }^{\circ}$	98.298(3)	98.762(5)
$\gamma 1^{\circ}$	90	90
V / \AA^{3}	2353.22(17)	2390.8(3)
Z	4	4
$F(000)$	1544	1564
Density / g cm^{-3}	2.198	2.208
μ / mm^{-1}	3.836	4.511
Crystal size	$0.04 \times 0.13 \times 0.24$	$0.10 \times 0.17 \times 0.21$
$\Theta /{ }^{\circ}$	2.00-25.00	2.00-25.00
$R_{\text {int }}$	0.0921	0.0641
Refl. measured	23178	30225
Refl. independent	4141	4201
Parameters	263	263
$R_{1} / w R_{2}[I>2 \sigma(I)]$	0.0460 / 0.1190	0.0258 / 0.0605
$R_{1} / w R_{2}$ (all data)	0.0593 / 0.1259	0.0310 / 0.0622
Goodness of fit on	1.053	1.015
max. diff. peak / hole /e $\cdot \AA^{-3}$	0.758 / -1.437	0.806/-0.707

Figure 1 shows the molecular structure of the pentanuclear hetero-bimetallic $\mathrm{Gd}_{2} \mathrm{Ni}_{3}$ complex 2 with the characteristic z-shape (figure 2) of this type of molecules [33-37]. Two lanthanide centers are bridged by a nearly planar bis(1,2-dithiooxalato)nickelate(II) unit through two O, O donor sets. Two peripheric bis(1,2-dithiooxalato)nickelate(II) moieties are coordinated only bidentate in a nonbridging mode. Each nickel(II) ion has a square-planar NiS_{4} coordination sphere due to the coordination of two sulfur donor atoms of two 1,2-dithiooxalato ligands. The lanthanide ions have a coordination number of 9 , which is achieved by four oxygen atoms of two 1,2-dithiooxalato ligands. The coordination sphere is completed by five water ligands at each lanthanide ion. The nine donor atoms in the coordination sphere of the lanthanide ion occupy the corners of a tricapped trigonal prism. The molecule is centrosymmetric with a crystallographic inversion center on the Ni1-atom. The complex is close to planar and only shows a slight out-of-plane twist due to the non-symmetric coordination geometry at the lanthanide ions (Figure 2).

Figure 1. Molecular structure of the $\mathrm{Gd}_{2} \mathrm{Ni}_{3}$ complex 2, view along the crystallographic a axis. Only the atoms of the asymmetric unit are labelled. Non-coordinated water molecules are omitted for clarity.

The crystal packing is presented in Figure 2. Channels and cavities, which are filled with noncoordinated water molecules can be observed. In contrast to the water molecules coordinated to the lanthanide ions, non-coordinated water molecules are strongly disordered. Therefore the SQUEEZE procedure of the program PLATON was used to subtract the contribution of the disordered water molecules from the structure factor calculations, for details see the Methods section below. PLATON/SQUEEZE calculated the solvent-accessible void volume and the number of electrons, corresponding to about 5.5 molecules of water per asymmetric unit. For the isostructural $\mathrm{Pr} 2 \mathrm{Ni}^{2}$ complex 1 the same result was found.

The packing is stabilized by a large number of hydrogen bonds. The slightly varying number of non-coordinated water molecules could be estimated by thermogravimetric analysis. From previous experiments, it was determined with approximately 9-12 water molecules per formula unit in the $\mathrm{Ce}_{2} \mathrm{Ni}_{3}$-complex [34]. This weakly bound water is already partly released in dry laboratory air; this thus generates difficulties to determine their exact number. This effect is also responsible for the relatively high remaining electron density for this type of complexes.

Figure 2. Packing diagram of the $\mathrm{Gd}_{2} \mathrm{Ni}_{3}$ complex 2, without non-coordinated disordered water molecules. Hydrogen bonds as yellow dashed lines. View along the crystallographic b axis.

Table 2. Selected bond lengths and angles of $\operatorname{Pr}_{2} \mathrm{Ni}_{3} 1$ and $\mathrm{Gd}_{2} \mathrm{Ni}_{3} 2$.

