Article

2 3

1

Determination of Some Variables Affecting Risk Factors of Coronary Heart Diseases in **University Students**

4 5

> 6 Ali OZKAN^{1,2}, Mutlu TURKMEN^{1,3}, Taner BOZKUS¹, Murat KUL¹, Recep SOSLU⁴, Fatih YASARTURK¹, Recep AYDIN¹, Umit OZ¹ 7

8 9

10

11

¹Bartin University, School of Physical Education and Sports, Bartin, Turkey; ali ozkan1@hotmail.com; mutluturkmen@bartin.edu.tr; tanerbozkus@yahoo.com; muratkul61@gmail.com; fatihyasarturk@gmail.com; g.recep.aydin@gmail.com; ozumut06@hotmail.com

12 ²Bartin University, Physical Education Research and Application Center, Bartin, Turkey,

13 ali ozkan1@hotmail.com

14 ³Turkish Bocce Bowling and Darts Federation, Ankara, Turkey, mutluturkmen@bartin.edu.tr 15

⁴Karamanoğlu Mehmetbey University, School of Physical Education and Sports, Karaman, Turkey, recepsosli@gmail.com

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

38

39

- **Abstract**: The purpose of the present study was to determine the relationship between healthy lifestyle behaviors, physical fitness and coronary risk factors in university students. 320 male and female (n_m:171; n_f:149) students from a university participated in this study voluntarily. For the determination of body composition and Body Mass Indexes (BMI), subjects' height, body weight, and skinfold thickness were taken and body fat percentage (%Fat) was determined. Healthy lifestyle behaviors were determined using the healthy lifestyle behaviors questionnaire. Indicators of physical fitness included flexibility (sit-up) (F), muscle strength and endurance (isometric knee (KS), back strength (BS) and a total of shuttle (TS), sprint performance, BMI, and body fat percentage (%fat). Coronary heart disease risk factors included mean arterial blood pressure (systolic (SBP) and diastolic (DBP)), fasting blood levels of triglycerides (TG), total cholesterol (TC), hematocrit (HT), and hemoglobin (HM). Results indicated subjects have normal body mass index, body fat percentage, SBP, DBP, TG, TCF, BS, KS. The results of the Pearson Product Moment Correlation Analysis, indicated that SBP, DBP, TG, TCF, BS, KS for male and female was significantly correlated with flexibility (sit-up) (F), muscle strength and endurance (isometric knee (KS), back strength (BS) and total of shuttle (TS)), sprint performance. (p<0.01; p<0.05), In conclusion, the findings of the present study indicated that physical fitness and healthy lifestyle behaviors play a determinant
- **Keywords**: coronary heart disease risk factors, healthy lifestyle behaviors, physical fitness 37

role in coronary heart disease risk factors for male and female students from a university.

1. Introduction

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Coronary heart disease (CHD) continues to be a leading cause of morbidity and mortality among adults in Europe and North America [1]. For example, CHD is responsible for 29.500 deaths in Australia annually. Ninety-there percent of women and 80% of men who die as a result of CHD are over the age of 65 [2]. Similar statistics are reported in Canada [3] and the United States, United Kingdom [4] and Turkey [5]. Risk factors have included blood pressure, cigarette smoking, cholesterol (TC), LDL-C, HDL-C, and diabetes. 2-4 Factors such as obesity, left ventricular hypertrophy, family history of premature CHD and physically inactive [3] have also been considered in defining CHD risk [1] and increased physical activity leads to greater cardiorespiratory fitness, decreased blood pressure and body weight and increased HDL-C, all of which lead to a more favorable CHD risk profile [6]. The study of adaptive functional changes of the human body induced by physical effort to optimise the physical wellness and to combate the metabolic, circulation and respiratory diseases are in the trends of interdisciplinary scientific research from medicine and physical activity[7,8,9]. A recent meta-analysis showed a significant protective effect of physical activity and physical health-related fitness on CHD [10,11]. Physical inactivity is associated with an increased risk of a wide variety of diseases like cardiovascular diseases, hypertension, type 2 diabetes, obesity, and depression. It has been stated the above-mentioned diseases which are associated with physical inactivity seldom manifest themselves before adulthood, however, promotion of physical activity may be important as physical inactivity may also predispose to a future sedentary lifestyle and hence have an increased risk for these diseases. Several reviews have indicated that the associations among physical activity fitness and CHD risk factors in youth have not been conclusively delineated [3, 11, 12, 13]. A number of more recent studies have examined these associations but results remain equivocal. For example, in the cardiovascular risk in young finns study (9 to 24 years age), active males had lower TG and higher HDL-C level than inactive males, while active females had lower TG levels than inactive females controlling for pubertal status [12]. For instance, Heggebo et al [14] reported that the results in terms of the anthropometrical measures, diastolic and systolic blood pressure were the major factors explaining the cardiorespiratory fitness. Hence, the purpose of the present study was to determine the relationship between healthy lifestyle behaviors, physical fitness and coronary risk factors in university students

