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Abstract: Compared with conventional methods of fault diagnosis for power transformers, which 

have defects such as imperfect encoding and too absolute encoding boundaries, this paper 

systematically discusses various intelligent approaches applied in fault diagnosis and decision 

making for large oil-immersed power transformers based on dissolved gas analysis (DGA), 

including expert system (EPS), artificial neural network (ANN), fuzzy theory, rough sets theory 

(RST), grey system theory (GST), swarm intelligence (SI) algorithms, data mining technology, 

machine learning (ML), and other intelligent diagnosis tools, and summarizes existing problems 

and solutions. From this survey, it is found that a single intelligent approach for fault diagnosis 

can only reflect operation status of the transformer in one particular aspect, causing various 

degrees of shortcomings that cannot be resolved effectively. Combined with the current research 

status in this field, the problems that must be addressed in DGA-based transformer fault diagnosis 

are identified, and the prospects for future development trends and research directions are 

outlined. This contribution presents a detailed and systematic survey on various intelligent 

approaches to faults diagnosing and decisions making of the power transformer, in which their 

merits and demerits are thoroughly investigated, as well as their improvement schemes and 

future development trends are proposed. Moreover, this paper concludes that a variety of 

intelligent algorithms should be combined for mutual complementation to form a hybrid fault 

diagnosis network, such that avoiding these algorithms falling into a local optimum. Moreover, it 

is necessary to improve the detection instruments so as to acquire reasonable characteristic gas 

data samples. The research summary, empirical generalization and analysis of predicament in this 

paper provide some thoughts and suggestions for the research of complex power grid in the new 

environment, as well as references and guidance for researchers to choose optimal approach to 

achieve DGA-based fault diagnosis and decision of the large oil-immersed power transformers in 

preventive electrical tests. 

Keywords: power transformer; fault diagnosis and decision; dissolved gas analysis; intelligent 

algorithms; reliability assessment; hybrid network; preventive electrical tests 

 

1. Introduction 

Power transformers are one of the most crucial pieces of equipment in a power system, thus 

their safe and stable operation plays a significant role in the safe, stable and reliable operation of the 

whole power system [1]. During the operation of power transformers, various faults may happen 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2018                   doi:10.20944/preprints201804.0109.v2

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201804.0109.v2
http://creativecommons.org/licenses/by/4.0/


 

 

due to destruction of or inappropriate installation and other reasons [2]. These faults can seriously 

affect the normal operation of the transformer. Hence, in depth discussion of the different fault 

diagnosis methods of power transformers is a valuable research topic. As large power equipment, 

power transformers in general have a very long lifespan for the time they go into operation until 

their final decommissioning (the reference life given by the Southern China Power Grid Jiangmen 

Bureau is 20 years), thus they have many different requirements and differences in their 

overhauling process. In the whole life procedure of the transformer, it is rare to conduct hood 

adjustment and overhaul involving disassembly, which means that we have little chance to directly 

examine the internal insulation, especially the winding oil-immersed insulation. Hence, the internal 

conditions of the transformer can only be evaluated through a variety of preventive tests. In other 

words, we must assess the insulation ageing in transformers in some indirect way. 

Generally speaking, various preventive tests can accurately reflect the performance and state 

of all aspects and parts of the power transformer to a certain extent. In these tests, the parameters 

that can really reflect the ageing failure of the transformer are often used to correct the original 

ageing assessment model in order to maximize the reliability evaluation value close to the real 

value and reduce the accumulation error with the time to decommissioning [3]. In China, 

preventive tests have been an important part of electric power production practice for a long time, 

and has which played a positive role in the safe operation of the power equipment [4]. Also in 

China, the Southern China Power Grid Corporation has issued an enterprise standard named 

Preventive Test Procedures for Electric Power Equipment, in which the prescribed preventive tests 

of insulation items as presented in Table 1 are given. 

Table 1. Prescribed preventive test of insulation items. 

No. Test Items No. Test Items 

1 Chromatogram analysis of dissolved gas in oil 17 Partial discharge measurement 

2 DC resistance of winding 18 No-load closing under full voltage 

3 
Insulation resistance, absorption ration or (and) 

polarization index of winding 
19 

Temperature measuring device and its 

secondary circuit test 

4 Tangent value of dielectric loss angle of winding 20 Gas relay and its secondary circuit test 

5 
Tangent value of condenser bushing tgδ and capacitance 

value 
21 

Checking and test of cooling device and its 

secondary circuit 

6 Insulation oil checking test 22 Overall sealing inspection 

7 High-voltage endurance test 23 Pressure releaser checking 

8 
Insulation resistance of iron core (with external 

grounding wire) 
24 Insulation test of current transformer in casing 

9 

Insulation resistance of through bolts, iron yoke clamps, 

steel banding, iron core winding pressure ring and 

shielding 

25 Degree of polymerization of insulated cardboard 

10 Water content in oil 26 Content of furfural in oil 

11 Gas content in oil 27 Test and check of OLTC device 1 

12 Leakage current of winding 28 Water content of insulated cardboard 

13 Voltage ratio of all taps in windings 29 Impedance measurement 

14 
Checking of the group of three-phase transformer and 

the polarity of the single-phase transformer 
30 Surface temperature measurement of oil tank 