	1	2
Coordination sphere of Ln^{3+} / \AA		
Ln-O1	2.513(5)	2.533(3)
Ln-O2	2.590 (5)	2.456 (3)
Ln-O3	$2.596(5)$	2.542(3)
Ln-O4	2.524(5)	2.464(3)
Coordination sphere of Ni^{2+} / \AA		
Ni1-S1	2.1787(16)	2.1724(9)
Ni1-S2	2.1717(16)	2.1848(10)
Ni2-S3	2.1997(18)	$2.2016(11)$
Ni2-S4	2.178(2)	$2.1769(12)$
Ni2-S5	2.182(2)	2.1807(11)
Ni2-S6	2.1788(18)	$2.1776(11)$
Terminal ligand / A		
C5-C6	1.530(10)	1.536(6)
C5-O5	1.231(9)	1.228(5)
C6-O6	1.236 (8)	1.226(5)
C5-S5	1.711(7)	1.712(4)
C6-S6	1.714(7)	1.704(4)
Bridging ligands / A		
C1-C2	1.510(10)	1.521(5)
C3-C4	1.520(9)	$1.525(5)$
C1-O1	1.238(8)	1.251(4)
$\mathrm{C} 2-\mathrm{O} 2$	1.247(8)	1.247(4)
C3-O3	1.262(8)	1.257(4)
C4-O4	1.255(8)	$1.233(5)$
C1-S1	$1.693(6)$	$1.695(4)$
C2-S2	$1.692(7)$	$1.686(4)$
C3-S3	$1.687(7)$	$1.693(4)$
C4-S4	1.689(6)	1.687(4)
Intramolecular distances / Á		
Ln-Ni1	6.2689(5)	6.2216(6)
Ln-Ni2	6.2657(10)	6.2140(6)
Ln-Ln	12.5378(8)	12.4431(10)
Ni1-Ni2	11.4022(9)	11.3836(8)
Intermolecular distances / Á		
Ln \cdots Ln	6.2919(6)	6.2640(5)
Bite angles ${ }^{\circ}$		
O1-Ln-O2	61.98(16)	63.47(9)
O3-Ln-O4	61.68(14)	62.78(9)
S1-Ni1-S2	92.87(6)	92.57(4)
S3-Ni2-S4	91.93(7)	91.92(4)
S5-Ni2-S6	91.91(7)	91.76(4)

2.3. Powder diffraction

Complementary X-ray powder diffraction (XRD) data (not shown) confirm the above crystallographic assignments. All patterns exhibit sharp reflections and enable a simplified identification of the members of the two $\mathrm{Ln}_{2} \mathrm{Ni}_{3}$ crystallographical subgroups. XRD data of both the $\mathrm{Gd}_{2} \mathrm{Ni}_{3}$ and the $\mathrm{Pr}_{2} \mathrm{Ni}_{3}$ variants studied here show patterns that can be assigned to a monoclinic space group.

2.2. IR spectroscopy

Table 3 shows selected IR absorption bands of $\operatorname{Pr}_{2} \mathrm{Ni}_{3} \mathbf{1}, \mathrm{Gd}_{2} \mathrm{Ni}_{3} 2$ as well as the corresponding signals from $\mathrm{Ho}_{2} \mathrm{Ni}_{3}$ and $\mathrm{Er}_{2} \mathrm{Ni}_{3}[33,36,37]$. Broad bands at approx. $3200 \mathrm{~cm}^{-1}$ can be assigned to OH vibrations of water molecules in the channels and water molecules coordinated to the lanthanide ions. Furthermore a broad vibration stemming from the carboxylate groups of the organic ligand at approx. $1495 \mathrm{~cm}^{-1}$ is visible. The breadth is due to the overlap of different types of coordinated and non-coordinated carboxylate groups: (1) vibrations of non-coordinated terminal carboxylate groups of 1,2-dithiooxalato ligands, which are observed at approximately $1600 \mathrm{~cm}^{-1}$ (similar to the red form of the mononuclear $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{dto})_{2}\right]$ complex [38]), (2) vibrations of carboxylate groups coordinated to the lanthanide ions, (3) formation of intermolecular hydrogen bonds towards some of the carboxylate groups and non-coordinated water molecules. Typical deformation vibrations ($\delta_{\mathrm{Ln}-\mathrm{O}}$) are observed in the range of 630-660 cm^{-1} typical deformation vibrations occur [39-41].

Table 3. Vibration bands in selected $\mathrm{Ln}_{2} \mathrm{Ni}_{3}$ complexes.

compound	vibration bands [cm^{-1}]						
	vo-H (broad)	$\mathrm{vc}-\mathrm{O}$ (broad)	vc-c, vc-s	vc-c-s	vc-s, δ O=c-s	$\begin{aligned} & \text { סLn-O } \\ & {[39-41]} \end{aligned}$	$\nu_{\text {Ni-S }}$
$\mathrm{Pr} 2 \mathrm{Ni}_{3}$	3306	1492	1136	1093	989	629	440
$\mathrm{Gd}_{2} \mathrm{Ni}_{3}$	3327	1496	1140	1092	990	680	456
$\mathrm{Ho}_{2} \mathrm{Ni}_{3}$ [37]	3166	1490	1138	1108	990	671	458
${\mathrm{Er} 2 \mathrm{Ni}_{3}[42]}$	3361	1501	1146	1094	1001	740	468