2. Materials and Methods

2.1. Subjects

- 75 320 male and female (n_m:171; n_f:149) students attending to Bartin University in Turkey
- participated in this study voluntarily. Their mean age, height, body weight and body fat were
- 77 20.89 (2.01) yrs, 168.04 (14.7) cm, 67.2 (16.25) kg, and 20.66 (7.01) respectively. All
- subjects gave their informed consent for inclusion before they participated in the study. The
- 79 study was conducted in accordance with the Declaration of Helsinki and this study was
- 80 approved by Bartin University Institutional Review Board, Ethics Committee and supported
- 81 by Bartin University Scientific Research Projects Commission (Project No: 2016-SOS-A-
- 82 006).

8384

73

74

2.2. Anthropometric Measurements

- 85 Body height (cm), body mass (kg), and percentage of body fat (PBF) measurements were
- 86 taken for each subject. The body height of the university students were measured by a
- 87 stadiometer with an accuracy of ±1 cm (SECA, Germany), and while electronic scales (Tanita
- BC 418, Japan) accurate to within 0.1 kg were used to measure body mass and percentage of
- 89 body fat [12]. Skinfold thickness was measured with a Holtain skinfold caliper (Holtain, UK)
- which applied a pressure of 10 g/mm² with an accuracy of ± 2 mm. Gulick anthropometric
- 91 tape (Holtain, UK) with an accuracy of ± 1 mm was used to measure the circumference of
- 92 extremities. Diametric measurements were determined by Harpenden calipers (Holtain, UK)
- 93 with an accuracy of ± 1 mm.

94 95

2.3. Health-promoting life-style profile scale

- 96 The participants were asked to provide information about the demographic factors, such as
- 97 age, gender, and education. Health-promoting Life-style Profile Scale was used for collecting
- data on their health behaviors. The scale was developed by Walker et al. [16]. It is composed
- of 48 items and 6 subscales and consists of questions about health-promoting behaviors. The
- subscales were on self-actualization (SA), health responsibility (HR), exercise (E), nutrition
- 101 (N), interpersonal support (IS), and stress management (SM). The total score reflects the
- healthy life-style behavior. Four more items were added to the scale, and now the scale is
- 103 composed of 52 items [16]. Each respondent was asked to rate each item on Likerts' 1 to 4
- response scale where 1 corresponds to never, 2 sometimes, 3 often, 4 regularly. Alpha
- coefficient reliability of the scale was 0.92, and alpha coefficient reliability of the subscales

varied from 0.70 to 0.90. The reliability of the scale for Turkish population was tested by Esin [17] and Akça [18]. Alpha coefficient reliability of the scale was 0.91 in Esin's study and 0.90 in Akça's study.

