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Abstract: Laser scanning systems make use of Light Detection and Ranging (LiDAR) technology1

to acquire accurately georeferenced sets of dense 3D point cloud data. The information acquired2

using these systems produces better knowledge about the terrain objects which are inherently 3D3

in nature. The LiDAR data acquired from mobile, airborne or terrestrial platforms provides several4

benefit over conventional sources of data acquisition in terms of accuracy, resolution and attributes.5

However, the large volume and scale of LiDAR data have inhibited the development of automated6

feature extraction algorithms due to the extensive computational cost involved in it. Moreover, the7

heterogeneously distributed point cloud, which represents objects with varying size, point density,8

holes and complicated structures pose a great challenge for data processing. Currently, geospatial9

database systems do not provide a robust solution for efficient storage and accessibility of raw data10

in a way that data processing could be applied based on optimal spatial extent. In this paper, we11

present Global LiDAR and Imagery Mobile Processing Spatial Environment (GLIMPSE) system12

that provides a framework for storage, management and integration of 3D LiDAR data acquired13

from multiple platforms. The system facilitates an efficient accessibility to the raw dataset, which is14

hierarchically represented in a geographically meaningful way. We utilise the GLIMPSE system to15

automatically extract road median from Airborne Laser Scanning (ALS) point cloud. In the first part16

of this paper, we detail an approach to efficiently retrieve the point cloud data from the GLIMPSE17

system for a particular geographic area based on user requirements. In the second part, we present an18

algorithm to automatically extract road median from the retrieved LiDAR data. The developed road19

median extraction algorithm utilises the LiDAR elevation and intensity attributes to distinguish the20

median from the road surface. We successfully tested our algorithms on two road sections consisting21

of distinct road median types based on concrete and grass-hedge barriers. The use of GLIMPSE22

improved the efficiency of the road median extraction in terms of fast accessibility to ALS point cloud23

data for the required road sections. The developed system and its associated algorithms provide a24

comprehensive solution to the user’s requirement for an efficient storage, integration, retrieval and25

processing of large volumes of LiDAR point cloud data. These findings and knowledge contribute to26

a more rapid, cost-effective and comprehensive approach to surveying road networks.27

Keywords: Airborne Laser Scanning; Geospatial Database; Data Retrieval; Road Median; Attributes28

1. Introduction29

Accurate 3D information about the location of real-world objects along with their geometrical and30

structural properties supports a wide range of services and evidence based decision making. Light31

Detection And Ranging (LiDAR) enables 3D surveying of real world environments by measuring32

the time of return of emitted light pulses. The applicability of laser scanning systems, which use33
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LiDAR technology, continues to prove their worth due to the rapid, continuous and cost effective34

3D data collection capability. The information obtained through these systems contributes to the35

production of useful knowledge which can be used to develop more efficient approaches for managing36

urban infrastructures and natural resources [1]. Their 3D data acquisition capability produces better37

knowledge about terrain objects which are inherently 3D in nature. Laser scanning systems facilitate38

the acquisition of an accurate, precise and georeferenced set of dense LiDAR point cloud data. Other39

benefit of these systems is the high level of automation involved in data acquisition process and their40

ability to acquire data beneath tree’s canopy [2].41

The 3D data acquired from Mobile Laser Scanning (MLS) and Airborne Laser Scanning (ALS)42

systems differ in terms of intrinsic accuracy, resolution and object scale. This difference is incurred43

primarily due to the distance of the scanner to the target objects, scan direction and view angle [3].44

Laser scanning system can facilitate reliable and accurate acquisition of 3D spatially referenced data45

about road median, which is a narrow strip of land that separates traffic on opposite sides of the road.46

The road median is one of the fundamental feature, whose correct identification is a prerequisite to47

obtain precise information about road and other physical objects along it. The acquired 3D LiDAR data48

can be used to locate, measure and classify the road median in a timely cost-effective manner in order49

to facilitate their maintenance. This information can assist road authorities in effective management of50

road networks and to ensure maximum safety conditions for road users [4].51

LiDAR data records a number of attributes including elevation, intensity, pulse width, range and52

multiple echo information, all of which can be used for precise extraction of road median. It is a rich53

source of 3D georeferenced information, whose volume and scale have inhibited the development of54

automated algorithms [5]. The large volume of data produced by modern-day laser scanning systems55

lead to time-consuming and computational expensive processes for automated features extraction. For56

example, Riegl VQ-250 MLS generates 300,000 points per second resulting in approximately 20GB of57

data per hour. Significant challenges exist when dealing with these volumes of LiDAR data, from its58

storage through all stages to features extraction. The raw LiDAR data files usually contain long strips59

of points which prohibit efficient data processing in terms of memory allocation and algorithm design60

[6]. The acquired point cloud is heterogeneously distributed representing objects with varying size,61

point density, holes and complicated structures, which poses a great challenge for data processing [7].62

While an efficient storage system for very-large 3D point cloud data is one of the key aspects for63

information extraction. Equally important should be the ability of such a system to segment and merge64

point clouds that are spatially coincident. However, the industrial standard has been to cluster LiDAR65

data into spatial grids, which are then stored as binary files in a survey-based file structure. This66

survey-based approach, that prevails in most software suites, has proven to be a major constraint in a67

meaningful analysis of the LiDAR data [8,9]. These software suites do not provide efficient access to68

the raw data at different or irregular spatial dimensions. It becomes challenging to access LiDAR data69

for a particular geographical area across numerous surveys that invariably accumulate as a massive70

dataset. The efficiency of automated processing algorithm depends upon the raw LiDAR data being71

spatially optimised for the algorithm. The data storage system should facilitate an efficient accessibility72

to the raw datasets in a way that data processing could be applied based on optimal spatial extent73

and point density/resolution. This will improve the efficiency of automated algorithms in terms of74

computation and reduced processing of the dataset.75

In this paper, we present a Global LiDAR and Imagery Mobile Processing Spatial Environment76