15 No-load current and no-load loss 31 Noise measurement 

16 Off-impedance and load loss 32 Vibration measurement 

1 OLTC: On-Load Tap Changing. 

As shown in Table 1, among the preventive test items, some are conducted after disintegration 

of the transformer, some are carried out in conjunction with or incidental to other items, some are 

routine checks and test items before or after the operation of the transformer, and some are 

implemented only in special circumstances. In these testing items, the chromatographic analysis of 

dissolved gas in oil, namely dissolved gas analysis (DGA) is an important means of transformer 

internal fault diagnosis. It provides an important basis for indirect discovering hidden faults in 

transformers. It is also proved by practice that the dissolved gas analysis of transformer oil 

technique is very effective to find latent faults in transformers as well as their development trends. 
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Hence, both in China and around the world, DGA technology is believed as an important approach 

for preventive test of power equipment. For a normal oil-immersed power transformer, the content 

limits of hydrogen-containing gases and hydrocarbon gases in transformer oil are as follows: the 

normal limits [3] of H2, CH4, C2H6, C2H4, C2H2 and total hydrocarbons are 150, 45, 35, 65, 5 and 150 

ppm, respectively. 

DGA is also a most important reference index in the model correction [4]. Here, the model 

correction is aimed at large oil-immersed power transformers, which all adopt oil-paper insulation 

structures, thus the electrical parts of the whole body are completely immersed in the transformer 

oil. By employing the DGA technique, the information of the dissolved gas in transformer oil such 

as their components and contents can be qualitatively and quantitatively analysed to find out the 

cause of gas production, so as to analyse and diagnose whether the internal state of the transformer 

during operation is normal, and finally find any potential faults inside the transformer in time. The 

DGA-based preventive test is a comprehensive test method involving transformer discharging and 

thermal issues, thus it has a larger monitoring scope than the partial discharge measurements under 

an induced voltage. Besides, it is easily realized online. Hence the DGA-based fault diagnosis and 

decision making is a significant approach in current insulation monitoring measures [5–9]. As 

previously stated, the enterprise standard developed by Southern China Power Grid Corporation 

named Q/CSG114002-2011 lists-the DGA based fault diagnosis test as the first test item for the 

oil-immersed power transformers. The relevant regulations in this enterprise standard and the 

standard DL/T722-2000 [10] named Guidelines for Analysis and Judgment of Dissolved Gases in 

Transformer Oil both demonstrate that there is a significant relationship between the type of 

transformer fault and the dissolved gas components in the transformer oil. For the three major 

transformer fault types, including overheating faults, electrical faults and partial discharges, the 

corresponding dissolved gas composition in the transformer oil may be briefly described as follows: 

For overheating faults, under the thermal and electrical effects, the transformer oil and organic 

insulating materials will gradually age and decompose, which produces a small amount of low 

molecular weight hydrocarbons and other gases, such as CO2 and CO. Here, when the thermal 

stress only affects the decomposition of transformer oil at the source of heat not involving the solid 

insulation, the gases produced are mainly low molecular weight hydrocarbon gases, among which 

the characteristic gases are generally CH4 and C2H4, and the sum of the two generally accounts for 

more than 80% of the total hydrocarbons. In this situation, acetylene is usually not generated due to 

overheating failures. Generally, the content of C2H2 will not exceed 2% of the total hydrocarbon 

when the overheating is below 500 °C; severe overheating (above 800 °C) also produces a small 

amount of C2H2, but the maximum content is not more than 6% of the total hydrocarbons; when it 

comes to the overheating faults of solid insulation, apart from the above low molecular weight 

hydrocarbon gases, more CO2 and CO are also produced. Moreover, with the increase of 

temperature, the content of CO2 and CO will increase gradually. For the overheating faulted which 

are limited to only partial oil blockages or poor heat dissipation, owing to the fact the overheating 

temperature is lower and the overheating area is larger, the pyrolysis effect of transformer oil is not 

obvious at this time, thus the content of low molecular weight hydrocarbon gases is not necessarily 

high. 

Electrical faults refer to the deterioration of insulation caused by high electrical stress. 

Depending on the different energy densities, this type of fault can be divided into different types of 

fault, such as high energy-density discharges and low energy-density discharges (i.e., partial 

discharges and spark discharges). When an electric arc discharge occurs, the major characteristic 

gases produced of this type of fault are C2H2 and H2, and then a large amount of C2H4 and CH4. As 

the development of the arc discharge fault occurs rapidly, the gases are usually too late to be 

dissolved in transformer oil and then gather in the gas relay. Therefore, under this situation, the 

component and content of dissolved gases in oil are often highly related to the location of fault, the 

speed of oil flow and the duration of the fault. Under such a failure, C2H2 generally accounts for 20 

to 70%, and H2 accounts for 30 to 90% of the total hydrocarbons. In most cases, the content of C2H2 

is higher than CH4. When it involves the solid insulation, the content of gases in the gas relay and 
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the gas CO in oil are higher. In spark discharge faults, the major characteristic gases are C2H2 and 

H2. In general, the total hydrocarbon content in this type of fault is not high due to the low fault 

energy. However, at this point, the proportion of C2H2 dissolved in oil in the total hydrocarbon can 

reach 25 to 90%, C2H4 content is less than 20% of the total hydrocarbons, and H2 accounts for more 

than 30% of the total hydrocarbon. 