2.4. Room temperature magnetic susceptibility

The 4 f electrons orbitals are well shielded by the occupied 5 s and 5 d orbitals. As a result the lanthanide ions, coordinated in complexes and compounds, behave magnetically very close to free ions [43]. Due to the small cooperative effect of the two lanthanide ions in the complexes slightly higher magnetic moments for the complexes 1, 2 can be estimated (see Table 4). The overall magnetic moments can be calculated by a simple single ion approximation (equation 1) [44]:
$\mu_{\text {eff. }}{ }^{2}=\mu_{\text {eff. }}(\operatorname{Ln} 1)^{2}+\mu_{\text {eff. }}(\mathrm{Ln} 2)^{2}$

In this case only the lanthanide ions contribute to the magnetic moments because the nickel(II) ions of the complexes have a square planar coordination geometry with no significant axial contacts;
as a result, they are diamagnetic. Indeed, the magnetic moments obtained at room temperature for the complex series with nickel(II) is in principle known [33,35]. The current results are in good agreement with the calculated values. Deviations are due to paramagnetic impurities of the used lanthanide educts.

Table 4. Experimental and calculated magnetic moments of complexes $\mathbf{1}$ and $\mathbf{2}$, as well as values for the free Ln^{3+} ions at room temperature.

	μ eff. [B.M.] free ion $\left(\mathrm{Ln}^{3+}\right)$ $[43]$		
$\mathrm{Pr}_{2} \mathrm{Ni}_{3} \mathbf{1}$	3.58	5.06	measured
$\mathrm{Gd}_{2} \mathrm{Ni}_{3} \mathbf{2}$	7.94	11.23	4.61

3. Discussion

Already in the 1980s, Trombe et al. investigated compounds combining the 3d transition metal nickel with $4 f$ lanthanide ions. These studies focused on the organic ligand K2dto with its bridging and chelating properties [31,32]. Because of the symmetrical arrangement of two sulfur and two oxygen atoms the coordination of thiophilic nickel ions and oxophilic lanthanide ions is dictated by the ligand. The first crystal structure of an $\mathrm{Ln}_{2} \mathrm{Ni}_{3}$ complex, $\left.\left.\left[\left\{\mathrm{Eu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right)_{2}\right\}\left\{\mathrm{Ni}(\mathrm{dto})_{2}\right]\right\}_{3}\right] \cdot x \mathrm{H}_{2} \mathrm{O}(10 \leq \mathrm{x} \leq$ 12), was reported in 1982 showing that this compound crystallizes in the monoclinic space group $P 2_{1} / c$ [31]. On the basis of this crystal structure, Trombe et al. already in 1982 postulated the existence of two different types of crystal structures depending on the radii of the lanthanide ions: $\mathrm{La}^{3+-} \mathrm{Dy}^{3+}-$ based compounds should likely crystallize in the monoclinic space group $P 2_{1} /$ c. In contrast, $\mathrm{Er}^{3+-} \mathrm{Yb}^{3+}-$ based compounds should crystallize in the triclinic space group $P \overline{1}$. Indeed, two years later the crystal structure of $\mathrm{Yb}_{2} \mathrm{Ni}_{3}$ further supported this postulate [98]. The same authors also postulated that the transition between the two groups (monoclinic vs. triclinic) should occur at $\mathrm{Dy}_{2} \mathrm{Ni}_{3}$ [31,32]. This early assumption, however, was disproven by König et al. who showed that the $\mathrm{Ho}_{2} \mathrm{Ni}_{3}$ complex still crystallizes in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{c}$ [37].

All neutral pentanuclear heterobimetallic complexes, independent of the crystal system, are centrosymmetric with a crystallographic inversation center on the Ni1-atom with a characteristic zshape. The shape is the result of the non-symmetric coordination geometry of the lanthanide ions with their high coordination numbers. For all complexes, which crystallize in the monoclinic space group the coordination number of the lanthanide ion is nine, for the triclinic space group the coordination number is eight. Thereby, two thiophilic nickel(II) ions were coordinated by two 1,2dithiooxalate ligands through two S, S donor sets, so nearly planar $\left[\mathrm{Ni}(\mathrm{dto})_{2}\right]^{2-}$ building blocks were generated. Two of these building blocks with their non-coordinated terminal O, O donor sets are able to coordinate at one lanthanide ion. In fact, each lanthanide ion is then coordinated by one terminal $\left[\mathrm{Ni}(\mathrm{dto})_{2}\right]^{2-}$ building block and one bridging $\left[\mathrm{Ni}(\mathrm{dto})_{2}\right]^{2-}$ building block, which connect both lanthanide ions to the resulting neutral pentanuclear $\mathrm{Ln}_{2} \mathrm{Ni}_{3}$ complex (figure 1). The saturation of the free coordination units is achieved by water ligands.