(GLIMPSE) system, that provides a framework for storage, management and integration of LiDAR77

data acquired from terrestrial, mobile and aerial platforms, in the context of a automated pipeline78

towards the development of a road median extraction algorithm. We describe an optimal construction79

of a very large scale spatial database and how these datasets can be hierarchically represented in80

a geographically meaningful way, that facilitates the spatial segmentation of data based on user81

requirements. Finally, the segmented data is visualized in a WebGL enabled web-application viewer82

that allows a user to interact with it. The prototyped system provides a comprehensive framework83
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for integration, scalability, fast retrieval and processing of point cloud data to extract features. We84

developed a method for efficiently retrieving the ALS point cloud from the GLIMPSE system based85

on user specified spatial extent and then retrieved data is further processed to automatically extract86

the road median. When imported in the GLIMPSE prototype, the ALS data is optimised into a spatial87

hierarchy. In the first part, we present an approach to retrieve point cloud data for a particular88

geographical area from a large volume of raw data stored in the GLIMPSE system. In the second part,89

we process the retrieved LiDAR data to automatically extract the road median. The developed road90

median algorithm is based on the assumption that the LiDAR elevation and intensity attributes can be91

utilised to distinguish median from the road surface.92

In Section 2, we review different geospatial database approaches used for managing very-large93

voluminous LiDAR datasets. We present a detailed review of various methodologies developed for94

extracting road objects from ALS and MLS datasets. Following the review, we list various limitations95

existing in current LiDAR data management and processing approaches, which have been addressed96

through our research work. In Section 3, we describe the GLIMPSE system and how spatial hierarchies97

are built, then we provide details on the spatial data segmentation and fusion processes involved in it.98

In Section 4, we provide a step-wise description of our automated algorithms to retrieve point cloud99

data from the GLIMPSE system and then to extract the road median from the retrieved data. We test100

our algorithms on two road sections consisting of distinct road median types in Section 5. In Section 6,101

we validate the road median extraction results and discuss them. Finally, we conclude the paper in102

Section 7.103

2. Related Work104

The typical workflow while handling large volumes of LiDAR data has been to process the raw105

data into specific format, such as a Digital Elevation Model (DEM) [9]. DEMs have been quite popular106

for representing surface from 3D LiDAR data in either raster or Triangulated Irregular Network (TIN)107

format. These 2.5D representations are useful in simplifying the complexity of LiDAR point cloud,108

but do not fully exploit the 3D capability. In some cases, the largest features (i.e. ground or buildings)109

present in the point cloud are manually removed in order to reduce their complexity and processing110

time [10]. These constraints have led to the use of Spatial Database Management Systems (SDBMSs) for111

the storage, management and retrieval of LiDAR data. The standard has been to grid the raw LiDAR112

data into spatially equal tiles in SDBMS and then spatial boundaries of these files are used to access113

raw files through spatial query operations. LiDAR point cloud datasets are stored in most SDBMSs114

as either point/multipoint or other geometric data types [11]. The management of data with point115

type is difficult to handle, however the multipoint type makes the retrieval process simpler by storing116

collection of points in a single record but it does not include all the features. The representation of117

LiDAR data with 2D geometric types (i.e. polygon, box) again do not fulfil the requirements of 3D118

space.119

An efficient 3D SDBMS must provide a capability to apply various spatial operations and120

functions, embedded in its query language, to 3D data type [12]. A suitable spatial indexing is crucial121

in a database as it is used to accelerate data retrieval and operations performed on it. It organizes the122

database space in a particular manner so that no complete table is required to be examined in order123

to complete particular queries [13]. Most SDBMSs perform spatial indexing based on R-tree [14] and124

quad-tree [15] techniques. The R-tree structure uses Minimum Bounding Rectangle (MBR) to divide125

an object space in a tree-shaped hierarchical structure, while its 3D extension consists of Minimum126

Bounding Boxes (MBB). The quad-tree data structure decomposes space in a hierarchical structure127

such that each node representing bounding box consists of maximum four child nodes, however in128

its 3D extension, octree, each node can have up to eight child nodes. Many traditional DBMSs have129

been extended with functionalities to manage and store 3D spatial data [13]. Oracle Spatial has been130

developed as a modification of Oracle 4 while PostGIS is an extension of another popular open-source131

DBMS named PosgreSQL. They both support different 3D spatial data types (such as point, line,132
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polygon and combination of them) and provide 3D spatial indexing mechanism that enables fast data133

retrieval.134

Several other approaches have been developed for managing the large volume of LiDAR point135

cloud data. [16] presented a scalable approach to interpolate grid DEM from large LiDAR dataset136

based on quad-tree segmentation. In their approach, the point cloud data was partitioned into a set of137

quad-tree segments and then each segment was interpolated using points within the segment and its138

neighbourhood. The approach was tested on 390 million points (around 20GB) to interpolate DEM139

in about 53 hours, which other GIS software suites were unable to process. [17] applied octree and140

local KD tree based approach to manage and visualize large LiDAR dataset, while [18] optimized a141

workflow for processing airborne LiDAR data within GIS-based environment. [19] presented a study142

with the use of spatial extensions in IBM’s DB2 database to manage high-resolution airborne LiDAR143

data. They also experimented with a single partitioned database on a supercomputer resource and144

multi-partitioned database across several nodes that function together as a single database engine,145

