

1 Article

2 An assessment of wind power generation potential of 3 Built Environment Wind Turbine (BEWT) systems in 4 Fort Beaufort, South Africa

5 Terrence Manyeredzi ^{1,*}, Golden Makaka ²

6 University of Fort Hare Physics Department, Alice 5700, South Africa

7 ^{1,*} Correspondence: tmanyeredzi@gmail.com

8 ² gmakaka@ufh.ac.za

9

10 **Abstract:** The physical and economic sustainability of using Built Environment Wind Turbine
11 (BEWT) systems depends on the wind resource potential of the candidate site. Therefore, it is crucial
12 to carry out a wind resource assessment prior to deployment of the BEWT. The assessment results
13 can be used as a referral tool for predicting the performance and lifespan of the BEWT in the given
14 built environment. To date, there is limited research output on BEWTs in South Africa with available
15 literature showing a bias towards utility-scale or conventional ground based wind energy systems.
16 This study aimed to assess wind power generation potential of BEWT systems in Fort Beaufort using
17 the Weibull distribution function. The results show that Fort Beaufort wind patterns can be
18 classified as fairly good and that BEWTs can best be deployed at 15m for a fairer power output as
19 roof height wind speeds require BEWT of very low cut-in speed of at most 1.2ms^{-1} .

20 **Keywords:** distributed system; power density; renewable energy; sustainability; utility scale; wind
21 resource

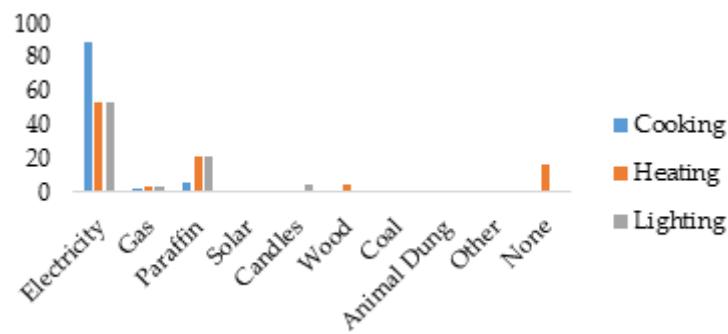
22

23 1. Introduction

24 Eskom, the custodian of South Africa's national grid, is saddled with the government's optimism
25 to triple the contribution by renewable energy from the current 4% national generating capacity to
26 about 6000MW by 2020 [1]. This comes against Eskom's occasional failure to meet demand that
27 compels the energy regulatory authority to impose strict load shedding schedules so as to ease
28 pressure on the grid. The pressure in turn hampers Eskom's drive towards renewable energy use as
29 it will be forced to focus more on meeting demand through traditional non-renewable technologies
30 rather than promoting new renewable ones. One way of easing pressure on the national grid without
31 the need of scheduling load shedding is promoting the use of distributed wind power systems. The
32 major advantage of distributed wind power systems, as is the case with other distributed systems, is
33 their proximity to end users. Distributed wind power systems can protect consumers from dearths
34 due to technicalities associated with grid failure, transportation or capacity shortfalls since the system
35 can be installed within the consumer's locality. Of particular interest in this study is the Built
36 Environment Wind Turbine (BEWT) technology that [2] identified as a developing and less mature
37 innovation than the utility-scale or conventional ground based distributed wind power systems.

38 BEWT refers to wind projects that are constructed on, in or near buildings. One of the main factors
39 to consider when choosing a wind turbine for deployment as a BEWT is its performance, in terms of
40 power output, within the given built environment. The built environment is known to be
41 characterised by complex wind flow patterns [3] where wind direction variations are considerable.
42 Thus, horizontal axis wind turbines (HAWT) with their yawing system may not be capable to track
43 the fast and extensive variations in wind direction thus rendering HAWTs less effective for the built

44 environment [4]. On the other hand, vertical axis wind turbines (VAWTs) are more compact and their
 45 performance is independent of wind direction hence VAWTs are the preferred choice for deployment
 46 as BEWTs.


