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Abstract: Parmigiano Reggiano cheese is one of the most appreciated and consumed food 15 
worldwide, especially in Italy, for its high content of nutrients and for its taste. However, these 16 
characteristics make this product subject to counterfeiting in different forms. In this study, a novel 17 
method based on an electronic nose has been developed in order to investigate the potentiality of 18 
this tool to distinguish rind percentage in grated Parmigiano Reggiano packages that should be 19 
lower than 18%. Different samples in terms of percentage, seasoning and rind working process were 20 
considered to tackle the problem at 360°. In parallel, GC-MS technique was used to give a name to 21 
the compounds that characterize Parmigiano and to relate them with sensors responses. Data 22 
analysis consisted of two stages: multivariate analysis (PLS) and classification made in a hierarchical 23 
way with PLS-DA ad ANNs. Results are promising in terms of correct classification of the samples. 24 
The classification rate is higher for ANNs than PLS-DA, reaching also 100% values. 25 

Keywords: electronic nose, nanowire gas sensors, food quality control, Parmigiano Reggiano, 26 
multivariate data analysis, artificial neural network 27 

 28 

1. Introduction 29 

Parmigiano Reggiano (PR) cheese is one of the most typical Italian food and one of the oldest 30 
traditional cheeses produced in Europe. It is also the most important Protected Designation of Origin 31 
(PDO) Italian cheese in terms of commercial importance [1]. Its production is regulated by the 32 
Parmigiano Reggiano Cheese Consortium (CFPR). According to European Regulation 510/2006, this 33 
designation can be exclusively assigned to the cheese made following a traditional established 34 
production technology in a restricted area of Italy (provinces of Parma, Reggio Emilia, Modena, 35 
Mantova and Bologna) from milk produced in the same area [2]. 36 

PR can be found on the market in different forms. It can be portioned or grated and cannot be 37 
subjected to any treatment like lyophilization, drying and freezing [3]. All the procedures, that must 38 
be followed to obtain the original PR, make this cheese a high-value product. That leads to a final 39 
product that has various nutritional properties: its dry weight is mostly composed of proteins and 40 
lipids, is lactose- and galactose-free and rich in organic acids, such as lactic acid, acetic acid, propionic 41 
and butyric acids [4]; the semi-fat composition due to natural creaming of skimmed unpasteurized 42 
milk [5] is produced by cattle that consumes only locally grown forage because supply of silage and 43 
fermented feeds is not permitted [6]. 44 
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For these reasons PR has a high cost, if compared to similar hard cheeses. This encourages the 45 
appearance on the market of counterfeited products that bear PR brand at a lower price. The rate of 46 
fraud is estimated between 20% and 40%, the latter predominantly in the grated form. [7]. 47 

As established in the procedural guideline, grated PR cheese must follow some technical and 48 
technological parameters: moisture no less than 25% and no more than 35%, at least 12 months of 49 
ripening, rind not over 18%, typical amino-acid composition of the cheese, absence of additives, not 50 
crumbly in aspect and with homogeneous particles with a diameter inferior to 0.5 mm and not 51 
exceeding 25% [8]. 52 

In order to distinguish if a PR cheese package conforms to the rules, the aromatic profile of grated 53 
PR can be analyzed thanks to the volatile organic compounds (VOCs). VOCs of various dairy 54 
products have received a great deal of attention in the last years. Till now, about 600 volatile 55 
compounds have been identified for cheese [9]. However, only a small part of these compounds is 56 
responsible for cheese flavor [10]. Cheese aroma is considered the result of the equilibrium between 57 
various VOCs that separately do not reflect the overall odor [11]. Hydrocarbons, alcohols, aldehydes, 58 
ketones, esters and lactones were the major classes of compounds found in the neutral fraction of 59 
cheese [12]. 60 