in order to deal with large volume dataset. In [20], a method was proposed for distributed data146

organisation and parallel data retrieval from huge volume of airborne LiDAR data. The distribution147

strategy took into account the spatial relationship in between the dataset, while an improved data148

retrieval speed led to fast analysis, visualization and processing of the point cloud. [21] implemented149

an octree data structure to store and compress 3D point cloud data. They further demonstrated its150

usage for an easier exchange of file format, fast data visualization and an efficient plane detection151

algorithm. [22] presented a point cloud management system based on groups of points that provided152

a perspective for meta-data, concurrency, integration with other geospatial datasets, filtering and153

fast processing. The proposed system was tested with several billion points acquired from aerial,154

terrestrial LiDAR and stereo-vision. With an expansive growth in cloud computing services, there has155

been an increased deployment of various distributed web-based LiDAR management applications.156

NSF-funded OpenTopography is one such significant application that provides a web-based access157

to high resolution LiDAR topography data along with derivative products and online processing158

tools [23]. Another such application is Dielmo’s LiDAR-Online that provides a web-based platform to159

visualize, access and process LiDAR data [24].160

LiDAR has matured to an accurate technology which can be employed for reliable extraction161

of various features along road networks. The extracted roads can be represented as homogeneous162

areas or pairs of parallel lines corresponding to edges, depending upon the spatial resolution of the163

input dataset. The methods developed for segmenting roads from ALS datasets are mostly based164

on utilizing their attributes to distinguish road areas from other objects. [25] reported their work165

on the segmentation of ALS data into road and non-road objects based on elevation and intensity166

attributes, while [26] detected kerbstones based on the detection of small height jumps caused by them167

in the ALS data. Their road extraction results were influenced by the presence of parking, private168

roads and parked cars in the surveyed areas. The integration of high resolution optical imagery or169

2D topographic map data with aerial LiDAR data for road extraction has also been reported [27–29].170

However, the road extraction accuracy might be affected from positioning errors inherited in maps171

and occlusion arising from building and tree shadows in optical imageries. In most recent works, [30]172

presented road detection approach in which ALS data was filtered to estimate ground points and then173

road candidates were identified based on local distribution of intensity histogram. [31] proposed a174

method to extract road centrelines using ALS data. Their method was based on filtering the ground175

points and then estimating road points by applying an optimal intensity threshold. The estimated176

points were finally refined by removing narrow roads and attached areas to extract the network of road177

centrelines. [32] detected the roads in forested mountainous areas using ALS data. In their approach, a178

supervised classification was applied to Digital Terrain Model (DTM) and then a graph was built over179

candidate regions to locate the roads. Finally, the roads were characterised to estimate their width and180

slope parameters using an object-based image analysis. Several methods have also been reported for181

extracting road edges, in particular, from MLS data. These works are particularly focused on extracting182
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kerb edges in an urban environment, where there is a sufficient height or slope difference in between183

the road and kerb points [33–37]. In rural conditions, the road comprises of grass-soil surface, in which184

case the edges are not as easily defined by slope or elevation changes alone. The approaches developed185

for extracting rural road edges from MLS data are based on integrated use of its elevation, intensity186

and pulse width attributes which were utilized to distinguish the road from grass-soil surface [4,38,39].187

Apart from these, several other methods have been proposed for extracting road markings [40,41],188

road poles and towers [42,43], road surface roughness [44–46] and surrounding tree objects [7,47] from189

MLS data.190

One of the major constraints in the approaches developed for extracting road objects from LiDAR191

data is the computational intensive, iterative and time consuming processes involved in them. This is192

due to the massive size and un-organised nature of LiDAR datasets that limits their meaningful analysis193

for extracting relevant information. Such huge volume datasets give rise to significant challenges for194

data visualization, efficient data analysis and rapid data processing. The users are prohibited from195

exploiting the full range of opportunities that LiDAR data offers. There has been very limited use196

of any LiDAR data management platform in the road features extraction processes that could have197

provided spatially optimised accessibility and fast data processing to the users. This, in turn, would198

have been beneficial in terms of improved efficiency and computational capabilities of automated199

algorithms. Some SDBMSs offer capabilities for storage, management and retrieval of LiDAR data200

but fail to support an efficient analysis of such vast dataset. The existing data types and spatial201

indexing techniques appear to be insufficient to handle large volumes of LiDAR data. There has been202

very few systems where the LiDAR datasets acquired from terrestrial, mobile and aerial platforms,203

could be integrated into a single data management solution. There is a need for a more robust and204

comprehensive data management framework that could provide spatially optimised, unrestricted205

and integrated access to the LiDAR points and its attributes. This would facilitate an efficient data206

analysis and fast data processing in order to extract road features from LiDAR data in an automated207

and operational way. Towards this goal, we describe the GLIMPSE system in the next section.208

3. 3D Geospatial Database209

Empirical experience with both ALS and MLS geospatial data has shown that the primary210

obstacles in the processing of these datasets is their considerable size and the inability to easily constrain211

them based on point attributes. Leading on from this is the preparation and extraction difficulties,212

when using these data for bespoke requirements. For example, in the case of extracting a road median,213

the process would be significantly constrained by the survey-processing methodology that prevails in214

industry standard software suites. These suites provide no context for spatial optimisation of the data215

loaded from many different surveys. Thus, data segmentation for road median detection cannot be216

easily implemented through an optimal and empirically informed spatial approach.217

However, approaching this problem with a point-cloud fusion and spatial-constraint perspective,218

it is possible to optimise the LiDAR data being output to algorithms that specialise in feature extraction219

process. This can be achieved through procedures that leverage the power of a platform such as220