As for partial discharge faults, they are a local and repetitive breakdown phenomenon 

occurring in the gas gap (or bubble) and the sharp points in the oil-paper insulating structure due to 

the weakness of insulation and the concentration of electric field. When a partial discharge occurs, 

the characteristic gas component content is different due to the difference of discharge energy 

density. Under normal circumstances, the total hydrocarbon content is not high, and the main 

component is H2, which usually accounts for more than 90% of the total amount of gases; and the 

next is CH4, which accounts for more than 90% of the total hydrocarbons. When the energy density 

of the discharge increases, the gas C2H2 will also be produced, but its proportion in the total 

hydrocarbon is generally no more than 2%. 

Hence, on the whole, the gas components produced by different types of transformer faults are 

different according to the China standard DL/T722-2000 [10], as shown in Table 2. In Table 2, we 

find that the main gas components produced by different categories of transformer faults are also 

different. 

Table 2. The characteristic gases produced in different types of transformer faults. 

Fault Type Main Gas Component Minor Gas Component 

Oil in overheating CH4, C2H2 H2, C2H6 

Oil and paper both in overheating CH4, C2H4, CO, CO2, H2, C2H6 

PD 1 in oil-paper insulation H2, CH4, CO C2H2, C2H6, CO2 

Spark discharge in oil H2, C2H2 / 

Electric arc in oil H2, C2H2 CH4, C2H4, C2H6 

Electric arc both in oil and paper H2, C2H2, CO, CO2 CH4, C2H4, C2H6 
1 PD = partial discharge. 

The DGA technicians both at home and abroad have conducted a lot of research work on how 

to determine the quantitative relationship between the content of these characteristic gases and the 

internal faults of power transformers. The China standard DL/T722-2000 [10] gives a recommended 

limit value of the gas content in the transformer oil, and it also gives the warning value of the 

absolute gas production rate of the transformer, as shown in Table 3. Therefore, the gas production 

rate can more accurately reflect the true state of the transformer than the characteristic gas content. 

However, in specific operation, if the test cycle of chromatographic analysis is longer, the rate of gas 

production will be inaccurate. 

Table 3. The warning value of the content of dissolved gas in transformer oil (μL/L). 

Components of Dissolved Gas in Transformer Oil 
Content 

Open Type Diaphragm Type 
Above 330 kV Below 220 kV 

Total hydrocarbon CxHy 150 150 6 12 

C2H2 1 5 0.1 0.2 

H2 150 150 5 10 

CO / / 50 100 

CO2 / / 100 200 

Given all that, the best method of DGA diagnosis is to combine the characteristic gas content 

with the gas production rate. For the content of characteristic gases, CH4, C2H4, C2H6, C2H2 and H2 

are usually selected as five indexes in the characteristic gas. Typically, C2H2 is not generated in the 

normal transformer oil, thus in the chromatographic analysis, it should be only be paid attention 

once characteristic C2H2 gas appears. When corona discharge, water electrolysis or rust, serious 

overloads, high temperature overheating, and spark discharges and other failures occur in a 

transformer, it will generate H2. Hence, H2 is also a very important characteristic gas. At the same 
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time, according to the available data, the normal deterioration of solid insulation materials and the 

deterioration decomposition in the case of failure are manifested in the content of CO and CO2. 

However, there is no unified method to determine the normal limit content of these characteristic 

gases in China. Therefore, considering test availability, CO and CO2 are usually not considered. 

According to the corresponding relationship between the fault of the transformer and the 

dissolved gas in the oil described above, the researchers at home and abroad have put forward 

many traditional approaches to judge the transformer faults via gas chromatography, in which the 

oil samples are extracted from the transformers in operation for further fractionation and analysis 

of dissolved gas in the oil. According to the test results, the operation status and fault types of the 

transformer can be judged and achieved. This gas chromatography methods for fault judgment are 

generally divided into three categories as follows: 

The first one is the characteristic gas method [11–13], which is employed to analyze the content 

value of each component of the gas dissolved in transformer oil, as well as the total alkyne content 

and gas production rate. The gases produced inside the transformer have different characteristics in 

different types of faults. Hence, according to the gas chromatography of insulation oil test results, 

the features of gas production, and the warning values of characteristic gases, a preliminary and 

rough judgment on whether there is a failure and the failure properties can be achieved. Here, the 

characteristic gases include total hydrocarbon, hydrogen, methane, ethane, ethylene, acetylene, etc. 

The second one is gas production rate method [14–17]. When the content of gas inside some 

transformers exceeds the warning value, we cannot judge whether there a failure has occurred in 

these transformers, while inside some other transformers, the content of gas is lower than the 

warning value but with a rapid increasing speed, attention should be paid at this point. Hence, the 

gas-production rate of the fault point can further reflect the existence, severity and development 

trends of the failures, which can be divided into absolute gas production rate and relative gas 

production rate. The former one should be used to judge the fault of the transformer. 

The last one is the three-ratio method, which is used to encode and classify the relative content 

of dissolved gases in transformer oil [18–22]. In this approach, five types of characteristic gases, 

including hydrogen, methane, ethane, ethylene and acetylene, are used to form three pairs of 

different ratios. For different ratio ranges, such three pairs of ratios are expressed by different codes 

for combinatorial analysis, so that the faults of the transformer can be judged via classifying the 

faults according to severity. In other words, we first judge the possible faults according to the 

attention value of content of each component or the attention value of gas production rate, and then 

use the three-ratio method to judge the type of faults. Based on this, the improved three-ratio 

method has been developed [23–25]. For example, Zhang et al. [23] proposed an improved 

three-ratio method as a calculation method for transformer fault basic probability assignment (BPA), 

which meets the requirements of BPA function, and its calculation result quantitatively reflects the 

probability of various faults. Zhang et al. [24] presented an improved three-ratio method based on 

the B-spline theory, which avoids the limit of the original three-ratio method with fixed boundary 

and is a new idea for solving fault diagnosis problems. This improved method can maintain the 

feature of identifying the majority of the samples, and can make the three-ratio method have 

learning ability. 