47 The power output of a wind turbine depends on wind speed that in turn is a spatiotemporal
 48 variable. Therefore it is important to carry out a wind resource assessment of the candidate site prior
 49 to deployment of the BEWT. This is crucial in assessing the physical and economic sustainability of
 50 deploying a particular wind turbine in the given environment. Carrying out site specific wind
 51 resource assessment gives the most reliable estimation of the wind resource potential but this may
 52 increase installation costs and even delay the deployment exercise. Knowledge of the wind resource
 53 potential of the host region for the candidate site(s) is therefore important as it can be used as a referral
 54 tool for predicting the performance and lifespan of the BEWT in the given built environment.

55 Wind speed is a random variable hence it can be represented statistically with Weibull
 56 distribution being recommended by most authors due to its flexibility, simplicity and capability to fit
 57 a wide range of wind data [5]–[7]. This paper is aimed at using the Weibull distribution function to
 58 assess the wind resource potential of Fort Beaufort, South Africa for the purpose of deploying BEWT
 59 systems. This may go a long way in promoting the adoption of BEWTs in South Africa and ease
 60 pressure on the national grid. South Africa is yet to adopt BEWT with available literature on wind
 61 power projects in the country (as is the case with other African countries) showing a bias towards
 62 wind resource potential assessment for establishing large-scale wind farms.

63 2. Materials and Methods

64 2.1. Study area

65 Fort Beaufort is a town under Nkonkobe local municipality with a population density of
 66 310km^{-2} and a household density of 89.11km^{-2} as per 2011 national population census [8]. Figure
 67 1 summarizes the town's sources of energy for domestic use as provided by [9];

68
 69 Figure 1: Graphical presentation of Fort Beaufort sources of energy for domestic use.

70 It can be observed from Figure 1 that Fort Beaufort population depends more on electricity for
 71 domestic purposes hence susceptible to power disruptions on the national grid.

72 2.2. Power output

73 The generic formula for estimating power output (P) of a wind turbine is;

$$74 \quad P = \frac{1}{2} A \rho v^3. \quad (1)$$

75 Estimations of P using equation (1) are premised on the assumption that air density (ρ) is
 76 independent of wind speed [6] where A is area swept by the turbine blades and v is the speed of
 77 wind driving the turbine positioned at a height h above the ground. Equation (1) is useful when
 78 dealing with HAWTs and less reliable for VAWTs hence [10] formulated equation (2) for estimating
 79 power output of VAWTs;

$$80 \quad P(v) = P_o \frac{v^3}{v_o^3}. \quad (2)$$

81 P_o is the nominal power corresponding to the nominal velocity v_o . Wind speed depends on
 82 topography and altitude [11], [12] hence wind speed measured at the weather station (v_s) of height
 83 H should be adjusted to v so as to cater for differences in height and topography between the
 84 weather station and the turbine. Reference [10] came up with equation (3) for estimating power
 85 output of a BEWT based on the corrected wind speed;

$$86 \quad P(v) = \frac{P_o}{v_o^3} \left[v_s \left(\frac{h}{H} \right) \right]^3. \quad (3)$$

87 Equation (3) was successfully used to estimate power output of a turbine operating within the built
 88 environment at 15m height where building geometry was assumed not to influence wind speed.
 89 However, for a BEWT operating in/and on a building, building orientation with respect to the wind
 90 profile should be catered for when recalculating wind speed. Reference [13] used equation (4) to
 91 extrapolate a velocity profile from the meteorological station to the building while studying wind
 92 induced natural ventilation in residential areas;

$$93 \quad v = \kappa v_s h_b^a. \quad (4)$$

94 Thus, equation (2) can be modified into (5);

$$95 \quad P(v) = P_o \frac{[\kappa v_s h_b^a]^3}{v_o^3}, \quad (5)$$

96 where h_b is the building height and κ, a are constants for terrain conditions. Considering Fort
 97 Beaufort's peripheral zone that can be classified as sub-urban, the constants were assumed to be 0.35
 98 and 0.25 for κ and a respectively.

99 The Psyclone Power Tree (Figure 2) was used as a reference BEWT;

100

101 Figure 2: Diagram of the Psyclone Power Tree [14].

102 Its operational specifications are presented in Table 1;

103 Table 1: Specifications of the BEWT

Nominal power output	500W
Nominal rotational Speed	400rpm
Cut-in speed	$0.5ms^{-1}$
Blade total area	$1.536m^2$

104 Equation (3) was therefore used to estimate the power output of a BEWT installed within a built
 105 environment at 15m height while equation (5) was used for a BEWT installed on a rooftop assumed
 106 to be 3m. The Psyclone Power Tree is too bulky for use as a BEWT inside a building hence the
 107 assessment was limited to the two cases mentioned.