109110

2.4. Flexibility measurement

Flexibility was evaluated by the sit and reach test which is the most common flexibility test used in health-related fitness test batteries. The subjects sat with their feet approximately hipwidth against the testing box. They kept their knees extended and placed the right hand over the left, and slowly reached forward as far as they could by sliding their hands along the measuring board. Reaches short of the toes were recorded as negative forward reach scores, and reaches beyond the toes were recorded as positive forward reach scores in centimeter to

117118

119

2.5. Strength measurement

- 120 Isometric Dynamometer was used for the determination of knee, back, grip strength. Muscular
- strength was assessed using a Takei strength dynamometer (Takei Scientific Instruments,
- 122 Tokyo, Japan).

123

124

2.6. Coronary Heart Disease Risk Factors

the nearest 0.5 cm using the scale on the box [19].

2.6.1. Blood Pressure

- 126 Systolic and diastolic blood pressures were measured with a sphygmomanometer (Erka
- 127 perfect Aneroid, Germany) following the recommendations of the American Heart
- 128 Association.

129 130

2.6.2. Lipids and Lipoproteins

All venous and capillary blood lipid concentrations were determined in the morning after an overnight fasting period of at least eight hours. In each subject, venous and capillary blood samples were collected at the same time. Supplementary capillary sampling was performed on two consecutive days following the first collection. Capillary TC and TG concentrations were determined with the Accutrend® Plus using two drops of blood (15-40 μL) collected from different fingers, by using a lancing device (Accu-check® Softclix® Pro, Roche Diagnostics GmbH, Mannheim, Germany). The Accutrend® Plus test is a capillary serum test. It is based

on the retention of blood cells by filtration via a glass fibre fleece when a drop of blood is applied to the test strip. The enzymatic reaction that takes place in the underlying zone of the strip requires an adequate oxygen supply and results in the formation of a colored oxidation product. The reflectance of the strip (measured at 660 nm) is converted to concentration through a simple algorithm. The intra assay precision of Accutrend® Plus, as determined by the manufacturer, was 3.7% and 3.4% for TC and TG respectively. The inter-assay precision for Accutrend® Plus determined with control solution by the manufacturer was lower than 5.0% for TC and 2.4% for TG [20].

146

147

138

139

140

141

142

143

144

145

2.6.3. Hematocrit and Hemoglobin

- 148 The Mission® Plus Hemoglobin (Hb) and Hematocrit Testing System (ACON Laboratories,
- 149 Inc., US) are for the quantitative determination of hemoglobin and hematocrit in non-
- anticoagulated capillary whole blood or anticoagulated venous whole blood in EDTA (K2,
- 151 K3, Na2) or sodium heparin. The testing system is designed for point-of-care use in primary
- care settings. Estimation of hematocrit is only for hemoglobin values from 12.3 to 17.5 g/dL
- 153 (123 to 175 g/L). The Mission® Plus hemoglobin and hematocrit Control Solution is intended
- to validate hemoglobin and hematocrit testing using the Mission® Plus Hemoglobin (Hb)
- 155 Testing System. Mission® Plus hemoglobin and hematocrit Testing System is for
- professional in vitro diagnostic use only. This device has not been evaluated for pediatric
- subjects.

158

159

2.7. Statistical Analyses

- Means and standard deviations are given as descriptive statistics and the relationship among
- the relationship between healthy lifestyle behaviors, physical fitness, and coronary risk factors
- were evaluated by Pearson Product Moment Correlation analysis. All analyses were executed
- in SPSS for Windows version 21.0 and the statistical significance was set at p < .05.

164165

166 **3. Results**

- Body composition, physical fitness characteristics, the healthy lifestyle behaviors and
- 168 coronary risk factors of university students are displayed in Table 1, 2 and 3 respectively.