In China, more than 50% of the transformer faults in the power system are found via DGA- 

based tests which are conducted for the diagnosis of transformer fault types and their level of 

severity according to the content, ratio to each other, and gas production rate of the dissolved gases 

in the transformer oil. Hence, besides the three main traditional ratio methods above, some 

improved methods have been investigated, including the Rogers method [26], Electric Association 

Research Society method and its improved version [27], improved/new three-ratio method (also 

called IEC three-ratio method) [28], Dornenburg two-ratio judgment method [29], basic triangular 

diagram method [30], gas-dominated diagram method [31], Germany’s four-ratio method [26], 

hydrogen-acetylene-ethylene (HAE)-based triangular diagram method [26], thermal-discharge (TD) 

diagram method (also called TD graphic interpretation method) [32] and simplified Duval method 

[26]. 
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The advantages and disadvantages of these ratio methods based on DGA are compared in 

Table 4. In actual application, these traditional methods are generally combined together for a 

comprehensive analysis in order to find the fault part of the transformer. As shown in Table 4, in 

the traditional transformer fault diagnosis, generally, the more detailed the classification of fault 

types, the lower the probability of correct judgment, and vice versa. Nevertheless, too rough a 

classification is not conducive to the accurate judgment of the fault. Due to the objective uncertainty 

of the cause-and-effect relationship of the transformer fault itself, as well as the uncertainty of the 

boundaries of the subjective judgment of the testing data, it is difficult to meet the requirements of 

engineering application with the above ratio methods, but in practice, the accuracy can be 

improved by using multiple hierarchical integrated diagnosis methods. Addressed concretely, first, 

we use the fuzzy judgment method to identify the possible fault types, such as discharge and 

overheating, which helps to identify the faults preliminarily, and is not easy to make a misjudgment. 

Secondly, we use those diagnosis methods which can realize more detailed fault classification to 

conduct careful judgment of the fault types. Finally, by implementing a comprehensive analysis, the 

correct fault type can be determined. By using this diagnosis methodology in traditional 

transformer fault diagnosis, on the one hand the misjudgment rate can be reduced, on the other 

hand the correct judgment rate can be improved. 

Table 4. A comprehensive comparison of the traditional DGA based ratio methods in actual 

transformer fault diagnosis. 

Traditional Methods 
Characteristic 

Gases 
Advantages Disadvantages 

Quality 

Grading 

IEC three-ratio 

method [33–36] 

CH4/H2 

C2H4/C2H6 

C2H2/C2H4 

▪ The sequence of known faults 

is arranged more reasonable 

from incipient fault to severe 

fault based on the ratios; 

▪ The most basic oil-filled 

power equipment fault 

diagnosis method based on 

the result of DGA; 

▪ The fault types are reduced 

from eight in the past to six 

now, making the classification 

more flexible. 

▪ More roughening 

classification; 

▪ Accuracy is unsatisfactory for 

compound-faults; 

▪ Incomplete coding, some cases 

cannot be diagnosed; 

▪ The attention value and criteria 

specified for the characteristic 

gas content are too absolute; 

▪ Cannot determine the exact 

location of the faults; 

▪ Prone to misjudge with a high 

misjudgment rate; 

▪ Poor dealing with mixed fault 

types. 

★★★ 

Basic triangular 

diagram method [30] 

CH4, C2H4, 

C2H2 (relative 

content) 

▪ A more intuitive diagram 

method to use DGA results 

for transformer fault analysis 

▪ Can be widely used in the 

field fault diagnosis 

▪ Limited to the scope of 

threshold diagnosis 
★★★☆ 

Gas-dominated 

diagram method [31] 

H2, CH4, C2H4, 

C2H6, C2H2 

(relative 

concentration 

ratio, ppm) 

▪ A more intuitive diagram 

method to use DGA results 

for transformer fault analysis 

▪ Can be widely used in the 

field fault diagnosis 

▪ Limited to the scope of 

threshold diagnosis 
★★★☆ 

Characteristic gas 

method [11–13] 

TH 1, H2, CH4, 

C2H4, C2H6, 

C2H2, etc. 

▪ Can make a judgment of the 

nature of the fault according 

to the determination of the gas 

chromatography of the 

insulating oil, characteristics 

of gas production, and 

attention value of 

characteristic gas 

▪ Make a preliminary and rough 

judgment of whether there is a 

fault and the nature of the fault 

★★★ 

Gas production rate 

method [14–17] 

Absolute and 

relative gas 

production 

rate 

▪ Can further reflect existence, 

severity and development 

trend of the fault according to 

gas production rate of the 

fault point 

▪ Cannot determine the exact 

location of the fault 

▪ Be prone to misjudge the faults 

involving different types of 

faults with the same gas 

★★★☆ 
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▪ Has a good diagnostic effect 

on overheating, electric arc 

and insulation breakdown 

faults 

characteristic 

Electric Association 

Research Society 

method and its 

improved method 

[27] 

