Systematic Review

Potential Animal Reservoir of Mycobacterium ulcerans: Systematic Review

Avishek Singh*, William J. McBride 2, A/Prof Brenda Govan3 and Dr. Mark Pearson 4

1 College of Medicine and Dentistry, James Cook University; avishek.singh@my.jcu.edu.au
2 College of Medicine and Dentistry, James Cook University; john.mcbride@theiddoctor.com
3 College of Public Health, Medical & Vet Sciences, James Cook University; brenda.govan@jcu.edu.au
4 Australian Institute of Tropical Health & Medicine, James Cook University; mark.pearson@jcu.edu.au

* Correspondence: avishek.singh@my.jcu.edu.au; Tel.: +61-451-020-653

Abstract: Mycobacterium ulcerans is the causative agent of the Buruli ulcer, also known, in Australia, as Daintree ulcer or Bairnsdale ulcer. This destructive skin disease is characterized by extensive and painless necrosis of the skin and soft tissue with the formation of large ulcers, commonly on the leg or arm. To date, 33 countries with tropical, subtropical and temperate climates in Africa, the Americas, Asia and the Western Pacific have reported cases of Buruli Ulcer. The disease is rarely fatal, although it may lead to permanent disability and/or disfigurement if not treated appropriately or in time. It is the third most common mycobacterial infection in the world after tuberculosis and leprosy. The precise mode of transmission of M. ulcerans is yet to be elucidated. Nevertheless, it is possible that the mode of transmission varies with different geographical areas and epidemiological settings. The knowledge about the possible route of transmission and potential animal reservoir of M. ulcerans is poorly understood and still remains patchy.

We conducted a systematic review with selected key words on PubMed and INFORMIT databases to aggregate available published data on animal reservoirs of M. ulcerans. After certain inclusion and exclusion criteria, a total of 17 studies were included in the review. A variety of animals, e.g. rodents, shrews, possums (ringtail and brush tail), horses, dogs, alpacas, koalas and Indian flap-shelled turtles have been recorded as being infected with M. ulcerans around the world.

The majority of studies included in this review identified animal reservoirs, either aquatic or terrestrial, as predisposing for the emergence and reemergence of M. ulcerans infection. Taken together, the selected studies in this systematic review and discussed so far, it is clear that exotic wildlife, aquatic animals and native mammals play a significant role as reservoirs for M. ulcerans.

Keywords: keyword 1. Mycobacterium ulcerans, 2. Animal reservoir; 3. Transmission

1. Introduction

Sir Albert Cook, a British missionary doctor appointed at the Mengo Hospital in Kampala, Uganda first noted the skin ulcer caused by Mycobacterium ulcerans in 1896. Later, in the late 1930’s, two general practitioners, Dr. J. R. Searl and D. G. Alsop, working in rural Victoria, noticed a group of cases of mysterious skin ulcers around the town of Bairnsdale [1]. The cases were not published in the literature at the time and the causative organism was not identified or characterized. Professor Peter MacCallum and his colleagues first provided the detailed description of the disease in 1948 using presentation data of six patients at Bairnsdale district, near Melbourne, Australia. They were the first to isolate M. ulcerans as the causative organism of the mysterious skin ulcer [2]. The first large cluster of M. ulcerans infection was identified in the Buruli County of Uganda (now called Nakasongola District) in 1960’s and the disease was termed “Buruli Ulcer” thereafter [3].
There have been several known outbreaks of Buruli Ulcer (BU) around the world and each outbreak has its own unique characteristics in terms of epidemiology and the animals reported to be involved in transmission [4, 5]. The World Health Organization (WHO) has classified BU as a neglected tropical disease [6]. Presently, BU has been reported (but not always microbiologically confirmed) in more than 30 countries spread over Africa, the Americas, Asia, and Oceania [7]. Fyfe and colleagues from Australia suggested the terrestrial mammals as reservoirs for M. ulcerans [8]. Australia is the only developed country with significant local transmission of BU with foci of infection in tropical Far North Queensland [9, 10], the Capricorn Coast region of central Queensland [11], the Northern Territory [12] and temperate coastal Victoria [11]. Several cases of BU have been described in both native wildlife and domestic mammal species in Australia such as koalas (Phascolarctoscinereus) [13, 14], common ringtail possums (Pseudocheirusperegrinus) [8, 15], a mountain brushtail possum (Trichosuruscunninghami) [5, 8, 15], two horses [16], an alpaca [17], four dogs [18] and a cat [19].

Recent research in Victoria, Australia, has suggested the transmission of infection by the mosquito and possums with chronic BU as an important environmental reservoir of M. ulcerans in Victoria [8].