In this work, an electronic nose has been used in order to analyze rind percentage in grated PR 61 
cheese through emitted VOCs. In the last years, this kind of devices has received numerous attentions 62 
for its potentialities; it has been applied in various fields, as environment [13-14], health [15-16] and 63 
food with excellent results. Regarding food applications, some examples of electronic nose 64 
applications are the detection of microorganisms in tomato sauce [17] and of different molds in coffee 65 
[18], the determination of shelf life of milk [19], the finding of additives in fruit juices [20]. These few 66 
examples show how e-noses have the potentiality to be used in different ways to assess food quality 67 
and identity.  68 

Placed side by side with e-nose analysis, Gas Chromatography coupled with Solid Phase Micro 69 
Extraction (SPME) was used. SPME has received much attention in the literature to find VOCs that 70 
characterize food matrices. Many foods have been studied, including dairy products, such as milk 71 
[21], butter [22] and cheese [23-24]. 72 

The aim of the work is to recognize rind percentages of the sample under analysis with an 73 
innovative and rapid methodology in order to identify eventual frauds and therefore have an 74 
affordable and reliable instrument to reduce them, making the most of the possible differences 75 
between the products such as VOCs presence and amount. 76 

2. Materials and Methods 77 

2.1. Samples preparation and experimental design 78 
 Analyzed samples were packaged under vacuum at the headquarters of CFPR. They came from 79 
two different ripening stages: 12 and 24 months. For each of these, five different combinations of 80 
pulp-rind were prepared (expressed in rind percentage): 0%, 18%, 26%, 45% and 100%. In addition, 81 
two kind of rind working processes were considered: washed-rind (WR) and scraped-rind (SR). The 82 
only exceptions are represented by 0% samples, for which only the 24 month ripening was taking 83 
into account, and 100% samples, for which there is one for WR and one for SR that correspond to 24 84 
month and 12 month seasoning respectively. For each sample, 14 several replicas were arranged for 85 
a total of 210 (14 replicas x 15 samples).  86 
 Samples were stored at 4°C until the moment they were prepared for the analysis. The amount 87 
of 2 g of grated cheese were positioned in 20 mL glass headspace vials and sealed with a metal cap 88 
with a PTFE-silicon membrane, crimped with an aluminum crimp. 89 
 90 
2.2 GC-MS Analysis 91 
  92 

The Gas Chromatograph (GC) used during the analyses was a Shimadzu GC2010 PLUS (Kyoto, 93 
KYT, Japan), equipped with a Shimadzu single quadrupole Mass Spectometer (MS) MS-QP2010 Ultra 94 
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(Kyoto, KYT, Japan) and with an autosampler HT280T (HTA s.r.l., Brescia, Italy). The GC-MS analysis 95 
was coupled with the Solid-Phase Micro Extraction (SPME) method in order to find the most 96 
significant VOCs that allow to recognize the different kinds of cheeses.  97 

The fiber used for the adsorption of volatiles was a DVB/CAR/PDMS – 50/30 µm (Supelco Co. 98 
Bellefonte, PA, USA). The fiber was exposed to the headspace of the vials after heating the samples 99 
in the HT280T oven thermostatically regulated at 50°C for 15 min with the aim to create the headspace 100 
equilibrium. The length of the fiber in the headspace was kept constant. Desorption of volatiles took 101 
place in the injector of the GC-MS for 6 min at 250°C. 102 

The gas chromatograph was operated in the direct mode throughout the run with the mass 103 
spectrometer in electron ionization (EI) mode (70 eV). GC separation was performed on a MEGA-104 
WAX capillary column (30m x 0.25mm x 0.25µm, Agilent Technologies, Santa Clara, CA, USA). 105 
Ultrapure helium (99.99%) was used as the carrier gas at the constant flow rate of 1.3 mL/min. The 106 
following GC oven temperature programming was applied: at the beginning, the column was held 107 
at 40 °C for 8 min, and then it was programmed from 40 to 190 °C at 4 °C/min; then, the temperature 108 
was maintained at 190°C for 5 min. Next, the temperature was raised from 190°C to 210°C with a rate 109 
of 5°C/min; finally, 210°C were maintained for 5 min. 110 

