
Calculating Hamming distance with the IBM Q Experience
José Manuel Bravo

pestecnologia@gmail.com

Prof. Computer Science and Technology, High School, Málaga, Spain

Abstract

In this paper a quantum algorithm to calculate the Hamming distance of two binary strings of equal length

(or messages in theory information) is presented. The algorithm calculates the Hamming weight of two

binary strings in one query of an oracle. To calculate the hamming distance of these two strings we only

have to calculate the Hamming weight of the xor operation of both strings. To test the algorithms the

quantum computer prototype that IBM has given open access to on the cloud has been used to test the

results.

Keywords: quantum algorithm, Hamming weight, Hamming distance

Introduction

 The advantage of the quantum computation

to solve more efficiently than classical

computation some algorithms is one of the most

important key for scientists to continue researching

and developing news quantum algorithms.

Grover´s searching quantum algorithm is able to

select one entry between 2𝑛 with output 1 in only

O(log(n)) queries to an oracle. Shor´s factoring

quantum algorithms is able to factorize one

number faster than any classical algorithms

known. Deutch-Jozsa algorithm is able to

determinate if a function is constant or balanced

using only one query to a quantum oracle.

 The Hamming weight of two binary strings

(messages) of equal length is the number of

symbols different of the zero-symbol used in the

alphabet. It represents the number of 1´s in the

string or the digit sum of the binary representation.

The Hamming weight is widely used in different

disciplines [1][2], including information theory,

coding theory, and cryptography , and his efficient

implementation has been widely studied [3][4][5].

The Hamming distance in information theory

between two strings is the minimum number of

substitutions required to change one string into the

other. It is used in coding theory to define the error

detecting and the error correcting codes. The

running time of classical algorithms is proportional

to the Hamming distance or to the number of bits

in the inputs. Using this quantum algorithm it´s

possible to calculate the Hamming distance in only

one query to a quantum oracle.
The quantum algorithm calculates the

Hamming weight between to binary strings. To

calculate the Hamming distance of these two

inputs we have to calculate previously the xor

operation between them and after that to calculate

the Hamming weight (hw) of the result. Suppose

we have to calculate the Hamming distance

between the binary string A and B (hd (A,B)):

A = 1001 B = 1100

First we calculate A ⊕ B = 0101 and then

hw (A ⊕ B) = hd (A,B) = 2

This quantum algorithms uses quantum

parallelism as the fundamental feature to evaluate

a function implemented in a quantum oracle for

many different values of x at the same time

because it exploits the ability of a quantum

computer to be in superposition of different states.

Moreover it uses a property of quantum

mechanics known as interference. In a quantum

computer it is possible for the two alternatives to

interfere with one another to yield some global

property of a function f, by using the Hadamard

gate to recombine the different alternatives.

The essence of the design of this algorithm is

the choice of a function and a final transformation

that allows efficient determination of the Hamming

weight of a message (information which cannot be

attained quickly on a classical computer).

The quantum algorithm is based on the

Deutch-Jozsa algorithm [6]. A special function of

two binary strings is implemented in an oracle and

we only one query to calculate the Hamming

weight is needed.

IBM releases in 2016 a 5-qubit universal

quantum computer prototype accessible on the

cloud. To test the algorithm, two experiments have

been simulated on the IBM Q Experience

composer.

The Deutsch-Jozsa algorithm

The goal is to find an algorithm which tells if a

function f is constant or balanced with the least

possible number of evaluations of an oracle.

The algorithm is divided into the following

steps:

1. Prepare an (n+1)-qubit register in the state

|Ψ0⟩ = |0⟩
⨂𝑛⨂|1⟩. First n qubits work as

input qubits of the function, while the (n+1)st

is an ancilla qubit to store temporary

information.