2. Materials and Methods

The guidelines developed by the Centre for Review Dissemination (CRD) - PRISMA guidelines - was used as the methodology for the systematic review [20]. A review protocol was registered with PROSPERO international prospective register of systematic reviews, which can be viewed online [21]. The systematic literature review was conducted using online databases MEDLINE and INFORMIT to aggregate all the published literature. Initially, MEDLINE was used to retrieve all the scientific information concerning the research topic. INFORMIT was searched with same search strategies adopted for Medline. The following key words were chosen after a series of trial searches in order to ensure an adequate number of relevant articles were reviewed: (Buruli OR "Mycobacterium ulcerans") AND (Host OR Vector OR Reservoir OR Animal). The title and abstract of each of the articles were initially scanned to ensure that the included articles met the aim and scope of the systematic review. Articles which were deemed irrelevant to the aim of this systematic review or out of the research scope were excluded. For those articles which were not clear by the title and abstract, the full text was retrieved and further analyzed in order to determine if they met the inclusion and exclusion criteria below. The studies that reported only experimental or laboratory exposure of M. ulcerans in animals were excluded. The search strategy exclusively focused on potential animal reservoirs, not the vectors. The detection of the causative agent had to be confirmed by culture of bacteria and/or PCR. To be considered positive a sample needed to be positive for IS 2404 and confirmed by KR and IS 2606. There were no language restrictions. Studies were published between January 1985 and the date the searches were included. Risk of bias was assessed by one reviewer on the basis of independent factors such as sample size, location and nature of infection.

3. Results

3.1. Results of the literature search and method of inclusion:

The total number of discovered articles in MEDLINE database was 301. Two hundred and sixty-five articles were excluded after reading the title and abstracts as they were not relevant to the research question. Full texts of thirty-six studies were retrieved in Portable Document Format (PDF) for further analysis. Of these remaining 36 studies, 19 were excluded as they clearly did not meet inclusion criteria (i.e. were review articles, focused on vector rather than on animal reservoir, pertained to laboratory or experimental exposure). The remaining 17 studies from PubMed database were included for systematic review. There were no additional articles in INFORMIT that did not appear in the initial Medline search results. The flow chart for study selection process is shown in figure 1.
3.2. Basic characteristics of selected studies:

Out of the 17 included studies, ten were conducted in Australia, two in Ghana and one was conducted in each of Ivory Coast, North America, United States, Benin and Japan. The basic characteristics of selected studies for review are shown in table 1 below.

<table>
<thead>
<tr>
<th>Author and year</th>
<th>Sample and Sample Size</th>
<th>Collection year, Location and Setting</th>
<th>Detection method, Result Or M. ulcerans positive signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roltgen, Pluschke, Johnson, & Fyfe, 2017 [10]</td>
<td>102 environmental samples: 55 from soil /vegetation; 35 from insects or small insects pool and 12 from animal excreta</td>
<td>Sep 2013 Northern Queensland, Australia</td>
<td>RT-PCR IS2404 positive:1 soil specimen: 2 bandicoot feces, one individual mosquito and 1 pool of 2 mosquitoes IS2606 and KR (Ketoreductase) positive: 2 bandicoot feces and pool of two mosquitoes</td>
</tr>
<tr>
<td>Tobias et al., 2016 [22]</td>
<td>180 Fecal specimen from dominant domestic animals (Ovine, Porcine, Avian, Reptiles, Canine)</td>
<td>Sep 2013 BU (Buruli Ulcer) 4 endemic and one non-endemic villages of Ghana</td>
<td>RT-PCR IS2404 positive: 2/86 Ovine; 1/69 avian : 1/16 Reptiles IS2606 and KR (Ketoreductase) positive: All negative</td>
</tr>
<tr>
<td>Tian, Niamke, Tissot-Dupont, & Drancourt, 2016 [23]</td>
<td>496 environmental samples: 100 from soil (endemic n=50 and non-endemic n=50); 200 from stagnant water (endemic n=100 and non-endemic</td>
<td>Jun-Oct 2014 Ivory Coast, West Africa</td>
<td>RT-PCR 43 samples with at least one positive IS2404 and KR Out of 43, only 10 positive for both IS2404 and KR, IS 2606 not performed: 7 water</td>
</tr>
<tr>
<td>Study</td>
<td>Species</td>
<td>Sample Details</td>
<td>Location</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
Bellbird Creek: Positive: 4 Mountain Brushtail Possums (27%) |
Bellbird Creek: Positive: 4 Mountain Brushtail Possums (27%) |
| C. R. O’Brien et al., 2011 [18] | | Case report: Case 1: 14 months old female Kelpie Case 2: 3 years old female Kelpie Case 3: 6 years old male Whippet Case 4: 3 years old male Koolie | 2011 Victoria, Australia | RT-PCR targeting IS2404, IS2606 and KR | All 4 dogs positive for M. ulcerans |
| Sakaguchi et al., 2011 [25] | Lissemys punctata punctata | Case report; Indian flap-shelled turtle, Lissemys punctata punctata | Imported from India to aquarium in Japan | PCR assays targeting the rpoB gene: unable to differentiate M. ulcerans from mycolactone producing M. marinum (MPMM) |
| Fyfe et al., 2010 [8] | | 589 fecal samples from ringtail possums and 250 samples from brushtail possums. | 2007-2009 Victroria, Australia | RT-PCR targeting IS2404, IS2606 and KR | M. ulcerans DNA detected in 43% of ringtail possum and... |
Life trapping: 42 ringtail possums and 21 brushtail possums

