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Abstract 

In this paper a quantum algorithm to calculate the Hamming distance of two binary strings of equal length 

(or messages in theory information) is presented. The algorithm calculates the Hamming weight of two 

binary strings in one query of an oracle. To calculate the hamming distance of these two strings we only 

have to calculate the Hamming weight of the xor operation of both strings. To test the algorithms the 

quantum computer prototype that IBM has given open access to on the cloud has been used to test the 

results. 
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Introduction 

 

 The advantage of the quantum computation 

to solve more efficiently than classical 

computation some algorithms is one of the most 

important key for scientists to continue researching 

and developing news quantum algorithms. 

Grover´s searching quantum algorithm is able to 

select one entry between 2𝑛  with output 1 in only 

O(log(n)) queries to an oracle.  Shor´s factoring 

quantum algorithms is able to factorize one 

number faster than any classical algorithms 

known. Deutch-Jozsa algorithm is able to 

determinate if a function is constant or balanced 

using only one query to a quantum oracle. 

 The Hamming weight of two binary strings 

(messages) of equal length is the number of 

symbols different of the zero-symbol used in the 

alphabet. It represents the number of 1´s in the 

string or the digit sum of the binary representation. 

The Hamming weight is widely used in different 

disciplines [1][2], including information theory, 

coding theory, and cryptography , and his efficient 

implementation has been widely studied [3][4][5]. 

The Hamming distance in information theory 

between two strings is the minimum number of 

substitutions required to change one string into the 

other. It is used in coding theory to define the error 

detecting and the error correcting codes. The 

running time of classical algorithms is proportional 

to the Hamming distance or to the number of bits 

in the inputs. Using this quantum algorithm it´s 

possible to calculate the Hamming distance in only 

one query to a quantum oracle. 
The quantum algorithm calculates the 

Hamming weight between to binary strings. To 

calculate the Hamming distance of these two 

inputs we have to calculate previously the xor 

operation between them and after that to calculate 

the Hamming weight (hw) of the result. Suppose 

we have to calculate the Hamming distance 

between the binary string A and B (hd (A,B)): 

A = 1001 B = 1100 

First we calculate A ⊕ B = 0101 and then  

hw (A ⊕ B) = hd (A,B) = 2 

This quantum algorithms uses quantum 

parallelism as the fundamental feature to evaluate 

a function implemented in a quantum oracle for 

many different values of x at the same time 

because it exploits the ability of a quantum 

computer to be in superposition of different states. 

Moreover it uses a property of quantum 

mechanics known as interference. In a quantum 

computer it is possible for the two alternatives to 

interfere with one another to yield some global 

property of a function f, by using the Hadamard 

gate to recombine the different alternatives. 

The essence of the design of this algorithm is 

the choice of a function and a final transformation 

that allows efficient determination of the Hamming 

weight of a message (information which cannot be 

attained quickly on a classical computer). 

The quantum algorithm is based on the 

Deutch-Jozsa algorithm [6]. A special function of 

two binary strings is implemented in an oracle and 

we only one query to calculate the Hamming 

weight is needed. 

IBM releases in 2016 a 5-qubit universal 

quantum computer prototype accessible on the 

cloud. To test the algorithm, two experiments have 

been simulated on the IBM Q Experience 

composer. 

 

The Deutsch-Jozsa algorithm 

 

The goal is to find an algorithm which tells if a 

function f is constant or balanced with the least 

possible number of evaluations of an oracle. 

The algorithm is divided into the following 

steps: 

1. Prepare an (n+1)-qubit register in the state 

|Ψ0⟩ =  |0⟩
⨂𝑛⨂|1⟩. First n qubits work as 

input qubits of the function, while the (n+1)st 

is an ancilla qubit to store temporary 

information. 