PostGIS and its numerous, integrated, spatial API’s. The geo-referenced raw LiDAR is stored in a221

database where optimised spatial indexes can be generated in order to facilitate efficient querying of222

the data. Consequently, optimally located LiDAR data, across numerous surveys, can be output in a223

user required spatial context. In that case, the road median algorithm, can be operated on a reduced224

target data set relative to the original survey but, also, at higher point densities as spatially coincident225

point clouds can be segmented and fused in the same database operations.226

Towards this objective, a prototype cloud-application has been developed called GLIMPSE that227

currently hosts 4.2 terabytes of ALS and MLS data comprising 29 billion records. These datasets cover228

multiple MLS and ALS surveys for 90% of the national road network in Ireland. The LiDAR data229

coverage is displayed as blue transparent polygons in the Google maps UI along with WebGL viewer230

in the GLIMPSE platform, as shown in Figure 1. GLIMPSE builds a 2D spatial hierarchy of the 3D231
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Figure 1. The GLIMPSE platform with LiDAR coverage represented in blue in the Google maps UI
along with webGL viewer.

LiDAR data uploaded into the system. The importance of this step is that it gives a spatial context,232

where optimally located LiDAR data can be segmented and fused for output to a feature extraction233

processing algorithm, as is the case with the road median extraction. The system enables a user to234

segment the raw data using a spatial tool and then the processed results are visualised through the235

GLIMPSE WebGL viewer, as shown in Figure 2.

Figure 2. User defined (a) LiDAR section polygon represented in orange and (b) processed results in
the WebGL viewer.

236

In Section 3.1, we detail how spatial hierarchies are built and defined in the GLIMPSE system,237

while in Section 3.2, we describe the optimal approach to data segmentation, fusion and retrieval.238

Through these sections, the cloud-application based User Interface (UI) in the GLIMPSE system is also239

detailed that enables interaction, understanding and visualisation of the platforms objectives.240

3.1. GLIMPSE Spatial Hierarchy241

We implemented a 2D spatial hierarchy, where all the spatial data sources from MLS, ALS and242

terrestrial surveys are stored at different levels of spatial detail. This stage does not change the original243

spatial detail of the LiDAR but allows a user to evaluate and thus process the available LiDAR in244

approximate coverage zones. Two examples are presented in Figure 3, in which the LiDAR coverage is245
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shown in the Google maps UI as blue transparent polygon. In Figure 3(a), the coverage of ALS survey

Figure 3. Approximated coverage zone for (a) ALS and (b) MLS datasets.

246

containing 1,700 million points is shown, while Figure 3(b) shows the LiDAR coverage of MLS survey247

consisting of 400 million points. Within the GLIMPSE UI, the user can use standard GIS point and248

polygon creation tools to intersect a planar view of the available data in this area, which is presented249

in Section 3.2. This is also true for automated process that can be scripted into the GLIMPSE platform.250

The spatial hierarchy procedure has been implemented as a bespoke implementation of the251

PostGIS2 ST_ConcaveHull method. This approach was chosen as it presented significant performance252

improvements over the default PostGIS implementation. This was important, not only because the253

quantities of LiDAR being processed are so large, but also because the three different LiDAR data source254

types have very different point density properties. For example, MLS data can have a point density255

in excess of 4,000 points per m2, where point densities reduce as a function of distance orthogonal to256

the survey vehicles direction of operation. Effectively this LiDAR data source produces a very dense257

and detailed route corridor point cloud. On the other hand ALS data, which can also be presented in258

a corridor like fashion representing the aerial vehicles flight path, the point densities are very much259

uniform across the scan area and typically in the order of 10 points per m2.260

The first stage in our process is to snap all the LiDAR data to a spatial grid. A sub-step in the261

first stage involves the application of a sub-sampling threshold to the LiDAR. This sub-sampling is262

applied differently depending on the LiDAR data source; in the case of MLS data, areas with high point263

densities, close to the survey vehicle, are sub-sampled with a higher threshold than areas with lower264

point densities. The second stage is to generate concave hulls for all the sub-sampled and gridded data.265

Finally, a spatial union is performed on all the concave hulls for the LiDAR data being processed.266

This final stage can take the form of a number of different spatial unions such that the highest267

accuracy concave hull is a direct 2D spatial representation of a single table of raw LiDAR. This idea268

follows through to unions that define all the data in different spatial configurations; local, regional,269

national, etc. The spatial union can also be applied in a number of other ways such as modelling the270

data using the survey based approach that exists in typical commercial software suites.271

3.2. GLIMPSE Spatial Segmentation & Fusion272

Having approached each stage of this framework pipeline with a spatial constraint perspective to273

the fore, it is possible at this stage to optimize the LiDAR data being output. This can be achieved,274

once again, through procedures that leverage the power of the PostGIS platform through its numerous,275

integrated, spatial functionalities. Due to the spatial-indexing and spatial-hierarchies that have been276
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generated for the LiDAR, it is relatively easy to highlight use cases which generate bespoke LiDAR277

subsets from our 29 billion points stored in a 4.2 TB database.278

These use-cases could be in any relevant form where the process being initiated needs access to279

LiDAR. Consequently, this could be an automated processing algorithm, such as the road median280

extraction algorithm, where subsets of LiDAR can be spatially optimized and fused such that the281

algorithm handles only relevant LiDAR in the system. In Figure 3, we can see a sample of the GLIMPSE282

UI which highlights how this can happen. Alternatively, this example use-case could just as easily be a283

LiDAR awareness approach where LiDAR can be quickly and easily segmented for a user to view the284

outputs such that they are suitable for a given process or requirement.285

In this example both point or polygon spatial-constraint geometries can be created by a user;286

polygons have been created in this case as can be seen in Figure 4. This operation provides

Figure 4. User initiated sectioning of (a) and (b) LiDAR datasets with polygon tools for feature
extraction processing.

