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1 Abstract: A new formulation for a proposed solution to the 3D Navier-Stokes Equations in cylindrical
2 co-ordinates coupled to the continuity and level set convection equation is presented in terms of an
s additive solution of the three principle directions in the radial, azimuthal and z directions of flow and
«  aconnection between the level set function and composite velocity vector for the additive solution is
s shown. For the case of a vertical tube configuration with small inclination angle, results are obtained
s  for the level set function defining the interface in both the radial and azimuthal directions. It is found
»  that the curvature dependent part of the problem alone induces sinusoidal azimuthal interfacial
s  waves wheras when the curvature is small oscillating radial interfacial waves occur. The implications
o of two extremes indicate the importance of looking at the full equations including curvature.

1o Keywords: Fluid dynamics, Two phase flow, Level set function, Cylindrical coordinates, Continuity
u  equation

> 1. Introduction

-

13 The level set method, has been used originally as a numerical technique for tracking interfaces
1« and shapes [3],[4] and has been increasingly applied to various areas of engineering and applied
1s  mathematics. In the level set method, contours or surfaces are represented as the zero level set of a
1s higher dimensional function called a level set function. This can be the distance from the particular
1z phase of material to the interface. For example in fracture mechanics level set methods have been
1= used to track the shape around a crack in two and three dimensions that is propagating with a sharp
1o kink [7].Also various applications in image segmentation have been used with corresponding active
20 curve evolution algorithms [2],[6].Reachability analysis is frequently used to study the safety of control
zn systems. Using exact reachability operators for nonlinear hybrid systems is presented in [9]. An
22 algorithm for determining reachable sets and synthesizing control laws is implemented using level
2 set methods in [9]. Various models used to compute the interaction of 3D incompressible fluids with
2a elastic membranes or bodies, rely on the use of level set functions [10], to capture the fluid-solid
= interfaces and to measure elastic stresses that have been used. In [10] the computation of equilibrium
26 shapes of biological vesicles is presented and numerical simulations of spontaneous cardiomoyocyte
2z contractions is presented. A conservative method of level set type for moving interfaces in divergence
2s  free velocity fields is presented in [5], [8]. The method in [8] was coupled to a Navier-Stokes solver
20 for incompressible two phase flow with surface tension. Wave phenomena is known to exist at the
s interface of two phase immiscible flows [11]. In the present paper we present a level set method for
a1 moving interfaces for such velocity fields which are coupled to Navier-Stokes equations for two phase
sz flows in tubes.The novelty of the present work is to reveal an analytical approach in solving the 3D
ss  cylindrical Navier-Stokes equations where the three principle directions of flow, in radial, azimuthal
ss and longitudinal directions are summed to form a new composite vector velocity expression. In this
s light we propose to solve a curvature only formulation of the governing equation for the level set
s function and one in which the curvature is removed from the governing equation.
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sz 1.1. Level Sets in Cylindrical Co-ordinates
38 Let ¢ be a level set function.[1],[3]. The gradient of the level set function in cylindrical co-ordinates
30 is defined as:
(99 10¢ 0¢
Vo= (81" r 30’z @

The mean curvature, «, of the interface defined by the zero isocontour of the level set function ¢, [1],[3],
is the divergence of the normal to the interface given by

. V¢
== )
V¢l
Thus it can be expressed as:
Kk=-V-i (©)]

«r The mean curvature x of a dynamic surface ¢(r,0,z,t) = (r,6,t) + z in cylindrical co-ordinates is,

2
K= % [(;rq)(r,&z,t)) <r2 ((;(p(r,e,z, t)) + 1) +
d 0 92
2 <894’(r,6,z, t)) (ag(p(r,G,z, £) —raear¢(r,9,z,t)> >+

J 0,z,t AN 0,z,t
r (ae"’(r’ ,Z, )) +r ﬁcp(n ,z,t) +

r (;;gb(r,e,z, t)) <<§r¢(r,9,z,t)>2 +1>
5= <2r2 ((;r(p (r,9,z,t)>2+1> +2 (aae"’ (r,9,z,t))2>3/2 5)

The geometric trace of a dynamic closed surface that bounds an open set can be represented implicitly
as