108 *2.3. Wind speed data*

109 Wind speed data spanning a ten year period from 2006 to 2016 used in this study was obtained
 110 from the South African Weather Services Department. Since v is a stochastic variable, the most
 111 probable wind speed (v_{pr}) corresponding to the most probable power output was determined from
 112 Weibull parameters k and c [15] using the formula;

113 $v_{pr} = c \left(\frac{k-1}{k} \right)^{\frac{1}{k}}, \quad (6)$

114 $k = \left(\frac{\sigma}{\bar{v}} \right)^{-1.086} \quad 1 \leq k \leq 10, \quad (7)$

115 where \bar{v} is the average wind speed and σ is the corresponding standard deviation of the measured
116 wind speeds.

117 $c = \frac{\bar{v}k^{2.6674}}{0.184+0.816k^{2.73855}}. \quad (8)$

118 The constant k is the shape parameter while c is the scale parameter for the Weibull distribution
119 based on the mean wind speed-standard deviation approach [5], [16]. Knowledge of v_{pr} is
120 fundamental to estimating the potential of the preferred choice of a BEWT in the given environment.
121 A large v_{pr} (and hence large power output) can support a turbine with a large cut-in speed and
122 conversely. The probability density function, $f(v, k, c)$ is then given by;

123 $f(v, k, c) = \frac{k}{c} \left(\frac{v}{c} \right)^{k-1} \exp \left[- \left(\frac{v}{c} \right)^k \right] \text{ for } v > 0 \text{ and } k, c > 0. \quad (9)$

124 The maximum wind speed corresponding to maximum power output is obtained from k and c
125 using the formular;

126 $v_{max} = c \left(\frac{k+2}{k} \right)^{\frac{1}{k}}. \quad (10)$

127 2.4. Power density

128 Wind power density (P_d) is generally considered a better indicator of wind resource potential
129 than wind speed [6]. It is a measure of the power available per unit square area (A) swept by the wind
130 turbine. The wind power density can be estimated using the Weibull distribution as;

131 $P_d = \frac{P(v)}{A} = \frac{1}{A} \int_0^{\infty} P(v) f(v, k, c) dv. \quad (11)$

132 Thus, wind resource potential can be rated using a magnitude-based assessment categorisation in
133 Table 1 [6], [15] as;

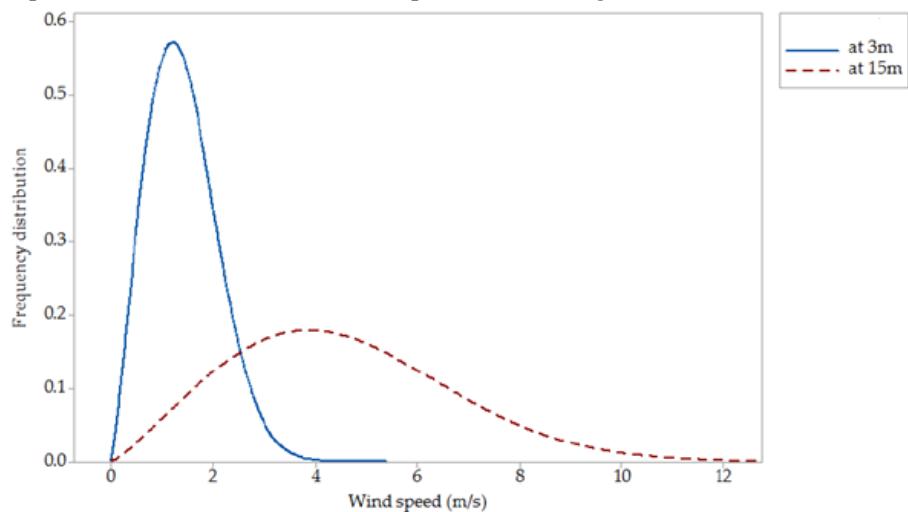
134 Table 2: Categorization of wind resources.