29% of brushtail possum fecal samples. 38% ringtail possum have *M. ulcerans* lesion and/or positive feces. Lower in brushtail possums: 1 with *M. ulcerans* lesion and/or positive feces and 4 with no lesions and low *M. ulcerans* DNA in feaces.

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of Animals</th>
<th>Location</th>
<th>Screening Test</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durnez et al., 2010 [26]</td>
<td>565 small mammals: 326 rodents and 222 shrews</td>
<td>Benin</td>
<td>RT-PCR</td>
<td>No M. ulcerans specific DNA detected</td>
</tr>
<tr>
<td>Van Zyl et al., 2010 [16]</td>
<td>2 horses: Case report Case 1: 21-year-old Quarterhorse-cross Case 2: 32-year-old Standardbred gelding</td>
<td>Case 1: May 2006 Case 2: Oct 2006 South-eastern Australia</td>
<td>RT-PCR</td>
<td>M. ulcerans specific DNA detected from both horses</td>
</tr>
<tr>
<td>Elsner et al., 2008 [19]</td>
<td>A cat: Case report 10-year-old castrated male domestic cat</td>
<td>2006 Victoria, Australia</td>
<td>RT-PCR</td>
<td>M. ulcerans specific DNA detected</td>
</tr>
<tr>
<td>Heckert, Elankumaran, Milani, & Baya, 2001 [28]</td>
<td>60 wild striped bass: Swab from external ulcerative dermatitis and granulomatous-like lesions in the internal organs</td>
<td>1997 Chesapeake Bay, USA</td>
<td>PCR</td>
<td>No M. ulcerans specific DNA detected (a new Mycobacterial spp. suggested)</td>
</tr>
<tr>
<td>Mitchell, McOrist, & Bilney, 1987 [14]</td>
<td>36 male and 51 female adult koalas captured</td>
<td>1980-1985 Raymond Island, southeastern Australia</td>
<td>Pathological and bacteriological examination</td>
<td>18 out of 87 captured koalas had skin wound 11 koalas were found positive for M. ulcerans</td>
</tr>
<tr>
<td>McOrist, Jerrett, Anderson, & Hayman, 1985 [13]</td>
<td>Case study: 2 koalas: one male and one female Ulcerated tissue</td>
<td>1982 Raymond Island, southeastern Australia</td>
<td>Pathological and bacteriological examination Both koalas suggested positive for M. ulcerans</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Basic characteristics of selected studies
4. Discussion on possible reservoirs and vectors of *Mycobacterium ulcerans* by country:

This systematic review assessed the potential animal reservoir of *M. ulcerans* around the world recorded to date. This is essential for understanding the epidemiology and mode of transmission of the disease, which subsequently aids in prevention, control and elimination strategies.

4.1. Australia:

Out of 17 studies included in this review, 10 were conducted in Australia. In Australia, the disease is more prevalent in the southeastern state of Victoria and in Far-north Queensland. After the detection of *M. ulcerans* infection in four koalas in 1980 at Raymond island, Australia [14], the entire island was searched for koalas in the following year. Thirty-six male and 51 female koalas were captured and examined. Of these, 18 out of 87 animals had skin wounds and 11 were found positive for *M. ulcerans*.