/ 

▪ Fault category is simplified 

▪ The upper and lower limits of 

the ratio range corresponding 

to the coding are more clearly 

defined 

▪ A lower rate of false negative 

▪ Can accurately judge the 

faults of overheating and 

discharge and has wide 

coverage 

▪ The code combination of fault 

type superposition is not taken 

into account in practice 

▪ Not in line with the actual 

situation to delete the code 

combination of 010 and 001 in 

the IEC method 

▪ Still unable to deal with some 

faults 

★★★★ 

Dornenburg 

two-ratio judgment 

method [29] 

C2H2/C2H4, 

CH4/H2 

▪ Determine the fault types 

according to the area in which 

the ratio is in a graph 

▪ A higher rate of accurately 

judging overheating faults 

▪ A preliminary and rough 

judgment 

▪ The rate of misjudgment or 

false negative is higher 

★★★ 

Germany’s four-ratio 

method [26] 

CH4/H2, 

C2H6/CH4, 

C2H4/C2H6, 

C2H2/C2H4 

▪ The classification of fault 

types is more specific 

▪ Has a high accurate rate of 

judging the fault of 

high-temperature overheating 

▪ Too many criteria which lead 

to a high rate of missed 

judgment 

▪ Has a lower accurate rate of 

judging the low-energy 

discharge 

▪ Cannot identify the partial 

discharge 

★★★ 

HAE based 

triangular diagram 

method [26] 

H2, C2H4, C2H2 

(relative 

content) 

▪ Can be used as an empirical 

criterion and auxiliary 

reference 

▪ Has a lower rate of 

misjudgment or false negative 

▪ Has a wide coverage 

▪ It is not convenient to consider 

the change in the proportion of 

alkenes and alkanes because of 

the removal of alkanes, and is 

unfavorable to estimating the 

temperature of local 

overheating 

★★★☆ 

TD graphic 

interpretation 

method [32] 

CH4/H2, 

C2H2/C2H4 

▪ Can be better to distinguish 

the high-temperature 

overheating fault and 

discharge fault in inner part of 

the transformer 

▪ Can quickly and correctly 

judge the nature of fault 

▪ Can directly reflect the 

development trend of fault 

▪ Cannot determine the exact 

location of the fault 
★★★★ 

Rogers method [26] / 

▪ No blind spots exist in the 

coding 

▪ Compound fault can be 

judged and the accuracy is 

satisfactory 

▪ Cannot determine the exact 

location of the fault 
★★★☆ 

Simplified Duval 

method [26] 

CH4, C2H2, 

C2H4 

▪ Can be used as an auxiliary 

criterion 

▪ More accurate judgment for 

the overheating fault 

▪ Has a lower accurate judgment 

rate for the discharge fault 
★★★☆ 

1 TH = total hydrocarbon. 

In addition, these mentioned traditional gas chromatography methods possess a good 

diagnostic power for the faults such as overheating and electrical arcing, and insulation-damaging 

failures. However, these methods, more or less, all have some defects, as shown in Table 4. For 

several examples, the characteristic gas method has low recognition precision and lower efficiency, 

meanwhile the three-ratio and improved three-ratio methods have disadvantages of incomplete 

coding and excessively absolute coding boundary. These shortcomings will undoubtedly be very 

harmful to the diagnosis of the latent faults in power transformers. Hence, the traditional methods 

cannot accurately determine the position of the fault. Moreover, for the different types of faults 

which have the same gas feature, it is easy to misjudge them when using traditional methods.  
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Therefore, due to complexity of transformer faults, a single method cannot be adopted in the 

diagnostic process, but rather a variety of methods should be employed. In other words, it is 

essential to explore the principles, methods and means from various disciplines that are helpful to 

the fault diagnosis of transformers, so as to make the fault diagnosis technology interdisciplinary. 

Aiming at the limitations of traditional methods above, with the rapid development of computer 

technology and artificial intelligence (AI) theory, multiple intelligence techniques, including 

artificial neural network (ANN) [37–46], expert system (EPS) [47–51], fuzzy theory [52–58], rough 

sets theory (RST) [36], grey system theory (GST) [59–66], and other intelligent diagnosis tools [5,67–

92] such as swarm intelligence (SI) algorithm, data mining technology, machine learning (ML), 

mathematical statistics method, wavelet analysis (WA), optimized neural network, Bayesian 

network (BN), and evidential reasoning approach, have been introduced to the research field of 

transformer fault diagnosis based on the DGA approach. These intelligent methods make up for the 

deficiencies of the mentioned traditional DGA methods, and directly or indirectly improve the 

accuracy of transformer fault diagnosis, and provide a new train of thought for high-precision 

transformer fault diagnosis. For example, the EPS is considered one of the main forms of AI and the 

most active and extensive application fields in the application research of AI. Hence, in view of the 

professionalism, empiricism and complexity of transformer fault diagnosis, the application of EPS- 

based diagnosis methods has unique advantages [47–51]. Recently, several other approaches or 

techniques have been proposed for fault diagnosis of transformers, such as Rigatos and Siano’s [82] 

proposed neural modeling and local statistical approach to fault diagnosis for the detection of 

incipient faults in power transformers, which can detect transformer failures at their early stages 

and consequently can deter critical conditions for the power grid; Shah and Bhalja [85] and Bacha et 

al. [5] both proposed support vector machine (SVM)-based intelligent fault classification 

approaches to power transformer DGA. Furthermore, the random forest technique-based fault 

discrimination scheme [84] for fault diagnosis of power transformers, as well as the multi-layer 

perceptron (MLP) neural network-based decision [46], vibration correlation-based winding 

condition assessment technique [86], and induced voltages ratio-based thermodynamic estimation 

algorithm [73] have been proposed consecutively. Besides, in order to develop more accurate 

diagnostic tools based on DGA, a large number of information processing-based algorithms have 

been extensively investigated, e.g., Abu-Siada and Hmood [88] proposed a new fuzzy logic 

algorithm to identify the power transformer criticality based on the dissolved gas-in-oil analysis; 