2. Apply the Hadamard transformation to the

register. Then we have the state:

|Ψ1⟩ =
1

√2𝑛
∑ |𝑥⟩

2𝑛−1

𝑥=0

⊗
1

√2
(|0⟩ − |1⟩)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2018 doi:10.20944/preprints201804.0164.v2

© 2018 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201804.0164.v2
http://creativecommons.org/licenses/by/4.0/

3. Perform a quantum transformation Bf,

associated to a function f defined by

𝐵f|𝑥⟩|𝑦⟩ = |𝑥⟩|𝑦⊕ 𝑓(𝑥)⟩
where f(x) is any function

𝑓: {0,1}𝑛 → {0,1}
Then we obtain the following state.

|Ψ2⟩ =
1

√2𝑛
∑(−1)𝑓(𝑥)|𝑥⟩

2𝑛−1

𝑥=0

⊗
1

√2
(|0⟩ − |1⟩)

4. Apply a Hadamard transformation on the first

n qubit.

|Ψ3⟩ =
1

2𝑛
∑(−1)𝑓(𝑥)+𝑥∙𝑦|𝑦⟩

2𝑛−1

𝑥,𝑦

⊗
1

√2
(|0⟩ − |1⟩)

𝑥 ∙ 𝑦 = 𝑥n-1𝑦n-1⊕𝑥n-2𝑦n-2⊕…⊕ 𝑥0𝑦0

5. The first n qubits are measured. Following

the algorithm if the probability that the

measurements all give outcome 0, is 1, the

function f is constant and balanced is that

probability is 0.

How to calculate the Hamming weight

The algorithm to calculate the Hamming

weight is based on the Deutsch-Jozsa algorithm so

the steps are the same described above.

The function f associated to the

transformation Bf is the following. Suppose we

have to calculate the Hamming weight of a binary

string of length k. In that case we define a function

from 𝑛 = 𝑙𝑜𝑔2(𝑘) + 1 bits to 1 bit in the following

way:

 On the first 2𝑛−1 inputs of the function we

encode the binary string (message) based on

the position of each bit on the string (message).

 On the last 2𝑛−1 inputs of the function we fix

the binary string with all zero´s.

Suppose we want to calculate the Hamming

weight of the string a = 10. Then function f will

be:

𝑓: {0,1}𝑙𝑜𝑔2(2)+1 → {0,1}

Input |𝑥⟩ F(x)

00 0

01 1

10 0

11 0

The transformation Bf:

𝐵f|𝑥⟩|𝑦⟩ = |𝑥⟩|𝑦 ⊕ 𝑓(𝑥)⟩

This transformation has associated a unitary

permutation so it can be implemented in a quantum

computer using a set of universal quantum gates.

(

1 0
0 0

0 0
0 0

0 0
0 1

0 0
0 0

0 0
1 0

0 0
0 0

0 1
0 0

0 0
0 0

0 0
0 0

1 0
0 0

0 0
0 0

0 1
0 0

0 0
0 0

0 0
1 0

0 0
0 0

0 0
0 1)

Then we apply the Bf one time and the

Hadamard transformations. After the n qubits are

measured, we can observe:

ℎ𝑤(𝑎) = 2𝑛−1 ∙ (1 − √𝑃|0⟩) (1)

ℎ𝑤(𝑎) = 2𝑛−1 ∙ √𝑃|2𝑛−1⟩ (2)

where 𝑃|2𝑛−1⟩ is the probability of measure the

state |2𝑛−1⟩ and 𝑃|0⟩ is the probability of measure

the state |0⟩ for any number n. As you can see if

the Hamming weight tell us the number of symbols

different of the zero-symbol used in the alphabet,

the number 2𝑛−1 ∙ (1 − √𝑃|0⟩) tell us the number

of symbols equal to the zero-symbol in the string.

Proof

If we want to calculate de Hamming weight of a

binary string 𝑠 of length k (𝑛 = 𝑙𝑜𝑔2(𝑘) + 1), we

define 𝑚𝐿 like the first 2𝑛−1 bits and 𝑚𝐻 the last

2𝑛−1 bits of the message:

𝑚 = 𝑚2𝑛−1⋯𝑚0 = 𝑚𝐻 & 𝑚𝐿
𝑚𝐻 = 𝑚2𝑛−1⋯𝑚2𝑛−1

𝑚𝐿 = 𝑚2𝑛−1−1…𝑚0 = 𝑠𝑘⋯𝑠1

Following the algorithm 𝑚𝐻 will be the binary

string with all zero´s. Now consider the summation

∑(−1)𝑓(𝑥)+𝑥∙𝑦|𝑦⟩

2𝑛−1

𝑥

 (3)

for the state |0⟩ and |2𝑛−1⟩ in 𝑚𝐻:

∑ (−1)0+𝑥∙(0⋯0)|0⟩ =

𝑥∈𝑚𝐻

 2𝑛−1 (4)