4)

where

S={(r,0,z1t) | ¢(r,6,z,t) =0} (6)

and for two phase flow has two separate regions where ¢ > 0 and ¢ < 0 respectively.[1] The surface
evolution is determined by:

¢r=u-Vo¢ (7)

The Navier-Stokes Equations are:

Jou 1 5 1
§+(u'V)u— pr+yV u+pF
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where for cylindrical (r, 6, z) coordinate system, Laplace operator has the form

? 10 19 &

o2 " ror 12002 ' 922
—_——

o (r3r)

V2 =

«2 and the gradient is is given by Eq.(1)

s 1.2. A new composite velocity formulation

The 3D cylindrical incompressible unsteady Navier-Stokes equations coupled to interface
convection equation are written in expanded form, for each component, ur,uf and uz, where the
remaining non linear terms appearing in full N.S equations are suppressed for the time being;:

our uf@ our

wpe b QU wOur o Qur oy wr  Sfur  1dur  1%ur  dfur)
! ar | r 90 dz 2 o2 Tror 12002 | o2
19dp 1 9
Eg—l-"g,—fmcg—o 8)

” +ur%+u798ﬁ+uzau9 po( ub 62u9+18L9+l82u9 0%u6
! o 1 00 oz 22 T ror 12002 T 92
10p 1 13p

! or ' r 06 oz p\ o2 ror ' 12002 ' 922

1dp 1 o9
0oz —Fg, — Emcg = (10)

«s and where p is density, y is dynamic viscosity ,Fgy, Fgg, Fg- are body forces on fluid and ¢ is surface
s interfacial tension.

s« Multiplying Egs(8-10) by unit vectors ¢, & and k respectively and adding Equations (8-10)
w  gives the following equation, for L = uré, + uéy + uzk,

oL wpol oL u( L @l 130 180 L) 1
2 or2  ror r?290? 972

= 1 =
Lt‘l‘M?’g‘i‘Tag HZE—; +EPT—FT—EU'KL—O(11)

The level set function ¢ is governed by Eq(7), which when expanded becomes in cylindrical
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co-ordinates:
op  ub P o
CPt—l-ura——l—f%—l- Zaf 0 (12)
The continuity equation in cylindrical co-ordinates is
op dp , ubdp dp _ (odur 1oub duz
a T rae T T P\ e Tz (13)
Multiply Eq(11) by %([):
oL uf aL oL
R e e e R
p ( L 9*L  1dL laiL 82L o1
p<p< Ftegtos tgam e |+ 4>PT ¢Fr mpKL]_o (14)
Multiply Level set function convection Eq.(12) by %E:
4 dp  -ubop - JdP
y[L¢t+Lura + L= a64—Luza | = (15)

50

51 Adding Eqs(14) and (15) gives

52

L. L 0.  -uf L
%[cht + Ly + gpurL, + Lurg, + cp”—Lg + L”74>9 + puzl, + Luzg, —
L 9L 1oL 1L &L\ 1
%4> ( S ) + ~¢Pp — ¢pFr — fmpr] =0 (16)

2T Ty TR T a2

By product rule we rewrite the previous equation as:

BT+ (gurL) + 1 (puoL)o -+ (puzl):] -

(p(_t PL 100  19PL  PL

1 0 1 =

It is noted that since L is a composite velocity term it must have units of length per time,
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and since ¢ is usually taken to be a distance function from the interface we can consider the following
expression in terms of ¢ :

L (r,0,z,t) = lﬁf (18)
pp
where % has SI units of mTZ and L = Prer + %4796_,;9 + ¢.Z is by definition in Navier Stokes

equation(Eqs(8-10)) of dimension % and ¢ is dimensionless.