Illias et al. [89] developed a hybrid modified evolutionary particle swarm optimizer (PSO) time 

varying acceleration coefficient-ANN for power transformer fault diagnosis, which can obtain the 

highest accuracy than the previous methods; Pandya and Parekh [90] presented how interpretation 

of sweep frequency response analysis traces can be done for open circuit and short circuit winding 

faults on the power transformer. All of the above mentioned intelligent approaches have improved 

the conventional DGA-based transformer fault diagnosis methods, and directly or indirectly 

improved the accuracy of fault diagnosis for the oil-immersed power transformers [91,92]. In 

essence, the application of AI for transformer fault diagnosis is fundamentally still based on the 

analysis of the content of dissolved gas in transformer oil. Hence, these presented intelligent 

algorithms using DGA techniques have provided new ideas for high-precision transformer fault 

diagnosis. Based on these DGA principle-based intelligent algorithms, this paper conducts a 

detailed and thorough survey on the application of AI methods using DGA in the fault diagnosis of 

the oil-immersed power transformers. Finally, this paper summarizes and prospects the 

development direction of future transformer fault diagnosis methods. 

The novel contributions of this paper can be summarized as follows: a detailed survey on 

various intelligent approaches and techniques, including EPS, ANN, fuzzy theory, RST, GST, SI 

algorithms, data mining technology, ML algorithms and other intelligent methods, applied in fault 

diagnosis and decision making of the power transformer, with the component content of the 

dissolved-gases in transformer oil as characteristic quantities, is conducted systematically. In this 

survey, drawing on the current research situation for this field, the advantages and existed issues of 

these intelligent approaches and techniques in the process of application have been described and 
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investigated thoroughly in the first, and then the problems that must be addressed in the fault 

diagnosis and decision making of the transformer based on DGA are identified in detail, and finally 

the prospects for their future development trends and research directions are outlined. It is 

concluded that future development of fault diagnosis and decision making of the transformer based 

on DGA should be combined with various intelligent algorithms and techniques, which 

complement each other to form a hybrid fault diagnosis network. The systematic survey in this 

paper provides references and guidance for researchers in choosing appropriate fault diagnosis and 

decision making methods for the oil-immersed power transformers in preventive tests. 

The remainder of the paper is organized as follows: the application of EPS in DGA-based 

transformer fault diagnosis is summarized thoroughly in Section 2. Moreover, the applications of 

ANN, fuzzy theory, RST and GST in transformer fault diagnosis using DGA technique are 

comprehensively reviewed in Sections 3–6, respectively. Besides, the applications of other 

intelligent algorithms, including SI algorithms, data mining technology, ML algorithms, and other 

intelligent diagnosis tools such as mathematical statistics method, wavelet analysis (WA), 

optimized neural network, Bayesian Network (BN) and evidential reasoning approach, in DGA 

based transformer fault diagnosis are made a detailed review in Section 7. In Section 8, the future 

development direction of transformer fault diagnosis using DGA is discussed and prospected. 

Finally, Section 9 concludes the paper. 

2. Application of EPS in DGA-Based Transformer Fault Diagnosis 

2.1. Description of EPS-Based Transformer Fault Diagnosis Using DGA 

EPS is a smart computer program system which contains a great deal of expertise and can 

accurately simulate experts’ experience, skill and reasoning processes [47,93]. Here, EPS is focused 

on chromatographic analysis of dissolved gas in oil, in which the three-ratio method and the 

method of characteristic gases are employed to implement preliminary analysis of the operation 

condition of the transformer and judge the fault types of the transformer. At the same time, the 

knowledge-based program [94] is established by combining the data from external inspections, the 

characteristic tests of insulation oil, the preventive inspections of insulating oil, etc. Moreover, in the 

comprehensive analysis module, based on the analysis results of gas chromatography, external 

inspection, insulation oil characteristics and insulation preventive testing module, the operation 

status of the transformer is analysed and judged, and operational suggestions are provided to 

operators. Besides, the coordinator is the main module, which controls and coordinates the work of 

the gas module. 

EPS is good at logic reasoning and symbol processing. It has an explicit knowledge 

representation form and can explain the reasoning behaviour, and use deep knowledge to diagnose 

faults. The biggest merit of EPS is to achieve a comprehensive analysis of a large number of testing 

data and monitoring information. In this analysis process, EPS is employed to combine with expert 

experience to make a diagnosis comprehensively, accurately and quickly, which provides 

reasonable advice for the maintenance personnel as well as scientific information for further 

maintenance. Recently, researchers have carried out a lot of research in the field of transformer fault 

diagnosis using the EPS, and developed a series of expert systems with fault detection and 

diagnosis functions [47,49]. Moreover, these expert systems are integrated with a rich knowledge 

base which is developed based on fault phenomena, gas analysis in oil, and electrical and insulation 

testing results, as well as based on case diagnosis. In aspect of reasoning, these expert systems are 

combined with ANN [48], fuzzy mathematics [50], etc. and have shown the potential practical value 

and broad application prospect in practice [51]. A DGA-based EPS for transformer fault diagnosis is 

generally composed of seven parts [95] as introduced as follows: 

(a) Transformer fault diagnosis knowledge base: it is established as a modular structure and the 

core of the whole diagnosis system. As introduced, usually, this knowledge base is established 

by focusing on gas chromatography analysis, and at the same time, it combines some testing 
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means, such as external inspections, insulation oil characteristic tests, and insulation 

preventive inspections and tests. 