∑ (−1)0+𝑥∙(10⋯0)|2𝑛−1⟩ =

𝑥∈𝑚𝐻

 −2𝑛−1 (5)

Now if we consider the summation (3) for the state

|0⟩ and |2𝑛−1⟩ in 𝑚𝐿 we will obtain the same

result:

∑ (−1)𝑓(𝑥)+𝑥∙(0⋯0)|0⟩ =

𝑥∈𝑚𝐿

= 2𝑛−1 − 2 ∙ ℎ𝑤(𝑚𝐿)

(6)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2018 doi:10.20944/preprints201804.0164.v2

http://dx.doi.org/10.20944/preprints201804.0164.v2

∑ (−1)𝑓(𝑥)+𝑥∙(10⋯0)|2𝑛−1⟩ =

𝑥∈𝑚𝐿

= 2𝑛−1 − 2 ∙ ℎ𝑤(𝑚𝐿)

(7)

where ℎ𝑤(𝑚𝐿) is the Hamming weight of the

substring 𝑚𝐿. After that we consider the

contribution of (4) and (6) to the amplitude

associated with the state|0⟩ and we will obtain

1

2𝑛
∙ (2𝑛−1 − 2 ∙ ℎ𝑤(𝑚𝐿) + 2

𝑛−1) =

= 1 −
ℎ𝑤(𝑚𝐿)

2𝑛−1

(8)

If we consider the contribution of (5) and (7)

to the amplitude associated with the state|2𝑛−1⟩,
we will obtain

1

2𝑛
∙ (2𝑛−1 − 2 ∙ ℎ𝑤(𝑚𝐿) − 2

𝑛−1) =

=
−ℎ𝑤(𝑚𝐿)

2𝑛−1

(9)

when the state |0⟩ is measured we will obtain:

𝑃|0⟩ = (1 −
ℎ𝑤(𝑚𝐿)

2𝑛−1
)

2

 (8)

from where we can easily obtain (1). And if the

state |2𝑛−1⟩ is measured we will obtain:

𝑃|0⟩ = (
−ℎ𝑤(𝑚𝐿)

2𝑛−1
)

2

 (10)

from where we can easily obtain (2).

Algorithm to calculate the Hamming distance

Suppose we have to calculate the Hamming

distance of two binary strings A y B of length k.

The steps are the following:

1. Calculate C = A ⊕ B

2. Build the function f

𝑓: {0,1}𝑛=𝑙𝑜𝑔2(𝑘)+1 → {0,1}

that encodes the binary string C in the first n/2

inputs and the binary string 𝑎𝑙𝑙 𝑧𝑒𝑟𝑜´𝑠 in the

last n/2 inputs.

3. Prepare an (n+1)-qubit register in the state

|Ψ0⟩ = |0⟩
⨂𝑛⨂|1⟩. First n qubits work as

input qubits of the function, while the (n+1)st

qubit is an ancilla qubit to store temporary

information.

4. Apply the steps 2, 3, 4 and 5 of the Deutsch-

Jozsa algorithm.

5. The states |2𝑛−1⟩ and |0⟩ are measured:

hd (A,B) = hw(C) = 2𝑛−1 ∙ √𝑃|2𝑛−1⟩

hd (A,B) = hw(C) = 2𝑛−1 ∙ (1 − √𝑃|0⟩)

Below you can see the probabilities obtained

for the Hamming weight (hw) for different n

values.