The GC-MS interface was kept at 200 °C. The mass spectra were collected over the range of 45 to 111 
500 m/z in the Total Ion Current (TIC) mode, with scan intervals being 0.3 s.  The identification of 112 
the volatile compounds was carried out using the NIST11 and the FFNSC2 libraries of mass spectra. 113 

Each sample was analyzied one time. 114 
2.3 S3 Analysis 115 
 The innovative Small Sensors System S3 device used in the present work has been completely 116 
designed and constructed at SENSOR Laboratory (University of Brescia, Italy) in collaboration with 117 
NASYS S.r.l., spin-off of the University of Brescia. The tool comprises a metal oxide (MOX) gas 118 
sensors array, flow sensors, temperature and humidity sensors, fluidodinamic system, electronic 119 
control system. In particular, the sensor used in this study are 8 MOX gas sensors. Three of them are 120 
nanowires of MOX as presented in [25-26]. Two of them are tin oxides nanowires sensors, both  121 
grown by means of Vapor Liquid Solid technique [27] using a gold catalyst on the alumina substrate, 122 
but one has also been functionalised with gold clusters; the third sensor has an active layer of copper 123 
oxide nanowires. The working temperature is 350°C, 350°C and 400°C respectively. Other three 124 
sensors are prepared with Rheotaxial Growth and Thermal Oxidation (RGTO) thin film technology; 125 
one is tin oxide functionalised with gold clusters (working at 400°C), while the other two are pure tin 126 
oxide (working at 300°C and at 400°C respectively).  127 

Finally, the last two are commercial MOX sensors produced by Figaro Engineering Inc. (Osaka, 128 
Japan). In particular, they are the TGS2611 and TGS2602, that are sensitive to natural gases and to 129 
odorous gases like ammonia, respectively, according to the datasheet of the company. Commercial 130 
sensors have been mounted on our e-nose in order to evaluate the performances of nanowire sensors. 131 
Details of S3 sensors made at SENSOR Laboratory are summarised in Table 1. 132 

The MOX nanowires are gas sensors with a high sensitivity to a broad range of chemicals; they 133 
exhibit physical properties that are significantly different from their polycrystalline counterpart. The 134 
nanowires have a high degree of crystallinity, atomically sharp terminations and an extraordinary 135 
length-to-width ratio, resulting in enhanced sensing capability as well as long-term material stability 136 
for prolonged operation. In addition, the three-dimensional network formed by the nanowires 137 
increases the adsorption surface and the catalytic activity, improving the response and decreasing 138 
the instrument threshold [28].  139 

S3 anlayses the head space (HS), i.e. the volatile fraction of the samples formed when the 140 
equilibrium of the solid-liquid phase and the vapor phase of all volatile compounds is reached. The 141 
creation of the HS depends on the test substance (vapor pressure) and the conditioning temperature 142 
of the sample. The compounds are extracted at the equilibrium point between the solid phase and 143 
the vapor in a dynamic head space. This characteristic allows a non destructive samples analyses. In 144 
this case, the sensor base line is obtained with the air of the surrounding environment, no gas cylinder 145 
of chromatographic air is required (an essential feature that makes it a portable instrument). The 146 
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environmental air was filterd using a small metal cylinder (21.5 cm in length, 5 cm of diameter) filled 147 
with activated carbons. 148 

Table 1. Type, composition, morphology and operating temperature of S3 sensors made at SENSOR 149 
Laboratory. 150 

Type Composition Morphology 
Operating 

temperature (°C) 

SnO2Au 
SnO2 functionalised with Au 

clusters 
RGTO 400°C 

SnO2 SnO2  RGTO 300°C 

SnO2 SnO2 RGTO 400°C 

SnO2Au+Au 
SnO2 grown with Au and 

functionalised with gold clusters 
Nanowire 350°C 

SnO2Au SnO2 grown with Au Nanowire 350°C 

CuO CuO Nanowire 400°C 

 151 
The volatile fraction is then aspirated and transported to the sensor chamber to be analyzed. In 152 

order to avoid any influence of the surrounding environment to the sensor response, the chamber 153 
has been thermostated and isolated. To prevent the absorption of volatile substances that could be 154 
released during subsequent analysis, the chamber and the connection between the elements tires are 155 
made using steel. The air is flown into the sensor chamber using a pump through a needle valve. That 156 
is used to adjust the total airflow, which is measured by a flowmeter downstream of the pump. 157 