All complexes crystallizing in the monoclinic crystal system behave like $\operatorname{Pr}_{2} \mathrm{Ni}_{3} \mathbf{1}$ and $\mathrm{Gd}_{2} \mathrm{Ni}_{3} \mathbf{2}$. Therefore, only the complex $\mathrm{Gd}_{2} \mathrm{Ni}_{\mathrm{i}} \mathbf{2}$ is discussed in detail. Gd^{3+} shows a coordination number of nine, so the saturation of the coordination sphere is realized by the coordination of five water molecules. The nine O donor atoms in the direct environment of the lanthanide ion exhibit a distorted tricapped trigonal prism (figure 1). The nickel ions always show a nearly square planar coordination behavior. The environment and the geometry of the coordinated nickel ions changed only slightly after coordination to $\mathrm{Gd}(\mathrm{III})$, whereby the terminal and the bridging $\left[\mathrm{Ni}(\mathrm{dto}) \mathrm{z}^{2}{ }^{-}\right.$- building blocks are only distinguished in terms of the bite angles $\mathrm{S}-\mathrm{Ni}-\mathrm{S}$.

All bond lengths $\mathrm{Ni}-\mathrm{S}$ are in the range of 2.17-2.21 \AA. Compared with the homoleptic complexes $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{dto})_{2}\right][45]$ and $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{Ni}(\mathrm{dto})_{2}\right],\left(\mathrm{Ph}_{4} \mathrm{As}\right)_{2}\left[\mathrm{Ni}(\mathrm{dto})_{2}\right][46]$ the bond lengths are somewhat longer, which is explainable with the additional coordination of the lanthanide ion at the same building block $[\mathrm{Ni}(\mathrm{dto})]^{2-}$ and therefore with the changing of electron density distribution inside the ligands. The bite angles S1-Ni1-S2 in the range of $92.0-93.0^{\circ}$ are somewhat bigger than the terminal bite angles S3-Ni2-S4 and S5-Ni2-S6 $\left(91.7-92.0^{\circ}\right)$. The building block $\left.[\mathrm{Ni}(\mathrm{dto}))_{2}\right]^{2}$, with Ni1 in its center, is chelated by two lanthanide ions on each side. The S donor atoms as well as the O donor atoms of the 1,2dithiooxalate ion coordinates any metal center, whereby the situation is the same as in the mononuclear complex $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{dto})_{2}\right]$ [45] with similar bite angles S-Ni-S, where also S and O donor atoms are coordinated at either Ni or K . The terminal $\left.[\mathrm{Ni}(\mathrm{dto}))^{2}\right]^{-}$building blocks do not have a coordination partner at the O, O donor set of the 1,2-dithiooxalate ligands. Therefore they behave like $\left(\mathrm{Ph}_{4} \mathrm{P}\right)_{2}\left[\mathrm{Ni}\left(\mathrm{dto}_{2}\right]\right.$ and $\left(\mathrm{Ph}_{4} \mathrm{As}\right)_{2}\left[\mathrm{Ni}(\mathrm{dto})_{2}\right][46]$, because also the homoleptic complexes with organic counter ions are not coordinated at the O, O donor sets of the 1,2 -dithiooxalate ligands. The resulting Gd-O bond lengths after chelation are in good agreement with calculated bond lengths as a sum of the effective radius of gadolinium with a coordination number of nine and the ionic radius of O^{2-} with a coordination number of two as a guide value $[47,48]$.

The terminal and bridging ligands exhibit C-C bond lengths typical of sp²-hybridized carbon atoms, analogous to the non-coordinated ligand K_{2} dto [49] and the ligand in the homoleptic complexes [45, 46]. The S-C bond lengths are between single bonds and double bonds. This supports the interpretation that the electrons are delocalized in the peripheral O-C-S units of the ligands after coordination to the nickel ions. The C-O bond lengths differ from each other depending on the coordination situation inside the complex. The bridging ligands show extended C-O double bonds due to the coordination to the gadolinium ion. The terminal C-O bonds are nearly perfect double bonds because of the non-coordination situation on the O, O donor sets.