hw 𝑷|𝟎⟩ P|𝟐𝒏−𝟏⟩

0 1,00 0,00

1 0,25 0,25

2 0,00 1,00

Table 1 n=1

hw 𝑷|𝟎⟩ P|𝟐𝒏−𝟏⟩

0 1,00000 0,00000

1 0,56250 0,06250

2 0,25000 0,25000

3 0,06250 0,56250

4 0,00000 1,00000

Table 1 n=2

hw 𝑷|𝟎⟩ P|𝟐𝒏−𝟏⟩ hw 𝑷|𝟎⟩ P|𝟐𝒏−𝟏⟩
0 1,00000 0,00000 5 0,14062 0,39062

1 0,76562 0,01562 6 0,06250 0,56250

2 0,56250 0,06250 7 0,01562 0,76562

3 0,39062 0,14062 8 0,00000 1,00000

4 0,25000 0,25000

Table 2 n=3

hw 𝑷|𝟎⟩ P|𝟐𝒏−𝟏⟩ hw 𝑷|𝟎⟩ P|𝟐𝒏−𝟏⟩
0 1,00000 0,00000 9 0,19141 0,31641

1 0,87891 0,00391 10 0,14063 0,39063

2 0,76563 0,01563 11 0,09766 0,47266

3 0,66016 0,03516 12 0,06250 0,56250

4 0,56250 0,06250 13 0,03516 0,66016

5 0,47266 0,09766 14 0,01563 0,76563

6 0,39063 0,14063 15 0,00391 0,87891

7 0,31641 0,19141 16 0,00000 1,00000

8 0,25000 0,25000

Table 3 n=4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2018 doi:10.20944/preprints201804.0164.v2

http://dx.doi.org/10.20944/preprints201804.0164.v2

Comparing the Hamming weight of two binary

strings

Suppose that we are given two binary strings

𝑎, 𝑏 of equal length 𝑘. The goal is to determinate if

both strings have the same Hamming weight.

Classically 𝑘 queries are necessary and sufficient

to solve the problem. Using this quantum

algorithm, one query will be sufficient to solve it.

The steps are the following:

1. Build the function f

𝑓: {0,1}𝑛=𝑙𝑜𝑔2(𝑘)+2 → {0,1}

that encodes the binary string 𝑎 in the first n/4

inputs, the binary string 𝑏 in the next n/4

inputs and the following “ancilla” string: first

n/4 bits all one´s next n/4 bits all zero´s.

2. Prepare an (n+1)-qubit register in the state

|Ψ0⟩ = |0⟩
⨂𝑛⨂|1⟩. First n qubits work as

input qubits of the function, while the (n+1)st

qubit is an ancilla qubit to store temporary

information.

3. Apply the steps 2, 3, 4 and 5 of the Deutsch-

Jozsa algorithm.

4. The states |2𝑛−2⟩ and |2𝑛−2 + 2𝑛−1⟩ are

measured:

𝑃|2𝑛−2⟩ = 𝑃 |2𝑛−2 + 2𝑛−1⟩ =

= {
0.25 𝑖𝑓 ℎ𝑤(𝑎) = ℎ𝑤(𝑏)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖𝑓 ℎ𝑤(𝑎) ≠ ℎ𝑤(𝑏)

Proof

If we want to determinate if two binary strings

𝑎, 𝑏 of equal length 𝑘 have the same Hamming

weight (𝑛 = 𝑙𝑜𝑔2(𝑘) + 2), we define 𝑚𝐿 like the

first 2𝑛−1 bits and 𝑚𝐻 the last 2𝑛−1 bits of the

message:

𝑚 = 𝑚2𝑛−1⋯𝑚0 = 𝑚𝐻 & 𝑚𝐿
𝑚𝐻 = 𝑚2𝑛−1⋯𝑚2𝑛−1

𝑚𝐿 = 𝑎 & 𝑏 = 𝑎𝑘…𝑎1𝑏𝑘⋯𝑏1

Following the algorithm 𝑚𝐻 will be “ancilla”

string: n/4 bits all one´s and n/4 bits all zero´s.

Now consider the summation (3) for the

state |2𝑛−2⟩ and |2𝑛−2 + 2𝑛−1⟩ in 𝑚𝐻:

∑ (−1)𝑓(𝑥)+𝑥∙(010⋯0)|2𝑛−2⟩ =

𝑥∈𝑚𝐻

− 2𝑛−1 (11)

∑ (−1)𝑓(𝑥)+𝑥∙(110⋯0)|2𝑛−2 + 2𝑛−1⟩

𝑥∈𝑚𝐻

= 2𝑛−1

(12)

Now if we consider again the summation (3)

for the state |2𝑛−2⟩ and |2𝑛−2 + 2𝑛−1⟩ in 𝑚𝐿 we

will obtain

∑ (−1)𝑓(𝑥)+𝑥∙(01⋯0)|2𝑛−2⟩ =

𝑥∈𝑚𝐿

 0 (13)

∑ (−1)𝑓(𝑥)+𝑥∙(11⋯0)|2𝑛−2 + 2𝑛−1⟩ =

𝑥∈𝑚𝐿

 0 (14)

if the Hamming weight of binary strings 𝑎, 𝑏 are

equals because the coefficients vanishes for half

string being 𝑎 and the other half 𝑏 with the same

numbers of zero´s and one´s. Otherwise these

summation will not be zero.