169

Peer-reviewed version available at Educ. Sci. 2018, 8, 51; doi:10.3390/educsci8020051

Tak	ole 1: Body C	Composition V	alues of Universit	y Students	
	Age (year)	Height (cm)	Body Weight (kg)	Fat (%)	BMI (kg/m²)
Male	20.37 ±	162.18 ±	58.15 ±	24.31 ±	22.08 ±
(n:171)	1.53	5.56	* 8.99	6.15	3.18
Female	21.53	175.16	78.29	16.35	24.86
(n:149)	± 3.00	± 18.66	± 16.30	± 5.35	± 5.56
Male and Female	20.89	168.04	67.22	20.66	23.34
(n: 320)	± 2.37	± 14.76	± 16.25	± 7.01	± 4.61

Descriptive characteristics of the subjects across body composition are shown in Table 1. According to this table, the highest rate was reached in % fat for male and the lowest rate in female university students. Results indicated that the subjects have normal body mass index, but high body fat percentage.

Ta	able 2: P	hysical F	itness Cl	naracteris	tics Valu	ues of Uni	versity S	Students	
	BS (kg)	KS (kg)	RGS (kg)	LGS (kg)	F (cm)	TS (repeat)	10m (sec)	20m (sec)	30m (sec)
Female (n:149)	45.19 ± 6.52	44.70 ± 28.33	30.27 ± 5.96	28.18 ± 4.29	17.91 ± 8.49	20.58 ± 7.29	2.57 ± 0.28	3.83 ± 0.32	5.25 ± 0.43
Male (n:171)	110.84 ± 106.9	103.03 ± 35.67	44.81 ± 7.85	42.15 ± 6.97	21.67 ± 10.29	32.26 ± 9.76	2.14 ± 0.29	3.31 ± 0.29	4.55 ± 0.43
Male and Female (n: 320)	79.95 ± 87.13	75.51 ± 43.92	39.13 ± 10.21	36.67 ± 9.27	20.42 ± 9.81	26.80 ± 10.53	2.38 ± 0.35	3.69 ± 0.41	5.02 ± 0.55

Table 2 indicates that university students had good physical fitness performance. Sprint performance and strength is fundamental activity for many sports and also sports performance is the outcome of several variables, including physical fitness. Differentiated physical fitness profiles might, therefore, be considered as a parameter of sports - specific demands, and as such contribute to an enhanced knowledge of the level of performance [21].

Peer-reviewed version available at Educ. Sci. 2018, 8, 51; doi:10.3390/educsci8020051

	Table 3:	Coronary Ris	sk Factors Val	ues of Univ	ersity Studen	ts	
	Heart Rate (rest) (beats per min)	SBP (mm Hg)	DBP (mm Hg)	TG (mg)	TC (mg/dL)	HGB (g/dL)	HT (%)
Male (n:171)	84.13 ± 10.72	112.87 ± 13.11	73.45 ± 11.81	101.3 ± 63.9	173.96 ± 32.29	12.99 ± 0.77	42.17 ± 5.68
Female (n:149)	91.30 ± 10.85	127.53 ± 11.70	78.66 ± 8.33	70.6 ± 38.2	173.31 ± 33.20	14.73 ± 0.97	48.83 ± 7.36
Male and Female (n: 320)	87.97 ± 11.43	120.61 ± 14.49	76.10 ± 10.44	85.9 ± 51.05	173.62 ± 32.72	13.89 ± 1.23	46.62 ± 7.53

According to Table 3, the mean values for HR, SBP, DBP, TG, TC, HGB, and HT were in the normal range for both male and female students. In agreement with national and international literature, the data from the present study shows a considerable prevalence of cardiovascular risk factors among young adults. A family history of chronic diseases was reported by many of the university students. Several studies have revealed a greater prevalence of cardio vascular risk factors in relatives of individuals with cardiovascular diseases and type 2 diabetes mellitus when compared with those without family history of these diseases.