Complexes crystallizing in the triclinic space group $P \overline{1}$ show the same coordination geometry around the nickel(II) as in the monoclinic crystals. The coordination number of the lanthanide ions, however, decreases from 9 to 8 . The saturation of the coordination sphere of the lanthanide is achieved by four oxygen atoms from the 1,2-dithiooxalate ligand and by the coordination of four (instead of five) oxygen atoms from coordinated water molecules. The coordination geometry of the two bridging 1,2-dithiooxalato ligands remains unchanged and the planarity is essentially driven by the now symmetric coordination geometry at the lanthanide ions (compared figure 1B). With decreasing ionic radii of the lanthanide ions from La^{3+} up to Lu^{3+} decreasing of coordinative bonds between oxygen of the ligand and lanthanide ions and increasing of bite angles between chelating
ligands and lanthanide ions will be observed. This is explainable by a better overlap of orbitals which take part in bindings. Bite angles increase by approximately 0.3 degrees within the range of the monoclinic subgroup. The change from a coordination number of 9 (monoclinic) to 8 (triclinic) significantly reduces the steric hindrance; this directly affects the bite angle, which increases by about 3 degree from $\mathrm{Ho}_{2} \mathrm{Ni}_{3}$ (last monoclinic complex) to $\mathrm{Er}_{2} \mathrm{Ni}_{3}$ (first triclinic complex). Within the triclinic crystals the bite angles increase by approximately 0.3 degrees again.

IR spectroscopy is a very efficient complementary method able to distinguish between the two crystal systems. Numerous vibration bands (vc-c/vc-s, vc-s/ $\delta_{0}=c-s, v_{\text {Ni-s }}$) blue-shift by approximately 10 cm^{-1} upon transitioning from the monoclinic $\left(\mathrm{cn}\left(\mathrm{Ln}^{3+}\right)=9\right)$ to the triclinic $\left(\mathrm{cn}\left(\mathrm{Ln}^{3+}\right)=8\right)$ crystal system (table 3). This suggests that the better overlap of orbitals and the decreasing steric hindrance leads to a stronger binding in the triclinic compounds.

The magnetic susceptibilities (Table 4) of the current compounds at room temperature are comparable to similar examples in the literature [33,35].

4. Materials and Methods

Materials. Oxalylchloride (Sigma-Aldrich, $\geq 98 \%$), phenol (Riedel-de Häen, $\geq 99,5 \%$), pyridine (Acros organics, $\geq 99 \%$), potassium (Merck, $\geq 98 \%$), ethanol (Roth, $\geq 99,8 \%$), iron sulfide (Merck), hydrochloric acid (VWR, 35%), $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (ChemPur, 98%), $\mathrm{PrCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ (ChemPur, 99,9 \%), and $\mathrm{GdCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ (ChemPur, 99,9 \%) were used as received. Chloroform (J. T. Baker, $\geq 99 \%$) was dried over CaCl_{2} prior to synthesis.

Methods. All infrared spectra were recorded on a Perkin Elmer 16PC FT-IR-spectrometer between 400 and $4000 \mathrm{~cm}^{-1}$ using KBR pellets. Elemental analysis (C, H, S) was done on a Vario EL III CHNS (elementar Analysensysteme GmbH, Hanau, Germany). Magnetic susceptibility measurements were done on a magnetic susceptibly balance MBS-Auto (Sherwood Scientific Ltd.) at room temperature. XRD measurements were done with a Bruker AXS (Siemens) D5005 diffractometer using $\mathrm{CuK} \mathrm{\alpha}$ radiation ($\lambda=1.540598 \AA, 2 \theta$ range: $3-70^{\circ}$, step size: 0.02°).

X-ray structures were determined using a STOE Image Plate Diffraction System IPDS-2 at 210 K with graphite-monochromatized Mo_{α} radiation. The reflection data were corrected for absorption as well as for Lorentz and olarization effects using the program X-Area [50]. The structures were solved by direct methods using SHELXS-2013/2 [51] and refined by full-matrix least squares on F^{2} using the program SHELXL-2014/7 [52]. Molecular graphics were prepared with DIAMOND [53]. The non-hydrogen atoms were refined anisotropically. The positions of the hydrogen atoms of the coordinated water molecules were calculated with the program OLEX2 [54]. In 1, only the hydrogen atoms on O7 were calculated, the others were found from difference fourier map. The crystal water molecules show a high degree of disordering and could not be resolved satisfactorily. PLATON/SQUEEZE [55] calculated a solvent-accessible void volume in the unit cell of $649 \AA^{3}$ (27.1 $\%$ of the total cell volume), corresponding to 222 electrons (residual electron density after the last refinement cycle) per cell. The number agrees with about 5.5 molecules of water $(5.5 \times 10 \times 4=220)$ per asymmetric unit. For the $\mathrm{Pr}_{2} \mathrm{Ni}_{3}$ complex 1 a solvent-accessible void volume of $553 \AA^{3}$ (23.5% of the
total cell volume), corresponding to 219 electrons cell, agreeing about 5.5 molecules of water $(5.5 \times 10 \times 4=220)$ per asymmetric unit were found, too. The hydrogen atoms of the high-disordered water lattice molecules could been neither located from the difference Fourier map nor calculated in the expected positions yielding satisfactory refinement results. The crystallographic data of $\mathbf{1}$ and 2 were deposited and can be obtained free of charge from the Cambridge Crystallographic Centre via www.ccdc.cam.ac.uk/data_request/cif.