From Level set Eq(7),

I (E.f) = —L(¢r) (19)

53

[

« From the first line of Eq.(17) using Eq(18) we have a derivative term in ¢, first we write:

56

ps (a2 — 1) ¢ (r,6,21)L(r,6,2t)
L= (20)
P p1+ (02 —p1) ¢ (r,0,2,1)
where
p=p1+ (02— p1)¢, = p1+ (p2— p1)¢
and
(yz) __(Be0ezn) Loz (2=p)m— =)
P/ (o1+ (p2—p1) ¢ (,0,2,1))
(11 + (2 = 1) ¢ ,0,2,1)) 3T (7,6,2,1) on
p1+ (o2 —p1) ¢ (r,0,2,1)
and for derivative terms in 7,6, z , from the first line of Eq.(17) we have,
N1 N2 N3
D1 + D2 + Do’ (22)
N1=L(r,0,2,t) ((p2 — p1) 1 — (42 — 1) p1) %
d d d
(ur (ar(P (r, 9,z,t)> r -+ ud ﬁqb (r,0,z,t) +uz (azcj) (r, 9,z,t)> r) (23)

D1 =r(pu1+ (2 — 1) ¢ (r,0,2,1))%) (24)
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N2 = (i + (g2 =) 9 (r,0,2,)) x
(ur %f (r,0,z,1) + W + uz %f (r,0,z, t)) (25)
N3 = (Vlir(ﬂz—m) ¢ (r,0,2,t)) X
<f;rur (r,0,z,1) + W + L aa z(r,0,z, t)) (26)
D2 = p1 4+ (p2 —p1) ¢ (1,0,2,1) (27)

57

58

so 1.3. Special Case Solution

In this section it is assumed that the tube is in a vertical configuration with a small inclination
angle and

(p2—p1) w1 — (p2 —p1)p1 =0 (28)

Equation(26) can be rewritten using the time dependent continuity equation Eq(13),

o
=)

61

-9 L2ub(r,6,2t) =0 = /9p
—p (L prl (r,0,z,t) + S — + Lguz (r,0,z,t) | =L (at +L- Vp) (29)
1
Vo=V (30)
Y
Use of Eq.(17), Egs.(22-30) gives a non-linear PDE
o, 7 P 1ap> 1 0 7=
—(¢L)t + — (L VL—i— 4+ —-—LL-V¢—
TR o or) Tt Y?
L 9L 10L 1L &L
4)( w+1’ai’ +1’2 502 + — 32 ) + QDPT**quTffO'gbKL 0 (31)

z_ ﬂ+1@+lﬂ+ﬂ +115'_£1:_"_,0-KL+
PLe—¢ a2 ror  r?290? 972 y(PT ‘u(PT ¢
- Jur oub
Y(r,ur,ub, 50" ¥> =0 (32)

A solution of the algebraic equation (28) gives as one special solution 1 = 0 and p; = 0, with yp and
02 general expressions. Using Eq.(4) and incorporating the curvature x, and using Eq(18) and dot
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product in Eq(19), with ¥ defined as the numerator of x appearing in Eq.(4), Eq.(31) reduces to
2L(r0t) L(r,0,t) 4 L(rot) SL(6t)
ot 1Yy 1Yy
P 0000 008D [ 2pa\ R 0060 9wen
(_ ¢(r,0,t) >
= = 2 —
(2L(n0.1) 29 (r,0,1) L Leey 29(r,0,1)) LL8n Z0000
@mon? (¢ (0,1 (9 (r,0,0))
1 %Z(r,(),t) 3 f(r,(),t) %4) (r,6,1) B
r\ o060 (9 (r,6,1))
)5 07 = 3 2 = )
1 [ Z5L(r,0,t) (@L(r 0, t)) S (ro ) L(r6,1) (@fp(r,e,t)) L(r,0,t) 25¢ (r,0,t)
") -2 +2 3 - 5 =+
N K ACTA) (¢ (r,6,1))° (¢ (r,6,1)) (¢ (r,0,1))
Lot (37, o5, #LOEDY _
e G e B >

ez ,Fzis force of gravity in inclined tube.

63 1.3.1. Curvature Term Omitted

In this first part we solve Eq.(33) with the curvature part ¥ ignored. This is because we can
subsititute . = V¢ and set ¢ = e“F(r,0) for « < 0 and ¢ sufficiently large to cancel terms with
a and t. With curvature term dropped it can be proven that F(r,6) is multiplicatively separable,
F(r,0) = f(r)g(#) and we obtain the following,

2
d3 %f(r) 1
g/ (= —<df(r)2+
e (FP +4 (Ef ) 2 (&) F 0 =2 (£F0) 2= F 0 (EF ) r+ (F ()P &£ ()
(f ()P
(34)

d
3080 = —g(O)c1 —g(0) (35)