If we consider the contribution of (11) and (13)

to the amplitude associated with the state |2𝑛−2⟩,
we will obtain

1

2𝑛
∙ (−2𝑛−1) = −

1

2
 𝑖𝑓 ℎ𝑤(𝑎) = ℎ𝑤(𝑏) (15)

And if we consider the contribution of (12)

and (14) to the amplitude associated with the state

|2𝑛−2 + 2𝑛−1⟩

1

2𝑛
∙ (2𝑛−1) =

1

2
 𝑖𝑓 ℎ𝑤(𝑎) = ℎ𝑤(𝑏) (16)

When the state |2𝑛−2⟩ and |2𝑛−2 + 2𝑛−1⟩ are

measured we will obtain:

𝑃|2𝑛−2⟩ = 𝑃|2𝑛−2 + 2𝑛−1⟩ = 0.25
𝑖𝑓 ℎ𝑤(𝑎) = ℎ𝑤(𝑏)

(17)

Moreover if ℎ𝑑(𝑎, 𝑏) = 0 (Hamming distance) we

will obtain all outcomes 0 when we measure the

following states:

|2𝑛−2 + 1⟩ ⋯ |2𝑛−1 − 1⟩ (18)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2018 doi:10.20944/preprints201804.0164.v2

http://dx.doi.org/10.20944/preprints201804.0164.v2

Simulations on IBM Quantum Experience

Experiment 1(figure 1): calculate de Hamming

distance of the following strings:

𝑎 = 10100101 𝑏 = 01100101

In this case n=4. The first step is to calculate

𝑐 = 𝑎 ⊕ 𝑏 = 11000000

and to define the function f

Input
 (q[3],q[2],q[1],q[0])

f
Input

 (q[3],q[2],q[1],q[0])
f

0000 0 1000 0

0001 0 1001 0

0010 0 1010 0

0011 0 1011 0

0100 0 1100 0

0101 0 1101 0

0110 1 1110 0

0111 1 1111 0

After define the transformation Bf and the oracle,

the quantum circuit is showing below.

The results we obtain after 8192 shots are:

State Probability

|0⟩ 0,566

|2⟩ 0,062

|4⟩ 0,066

|6⟩ 0,061

|8⟩ 0,063

|10⟩ 0,058

|12⟩ 0,061

|14⟩ 0,064

ℎ𝑑(𝑎, 𝑏) = ℎ𝑤(𝑐) = ⌊√0,063 ⋅23⌋ = 2

ℎ𝑑(𝑎, 𝑏) = ℎ𝑤(𝑐) = 23 − ⌊√0,566 ⋅ 23⌋ = 2

Experiment 2(figure 2): calculate de Hamming

distance of the following strings:

𝑎 = 1001 𝑏 = 0001
In this case n=3. The first step is to calculate

𝑐 = 𝑎 ⊕ 𝑏 = 1000

and to define the function f

Input
 (q[2],q[1],q[0])

f Input
 (q[2],q[1],q[0])

f

000 0 100 0

001 0 101 0

010 0 110 0

011 1 111 0

After define the transformation Bf and the oracle,

the quantum circuit is showing below.

The results we obtain after 8192 shots are:

State Probability

|0⟩ 0,565

|1⟩ 0,066

|2⟩ 0,062

|3⟩ 0,052

|4⟩ 0,066

|5⟩ 0,065

|6⟩ 0,059

|7⟩ 0,065

ℎ𝑑(𝑎, 𝑏) = ℎ𝑤(𝑐) = ⌊√0,066 ⋅22⌋ = 1

ℎ𝑑(𝑎, 𝑏) = ℎ𝑤(𝑐) = 22 − ⌊√0,565 ⋅ 22⌋ = 1

Figure 1 Quantum circuit to calculate de Hamming distance of 𝑎 = 10100101 𝑎𝑛𝑑 𝑏 = 01100101

Figure 2 Quantum circuit to calculate de Hamming distance of 𝑎 = 1001 𝑎𝑛𝑑 𝑏 = 0001