	$P_d(Wm^{-2})$
Fair	< 100
Fairly good	$100 \leq P_d < 300$
Good	$300 \leq P_d < 700$
Very good	$700 \leq P_d$

135 3. Results and Discussion

136 3.1. Wind and power density distribution

137 Wind speed ranges from 0 to $14.8ms^{-1}$ for the ten year period that was considered. Table 3
138 summarizes seasonal average values of wind speed and corresponding power output for the BEWT
139 at $3m$ and $15m$ height.

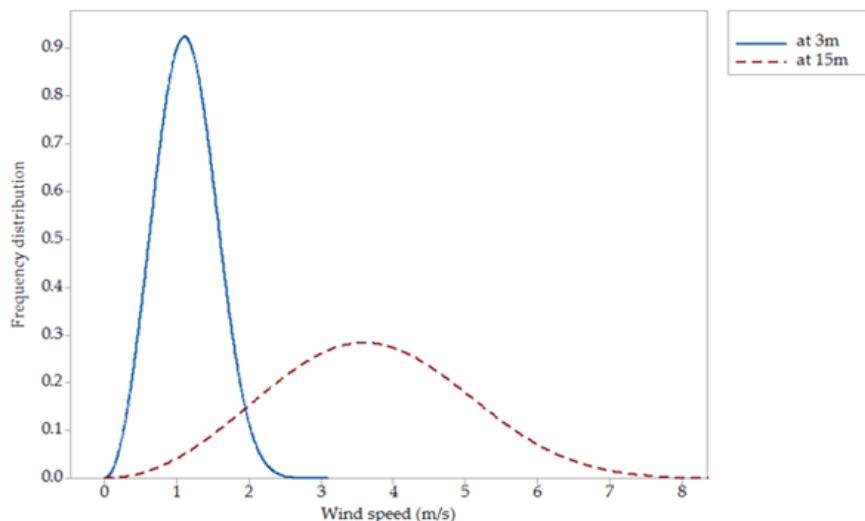

140 Table 3: Seasonal average wind speed and corresponding power output for the BEWT at $3m$ and $15m$ height.

Season	BEWT on/within the house				BEWT at $15m$ height			
	$v (ms^{-1})$		$P_d(Wm^{-2})$		$v (ms^{-1})$		$P_d(Wm^{-2})$	
	v_{max}	v_{pr}	P_{dmax}	P_{dpr}	v_{max}	v_{pr}	P_{dmax}	P_{dpr}
Summer	2.1	1.2	5.6	1.0	6.8	3.9	192.3	35.2
Autumn	1.5	1.1	2.1	0.8	4.9	3.6	71.8	28.4
Winter	1.7	1.4	2.9	1.7	5.5	4.5	99.5	57.6
Spring	2.0	1.2	4.9	1.2	6.5	4.0	169.3	40.3
Overall	1.8	1.3	3.6	1.2	5.9	4.1	123.1	41.5

141 It can be observed from Table 1 that a BEWT deployed at 3m gives a less power density than one
 142 deployed at 15m as is expected since wind speed increases with altitude. The unimodal seasonal
 143 probability densities for wind speed are presented graphically.

144 3.1.1. Summer

145 The wind speed distribution for summer is presented on Figure 3;


146

147 Figure 3: Summer Weibull probability density function plot for Fort Beaufort.

148 Figure 3 shows that the distribution of wind speed in summer is slightly skewed towards lower wind
 149 speeds hence the probability of having above average wind speeds is relatively low. Considering
 150 Figure 4 in conjunction with Table 4, it can be realized that both v_{pr} and v_{max} for summer are both
 151 less than the cut-in speed of the Power Tree at a 3m height. This shows that the Psiclone Power Tree
 152 cannot be supported at this height. On the other hand, both v_{pr} and v_{max} at 15m for summer are
 153 greater than the cut-in speed hence the Power Tree can be supported as a BEWT at this height. Thus,
 154 with reference to the summer wind distribution, a BEWT can be deployed at 3m if its cut-in speed
 155 is at most 1.2ms^{-1} and such technologies are generally expensive considering the returns in terms
 156 of power output and production costs. Using the categorization on Table 2, the most probable power
 157 density at 3m is 35.2Wm^{-2} while at 15m it is 192.3Wm^{-2} as shown on Table 5. The power
 158 densities can therefore be categorized as fair and fairly good respectively. Table 6 also shows that the
 159 maximum power densities achievable in summer are 5.6Wm^{-2} and 192.3Wm^{-2} at 3m and 15m
 160 respectively.