Synthesis. Potassium 1,2-dithiooxalate, K2dto, was synthesized by sulfhydrolysis of diphenyl oxalate according to Matz and Mattes [56] modified by Wenzel et al. [57]. The complexes $\mathrm{Pr}_{2} \mathrm{Ni}_{3}$ and $\mathrm{Gd}_{2} \mathrm{Ni}_{3}$ were prepared according to the general procedure described by Trombe et al. [32].

A solution of K_{2} dto ($1 \mathrm{mmol}, 200.2 \mathrm{mg}$) in 5 mL of distilled $\mathrm{H}_{2} \mathrm{O}$ was added to a stirred solution of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol}, 119.7 \mathrm{mg})$ in 4 mL of distilled $\mathrm{H}_{2} \mathrm{O}$. The resulting dark-purple solution was heated to $50^{\circ} \mathrm{C}$. A warm solution $\left(50^{\circ} \mathrm{C}\right)$ of $\mathrm{LnCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}(0.33 \mathrm{mmol})\left(\mathrm{Ln}^{3+}=\mathrm{Pr}^{3+}, \mathrm{Gd}^{3+}\right)$ in 4 mL distilled water was added drop-wise to the stirred $\left[\mathrm{Ni}(\mathrm{dto})_{2}\right]^{2-}$-solution. The resulting reaction mixture was continuously stirred at $50{ }^{\circ} \mathrm{C}$ for additional 15 min , then slowly cooled to room temperature. The dark-purple crystalline precipitate was filtered, washed with a small amount of distilled water, and dried at $80^{\circ} \mathrm{C}$.
K_{2} dto: $\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{~K}_{2}\left(\mathrm{M}=198.35 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$. Elemental analysis (EA) measured (calculated): C 12.11 (12.13); S 32.21 (32.35) \%. IR (KBr): 1530, 1514 (vc-o); 1113 (vc-c, vc-s); 881 (vc-s); 697, 677 ($\gamma c-c-o-s$); 579 (vc-s); 516 ($\delta \mathrm{o}-\mathrm{c}-\mathrm{s}$) cm^{-1}.
$\mathrm{Pr}_{2} \mathrm{Ni}_{3}: \mathrm{C}_{12} \mathrm{H}_{40} \mathrm{O}_{32} \mathrm{~S}_{12} \mathrm{Pr}_{2} \mathrm{Ni}_{3}\left(\mathrm{M}=1539.10 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$. Elemental analysis (EA) measured (calculated): C 9.18 (9.36); H 2.49 (2.62); S 25.05 (25.00) \%. IR (KBr): 3306 (vон), 1492 (vc-o), 1136, 1093 (vc-c-s), 989 (vc-s), 629 ($\delta_{\text {Ln-O }}$), 440 ($\left.v-S, \delta_{\text {ring }}\right) \mathrm{cm}^{-1} . \mu$ eff $m e a s . ~(c a l c):. ~ 4.61$ (5.06) B.M.
$\mathrm{Gd}_{2} \mathrm{Ni}_{3}: \mathrm{C}_{12} \mathrm{H}_{44} \mathrm{O}_{34} \mathrm{~S}_{12} \mathrm{Gd}_{2} \mathrm{Ni}_{3}\left(\mathrm{M}=1607.84 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$. Elemental analysis (EA) measured (calculated): C 8.98 (8.96); H 2.43 (2.67); S 21.41 (23.93) \%. IR (KBr): 3327 (vон), 1496 (vc-o), 1140, 1092 (vc-c-s), 990 ($\left.v_{c-s}\right), 680\left(\delta_{\text {Ln-O }}\right), 456\left(v_{\text {Ni-S, }}, \delta_{\text {ring }}\right) \mathrm{cm}^{-1} . \mu_{\text {eff }}$ meas. (calc.): 11.19 (11.23) B.M.

Supplementary Materials.

Acknowledgments: We thank Dr. C. Günter (University of Potsdam) for XRD measurements and Ms. Y. Mai-Linde for EA. The University of Potsdam is acknowledged for financial support.