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2018 doi:10.20944/preprints201804.0164.v2

http://dx.doi.org/10.20944/preprints201804.0164.v2

Experiment 3(figure 3): determinate if the binary

strings 𝑎, 𝑏 have the same Hamming weight

𝑎 = 1010 𝑏 = 1010

In this case n=4 and the function f will be:

Input
 (q[3],q[2],q[1],q[0])

f
Input

 (q[3],q[2],q[1],q[0])
f

0000 1 (𝑎4) 1000 0

0001 0 (𝑎3) 1001 0

0010 1 (𝑎2) 1010 0

0011 0 (𝑎1) 1011 0

0100 1 (𝑏4) 1100 1

0101 0 (𝑏3) 1101 1

0110 1 (𝑏2) 1110 1

0111 0 (𝑏1) 1111 1

After define the transformation Bf and the oracle,

the quantum circuit is showing below.

The results we obtain after 8192 shots that you can

see below on figure 4, are:

As we can see the probability of the states |4⟩ and

|12⟩ are 0.25 so we can say that both strings have

the same Hamming length and because (18) the

outcomes of the states |5⟩|6⟩|7⟩ are all zero´s we

can say too that both strings are equals.

Figure 3 Quantum circuit to compare de Hamming weight of 𝑎 = 1010 𝑎𝑛𝑑 𝑏 = 1010

Figure 4 Quantum results for the circuit on figure 3

State Probability

|1⟩ 0,248

|4⟩ 0,24

|9⟩ 0,25

|12⟩ 0,262

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2018 doi:10.20944/preprints201804.0164.v2

http://dx.doi.org/10.20944/preprints201804.0164.v2

Conclusions

This algorithm show one more time the advantage of the quantum computation to solve more efficiently

than classical computation some algorithms. As you can see a quantum algorithm is able to calculate the

Hamming weight of a binary string in just one only query to an oracle and we can use it to determinate if

two binary strings have the same Hamming weight or the Hamming distance equals to cero more

efficiently than a classical algorithm. Moreover with a simple classical pre-processing, the xor operation

between two binary strings, the algorithm calculates the Hamming distance of both. Finally you can see

the quantum circuits that implements some experiments using IBM Q Experience

Data availability

All relevant data are available within the paper.

Competing interests

The author confirms that there are no known conflicts of interest associated with this publication and

there has been no financial support for this work that could have influenced its outcome. The author

declares no competing interests.

References

[1] SPARC International, Inc. (1992). "A.41: Population Count. Programming Note". The SPARC

architecture manual: version 8 (PDF) (Version 8 ed.). Englewood Cliffs, New Jersey, USA: Prentice

Hall. p. 231. ISBN 0-13-825001-4. Archived from the original (PDF) on 2012-01-18.

[2] Blaxell, David (1978), "Record linkage by bit pattern matching", in Hogben, David; Fife, Dennis W.,

Computer Science and Statistics--Tenth Annual Symposium on the Interface, NBS Special

Publication, 503, U.S. Department of Commerce / National Bureau of Standards, pp. 146–156

[3] Muła, Wojciech; Kurz, Nathan; Lemire, Daniel (January 2018), "Faster Population Counts Using

AVX2 Instructions", Computer Journal, 61 (1), doi:10.1093/comjnl/bxx046

[4] Knuth, Donald Ervin (2009). "Bitwise tricks & techniques; Binary Decision Diagrams". The Art of

Computer Programming. Volume 4, Fascicle 1. Addison–Wesley Professional. ISBN 0-321-58050-8.

(NB. Draft of Fascicle 1b available for download.)

[5] Hewlett-Packard HP-16C Computer Scientist Owner's Handbook (PDF). Hewlett-Packard Company.

April 1982. 00016-90001. Archived (PDF) from the original on 2017-03-28. Retrieved 2017-03-28

[6] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Proceedings of the

Royal Society of London A, 439:553–558, Jan 1992.

[7] Quantum information science. Michael Nielsen and Isaac Chuang. Cambridge University Press.

ISBN 978-1-107-00217-3

[8] Quantum Computing. From Linear Algebra to Physical Realizations. Mikio Nakahara and Tetsuo

Ohmi. CRC Press. ISBN 978-0-7503-0983-7

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2018 doi:10.20944/preprints201804.0164.v2

http://dx.doi.org/10.20944/preprints201804.0164.v2