287

the geographical context for the LiDAR query where the user can choose between a 2D or 3D288

implementation. Either choice will result in a 3D LiDAR point cloud being returned. However,289

in the 3D case the extra altitude (Z) parameter is added to the spatial query and can be used to bind290

the point-cloud in the Z domain, i.e. a road median extraction algorithm will not require data outside291

the boundary of the road surface. These optimizations can significantly reduce the number of points292

returned which subsequently decreases the query time, required processing time and the rendering293

time.294

Extending on from this example is the possibility of numerous different user or process driven295

use-cases that may require the spatially segmented LiDAR data to be returned based on attribute296

constraints as well. For every independent LiDAR attribute, including the table’s primary key, an297

index exists such that searching any LiDAR table becomes a function of the index being searched298

and not a dependent process on the table’s primary key. Thus, in the previous example we could299

further constrain the returned point cloud data by requesting only points whose intensity values fall300

within a certain range, which allows us to continue to leverage the power of the database. Using the301

optimizations that are inherent to the PostgreSQL database, a standard spatial query will optimize302

its search based on the spatial index and the primary key of the table. For queries that extend such303

a search, based on other attributes, the primary key element is easily replaced with the index of the304

chosen constraint. In the main, runtimes on these attribute constrained queries will be comparable in305

the single constraint case, although as the number of attribute constraints increases runtimes would306

logically extend. In the next section, we describe our point cloud retrieval and road median extraction307

algorithms.308
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4. Algorithm309

We developed algorithms to efficiently retrieve ALS data from the GLIMPSE system based on user310

specified spatial extent and then to automatically extract road median from the retrieved data. The use311

of GLIMPSE system facilitates the segmentation and fast retrieval of point cloud data for a particular312

geographical area. In the first part, we describe a method to efficiently retrieve ALS data from the313

GLIMPSE system based on user specifications while in the second part, an algorithm to automatically314

extract road median from the retrieved ALS data is presented. We use road vector polylines in our315

algorithm as a secondary data source, which were obtained from the National Roads Authority (NRA)316

in Ireland. These road polylines were imported in the GLIMPSE system, while representing centre,317

left-lane and right-lane of the dual carriageways in Ireland as shown in Figure 5. Each road polyline

Figure 5. Road vector polylines represented in red in the GLIMPSE system, with inset pictures
representing (a) N01 and (b) N11 road sections in detail.

318

was associated with Route ID, Road Number, Direction, Section Number and Lane Representation.319

4.1. Point Cloud Retrieval320

Our point cloud retrieval algorithm is developed based on the assumption that a polygon spatial321

tool in the GLIMPSE system can be utilised to segment the ALS data, as shown in Figure 6. The

Figure 6. GLIMPSE polygon spatial tool.

322

spatial tool requires height and width parameters along with heading and position (i.e. latitude and323

longitude) information at the centre of polygon for enabling it to segment the LiDAR data. The user324

specifies the cross-section length (i.e. height), lc and width, wc dimensions of polygon along with the325

required total length, lt. The central position and heading parameters of each polygon segment are326

estimated using road vector polylines based on user clicked location. A workflow of the point cloud327

retrieval algorithm is shown in Figure 7.328
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Figure 7. Point cloud retrieval algorithm.

The user explores the road polylines incorporated in the Google maps UI of GLIMPSE system329

and can click any point near the preferred road section for which the ALS data is required. In Step330

1 of our algorithm, the road polyline point nearest to the user clicked location is selected using a331

kd-tree approach. The k-d tree is a data structure which is used to organise the points in a space with332

k-dimensions. Each node of a tree specifies an axis and splits the set of points based on whether their333

coordinate along that axis is greater or less than a node value [48]. The splitting is done based on the334

first dimension axis and then each level down the division is done based on the next dimension. The335

splitting points are selected to ensure that the cells do not become long and thin. In our approach, all336

the road polyline points, representing the centre of the dual carriageway, are split in three dimension337

and then the polyline point nearest to the user clicked location is selected. The selected polyline point338

is used to further select the consecutive polyline points based on total length specified by the user.339

In step 2 of our algorithm, the central position coordinates of each cross-section length are linearly340

interpolated from the selected road polyline points. The heading at each centre location is derived341

by first estimating the slope angle from the interpolated position coordinates and then estimating342

the angle with respect to the North direction. In step 3 of the point cloud retrieval algorithm, the343

position coordinates and heading information along with user specified length and width dimensions344

are input into the polygon spatial tool of the GLIMPSE system. The input information facilitates the345

segmentation of ALS data using the polygon tool and allows the user to download the segmented data346

from the GLIMPSE system in step 4 of our algorithm. For example, if the user wants to access the ALS347

data of 2km road section with 100m cross-section length, then 20 data files will be downloaded from348

the GLIMPSE system.349

4.2. Road Median Extraction350

The ALS data files accessed using the point cloud retrieval algorithm are further used to extract351

the road median. Our road median extraction algorithm is based on the fact that LiDAR elevation and352

intensity attributes can be efficiently utilised to extract the median [49]. We input n number of ALS353

data files and road vector polylines in our road median extraction algorithm. The input data files are354

batch processed to extract continuous road median along the tested road section. The dimensions (i.e.355

length, width, height) of data section in each file are based on user input parameters in the point cloud356

retrieval algorithm. A workflow of the road median extraction algorithm is shown in Figure 8. In the357

following sections, we describe various processing steps involved in our algorithm.358

4.2.1. Road Surface Estimation359

In Step 1 of our algorithm, we use the road vector polylines to estimate the LiDAR points360

belonging to the road surface. We consider the polylines along the left-lane and the right-lane, and361
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Figure 8. Road median extraction algorithm.

find their intersection with the convex hull fitted to the input LiDAR points. The intersected boundary362

points are then used to remove the outside points, while inner points are retained which belong to363

the road surface. Thus, the use of road polylines is efficient in terms of reducing the search space in364

LiDAR data for extracting the road median. The process of estimating road surface points using road365

polylines is shown in Figure 9.