Diagnosis was made on pathological and bacteriological examination; the PCR-based method used for the identification of *M. ulcerans* from clinical and environmental samples was only implemented in 1996 [29]. Non-human cases of *M. ulcerans* in Australia have been reported in marsupial species such as koalas [14], ring tail and brush tail possums [8, 15, 30], horses [16], alpacas [17], dogs [18] and cats [19]. A study conducted by Fyfe and colleagues between 2007-2009, at Point Lonsdale, a small coastal town south east of Melbourne, Australia, which is also endemic for BU, found that 43% of ring tail possums and 29% of brush tail possum faeces samples were positive for *M. ulcerans* DNA [8]. Only 1% of faecal samples from non-endemic area possums were positive for *M. ulcerans* DNA in this study, suggesting terrestrial mammals such as possums are potential reservoirs of *M. ulcerans* in South-east Australia. Several studies have identified possums (both ring tail and brush tail) as potential reservoirs since then [5, 15]. In Australia, other than the southeastern state of Victoria, BU is also prevalent in far north Queensland [9]. Inspired by the evidence of possums as potential reservoirs of *M. ulcerans* in Victoria, a study conducted by Rolten and colleagues (2013) in Northern Queensland, Australia, detected *M. ulcerans* DNA from two bandicoot faecal samples, suggesting the possibility that bandicoots are a potential reservoir of *M. ulcerans* in far north Queensland [10].

4.2. Africa:

Out of the 17 studies included in this review, 4 were conducted in West African countries: 2 in Ghana [22, 24], 1 in the Ivory Coast [23] and 1 in Benin [26]. Durnez and colleagues (2006) caught 326 rodents and 222 shrews from endemic and non-endemic villages of Benin and tested for *M. ulcerans* but no specific DNA was detected from any of their samples [26]. Despite their result, they suggested the necessity of more intensive research focusing on small mammals in Africa. Willson reported positive PCR with IS2404 only from tadpoles and fishes from Ghana [24]. Similarly, two faecal specimens from *Thryonomys swinderianus* (agouti) were reported positive for *M. ulcerans* in a study conducted by Bi Diangoné Tian and colleagues (2014) from the Ivory Coast [23]. They suggested agouti, which is closely related to Australian possums, could be a potential reservoir of *M. ulcerans* in Africa. However, RT-PCR targeting IS 2606 was not conducted to confirm the case of *M. ulcerans*.

A faecal survey of domestic animals in rural Ghana for *M. ulcerans* in conducted by Tobias and associates suggested no evidence of association between domestic animals and *M. ulcerans* in endemic and non-endemic villages in Ghana [22]. Unlike Australia, not a single study in Africa has reported the presence of *M. ulcerans* positive DNA or cases in non-human species, suggesting that transmission dynamics may be different in Africa and Australia or, alternatively, a host animal is yet to be identified in Africa.

4.2. Other countries:

No study has reported *M. ulcerans* DNA or cases in non-human species in any country other than Australia. A study conducted by Heckert in 1997 at Chesapeake Bay, USA detected a new *Mycobacterium* spp. from Wild Stripped Bass [28]. This new isolate was closely related to *M. marinum*,...
M. ulcerans, and M. tuberculosis. Similarly, Sakaguchi and his associates reported an atypical mycobacterial infection in an Indian flap-shelled turtle (Lissemys punctata punctate), imported from India to Japan in an aquarium [25]. A PCR assay targeting the rpoB gene revealed the isolate had 89-100% homology to M. ulcerans and M. marinum. Again, this study could not differentiate M. ulcerans from mycolactone producing M. marinum (MPMM). Appleyard and Clark in 2002 reported a new Mycobacterial spp. namely “Mycobacterium visibilis” from three cats initially suspected of having M. ulcerans infection [27].

4. Conclusion:

Human cases of BU have been reported in more than 30 countries from Africa, America, Asia and Oceania. Since the implementation of PCR-based methods for the detection and identification of M. ulcerans from clinical and environmental samples, there has been a significant increase in overall knowledge of BU. However, there is no record of direct human-to-human transmission of M. ulcerans, unlike tuberculosis and leprosy. Australia is the only country where non-human cases of BU have been identified with small mammals, especially possums and, to some extent, bandicoots, being implicated as potential reservoirs of M. ulcerans. Despite having several outbreaks in African countries, no non-human cases have been recorded so far and there is no evidence of any other animals acting as a potential reservoir for this organism. This systematic review suggests the need for extensive laboratory and field research focusing on domestic animals and wildlife to elucidate their role in BU endemic countries.

Acknowledgments: The authors would like to acknowledge Janet A Fyfe, Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC 3000, Australia for her continuous support and feedback. We would like to thank Far North Queensland Hospital Foundation and James Cook University for funding this research.

Author contribution: A.S and W.J.M designed the study. A.S collected and analyzed the data. A.S wrote the paper with input from all authors. All authors reviewed the final manuscript.

Conflict of interest: The authors declare no conflict of interest.

References