The instrument was also provided with the auto-sampler head space system HT2010H, 158 
supporting a 42 loading sites carousel and a shaking oven to equilibrate the sample head space. The 159 
vials were placed in a randomized mode into the carousel. Each vial was incubated at 50°C for 5 160 
minutes into the auto-sampler oven, by shaking it for 1 minute during the incubation. The sample 161 
head space was then extracted from the vial in dynamic head space path and released into the carried 162 
flow (80 sccm).  163 

The analysis timeline can be divided in three different steps, for a duration of 420 seconds (7 164 
minutes) per sample, that are preceded by a step of warm-up that allows the achievement of the base 165 
line for the entire system:  166 

• injection: the sample HS is flowed in the sensor chamber for 60 seconds (it is the actual 167 
analysis time); then, for 30 seconds environmental air flows through the same tube to clean it from 168 
any residual VOCs; 169 

• restore: it starts when injection period is finished and, in this step, filtered air is flowed into 170 
the sensors camber. In this time (330 seconds) the sensors restore the original condition of the base 171 
line. 172 

Thanks to the processor integrated in the S3 instrument, the frequency at which the equipment 173 
works is equal to 1 Hz. 174 

2.4 Data Analysis 175 
Data analysis was performed using MATLAB® R2015a software (MathWorks, USA). First of all, 176 
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sensors responses in terms of resistance (Ω) were normalized compared to the first value of the 177 
acquisition (R0). As a feature for all the sensors, the difference between the first value and the 178 
minimum value during the analysis time was calculated. Hence, the dataset was composed by ΔR/R0 179 
parameters.  180 

In the second step, the normal distribution of the variables was checked using the Jarque-Bera 181 
(JB) test with a significance level chosen equal to 0.05. This test is a goodness-of-fit test of whether 182 
sample data have the skewness and kurtosis matching a normal distribution. The null hypothesis is 183 
a joint hypothesis of both the skewness and the excess kurtosis being zero. 184 

Based on the test result, Partial Least Squares (PLS) method was used both to view how the 185 
groups of samples were represented thanks to the considered volatile compounds and to sensors 186 
responses, respectively, and to build the model that was used to classify the samples themselves. PLS 187 
is a statistical method that combines features from Principal Component Analysis (PCA) and multiple 188 
regression (MR). PCA is a statistical method that uses an orthogonal transformation in order to pass 189 
from the variable space X to a space of uncorrelated variables called principal components (PC). The 190 
aim is to reduce the number of variables to obtain a better representation of data. In addition to this, 191 
in PLS also the response matrix Y is decomposed and the principal component of X are rotated in the 192 
direction of maximum correlation with the principal components of Y. The new calculated variables 193 
are called latent variables (LV). Another advantage of using PLS instead of PCA is that it is not 194 
required that variables have a normal distribution. 195 

Finally, classification was performed comparing two different classifiers: Partial Least Squares 196 
Discriminant Analysis (PLS-DA) and Artificial Neural Networks (ANNs). PLS-DA was successfully 197 
applied in different fields where products had to be recognized according to their place of origin or 198 
the presence of contamination, as in milk [29], honey [30], wine [31] and cheese [32]. ANNs are 199 
complex structures that try to mimic what human brain does. They are formed by elemental units 200 
called neurons that works like real neurons: once information arrives, they elaborate it and give an 201 
output. Each neuron id characterized by an activation function and coefficients of connectivity called 202 
weights. Overall structure is mainly composed by an input layer, hidden layers and an output layer 203 
[33]. ANNs can be used to resolve regression and classification problems or function approximation. 204 
They found a lot of space in food applications in order to analyze data collected with electronic noses 205 
[34-37]. In this work, a feed-forward ANN trained with Levenberg-Marquardt algorithm is used. 206 