Figure 9. The input (a) road section points and (b) road surface points estimated using polylines
represented in red.

366

4.2.2. Frequency Distribution Analysis367

The road sections consist of highways crossing above them at some locations, which are required368

to be removed in order to get a correct estimation of the road median. In Step 2 of our algorithm, these369

crossing highways are removed based on frequency distribution of the elevation values obtained from370

the road surface LiDAR points. We assume that along the road section, a large number of LiDAR points371

will belong to its surface, while in comparison less points will correspond to any highway crossing372

above it. Based on this assumption, frequency distribution of elevation values is estimated and then373

elevation value with maximum frequency is identified as hr, which belongs to the road surface. The374

points with elevation values more than hr + ε or less than hr − ε are removed, while in between points375
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are retained for further processing. The value of ε parameter is estimated empirically and fixed for376

all the road sections in such a way that it could be useful in removing the crossing highways. In this377

way, crossing highways above the road sections are removed by detecting the road surface points with378

maximum elevation frequency. An example of removing crossing highway above the road section is379

shown in Figure 10.

Figure 10. The road surface (a) with highway crossing above it, which is then (b) removed using
frequency distribution analysis.

380

4.2.3. Threshold Analysis381

In Step 3 of our algorithm, we apply threshold to elevation and intensity attributes in order to382

get an initial estimation of the road median. The elevation and intensity values are normalised with383

respect to their minimum and maximum values, and converted to an 8-bit data type. This enables a384

two way transformation between the 8-bit values and their original LiDAR values, which in turn will385

allow for the use of a single threshold value for all road sections. We apply Telev and Tint threshold386

parameters to road surface LiDAR points and get initial road median points, as shown in Figure 4.387

The values of these threshold parameters are estimated empirically and fixed for all the road sections,388

which allows for their fully automated application.

Figure 11. Threshold values applied to the (a) road surface points in order to get an initial estimation
of the (b) road median.

389

4.2.4. 2D Raster Surface Generation390

In Step 4 of our algorithm, we generate 2D intensity raster surfaces from the initial estimated road391

median points using a cell size, c parameter. The value of c is selected based on an average spacing of392

LiDAR points. The value of each cell in the raster surface is estimated as the average of the intensity393

values of the LiDAR points that fall within the 2D boundary of the cell.394
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4.2.5. Morphological Operations395

The initial estimated road median may be incomplete and contain other road surface elements that396

are introduced through the use of thresholding. To overcome this, we use morphological operations397

based knowledge analysis of road median in Step 5 of our algorithm [40]. This analysis involves three398

processes. In the first process, the intensity raster surface is converted into a binary image and then399

the morphological dilation operation is applied in which a structuring element is placed over the400

image cells. The purpose of dilation is to use the structuring element to grow cells with a value of401

1 in order to fill in any holes. A structuring element consists of a binary matrix that represents the402

selected shape and size. A central element of the matrix represents an origin and the elements with a403

value of 1 describe a neighbourhood of the structuring element. The origin of the structuring element404

is positioned over each cell in the binary raster surface to dilate that cell along the neighbourhood of405

the structuring element.406

We select a linear shaped structuring element to dilate the cells due to linear pattern of the road407

median. The length, l, of the linear element is selected empirically and is fixed for all the road sections,408

which allows us to automate the morphological operation in our algorithm. The linear element is used409

with a θ angle that is calculated from the mean heading of the road polyline points. This angle is useful410

in dilating the road median cells along the longitudinal direction. The use of dilation operation fills the411

holes and completes the shapes of road median in the input binary image. An example of the dilation412

of input binary image using linear element is shown in Figure 12(a).

Figure 12. Morphological operations based knowledge analysis: (a) dilated image, (b) road surface
cells removed and (c) eroded image.

413

In the second process, we group cells into objects in the dilated image using connectivity. If a cell414

has a value of 1 then it is connected to the cells whose values are 1 and are directly above, below, left or415

right of that cell. We calculate the length and average width values of each object in the dilated image.416

Objects whose length and average width values are less than length threshold, TL and width threshold,417

TW are considered as other road surface elements and are removed from the image, as shown in Figure418

12(b). These length and width threshold values are estimated based on knowledge about standard419

dimensions of the road median. In the third process, we apply an erosion operation to the dilated420

image in order to retain the original boundary shape of the road median. In an erosion operation, cells421

are removed from the road median cells using a structuring element. The linear shaped structuring422

element used for dilation is also applied to erode the road median cells, as shown in Figure 12(c). In423

this way, the combined use of morphological operations and knowledge about the dimensions of the424

road median is able to complete its shape and remove other road surface elements.425

4.2.6. 3D Road Median Points426

In final Step 6 of our algorithm, we extract the 3D road median points from the 2D output. The427

original 3D LiDAR points which are contained within the 2D road median cell boundaries are extracted.428

In the next section, we present the test results of our algorithm on the road sections.429
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5. Experimentation430

The dataset acquired using an ALS system along dual carriageway roads in Ireland was uploaded431

into the GLIMPSE system. In the first part, we applied our point cloud retrieval algorithm to efficiently432

access ALS data from the GLIMPSE system based on our specific requirements. We, as a user, explored433

the road polylines imported in the GLIMPSE system and clicked the points near two preferred road434

sections of dual carriageway. In each section, other input parameters were provided as lc = 50m,435

wc = 50m and lt = 1000m. The first 1km section consisted of road median with narrow concrete436

barrier, as shown in Figure 13(a), while the second 1km section contained road median with wide437

grass-hedge concrete barrier, as shown in Figure 13(b).