(b) Comprehensive database: it is composed of two parts, among them, one part is gas analysis 

module, and the other part is an insulation damage prevention database and dynamic 

database. The two parts are used to perform the dynamic and static calls of the data. In the 

former part, all kinds of gas data and insulation prevention data can be archived as historical 

data so that users can inquire and manage it at any time. This part draws the final conclusion, 

carries on the longitudinal analysis according to the current input data and the integration of 

the trend of historical change, and carries on the transverse analysis with the related test data. 

The latter part is a context tree that stores intermediate reasoning results and final judgment 

conclusions so that they can be invoked by the interpretation mechanism when the user needs 

to explain. 

(c) Reasoning engine: its role is mainly to solve some fuzzy and uncertain issues. In this process, 

the goal-driven reverse reasoning is achieved, as well as the fuzzy logic is introduced, so that it 

can successfully handle some fuzzy problems. 

(d) Learning system: it is the interface with the experts in the practical field, through which, the 

knowledge of the experts in the field can be extracted, classified and summarized, such that the 

knowledge is formalized and encoded in the diagnostic knowledge base formed by the 

computer system. 

(e) System context: it is a place where intermediate results are stored. A notebook is provided by 

the system context for the reasoning engine to record and guide the work of the reasoning 

engine, so that the reasoning engine can work smoothly. 

(f) Sign extractor: it is a typical human-computer interaction interface [96,97]. Here, the sign is 

sent into the system via this interface using the man-machine interactive mode. 

(g) Interpreter: it is also a typical human-machine interaction interface. It can answer all the 

questions that the user has put forward at any time. 

Based on the description of the EPS-based transformer fault diagnosis using DGA, and 

according to [98], the interrelationship of each component introduced above is shown in Figure 1. 

 

Figure 1. The interrelationship of each component in the EPS. 

2.2. EPS-Based Transformer Fault Diagnosis Using DGA: A Survey 

Power transformers are complex systems. In DGA-based fault diagnosis systems, incomplete 

information and uncertain factors always exist, such that it is often difficult to obtain complete test 

data in practice. Therefore, EPS has been widely used in DGA-based transformer fault diagnosis 

systems. Lin et al. [47] developed a prototype of an EPS based on the DGA technique for diagnosis 

of suspected transformer faults and their maintenance actions. In this system, not only a synthetic 

method is proposed to assist the popular gas ratio, but also the uncertainty of key gas analysis, 

norms threshold and gas ratio boundaries are managed by using a fuzzy set concept, so this 

designed EPS finally shows effectiveness in transformer diagnosis by via testing it for Taiwan 
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Power Company’s transformers gas records. Saha and Purkait [49] developed an EPS in order to 

address the issue that insulation condition assessment is usually performed by experts with special 

knowledge and experience due to the complexity of the transformer insulation structure and 

various degradation mechanisms under multiple stresses, which can imitate the performance of a 

human experts, to make the complicated insulation condition assessment procedure accessible to 

plant maintenance engineers. The application examples show that this designed EPS can provide 

accurate insulation diagnosis. Chen and Li [96] developed an EPS for power transformer insulation 

fault diagnosis, which takes DGA as the characteristic parameter. The diagnosis results from 

practical application show that this designed EPS can comprehensively analyse the insulation status 

of transformer, identify the type of fault correctly, and determine the location, severity and 

development trend of the fault. However, for some specific faults, this system cannot achieve an 

accurate diagnosis. In view of this situation, Jain et al. [97] used the fuzzy technique to find out the 

association matrix between fault causes and phenomena based on the sample, which overcomes the 

issue of knowledge acquisition by EPS to some extent. Shu et al. [98] used the RST with strong data 

analysis ability and error tolerance to realize the establishment of a complete knowledge base for 

the transformer fault diagnosis EPS. Du [99] designed an EPS based on information integration and 

multi-layer distributed reasoning mechanism, in which the chromatographic data collected from 

221 fault transformers are used as an original fault sample set to conduct transformer fault 

diagnosis. The diagnosis results show that the accuracy of comprehensive diagnosis is 89%. In 

addition, Wang et al. [48] developed a combined ANN and EPS tool for transformer fault diagnosis 

using dissolved gas-in-oil analysis. In this system, the combination of the ANN and EPS outputs 

has an optimization mechanism to ensure high diagnosis accuracy for all general fault types. The 

test results show that this developed system has better performance than ANN or EPS used 

individually. Apart from the combination of ANN, EPS can be combined with fuzzy theory [50], 

comprehensive relational grade theory [51], etc. Here, due to the limitation of training data and 

non-linearity, Mani and Jerome [50] presented an intuitionistic fuzzy EPS to diagnose several faults 

in a power transformer, such that the estimation of key-gas ratio in the transformer oil can become 

simpler. This proposed method can identify the type of fault developing within a transformer even 

if there is conflict in the results of AI technique applied to DGA data. In addition, Li et al. [51] 

proposed a new comprehensive relational grade theory which is applied to EPS of transformer fault 

diagnosis and improves effectively the running and maintenance of power transformer. The 

database and repository in this EPS is an open system, which guarantees that new fault sample can 

be added into the system and repository can be classed and modified by experts.  