For PLS, dataset was splitted in two parts, training set and test set, using Venetian Blinds (VB) 207 
as cross-validation procedure. This method divides the whole dataset in j cross-validation groups; in 208 
each one, one sample is put in the test set and the others in the training set on the first step. 209 
Subsequently, in every group the sample after the previous one is taken into the test set and the others 210 
in the training set, and so on. In this work, the number of cross-validation groups was chosen equal 211 
to 10. 212 

For the classification with PLS-DA, a toolbox made for MATLAB® and released by Milano 213 
Chemometrics was used [38]. Instead, ANNs were created using the function nntool of the same 214 
software. This tool allows to do a random split of dataset in test and training set by default. 215 

3. Results and Discussion 216 

3.1 GC-MS Analysis results 217 
 From the comparison between samples chromatograms, substantial differences were found. The 218 
main difference between 12 months and 24 months ripened grated PR lies in the amount of fatty acids 219 
that characterize this product. They are acetic acid, butanoic acid, hexanoic acid, octanoic acid, n-220 
decanoic acid and their presence is much greater in 24 months PR. This result is widely confirmed 221 
from literature. Indeed, it is well known that these fatty acids are the results of fermentation processes 222 
especially in butter and seasoned cheese. Some studies revealed that the amount of acetic acid and 223 
butanoic acid doubles up in the period from 12 and 24 months [39-40]. 224 
 Differences were also found comparing samples with different percentage of rind and same rind 225 
working process; the same trend is valid both for 12 months and 24 months ripened PR. It turned out 226 
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that increasing the quantity of rind, the presence of three compounds increases, too. Besides butanoic 227 
and hexanoic acid, 2-nonanone has the same behavior. It is a member of the class of methyl ketones 228 
and it can be found in several foods, among which milk and cheese [41]. It is produced by oxidative 229 
degradation of fatty acids [42]. These results suggest that both the fermentation and the degradation 230 
happen more near the rind that in the central part of the cheese. 231 
 232 
 3.2 S3 Analysis results 233 

Once data were acquired, at first sensors responses were checked. Since the first measures of 234 
each session were very different from the others, they were discarded. Consequently, there is a 235 
different number of replicas for each sample. Most likely, experimental conditions of first acquisitions 236 
were not the same of the following measures in terms of temperature of the autosampler oven where 237 
vials were put in, as explained in section 2.3 S3 Analyis. In Table 2, a detailed description of number 238 
of samples that were considered for the following analysis is shown.  239 

 240 
Table 2. Considered samples divided for ripening stage, rind percentage and rind working 241 
processes. 242 

 0% 18% 26% 45% 100% 

12 month - 11 12 13 11 12 14 - 14 

24 month 12 14 14 13 13 11 13 13 - 

  WR SR WR SR WR SR WR SR 

In Figure 1, boxplots of TGS2602 response that include ΔR/R0 for each sample are shown. This 243 
sensor represents the general trend that can be observed for all the sensors. Obviously, since different 244 
sensing materials are used, there are differences in terms of the highlighted groups overlapping. On 245 
the left part of the figure, there are 24-months seasoned samples: in the upper part grated cheese with 246 
SR while in the lower PR with WR. On the right part, there are 12-months ripened samples and they 247 
follow the same trend. The first boxplot is relative to samples of 0% rind; its ΔR/R0 is different respect 248 
to all the other group, but it is more similar to WR grated PR both seasoning stage. This result reflects 249 
the fact that they are characterized by a bigger amount of humidity. 250 