2. Apply the Hadamard transformation to the 

register. Then we have the state: 

|Ψ1⟩ =  
1

√2𝑛
∑ |𝑥⟩

2𝑛−1

𝑥=0

⊗
1

√2
(|0⟩ − |1⟩) 
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3. Perform a quantum transformation Bf, 

associated to a function f defined by 

𝐵f|𝑥⟩|𝑦⟩ = |𝑥⟩|𝑦⊕ 𝑓(𝑥)⟩ 
where f(x) is any function 

𝑓: {0,1}𝑛 → {0,1} 
Then we obtain the following state. 

|Ψ2⟩ =  
1

√2𝑛
∑(−1)𝑓(𝑥)|𝑥⟩

2𝑛−1

𝑥=0

⊗
1

√2
(|0⟩ − |1⟩) 

4. Apply a Hadamard transformation on the first 

n qubit. 

|Ψ3⟩ =  
1

2𝑛
∑(−1)𝑓(𝑥)+𝑥∙𝑦|𝑦⟩

2𝑛−1

𝑥,𝑦

⊗
1

√2
(|0⟩ − |1⟩) 

𝑥 ∙ 𝑦 = 𝑥n-1𝑦n-1⊕𝑥n-2𝑦n-2⊕…⊕ 𝑥0𝑦0 
 

5. The first n qubits are measured. Following 

the algorithm if the probability that the 

measurements all give outcome 0, is 1, the 

function f is constant and balanced is that 

probability is 0. 

 

How to calculate the Hamming weight 

 

The algorithm to calculate the Hamming 

weight is based on the Deutsch-Jozsa algorithm so 

the steps are the same described above. 

The function f associated to the 

transformation Bf is the following. Suppose we 

have to calculate the Hamming weight of a binary 

string of length k. In that case we define a function 

from 𝑛 = 𝑙𝑜𝑔2(𝑘) + 1 bits to 1 bit in the following 

way: 

 On the first 2𝑛−1 inputs of the function we 

encode the binary string (message) based on 

the position of each bit on the string (message). 

 On the last 2𝑛−1 inputs of the function we fix 

the binary string with all zero´s. 

Suppose we want to calculate the Hamming 

weight of the string a = 10. Then function f will 

be:  

𝑓: {0,1}𝑙𝑜𝑔2(2)+1 → {0,1} 

Input |𝑥⟩ F(x) 

00 0 

01 1 

10 0 

11 0 

 

The transformation Bf: 

 

𝐵f|𝑥⟩|𝑦⟩ = |𝑥⟩|𝑦 ⊕ 𝑓(𝑥)⟩ 

This transformation has associated a unitary 

permutation so it can be implemented in a quantum 

computer using a set of universal quantum gates. 

(

 
 
 
 
 

1 0
0 0

0 0
0 0

0 0
0 1

0 0
0 0

0 0
1 0

0 0
0 0

0 1
0 0

0 0
0 0

0 0
0 0

1 0
0 0

0 0
0 0

0 1
0 0

0 0
0 0

0 0
1 0

0 0
0 0

0 0
0 1)

 
 
 
 
 

 

 

Then we apply the Bf one time and the 

Hadamard transformations. After the n qubits are 

measured, we can observe: 

 

ℎ𝑤(𝑎) =  2𝑛−1 ∙ (1 − √𝑃|0⟩) (1) 

ℎ𝑤(𝑎) = 2𝑛−1 ∙ √𝑃|2𝑛−1⟩ (2) 

 

where 𝑃|2𝑛−1⟩ is the probability of measure the 

state |2𝑛−1⟩ and 𝑃|0⟩ is the probability of measure 

the state |0⟩ for any number n. As you can see if 

the Hamming weight tell us the number of symbols 

different of the zero-symbol used in the alphabet, 

the number 2𝑛−1 ∙ (1 − √𝑃|0⟩)  tell us the number 

of symbols equal to the zero-symbol in the string. 