Figure 13. Digital images of the (a) first road section with narrow concrete barrier and the (b) second
road section with wide grass-hedge barrier. (Geographic locations: (a) 53021

′
11”N 6027

′
26.1”W (b)

53026
′
9.8”N 6012

′
37.7”W) (Images Courtesy: Streetview, Google)

438

The selected road polyline points and input parameters were used to estimate the central position439

and heading information of each cross-section length along the two road sections. Finally, the derived440

information facilitated the downloading of ALS data files from GLIMPSE in accordance with the441

specified parameters. In each 1km road section, n = 20 number of data files were accessed with each442

corresponding to 50m cross-section length.443

In the second part, the accessed data files were batch processed to extract the road median444

along the tested road sections using empirically estimated parameters. The value of ε was selected445

as 4m, which was found to be useful in removing the highways crossing above the road sections.446

The threshold parameters, Telev and Tint were applied as 200 and 100 respectively, to get an initial447

estimation of road median in both the sections. The cell size, c = 0.1 was used to generate 2D intensity448

raster surface from initial estimated road median points. The length, l of linear element was used449

as 50, while angle θ was calculated from the mean heading of the road polyline points. The length450

threshold, TL was applied as 100 in both the road sections, however due to different width size of451

median, we applied different values of TW in them. The value of TW was provided as 5 in the first road452

section, while in the second section it was applied as 10. The final extracted road median in the first453

and second road sections are shown in Figures 14 and 15 respectively. In the next section, we present454

the validation of experimental results and discuss them.455

6. Results & Discussion456

Our algorithms were able to successfully extract the road median in the tested road sections based457

on a specified spatial extent. We, as a user, specified input parameters in the point cloud retrieval458

algorithm to efficiently access the ALS data for a particular geographical area from a large volume of459

data stored in the GLIMPSE system. The retrieved datasets were further processed to automatically460

extract the road median along the tested road sections. We validated the extracted road median in461

the first and second road sections using a manually digitised road median. Our validation approach462

is based on an estimating orthogonal proximity of extracted road median points along left and right463
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Figure 14. The (a) ALS point cloud along the first road section and the (b) extracted road median points
represented in red.

edges from their corresponding manually digitised road median points [39]. In our approach, we464

utilised the centre road polyline point which was selected at 2m intervals along the road section in465

each iteration. The extracted and digitised road median points were rotated toward the horizontal466

X-axis based on heading angle of the selected road polyline point. This horizontal rotation was done to467

simplify the process of estimating orthogonal distance. After rotation, linear splines were fitted to both468

the 2D-extracted and digitised road median points. The purpose of the spline fitting was to facilitate469

the interpolation of Y-axis values of the extracted and digitised road median points with respect to470

the known X-axis value of the selected road polyline point. Finally, we calculated an orthogonal471

Euclidean distance between the extracted and digitised road median points, which were rotated472

toward the horizontal X-axis. The positive or negative value indicated the inside or outside position of473

the extracted road median point with respect to the digitised road median point. This process was474

iterated for all the road polyline points selected at a 2m interval. Thus, the orthogonal distance was475

used to estimate the accuracy of extracted median in the two tested road sections. Box plots for the476

accuracy values of extracted road median points along left and right edges in the first and second road477

sections are shown in Figures 16 and 17 respectively. We also carried out statistical analyses of the478

accuracy values of extracted road median points along left and right edges in the first and second road479

sections as shown in Table 1.480

Our road median extraction algorithm was able to successfully extract the road median in the481

first and second road sections. In the first road section, the accuracy values were found to be better482

than in the second road section. The minimum-maximum range values were lowest in the first section,483

while its accuracy values along the left and right edges were within a ±2m tolerance. In the second484

road section, 10.16% and 1.39% accuracy values along the left and right edges respectively were more485

than ±2m tolerance. Similarly, the mean, median and RMSE values in the first road section were486

found to be better than in the second road section. This was due to higher reflectivity obtained from487

the narrow concrete barrier in the first road section than from the grass-hedge concrete barrier in the488

second section. The non-continuous shapes of some road median also contributed to lower accuracy489

values in the second road section as shown in Figure 18. In both the road sections, the road median490

points along the right edge displayed better results than along the left edge. In the first and second491
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Figure 15. The (a) ALS point cloud along the second road section and the (b) extracted road median
points represented in red.

road sections, the accuracy values of road median points along the right edge were higher within492

±0.2m, ±0.5m, ±1m and ±2m tolerances than along the left edge.493

Our automated algorithm extracted the road median with an average RMSE values of 0.55m494

and 0.92m in the first and second road sections respectively. This low accuracy was attributed to the495

fact that road median at some locations along the tested road sections were missed, while at other496

locations, the adjacent lane markings were included in the output as false positives. High reflectivity497

from the lane markings led to their inclusion in the initial estimated road median during threshold498

applied to the intensity attribute. Further, their close proximity to road median did not enabled their499

removal during morphological operations. The value of LiDAR intensity attribute depends upon500

incidence angle of the laser pulse, the distance from the laser scanner and the illuminated surface.501