Author Contributions: J.K. synthesized and characterized all compounds. A.K. and U.S. determined the single crystal structures. J.K., P.S., U.S., and A.T. analyzed the data. P.S. supervised the work and J.K., P.S., and A.T. wrote the manuscript. All authors except P.S. read, corrected, and approved the final manuscript before submission.

Conflicts of Interest: The authors declare no conflict of interest.

References

[1] C. Benelli, D. Gatteschi, Chem. Rev. 2002, 102, 2369-2387.
[2] A. Caneschi, L. Sorace, U. Casellato, P. Tomasin, P. A. Vigato, Eur. J. Inorg. Chem. 2004, 3887-3900.
[3] J.-P. Costes, F. Dahan, A. Dupuis, J.-P. Laurent, Inorg. Chem. 1996, 35, 2400-2402.
[4] J.-P. Costes, F. Dahan, A. Dupuis, J.-P. Laurent, Inorg. Chem. 1997, 36, 4284-4286.
[5] S. Decurtins, M. Gross, H. W. Schmalle, S. Ferlay, Inorg. Chem. 1998, 37, 24432449.
[6] T. Kido, Y. Ikuta, Y. Sunatsuki, Y. Ogawa, N. Matsumoto, Inorg. Chem. 2003, 42, 398-408.
[7] R. Koner, G.-H. Lee, Y. Wang, H.-H. Wei, S. Mohanta, Eur. J. Inorg. Chem. 2005, 1500-1505.
[8] Y.-T. Li, C.-W. Yan, H.-D. Wang, Polish J. Chem. 2000, 74, 1655-1663.
[9] A. Merca, A. Müller, J. v. Slageren, M. Läge, B. Krebs, J. Clust. Sci. 2007, 18, 711719.
[10] I. Ramade, O. Kahn, Y. Jeannin, F. Robert, Inorg. Chem. 1997, 36, 930-936.
[11] T. Sanada, T. Suzuki, S. Kaizaki, J. Chem. Soc. 1998, 959-965.
[12] T. Sanada, T. Suzuki, T. Yoshida, S. Kaizaki, Inorg. Chem. 1998, 37, 4712-4717.
[13] J. L. Sanz, R. Ruiz, A. Gleizes, F. Lloret, J. Faus, M. Julve, J. J. Borra's-Almenar, Y. Journaux, Inorg. Chem. 1996, 35, 7384-7393.
[14] W. Shi, X.-Y. Chen, B. Zhao, A. Yu, H.-B. Song, P. Cheng, H.-G. Wang, D.-Z. Liao, S.-P. Yan, Inorg. Chem. 2006, 45, 3949-3957.
[15] S. Tanase, J. Reedijk, Chem. Rev. 2006, 250, 01-2510.
[16] S. Osa, T. Kido, N. Matsumoto, N. Re, A. Pochaba, J. Mrozinski, J. Am. Chem. Soc. 2004, 126, 420-421.
[17] F. Evangelisti, R. More, F. Hodel, S. Luber, G. R. Patzke, J. Am. Chem. Soc. 2015, 137, 11076-11084.
[18] L.-X. Zhou, J.-Q. Xu, Y.-Q. Zheng, H.-L. Zhu, J. Coord. Chem. 2017, 70, 3379-3393.
[19] P. F. Shi, B. Zhao, G. Xiong, Y.-L. Hou, P. Cheng, Chem. Commun. 2012, 8231.
[20] W. Liu, Z. Li, N. Wang, X. Li, Z. Wei, S. Yue, Y. Liu, CrystEngComm. 2011, 13, 138-144.
[21] B. Zhao, H.-L. Gao, X.-Y. Chen, P. Cheng, W. Shi, D.-Z. Liao, S.-P. Yan, Z.-H. Jiang, Chem. Eur. J. 2005, 12, 149-158.
[22] R. Feng, L. Chen, Q.-H. Chen, X.-C. Shan, Y.-L. Gai, F.-L. Jiang, M.-C. Hong, Cryst. Growth Des. 2011, 11, 1705-1712.
[23] V. Skripacheva, A. Mustafina, N. Rusakova, V. Yanilkin, N. Nastapova, R. Amirov, V. Burilov, R. Zairov, S. Kost, S. Solovieva, e. al, Eur. J. Inorg. Chem. 2008, 25, 3957-3963.
[24] S. Zhao, X. Lue, A. Hou, W.-Y. Wong, W.-K. Wong, X. Yang, R. A. Jones, Dalton Trans. 2009, 9595-9602.
[25] Z. Wang, Y. H. Xing, C. G. Wang, X. Q. Zeng, M. F. Ge, S. Y. Niu, Transition Met. Chem. 2009, 34, 655-661.
[26] Z.-Y. Li, N. Wang, J.-W. Dai, S.-T. Yue, Y.-L. Liu, CrystEngComm. 2009, 11, 20032008.
[27] Y.-Z. Ma, L.-M. Zhang, G. Peng, C.-J. Zhao, R.-T. Dong, C.-F. Yang, H. Deng, CrystEngComm. 2014, 16, 667-683.
[28] W.-T. Chen, S.-M. Ying, D.-S. Liu, Q.-Y. Luo, Y.-P. Xu, Inorg. Chim. Acta 2009, 362, 2379-2385.
[29] J.-W. Cheng, S.-T. Zheng, E. Ma, G.-Y. Yang, Inorg. Chem. 2007, 46, 10534-10538.
[30] W. Dietzsch, P. Strauch, E. Hoyer, Coord. Chem. Rev. 1992, 121, 43-130.
[31] J. C. Trombe, A. Gleizes, J. Galy, C. R. Acad. Sc. Paris 1982, 294-II, 1369-1372.
[32] J. C. Trombe, A. Gleizes, J. Galy, Inorg. Chim. Acta 1984, 87, 129-141.
[33] M. Siebold, A. Kelling, U. Schilde, P. Strauch, Z. Naturforsch. 2005, 60b, 1149-1157.
[34] M. Siebold, S. Eidner, A. Kelling, M. U. Kumke, U. Schilde, P. Strauch, Z. Anorg. Allg. Chem. 2006, 632, 1963-1965.
[35] M. Siebold, M. Korabik, U. Schilde, J. Mrozinski, P. Strauch, Chem. Papers 2008, 62, 487-495.
[36] M. Siebold, P. Strauch, Adv. Coord. Bioanorg. Inorg. Chem. 2005, 399-410.
[37] J. König, A. Kelling, U. Schilde, P. Strauch, Molbank 2016, 2, M895.