Table 4: Mean and standard deviation of scores of the healthy life-style behavior among the study participants

	Male and Female (n: 320)	Female (n:149)	Male (n:171)
Self-actualization	38.45 ± 7.10	36.02 ± 5.99	40.51 ± 7.33
Health responsibility	23.89 ± 7.17	21.10± 6.53	26.29 ± 6.85
Exercise	10.56 ± 4.05	10.25 ± 4.03	10.82 ± 4.06
Nutrition	17.66 ± 3.66	15.50 ± 2.86	19.52 ± 3.05
Interpersonal support	21.11 ± 3.65	20.07 ± 3.08	22.00 ± 3.58
Stress management	18.63 ± 4.42	17.22 ± 3.55	19.85 ± 4.75
Total score of the healthy and life-style behavior	130.36 ± 24.55	119.78± 20.54	139.12 ± 24.22

Table 4 shows the healthy life-style behaviors of the university students. According to this table, the highest rate was reached in self-actualization sub-scale, and the lowest rate in exercise. This finding depicts the contradictory attitude of university students towards exercise.

Correlations between physical fitness and coronary risk factors of university students are presented in Table 5.

Table 5: Correlations between physical fitness and coronary risk factors of university students

	BS	KS	F	TS	RPS	LPS	10m	20m	30m
HR	,244**	,430**	,409**	,178**	,202**	,195**	-,277**	-,408**	-,426**
SBP	,171**	,363**	,130*	,265**	,403**	,421**	-,296**	-,387**	-,340**
DBP	NS	,160**	NS	,151*	,246**	,254**	-,175*	NS	NS
TG	NS	,261**	NS	NS	,310**	,263**	-,173 -,203*	-,290**	- ,290 **
TC									
НТ	NS	NS	NS						
HGB	,155*	,219**	NS	,212**	,374**	,366**	-,287**	-,275**	-,240*
нав	,385**	,485**	NS	,367**	,482**	,565**	-,385**	-,316**	-,396**

**p<0.01, * p<0.05

As seen in Table 5, Results of Pearson's Product Moment Correlation Analyses indicated significant positive correlations between physical fitness and coronary risk factors of university students in the present study (p<0.05). The findings of this study indicated that physical fitness was an indicator of coronary risk factors of university students.

Correlations between physical fitness and coronary risk factors of male and female university students are presented in Table 6 and 7.

 Table 6: Correlations between physical fitness and coronary risk factors of male university students

	BS	KS	F	TS	RPS	LPS	10m	20m	30m
HR	,176*	,446**	NS	NS	,495**	NS	NS	-,404**	-,345*
SBP	NS	NS	NS	NS	NS	NS	NS	NS	NS
DBP									
TG	NS	NS	NS	NS	NS	NS	NS	NS	NS
TC	NS	NS	NS	NS	NS	NS	,326**	,316*	NS
	NS	NS	NS	NS	NS	NS	,326**	,316*	NS
HT	NS	NS	NS	NS	NS	NS	NS	NS	NS
HGB	,221*	NS	NS	NS	NS	NS	NS	NS	NS

**p<0.01, * p<0.05

As seen in Table 6, results of Pearson's Product Moment Correlation Analyses indicated significant positive correlations between physical fitness and coronary risk factors of male university students (p<0.05). The findings of the present study indicated that physical fitness was an indicator of coronary risk factors of male university students.

Table 7: Correlations between physical fitness and coronary risk factors of male university students

	BS	KS	F	TS	RPS	LPS	10m	20m	30m
HR	ь	N.S	Г	13	Krs	LIS	10111	20111	30111
	NS	NS	NS	NS	NS	NS	NS	NS	NS
SBP	,364**	,265**	NS	,219**	,380**	,401**	NS	NS	NS
DBP	NS	NS	NS	NS	,184*	,253**	NS	NS	NS
TG	NS	NS	NS	NS	,319**	,337**	NS	NS	NS
TC	NS	NS	,171*	NS	NS	NS	NS	NS	NS
HT	NS	NS	NS	,193*	,394**	,408**	NS	NS	NS
HGB	,349**	,328**	NS	,307**	,458**	,580**	NS	,228*	NS

**p<0.01, * p<0.05

As seen in Table 7, results of Pearson's Product Moment Correlation Analyses indicated significant positive correlations between physical fitness and coronary risk factors of female university students in the study subjects (p<0.05). The findings of the present study indicated that physical fitness was an indicator of coronary risk factors of female university students in the Bartin University of Turkey.