Proof 

If we want to calculate de Hamming weight of a 

binary string 𝑠 of length k (𝑛 =  𝑙𝑜𝑔2(𝑘) + 1), we 

define 𝑚𝐿 like the first 2𝑛−1 bits and 𝑚𝐻 the last 

2𝑛−1 bits of the message: 

 

𝑚 = 𝑚2𝑛−1⋯𝑚0 = 𝑚𝐻 & 𝑚𝐿 
𝑚𝐻 = 𝑚2𝑛−1⋯𝑚2𝑛−1  

𝑚𝐿 = 𝑚2𝑛−1−1…𝑚0 = 𝑠𝑘⋯𝑠1 
 
Following the algorithm 𝑚𝐻 will be the binary 

string with all zero´s. Now consider the summation  

 

∑(−1)𝑓(𝑥)+𝑥∙𝑦|𝑦⟩

2𝑛−1

𝑥

 (3) 

 

for the state |0⟩ and |2𝑛−1⟩  in 𝑚𝐻: 

 

∑ (−1)0+𝑥∙(0⋯0)|0⟩ =

𝑥∈𝑚𝐻

 2𝑛−1 (4) 

  

∑ (−1)0+𝑥∙(10⋯0)|2𝑛−1⟩ =

𝑥∈𝑚𝐻

 −2𝑛−1 (5) 

 

Now if we consider the summation (3) for the state 

|0⟩ and |2𝑛−1⟩  in 𝑚𝐿 we will obtain the same 

result: 

∑ (−1)𝑓(𝑥)+𝑥∙(0⋯0)|0⟩ =

𝑥∈𝑚𝐿

  

= 2𝑛−1 − 2 ∙ ℎ𝑤(𝑚𝐿) 

(6) 
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∑ (−1)𝑓(𝑥)+𝑥∙(10⋯0)|2𝑛−1⟩ =

𝑥∈𝑚𝐿

 

= 2𝑛−1 − 2 ∙ ℎ𝑤(𝑚𝐿) 

(7) 

 

where ℎ𝑤(𝑚𝐿) is the Hamming weight of the 

substring 𝑚𝐿. After that we consider the 

contribution of (4) and (6) to the amplitude 

associated with the state|0⟩ and we will obtain 

 
1

2𝑛
∙ (2𝑛−1 − 2 ∙ ℎ𝑤(𝑚𝐿) + 2

𝑛−1) = 

= 1 −
ℎ𝑤(𝑚𝐿)

2𝑛−1
 

(8) 

 

If we consider the contribution of (5) and (7) 

to the amplitude associated with the state|2𝑛−1⟩, 
we will obtain 

 
1

2𝑛
∙ (2𝑛−1 − 2 ∙ ℎ𝑤(𝑚𝐿) − 2

𝑛−1) = 

=
−ℎ𝑤(𝑚𝐿)

2𝑛−1
 

(9) 

when the state |0⟩ is measured we will obtain: 

 

𝑃|0⟩ = (1 −
ℎ𝑤(𝑚𝐿)

2𝑛−1
)

2

 (8) 

 

from where we can easily obtain (1). And if the  

state |2𝑛−1⟩ is measured we will obtain: 

𝑃|0⟩ = (
−ℎ𝑤(𝑚𝐿)

2𝑛−1
)

2

 (10) 

 

from where we can easily obtain (2). 

 

Algorithm to calculate the Hamming distance 

Suppose we have to calculate the Hamming 

distance of two binary strings A y B of length k. 

The steps are the following: 

 

1. Calculate C = A ⊕ B 

2. Build the function f  

 

𝑓: {0,1}𝑛=𝑙𝑜𝑔2(𝑘)+1 → {0,1} 

that encodes the binary string C in the first n/2 

inputs and the binary string 𝑎𝑙𝑙 𝑧𝑒𝑟𝑜´𝑠  in the 

last n/2 inputs. 

3. Prepare an (n+1)-qubit register in the state 

|Ψ0⟩ =  |0⟩
⨂𝑛⨂|1⟩. First n qubits work as 

input qubits of the function, while the (n+1)st 

qubit is an ancilla qubit to store temporary 

information. 

4. Apply the steps 2, 3, 4 and 5 of the Deutsch-

Jozsa algorithm. 