161 3.1.2. Autumn

162 Wind speed distribution for autumn is shown on Figure 4. The distribution of wind speeds is
 163 almost symmetrical with a slight positive skew hence the probability of having above average wind
 164 speeds in autumn is comparatively low.

165

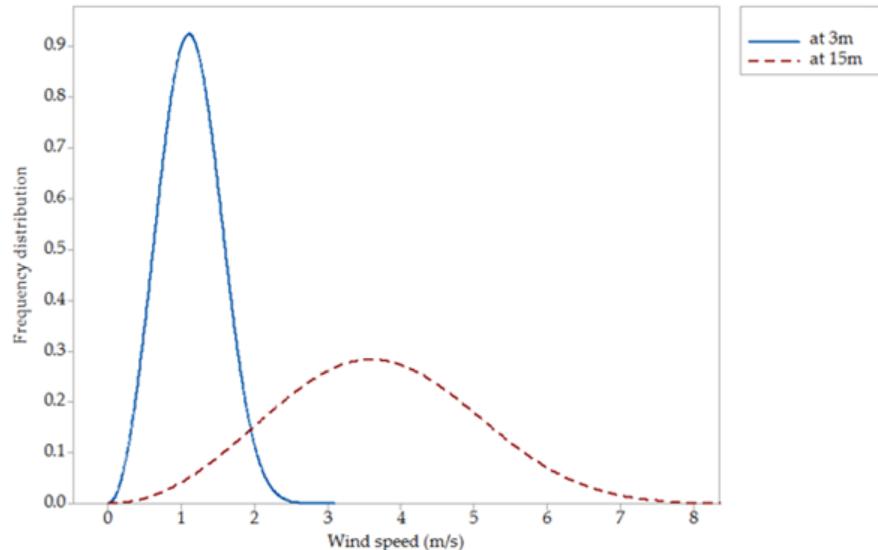

166

Figure 4: Autumn Weibull probability density function plot for autumn.

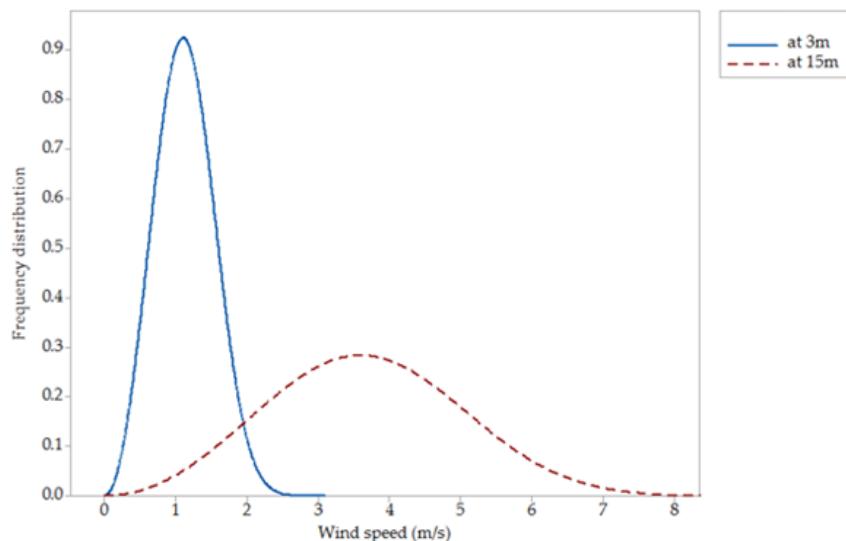
167 The modal wind speeds are 1.1ms^{-1} and 3.6ms^{-1} at 3m and 15m height respectively. The
 168 corresponding modal power densities are 0.8Wm^{-2} and 28.4Wm^{-2} at the respective heights hence
 169 they are both categorized as fair. The maximum power density values are 2.1Wm^{-2} at 3m and
 170 71.8Wm^{-2} at 15m. Therefore, wind conditions in autumn are not favourable for operating a BEWT
 171 since both P_{dpr} and P_{dmax} are categorized as fair for the respective heights.