Correlations between the healthy life-style behaviors and coronary risk factors of male and female university students are presented in Table 8 and 9.

Table 8: Correlations between healthy life-style behaviors and coronary risk factors of male university students

	SA	HR	E	N	IS	SM	HLSB
HR	.208**	.245**	NS	.355**	.265*	.278**	.287**
SBP	NS	NS	.134*	.262**	.123*	NS	NS
DBP	NS	NS	NS	NS	NS	NS	NS
TG	NS	.247**	.125**	225**	.187*	.162*	.214**
TC	NS	.126**	.205*	NS	NS	NS	.153*
нт	.128*	248**	.297*	293**	.189*	.176*	.234*
HGB	.248**	.282**	.239**	369**	.215*	.232**	.258*

**p<0.01, * p<0.05

As seen in Table 8, results indicated significantly positive correlations between healthy life-style behaviors and coronary risk factors of male university students in the study subjects (p<0.05). The findings of the present study indicated that healthy life-style behaviors was an indicator of coronary risk factors of male university students in the Bartin University of Turkey.

Table 9: Correlations between healthy life-style behaviors and coronary risk factors of female university students

	SA	HR	E	N	IS	SM	HLSB
HR	.210**	.203**	NS	.334**	.214*	.267**	.275**
SBP	NS	NS	.145*	.245**	.153*	NS	NS
DBP	NS	NS	NS	NS	NS	NS	NS
TG	.102*	.252**	.152**	227**	.179*	.141*	.206**
TC	NS	NS	.148*	NS	NS	NS	NS
нт	.149*	256**	.298*	289**	.176*	.149*	.211**
HGB	.217*	.276**	.248**	387**	.146*	.228**	.295**

**p<0.01, * p<0.05

264

265

266

267

268

269

270

271

272273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

As seen in Table 9, results indicated significantly positive correlations between healthy life-style behaviors and coronary risk factors of female university students in the study subjects (p<0.05). The findings of the present study indicated that healthy life-style behaviors were an indicator of coronary risk factors of female university students in the Bartin University of Turkey.

4. Discussion

The findings of the present study indicated that physical fitness plays a determinant role in coronary heart disease risk factors for male and female students from a university. In addition, PAL was found to be an important factor in coronary heart disease risk factors of university students. Coronary heart disease risk factors (CHDRF) included mean arterial blood pressure (systolic (SBP) and diastolic (DBP)), fasting blood levels of triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and total cholesterol (TC) in this present study [1]. Further, the pattern of loadings in boys and girls remarkably similar in this sample (Table 3) suggesting that sex differences in the relationship between PAL and CHDRF are small if they exist. And also the findings of the present study are consistent with previous studies that have demonstrated relationships between PAL and CHDRF, particularly for blood lipids [3, 12]. Although physical fitness (PF) was the best predictor of SBP, DBP, TG, LDL-C, HDL-C, TC, while PAL were not shown to be significant predictors. The result indicate that F, KS, BS, TS, VO_{2max}, BMI and %fat are important determinants of CHDRF in university students, with PF exhibiting a slightly stronger relationship than PAL. However, this result must be tempered by the limitations of the study. Although physical record used is a reliable measure of habitual activity levels, the error associated with the indicators of physical activity is undoubtedly greater than error 292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320321