 251 
Figure 1. Boxplots of TGS2602 feature ΔR/R0. Four groups are highlighted: in blue 24 months-SR, in 252 
green 24 months-WR, in black 12 months-SR and in orange 12 months-WR. 253 
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After checked general sensors performances, JB-test was applied to the dataset. It results that 254 
only 4 of the eight parameters followed a normal distribution (p<0.05); they correpond to the features 255 
extracted by the two tin oxide nanowires and RGTO sensors. That is the main reason for which PLS 256 
has been chosen. In Figure 2, PLS score plot was made considering the first two LV, for a total 257 
explained variance equal to 99.95% (99.87% for LV1 and 0.08% for LV2). In the plot measures are 258 
divided by seasoning degree. It can be observed that 24 months class is in the central part of the 259 
graph, while the other one is divided in the left and right part. 260 

For this reason, classification techniques are used in a hiercachical way. In addition, another 261 
motive for this choice is to simplify classification models since this is a 15-class problem. Hence in the 262 
first step, classifiers were used to distinguish the seasoning degree; in a second step, for each ripening 263 
state the different working processes were discriminated; finally, ring percentage has been taken into 264 
account. In Figure 3, a scheme of the steps is shown. 265 

 266 
Figure 2. PLS score plot for all the measures divided for seasoning degree: in red circle 12 months, in 267 
green square 24 months. Total explained variance equal to 99.95% in first two LV. 268 

 269 
Figure 3. Step by step scheme for classification analysis. 270 
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Regarding ANNs structures, three different ones were considered, one for each step. In the first 271 
case, a two layers architecture with 3 neurons in the input layer and 1 in the output layer was 272 
considered. For the second stage, the same number of layers was used, but in the first one two 273 
neurons were put. Finally, the third ANN had the same structure of the previous ones, but with 6 274 
neurons in the input layer. For all the neurons, hyperbolic tangent sigmoid transfer function was 275 
chosen. 276 

In Table 3, overall classification rate of the two classifiers is put side by side. In general, ANN 277 
classification rates are better than those of PLS-DA. Indeed, ANN is able to recognize correctly all the 278 
samples based on seasoning and rind working processes. Although PLS-DA performances are lower, 279 
it can reach good classification rates. The distinction between rind percentage shows that both 280 
classifier can classify samples with SR better than those with WR. A possible interpretation of this 281 
results could be the different amount of humidity: WR samples have a higher content of humidity 282 
because of water treatment and the adsorption sites this could cause the occupation of by water 283 
molecules instead of the ones that characterize the volatile fingerprint of the samples. 284 

Table 3. Classification ratess of PLS-DA and ANNs divided per steps. 285 

 
First step 
Ripening 

stage 

Second step 
Working 

processes 

Third step 
Rind 

percentage 

PLD-DA 94.7% 
12 months:100% 

WR: 61.1% 
SR: 90.2% 

24 months:79% 
WR:90.2% 

SR: 95% 

ANN 100% 
12 months:100% 

WR: 63.8% 
SR: 96.1% 

24 months:100% 
WR: 58.8% 
SR: 100% 

 286 

4. Conclusions 287 
This study was aimed to verify the possible discrimination between grated PR with different 288 

rind percentage with an electronic nose, taking into account other two variables: seasoning degree 289 
and working processes of rind. In parallel, a consolidated technique, i.e. SPME GC-MS, has been used 290 
to understand which VOCs characterized analyzed samples. This combined analysis has produced 291 
promising results that pave the way to assess cheeses quality and avoid frauds. 292 

First of all, with GC-MS, the VOCs that characterize grated cheeses have been individuated. The 293 
results regarding PR are compliant with those found in literature. Indeed, fatty acids that describe 294 
aroma and taste profile of PR have been found in greater quantity for 24 months seasoned samples 295 
as compared to 12 months ones. In addition, VOCs, whose amount is bigger in rind compared to 296 
pulp, was found and they are acquiescent with chemical reactions that take places in this product. 297 

The multivariate statistical analysis made with PLS indicated how to proceed during the 298 
classification stage. A hierarchical approach was used, both for PLS-DA and ANNs. ANNs 299 
classification rates are the highest, suggesting that in future they could be improved to increase their 300 
performances. These first results are encouraging and further research is in progress in order to add 301 
more samples and to have more statistical significance of the achieved results. 302 
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