172 3.1.3. Winter

173 The probability of having average or higher wind speeds in winter is relatively low since the
 174 probability distribution for winter is again slightly skewed towards low wind speeds as shown on
 175 Figure 5.

176

177


Figure 5: Weibull probability density function plot for winter

178 The modal power densities are both categorized as 1.7Wm^{-2} and 57.6Wm^{-2} at the respective
 179 heights hence categorized as fair. Thus, wind conditions are comparatively favorable for operating a
 180 BEWT to those for autumn. The corresponding maximum power densities achievable in winter are
 181 2.9Wm^{-2} at 3m and 99.5Wm^{-2} at 15m, both which fall under the fair category.

182 3.1.4. Spring

183

The distribution for wind speeds in spring is shown on Figure 6;

184

185

Figure 6: Weibull probability density function plot for spring.

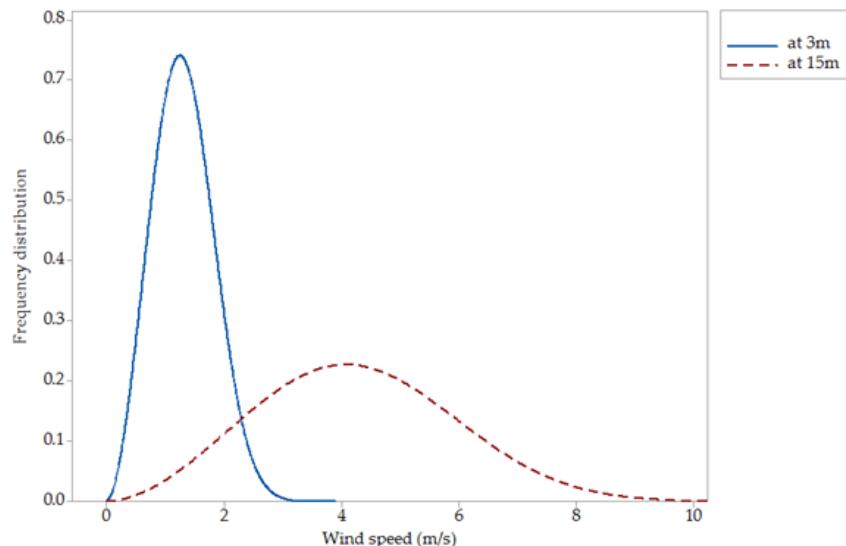
186

187

188

189

It can be observed that the distribution is skewed towards low wind speeds. The most probable power densities are; $1.2Wm^{-2}$ and $40.3Wm^{-2}$ at the respective heights. Thus, wind conditions for Fort Beaufort can be categorised as fair for operating a BEWT with maximum power densities achievable being $4.9Wm^{-2}$ at 3m and $169.3Wm^{-2}$ at 15m.


190

3.1.5. Overall

191

192

Generally, the wind speed distribution for Fort Beaufort is slightly skewed towards low wind speeds (Figure 7) hence the probability of having below average wind speeds is slightly high.

193

194

Figure 7: Fort Beaufort Weibull probability density function plot.

195

196

197

198

199

200

The average modal power densities for Fort Beaufort are $1.2Wm^{-2}$ and $41.5Wm^{-2}$ at 3m and 15m respectively. Thus, wind conditions for Fort Beaufort can be categorized as fair for operating a BEWT with maximum power densities achievable being $3.6Wm^{-2}$ at 3m and $123.1Wm^{-2}$ at 15m.

201 4. Conclusion

202 The most probable seasonal power density for Fort Beaufort is in the range of $0.8Wm^{-2}$ to
203 $1.7Wm^{-2}$ at 3m height. At 15m height, the most probable seasonal power density ranges from
204 $28.4Wm^{-2}$ to $57.6Wm^{-2}$. Thus, seasonal wind conditions for Fort Beaufort can be categorized as fair
205 to fairly good for operating a BEWT with maximum power densities achievable being $3.6Wm^{-2}$ at
206 3m and $123.1Wm^{-2}$ at 15m. However, the BEWTs can best be deployed at 15m for a fairer power
207 output as roof height wind speeds require BEWT of very low cut-in speed of $1.2ms^{-1}$ that are not
208 readily available on the market. Therefore, it is recommended to install BEWTs at 15m otherwise
209 low cut-in speed BEWTs should be used on rooftops

210 **Acknowledgments:** I am grateful to the South African Weather Services for freely providing me with data that
211 was used in this study.