322

323

324

325

associated with the measurements of PF [3]. Another explanation for the greater relationship between fitness and CHDRF may be genetics. Perhaps genes which are influencing physical fitness also influence CHDRF (genetic pleiotropy) [3]. Eisenmann et al [11] reported that a significant relationship between adolescent cardiorespiratory fitness and adult body fatness and a lack of an association between adolescent cardiorespiratory fitness and adult cholesterol, blood pressure, and glucose levels. Adolescent body fatness is moderately related to selected adult CHDRF and this could be influencing the pattern of loading for PF, independent of chronological age [3]. 5. Conclusion To sum up, an important prevalence of cardiovascular risk factors was observed in the university students included in the present study. Considering that some of the cardiovascular risk factors are modifiable by changes in lifestyle, educational programs aimed at motivating the adoption of healthy lifestyle choices would be helpful, especially in upcoming health care professionals, as it is them who will be taking care of the health of the population in the future [22]. **Acknowledgments:** This study was approved by Bartin University Institutional Review Board, Ethics Committee and supported by Bartin University Scientific Research Projects Commission (Project No: 2016-SOS-A-006). **Author Contributions:** Ali Ozkan was the primary one shaping the main text and Mutlu Turkmen formatted the last version of the text in English. All the other authors contributed to the article equally in gathering data, scanning the literature, formatting the research, and finally revising the text. **Corresponding Author:** Bartin University, School of Physical Education and Sports, Bartin, Agdaci Kampusu, 74100, TURKEY, E-mail: mutluturkmen@bartin.edu.tr; Tel: +905325057565 **Conflicts of Interest:** The authors declare no conflict of interest.

326 References

- 327
- 1. Wilson, P.W.F.; Agostino, R.B.D.; Levy, D.; Belander, A.M.; Silbershatz, H.; Kannel,
- W.B. Prediction of coronary heart Disease Using Risk Factor Categories. *Circulation*.
- 330 **1998,** 97:1837-1847; DOI: https://doi.org/10.1161/01.CIR.97.18.1837.
- 2. Knight, S.; Bermingham, M.A.; Mahajan, D. Regular non-vigorous physical activity
- and cholesterol levels in the elderly. Gerontology. 1999, 45: 213-219; DOI:
- 333 https://doi.org/10.1159/000022090.
- 3. Katzmarzyk, P. T.; Malina, R. M.; Bouchard, C. Physical activity, physical fitness, and
- Coronary heart disease risk factors in youth: The Quebec family study. *Preventive*
- 336 *Medicine*. **1999**, 29; 555-562; DOI: https://doi.org/10.1006/pmed.1999.0592.
- 4. Flack, J.; Yunis, C. Therapeutic implications of the epidemiology and timming of
- myocardial infarction and other cardiovascular diseases. J. Hum. Hypertens. 1997. 11;
- 339 23-28; DOI:10.1038/sj.jhh.1000396.
- 5. Onat, A. Risk factors and cardiovascular disease in Turkey. Atherosclerosis. 2001,
- 341 156(1):1-10. DOI: https://doi.org/10.1016/S0021-9150(01)00500-7.
- 6. Hokanson, J.E.; Kamboh, M.I.; Scarboro, S.; Eckel, R.H.; Hamman, R.F. (2003).
- Effects of the hepatic lipase gene and physical activity on coronary heart disease risk.
- 344 Am. Journal of Epidemiol. **2003**, 158(9); 836-843; DOI:
- 345 https://doi.org/10.1093/aje/kwg230.
- 7. Dusa, F.S.; Badau, A.; Badau, D.; Trambitas, C.; Brinzaniuc, K. Investigating the
- Deformation Parameters of PVC Fitness Balls in Relation to the Height and Body
- 348 Mass Index of the Users. *Mater. Plast.* **2017,** 54, 606 -609.
- 8. Badau, A. Study of somatic, motor and functional effects of practicing initiation
- programs in water gymnastics and swimming by students of physical education and
- sports. Physical Education of Students, 2017, 21; 158–164;
- 352 DOI:10.15561/20755279.2017.0402.
- 9. Badau, D.; Prebeg, G.; Mitić, D.; Badau A. Fitness index and VO2max of physical
- education students, Ovidius University Annals, Series Physical Education and Sport,
- *Science, Movement and Health*, 2015, 15; 246-251.
- 356 10. Williams, P.T. (2001). Physical fitness and activity as separate heart disease risk
- factors: a meta-analysis. Med Science Sports Exerc. 2001, 33:754-761; ISSN: 0195-
- 358 9131.