13 of 14

[38] R. S. Czernuszewicz, K. Nakarnoto, D. P. Strommen, J. Am. Chem. Soc. 1982, 104, 1515-1521.
[39] B. I. Swanson, C. Machell, G. W. Beall, W. O. Milligan, J. Inorg. Nucl. Chem. 1978, 40, 694-696.
[40] S. Bernal, J. A. Diaz, R. Garcia, J. M. Rodriguez-Izquierdo, J. Mater. Sci. 1985, 20, 537-541.
[41] S. Bernal, F. J. Botana, R. Garcia, J. M. Rodriguez-Izquierdo, J. Mater. Sci. 1988, 23, 1474-1480.
[42] J. König, Dissertation: Synthese und Charakterisierung von 3d-4f-Komplexen und deren Vorläufer mit 1,2-Dithiooxalat als Ligand, Potsdam, 2016.
[43] S. Cotton, Lanthanide and Actinide Chemistry, John Wiley \& Sons, Ltd, Uppingham School, Uppingham, Rutland, UK, 2007.
[44] Q.-Y. Chen, Q.-H. Luo, L.-M. Zheng, Z.-L. Wang, J.-T. Chen, Inorg. Chem. 2002, 41, 605-609.
[45] D. Coucouvanis, N. C. Baenziger, S. M. Johnson, J. Am. Chem. Soc. 1973, 95, 38753886.
[46] P. Román, A. Luque, J. M. Gutiérrez-Zorrilla, J. I. Beitia, M. Martínez-Ripoll, Z. Kristallogr. 1992, 198, 213-225.
[47] R. D. Shannon, Acta Cryst. 1976, A 32, 751-767.
[48] R. D. Shannon, C. T. Prewitt, Acta Cryst. 1969, B 25, 925-946.
[49] R. Mattes, W. Meschede, W. Stork, Chem. Ber. 1975, 108, 1-5.
[50] X-Area, 1.26 ed., Stoe \& Cie GmbH, Darmstadt, Germany, 2004.
[51] SHELXS-97, G. M. Sheldrick, University Göttingen: Göttingen, Germany, 1997.
[52] SHELXL-2014/7, G. M. Sheldrick, University Göttingen: Göttingen, Germany, 2014.
[53] DIAMOND, Vers. 4.5.1., K. Brandenburg, Crystal Impact, Bonn, Germany, 2017.
[54] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2, J. Appl. Cryst. 2009, 42, 339-341.
[55] PLATON, A. L. Spek, Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2008.
[56] C. Matz, R. Mattes, Z. Naturforsch. 1978, 88b, 461-462.
[57] B. Wenzel, B. Wehse, U. Schilde, P. Strauch, Z. Anorg. Allg. Chem. 2004, 630, 14691476.