212 **Conflicts of Interest:** The authors declare no conflict of interest.

213 References

- 214 1. Burger, J. Unpacking renewable energy in Africa. *How we made it in Africa*, 2017. Available online: <https://www.howwemadeitinafrica.com/unpacking-renewable-energy-africa/59248/>. (Accessed on 10 March 2018).
- 215 2. Fields, J.; Oteri, F.; Preus, R.; Baring-gould, I. Deployment of Wind Turbines in the Built Environment: Risks, Lessons, and Recommended Practices. *National Renewable Energy Laboratory*. 2016, NREL/TP-5000-65622.
- 216 3. Abdi, D.S.; Bitsuamlak, G.T. Wind flow simulations in idealized and real built environments with models of various level of complexity. *Wind Struct. An Int. J.* 2012, vol. 22, no. 4, pp. 503–524, 10.12989/was.2016.22.4.503.
- 217 4. van Bussel, G. J. W.; Mertens, S. M. Small wind turbines for the built environment. *Fourth Eur. African Conf. Wind Eng.* 2005, pp. 1–9, 10.1109/PES.2005.1489306.
- 218 5. Ayodele, T.; Jimoh, A.; Munda, J; Agee, J. Statistical analysis of wind speed and wind power potential of Port Elizabeth using Weibull parameters. *J. Energy South. Africa*. 2012, vol. 23, no. 2, pp. 30–38.
- 219 6. Fazelpour, F; Soltani, N; Rosen, M. A. Wind resource assessment and wind power potential for the city of Ardabil, Iran. *Int. J. Energy Environ. Eng.* 2015, vol. 6, no. 4, pp. 431–438.
- 220 7. Parajuli, A. A Statistical Analysis of Wind Speed and Power Density Based on Weibull and Rayleigh Models of Jumla, Nepal. *Nepal. Energy Power Eng.* 2004, vol. 8, no. 8, pp. 271–282.
- 221 8. Frith, A. Census 2011 — Main Place Fort Beaufort. Available online: <https://census2011.adrianfrith.com/place/276071>. (Accessed on 22 February 2018).
- 222 9. Statistics South Africa. Main Place | Statistics South Africa. 2011. Available online: http://www.statssa.gov.za/?page_id=4286&id=2206. (Accessed on 22 February 2018).
- 223 10. Eryomin, D.I; Yagfarova, N. I.; Turarbekov, M. K. Mathematical model to calculate the performance. *IJASEAT* 2016, vol. 4, no. 1, pp. 23–25.
- 224 11. Erdik, T.; Law, P.; Şen, Z.; Altunkaynak, A.; Erdik, T. Wind velocity vertical extrapolation by extended power law. *Adv. Meteorol.* 2012, pp. 1–6.
- 225 12. Maharanı, Y. N.; Lee, S.; Lee, Y. Topographical Effect on Wind Speed over Various Terrains: A Case Study for Korean Peninsula. Seventh Asia-Pacific Conf. Wind Eng. Taipei, Taiwan, 2009.
- 226 13. Larsen, T. S.; Heiselberg, P. Single-sided natural ventilation driven by wind pressure and temperature difference. Aalborg University, 2008.
- 227 14. Psiclone. Psiclone | 500w Generator. Available online: <http://www.psiclone.co.za/500w/>. (Accessed on 21 February 2018).
- 228 15. Akpinar, E. K.; Akpinar, S. A statistical analysis of wind speed data used in installation of wind energy conversion systems. *Energy Conversion and Management* 2005, vol. 46, pp. 515–532.
- 229 16. Adaramola, M. S.; Agelin-Chaab, M.; Paul, S. S. Assessment of wind power generation along the coast of Ghana. *Energy Convers. Manag.* 2014, vol. 77, no. 2014, pp. 61–69