5. The states |2𝑛−1⟩ and |0⟩ are measured: 

 

hd (A,B) = hw(C) = 2𝑛−1 ∙ √𝑃|2𝑛−1⟩ 

hd (A,B) = hw(C) = 2𝑛−1 ∙ (1 − √𝑃|0⟩) 
 

Below you can see the probabilities obtained 

for the Hamming weight (hw) for different n 

values.  

 

hw 𝑷|𝟎⟩ P|𝟐𝒏−𝟏⟩ 

0 1,00 0,00 

1 0,25 0,25 

2 0,00 1,00 

Table 1 n=1 

 

hw 𝑷|𝟎⟩ P|𝟐𝒏−𝟏⟩ 

0 1,00000 0,00000 

1 0,56250 0,06250 

2 0,25000 0,25000 

3 0,06250 0,56250 

4 0,00000 1,00000 

Table 1 n=2 

 

hw 𝑷|𝟎⟩ P|𝟐𝒏−𝟏⟩ hw 𝑷|𝟎⟩ P|𝟐𝒏−𝟏⟩ 
0 1,00000 0,00000 5 0,14062 0,39062 

1 0,76562 0,01562 6 0,06250 0,56250 

2 0,56250 0,06250 7 0,01562 0,76562 

3 0,39062 0,14062 8 0,00000 1,00000 

4 0,25000 0,25000  

Table 2 n=3 

 

hw 𝑷|𝟎⟩ P|𝟐𝒏−𝟏⟩ hw 𝑷|𝟎⟩ P|𝟐𝒏−𝟏⟩ 
0 1,00000 0,00000 9 0,19141 0,31641 

1 0,87891 0,00391 10 0,14063 0,39063 

2 0,76563 0,01563 11 0,09766 0,47266 

3 0,66016 0,03516 12 0,06250 0,56250 

4 0,56250 0,06250 13 0,03516 0,66016 

5 0,47266 0,09766 14 0,01563 0,76563 

6 0,39063 0,14063 15 0,00391 0,87891 

7 0,31641 0,19141 16 0,00000 1,00000 

8 0,25000 0,25000  

Table 3 n=4 
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Comparing the Hamming weight of two binary 

strings 

 

Suppose that we are given two binary strings 

𝑎, 𝑏 of equal length 𝑘. The goal is to determinate if 

both strings have the same Hamming weight. 

Classically 𝑘 queries are necessary and sufficient 

to solve the problem. Using this quantum 

algorithm, one query will be sufficient to solve it. 

The steps are the following: 

1. Build the function f  

 

𝑓: {0,1}𝑛=𝑙𝑜𝑔2(𝑘)+2 → {0,1} 
 

that encodes the binary string 𝑎 in the first n/4 

inputs, the binary string 𝑏 in the next n/4 

inputs and the following “ancilla” string: first 

n/4 bits all one´s next n/4 bits all zero´s. 

2. Prepare an (n+1)-qubit register in the state 

|Ψ0⟩ =  |0⟩
⨂𝑛⨂|1⟩. First n qubits work as 

input qubits of the function, while the (n+1)st 

qubit is an ancilla qubit to store temporary 

information. 

3. Apply the steps 2, 3, 4 and 5 of the Deutsch-

Jozsa algorithm. 

4. The states |2𝑛−2⟩ and |2𝑛−2 + 2𝑛−1⟩ are 

measured: 

 

𝑃|2𝑛−2⟩ = 𝑃 |2𝑛−2 + 2𝑛−1⟩ = 

 

= {
0.25 𝑖𝑓 ℎ𝑤(𝑎) = ℎ𝑤(𝑏)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖𝑓 ℎ𝑤(𝑎) ≠ ℎ𝑤(𝑏)
 

 

Proof 

If we want to determinate if two binary strings 

𝑎, 𝑏 of equal length 𝑘 have the same Hamming 

weight (𝑛 =  𝑙𝑜𝑔2(𝑘) + 2), we define 𝑚𝐿 like the 

first 2𝑛−1 bits and 𝑚𝐻 the last 2𝑛−1 bits of the 

message: 

 

𝑚 = 𝑚2𝑛−1⋯𝑚0 = 𝑚𝐻 & 𝑚𝐿 
𝑚𝐻 = 𝑚2𝑛−1⋯𝑚2𝑛−1  

𝑚𝐿 = 𝑎 & 𝑏 =  𝑎𝑘…𝑎1𝑏𝑘⋯𝑏1 

 
Following the algorithm 𝑚𝐻 will be “ancilla” 

string: n/4 bits all one´s and n/4 bits all zero´s. 