Setting f(r) = exp(G(r)) and G(r) = In(H(r)) in Eq.(34) and factoring exponential terms out we

obtain,
3 2
($H0) (&HO)EHE) LEHE)  EHE (£H") @
(H (r))’ (H (r))* H(r) — rH(r) r(H(r))?
SH(1)
dr _ _
ZH (7) Fz=0 (36)
Let Q(r) = Ig((:)) and from Eq.(36) the following linear differential equation emerges,where
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H(r) =Y(r),
g (@)’ —2 (f0m)rP-a@r) fx
@Y(r) B Q(r)r? B
(—2 Q)+ Fzr = (Q(r)*err +4Q () (is()rgr;) P (Ham)r-($00)r+00) Y @) iy
(37)

If Eq.(37) has closed form solutions then the pseudo-exact form, [13], of Eq.(37) has solutions which
are given by,

2(Q(r)’r—Fzr+(Q(r)*e1 +4 <%Q(T)) rQ(r)

r

-1 (38)

Equation(38) can be rewritten as an Abel equation of the second kind which can be transformed into
an Abel equation of the first kind

d r
gV (N =-1/2+(B/4+1/4) (y(r))3—1/4@ (39)
where force of gravity in z direction is,
B=Fz (40)
and ,
MG
Equation (39) solved due to [12] can be written as follows,
d 2253 (u(r))®  2*Pu(r)p 22Bu(r) 223 u(r) s =
au(r)—— . + . +1/2 e —(B+1) (42)
ez where the transformation y(r) = — B%Llu(r), for chosen B is used. If B > —1 then we have complex
es equation and can be written as a real and imaginary part, F1(r) = Re(u(r)) and F2(r) = Im(u(r)).
e Defining A = —i{/—(Fz+1)", see Figs (1-5) for Re(A) ranging from low to high values

70 corresponding to various heights in the inclined tube. Here two phases flow upward in tube with
= greater mass associated with higher positions of fluid column in tube.

73 1.3.2. Consideration of Curvature Alone

Secondly we solve the curvature pde given in Eq. (4) alone appearing as ¥ in Eq.(33). This is due
to large time evolution of Eq(33). For small inclination angle of tube Eq.(4) reduces to,

r (229 (n0,) G (r,0,)
9 (1,6,

=0 (43)

9 29
<§¢ (r,G,t)) "5 (r,0,1) 92 3
¢ (r,0,t) + <ar24>(r,9,t)) B
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which is separable into,
g
5 2f1 (r) = f1 (rr) c3C2 + (drf 57’)) s (44)
d2
322 (0) =af2(9) #5)
5 rf3 =cf3 (t (46)

7« For constant c¢; negative there is a sinusoidal component of the azimuthal part of

s ¢(r,0,t) = f1(r)f2(0) f3(t).

76

7z 2. Discussion

78 It is worthy to note that the interfacial oscillations occurring as extremes of two problems one
7 for no curvature and the other for curvature alone presents the daunting problem of solving the full
s equation of Eq.(33). There is a plethora of results for computational multiphase flow using level set
s methods. The advantage of the present work lies in that analytical results are possible for the two
.2 extreme cases presented. It is conjectured at this point that the combination or full Eq(33) without the
es small inclination angle, ie approaching a horizontal tube configuration of flow, is non separable due to
s« the inherent complexity of Eq(4) and Eq(33) combined. We can expect that there be a very complex
ss relationship between azimuthal and radial components of L. Work on the complete problem for this
s complex relationship is in progress for future studies.
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[—F10) F2(0)]

Figure 1. A=2.0, mass of fluid column in vertical tube m=93.7 grams.
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[—F10) F2(0)]

Figure 2. A=2.075, mass of fluid column in vertical tube 1=94.5 grams.
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[—F10) F2(0)]

Figure 3. A=2.1375, mass of fluid column in vertical tube m=95.2 grams.
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[—F10) F2(0)]
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20

radlus (cm)

Figure 4. A=2.1820, mass of fluid column in vertical tube m=96 grams.
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[—F10) F2(0)]

Figure 5. A=34.1375, mass of fluid column in vertical tube m=102 grams.
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