- 11. Eisenmann, J.C.; Wickel, E.E.; Welk, G.J.; Blair, S.N. Relationship between adolescent fitness and fatness and cardiovascular disease risk factors in adulthood: the aerobics center longitudinal study (ACLS). *Am. Heart J.* **2005,** 149:46-53; DOI: https://doi.org/10.1016/j.ahj.2004.07.016.
- 12. Raitakari, O.T.; Taimela, S.; Porkka, K.V.K.; Telema, R.; Valimaki, I.; Akerblom, H.K.; Viikari, J.S.A. Associations between physical activity and risk factors for coronary heart disease: The Cardiovascular Risk in Young Finns Study. *Med. Sci. Sports Exerc.* **1997**, 29(8): 1055-1061; DOI: 10.1097/00005768-199708000-00011.
- 13. Sörensen, L.E.; Pekkonen, M.M.; Mannikkö, K.H.; Louhevaara, V.A.; Smolander, J.;
 Alen, M.J. Associations between work ability, health-related quality of life, physical
 activity and fitness among middle-aged men. *Applied Ergonomics*. 2008, 39: 786-791;
 DOI: https://doi.org/10.1016/j.apergo.2007.11.001.
- 14. Klasson-Heggebo, L.; Andersen, L.B.; Wennlöf, A.H.; Sardinha, L.B.; Harro, M.;
 Froberg, K.; Anderssen, S.A. Graded associationship between cardiorespiratory
 fitness, fatness and blood pressure in children and adolescents. *Br j Sports Med.* 2006,
 40:25-29; DOI: http://dx.doi.org/10.1136/bjsm.2004.016113.
- 15. Lohman, T.G.; Slaughter, M.H.; Boileau, R.A.; Bunt, J.; Lussier, L. Bone mineral measurements and their relation to body density in children, youth, and adults. *Human Biology.* **1984**, 56, 667-679; ISSN: 00187143.
- 16. Walker, S.N.; Sechrist, K.R.; Pender, N.J. The health-promoting lifestyle profile: development and psychometric characteristics. *Nursing research*. **1987**, 36(2), 76-81; DOI: http://dx.doi.org/10.1097/00006199-198703000-00002.
- 17. Esin, M.N. Evaluation and promotion of health behaviors of industry workers. Istanbul
 University Health Science Institute an Unpublished PhD Thesis, Istanbul, (in Turkish),
 1997.
- 18. Akca, S. Evaluation of health behaviors among lecturers and of affecting factors. Ege
 University Health Science Institute an Unpublished PhD Thesis, Izmir (in Turkish),
 1998.
- 19. Kayıhan, G.; Ersöz, G.; Özkan, A. The relationship between selected physical-physiological parameters and efficiency of pistol shooting. *Policing: An International Journal of Police Strategies & Management.* **2013** 36(4): 819-832; DOI:https://doi.org/10.1108/ PIJPSM-03-2013-0034.

391	20. Scafoglieri, A.; Tresignie, J.; Provyn, S.; Clarys, J.P.; Bautmans, I. Reproducibility,
392	accuracy, and concordance of Accutrend® Plus for measuring circulating lipid
393	concentration in adults. Biochemia Medica: Biochemia Medica. 2012, 22(1), 100-108.
394	21. Van de Vliet, P.; Rintala, P.; Fröjd, K.; Verellen, J.; Van Houtte, S.; Daly, D.J.;
395	Vanlandewijck, Y.C. Physical fitness profile of elite athletes with intellectual
396	disability. Scandinavian Journal of Medicine & Science in Sports. 2006, 16(6), 417-
397	425; DOI: https://doi.org/10.1111/j.1600-0838.2006.00539.x
398	22. Costa Silva Zemdegs, J.; Barreto Corsi, L.; De Castro Coelho, L.; Duarte Pimentel, G.;
399	Toyomi Hirai, A.; Sachs, A. Lipid profile and cardiovascular risk factors among first-
400	year Brazilian university students in São Paulo. Nutricion hospitalaria. 2011, 26(3):
401	553-559; DOI:10.3305/nh.2011.26.3.4660.
402	
403	