Now consider the summation (3) for the 

state |2𝑛−2⟩  and |2𝑛−2 + 2𝑛−1⟩  in 𝑚𝐻: 

 

∑ (−1)𝑓(𝑥)+𝑥∙(010⋯0)|2𝑛−2⟩  =

𝑥∈𝑚𝐻

− 2𝑛−1 (11) 

  

∑ (−1)𝑓(𝑥)+𝑥∙(110⋯0)|2𝑛−2 + 2𝑛−1⟩

𝑥∈𝑚𝐻

= 2𝑛−1 

(12) 

 

Now if we consider again the summation (3) 

for the state |2𝑛−2⟩  and  |2𝑛−2 + 2𝑛−1⟩ in 𝑚𝐿 we 

will obtain 

∑ (−1)𝑓(𝑥)+𝑥∙(01⋯0)|2𝑛−2⟩ =

𝑥∈𝑚𝐿

 0 (13) 

  

∑ (−1)𝑓(𝑥)+𝑥∙(11⋯0)|2𝑛−2 + 2𝑛−1⟩ =

𝑥∈𝑚𝐿

 0 (14) 

 

if the Hamming weight of binary strings 𝑎, 𝑏 are 

equals because the coefficients vanishes for half 

string being 𝑎 and the other half 𝑏 with the same 

numbers of zero´s and one´s. Otherwise these 

summation will not be zero. 

If we consider the contribution of (11) and (13) 

to the amplitude associated with the state |2𝑛−2⟩, 
we will obtain 

1

2𝑛
∙ (−2𝑛−1) =  − 

1

2
 𝑖𝑓 ℎ𝑤(𝑎) = ℎ𝑤(𝑏) (15) 

And if we consider the contribution of (12) 

and (14) to the amplitude associated with the state 

|2𝑛−2 + 2𝑛−1⟩ 

1

2𝑛
∙ (2𝑛−1) =   

1

2
 𝑖𝑓 ℎ𝑤(𝑎) = ℎ𝑤(𝑏) (16) 

When the state |2𝑛−2⟩ and |2𝑛−2 + 2𝑛−1⟩  are 

measured we will obtain: 

 

𝑃|2𝑛−2⟩ = 𝑃|2𝑛−2 + 2𝑛−1⟩ = 0.25  
𝑖𝑓 ℎ𝑤(𝑎) = ℎ𝑤(𝑏)  

(17) 

 
Moreover if ℎ𝑑(𝑎, 𝑏) =  0 (Hamming distance) we 

will obtain all outcomes 0 when we measure the 

following states: 

 

|2𝑛−2 + 1⟩ ⋯ |2𝑛−1 − 1⟩ (18) 
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Simulations on IBM Quantum Experience 

 

Experiment 1(figure 1): calculate de Hamming 

distance of the following strings: 

𝑎 = 10100101 𝑏 = 01100101 

In this case n=4. The first step is to calculate  

𝑐 = 𝑎 ⊕ 𝑏 = 11000000 

and to define the function f 

 

Input 
 (q[3],q[2],q[1],q[0]) 

f 
Input 

 (q[3],q[2],q[1],q[0]) 
f 

0000 0 1000 0 

0001 0 1001 0 

0010 0 1010 0 

0011 0 1011 0 

0100 0 1100 0 

0101 0 1101 0 

0110 1 1110 0 

0111 1 1111 0 

After define the transformation Bf and the oracle, 

the quantum circuit is showing below. 