The normalisation of intensity attribute with respect to these factors will provide true reflectance502

values from the targeted objects. The use of such normalised intensity values in our algorithm will503

improve the quality of extracted road median. The tested road sections were also associated with504

highways crossing above them at some locations, which were efficiently removed based on frequency505

distribution analysis of elevation values. This analysis was done based on an assumption that large506

number of points will belong to the road surface in comparison with crossing highways. However, in507

case of wider highway, the large number of LiDAR points will belong to it and this will lead to the508

removal of road section beneath it. In the morphological operations, we applied different values of509

width threshold due to different width of the median in the tested road sections.510

We analysed the computational performance of our two algorithms by estimating the total time511

taken to retrieve the data from the GLIMPSE system and then to finally extract the road median.512

In the first and second road sections with each 1km length and 50m cross-section length, it took513

approximately 37 minutes and 119 minutes respectively to retrieve and process the dataset. This514

analysis was performed on a computer with Intel Core i5-6600 processor @3.30GHz, 8GB RAM and a515

64-bit operating system. The second road section consisted of wider road median due to which it took516

more time to process the dataset in comparison with the first road section.517

7. Conclusion518

In this paper, we presented the GLIMPSE system that provides a comprehensive framework519

for storage, integration and scalability of large volume of LiDAR data. It facilitates a hierarchical520
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Figure 16. Box plot for the accuracy values of extracted road median points along left and right edges
in the first road section.

Figure 17. Box plot for the accuracy values of extracted road median points along left and right edges
in the second road section.

Table 1. Statistical analysis of the accuracy values of extracted road median points along left and right
edges in the first and second road sections.

First Section Second Section
Left Right Left Right

minimum (m) -0.93 -1.48 -3.18 -0.36
maximum (m) 1.49 1.24 0.26 2.34
lower adjacent (m) -0.93 -1.28 -2.93 -0.36
upper adjacent (m) 1.49 0.91 0.26 1.26
25th percentile (m) -0.27 -0.47 -1.49 0.24
75th percentile (m) 0.49 0.09 -0.36 0.67
mean (m) 0.17 -0.20 -0.93 0.51
median (m) 0.25 -0.25 -0.64 0.41
inside ±0.2m (%) 15.66 23.69 9.47 19.40
inside ±0.5m (%) 57.63 69.08 38.57 60.28
inside ±1m (%) 92.17 94.18 63.05 89.38
inside ±2m (%) 100 100 89.84 98.61
outside ±2m (%) 0 0 10.16 1.39
RMSE (m) 0.58 0.51 1.16 0.67
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Figure 18. The (a) ALS point cloud with some non-continuous road median along the second road
section and their (b) extraction represented in red.

representation of large scale data in a geographical meaningful way, that enables the user to spatially521

segment the data based on its requirement. The use of such a system provides a framework for the fast522

retrieval of point cloud data based on an optimal spatial extent which, in turn, improves the efficiency523

of automated algorithms in terms of computational cost and reduced processing. We developed the524

methods to efficiently retrieve point clouds from the GLIMPSE system and to automatically extract the525

road median from the retrieved data. In our point cloud retrieval algorithm, the road vector polylines526

are used as secondary data source to estimate the parameters required for spatial segmentation of ALS527

point cloud in the GLIMPSE based on user input information. In case of MLS dataset, the navigation528

points can also be utilised as secondary data source, which are usually procured during the data529

acquisition process. The GLIMPSE system provides a single platform for storage, integration, retrieval530

and processing of large volume of LiDAR point cloud in a computationally efficient manner.531

Our road median extraction algorithm was developed based on the assumption that LiDAR532

data provides elevation and intensity values, which can be utilised to distinguish the median. The533

use of road polylines enables to estimate the points belonging to the road surface, which in turn534

facilitates more accurate extraction of road median. We then perform the frequency distribution535

analysis of elevation values, which provides for the removal of the highways crossing above the road536

sections. The morphological operations based knowledge analysis is useful in completing the shape of537

the road median and removing other road surface elements, that are introduced through the use of538

thresholding. The algorithms were tested on two road sections to extract the concrete and grass-hedge539

based road medians. The successful extraction of road median from these multiple road section540

environments based on user requirement validates our two algorithms. The developed workflow can541

assist authorities in ensuring rapid and timely maintenance of road features along the route corridor542

environment.543

In future work, the road median algorithm will be tested on road sections with more distinct544

medians. The elevation and intensity threshold values applied to get an initial estimate of the road545

median, were estimated empirically. However, a more robust and automated approach will need to be546

developed in order to get the threshold values. We will also focus on the normalisation of the intensity547

attribute, which will improve the quality of road median extraction. The size of input data sections548

and cell size of raster surfaces impact the efficiency of our algorithm in terms of computational cost.549

These parameters are required to be efficiently analysed to find their optimal values. Future work550

will also focus on the integration of LiDAR and imagery data acquired from multiple platforms in the551

GLIMPSE system, which will then be utilised to develop other road feature extraction algorithms.552
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Abbreviations561

The following abbreviations are used in this manuscript:562

563

LiDAR Light Detection and Ranging
MLS Mobile Laser Scanning
ALS Airborne Laser Scanning
GLIMPSE Global LiDAR and Imagery Mobile Processing Spatial Environment
DEM Digital Elevation Model
TIN Triangulated Irregular Network
SDBMS Spatial Database Management System
MBR Minimum Bounding Rectangle
MBB Minimum Bounding Boxes
DTM Digital Terrain Model
UI User Interface
NRA National Roads Authority

564
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