The results we obtain after 8192 shots are: 

 

State Probability 

|0⟩ 0,566 

|2⟩ 0,062 

|4⟩ 0,066 

|6⟩ 0,061 

|8⟩ 0,063 

|10⟩ 0,058 

|12⟩ 0,061 

|14⟩ 0,064 

ℎ𝑑(𝑎, 𝑏) = ℎ𝑤(𝑐) = ⌊√0,063 ⋅23⌋ = 2 

ℎ𝑑(𝑎, 𝑏) = ℎ𝑤(𝑐) = 23 − ⌊√0,566 ⋅ 23⌋ = 2 

Experiment 2(figure 2): calculate de Hamming 

distance of the following strings: 

𝑎 = 1001 𝑏 = 0001 
In this case n=3. The first step is to calculate  

𝑐 = 𝑎 ⊕ 𝑏 = 1000 

and to define the function f 

 

Input 
 (q[2],q[1],q[0]) 

f Input 
 (q[2],q[1],q[0]) 

f 

000 0 100 0 

001 0 101 0 

010 0 110 0 

011 1 111 0 

After define the transformation Bf and the oracle, 

the quantum circuit is showing below. 

The results we obtain after 8192 shots are: 

 

State Probability 

|0⟩ 0,565 

|1⟩ 0,066 

|2⟩ 0,062 

|3⟩ 0,052 

|4⟩ 0,066 

|5⟩ 0,065 

|6⟩ 0,059 

|7⟩ 0,065 

ℎ𝑑(𝑎, 𝑏) = ℎ𝑤(𝑐) = ⌊√0,066 ⋅22⌋ = 1 

ℎ𝑑(𝑎, 𝑏) = ℎ𝑤(𝑐) = 22 − ⌊√0,565 ⋅ 22⌋ = 1 

 

 

 
Figure 1 Quantum circuit to calculate de Hamming distance of  𝑎 = 10100101 𝑎𝑛𝑑 𝑏 = 01100101 

 
Figure 2 Quantum circuit to calculate de Hamming distance of  𝑎 = 1001 𝑎𝑛𝑑 𝑏 = 0001 
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Experiment 3(figure 3): determinate if the binary 

strings 𝑎, 𝑏 have the same Hamming weight 

 

𝑎 = 1010 𝑏 = 1010 
 

In this case n=4 and the function f will be: 

 

Input 
 (q[3],q[2],q[1],q[0]) 

f 
Input 

 (q[3],q[2],q[1],q[0]) 
f 

0000  1 (𝑎4) 1000 0 

0001 0 (𝑎3) 1001 0 

0010 1 (𝑎2) 1010 0 

0011 0 (𝑎1) 1011 0 

0100 1 (𝑏4) 1100 1 

0101 0 (𝑏3) 1101 1 

0110 1 (𝑏2) 1110 1 

0111 0 (𝑏1) 1111 1 

After define the transformation Bf and the oracle, 

the quantum circuit is showing below. 

 

The results we obtain after 8192 shots that you can 

see below on figure 4, are: 

 

 

 

 

As we can see the probability of the states |4⟩ and 

|12⟩ are 0.25 so we can say that both strings have 

the same Hamming length and because (18) the 

outcomes of the states |5⟩|6⟩|7⟩ are all zero´s we 

can say too that both strings are equals. 

 

Figure 3 Quantum circuit to compare de Hamming weight of  𝑎 = 1010 𝑎𝑛𝑑 𝑏 = 1010 

 

 
Figure 4 Quantum results for the circuit on figure 3 

 

  

State Probability 

|1⟩ 0,248 

|4⟩ 0,24 

|9⟩ 0,25 

|12⟩ 0,262 
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Conclusions 

This algorithm show one more time the advantage of the quantum computation to solve more efficiently 

than classical computation some algorithms. As you can see a quantum algorithm is able to calculate the 

Hamming weight of a binary string in just one only query to an oracle and we can use it to determinate if 

two binary strings have the same Hamming weight or the Hamming distance equals to cero more 

efficiently than a classical algorithm. Moreover with a simple classical pre-processing, the xor operation 

between two binary strings, the algorithm calculates the Hamming distance of both. Finally you can see 

the quantum circuits that implements some experiments using IBM Q Experience 
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