Although some research results of the EPS in the DGA-based transformer fault diagnosis have 

been achieved, there still some urgent issues to be addressed, which are mainly presented in the 

following three aspects: 

· Completeness is difficult to achieve in the establishment of the fault diagnosis knowledge base. 

When s a fault symptom that does not exist in the knowledge base occurs, the EPS cannot 

identify the type of this fault due to the fact no corresponding fault rule is established in the 

knowledge base. 

· The accuracy is difficult to be grasped when diagnosing some fault symptoms with 

indeterminate mathematical correlation. 

· The knowledge management is rather difficult because the establishment of the adopted 

knowledge-based rule-based system. Moreover, due to the complexity of construction 

algorithms, it is rather troublesome when the knowledge base has to being maintained.  

In recent years, Flores et al. [100] presented an efficient EPS for power transformer condition 

assessment, in which a knowledge mining procedure is performed as an important step, by 

conducting surveys whose results are fed into a first Type-2 Fuzzy Logic System (T2-FLS). In this 

step, the condition of the transformer taking only the results of DGA into account can be initially 

evaluated. The use of T2-FLS can allow the inclusion of other factors as inputs of the diagnostic 

algorithm, which could be either new influence factors or a combination of the ones used in the 

designed EPS. In addition, Ranga et al. [101] proposed a fuzzy logic-based EPS for condition 
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monitoring power transformers, in which the fuzzy logic model utilizes the data gathered from 

various diagnostic tests to determine the overall health index of the transformers. This proposed 

model on one hand can determine the individual health index of transformer oil and paper 

insulation, and on the other hand it can identify the incipient faults present within the transformers 

and handle all situations corresponding to single or multiple faults. Ranga et al. have tested 30 

transformer oil samples from Indian railways which were collected from different traction 

substations. The test results proved the efficacy and reliability of the proposed technique. Žarković 

and Stojković [102] also presented a methodology for power transformer condition monitoring and 

diagnostics based on the analysis of AI expert systems. The possibility of the presented monitoring 

methodology is to assist the operator’s engineers in decision making about urgency of intervention 

and type of maintenance of power transformer. They have analysed the application of the 

Mamdani-model and Sugeno-model in fuzzy EPS for fault diagnosis based on the current state of 

the power transformer. The testing results show acceptable effectiveness of this proposed fuzzy EPS 

in detecting different faults and might serve as a good orientation in the power transformer 

condition monitoring. 

Overall, for the EPS applied in the DGA-based transformer fault diagnosis, there are two 

urgent issues to be solved in the future. The first one is the bottleneck of knowledge acquisition. 

This is because on the one hand, the knowledge of experts is incomplete, and on the other hand, it is 

difficult to achieve rule-based expert knowledge representation. The second is the uncertainty of 

diagnostic reasoning, especially for some fault phenomena which are not very definite in 

mathematical correlation, the accuracy of the diagnosis is difficult to be guaranteed. Therefore, the 

two above burning problems substantially affect the accuracy of transformer fault diagnosis when 

using the DGA techniques. A summary for the application of EPS in DGA based transformer fault 

diagnosis is presented in Table 5 as follows. 

Table 5. A summary for the application of EPS in DGA based transformer fault diagnosis. 

Advantages and Disadvantages Main Components Primary Means 

▪ good at logic reasoning and symbol processing 

▪ has an explicit knowledge representation form 

▪ can explain the reasoning behaviour 

▪ use deep knowledge to diagnose faults 

▪ can achieve a comprehensive analysis of a 

large number of testing data and monitoring 

information 

▪ incomplete fault diagnosis knowledge base 

▪ accuracy is not high when diagnosing some 

fault symptoms 

▪ knowledge management and maintenance is 

rather difficult 

▪ weak ability of knowledge acquisition 

▪ uncertainty of diagnostic reasoning 

▪ transformer fault 

diagnosis 

knowledge base 

▪ comprehensive 

database 

▪ reasoning engine 

▪ learning system 

▪ system context 

▪ sign extractor 

▪ interpreter 

▪ combined with ANN [48] 

▪ combined with fuzzy 

mathematics [50,102] 

▪ combined with fuzzy set 

[47,97] 

▪ combined with rough sets 

theory [98] 

▪ combined with information 

integration and reasoning [99] 

▪ combined with comprehensive 

relational grade theory [51] 

▪ combined with knowledge 

mining technology [100] 

▪ combined with fuzzy logic 

model [101] 

3. Application of ANN in DGA Based Transformer Fault Diagnosis 

As reviewed in Section 2, it is essential to combine the EPS with other AI techniques so that the 

EPS can play a better role in transformer fault diagnosis based on DGA. Therefore, when the 

development of EPS in transformer fault diagnosis using DGA meets with some technical obstacles, 

the research and application of ANN is developing rapidly, especially the new AI techniques, such 

as improved probabilistic neural network [41], self-adaptive radial basis function (RBF) neural 

network [42], knowledge discovery-based neural network [43], knowledge extraction-based neural 

network [44], fuzzy reasoning-based neural network [45], MLP neural network-based decision [46], 

back propagation (BP) neural network [103], recurrent ANN [104], deep learning (DL) based ANN 

[105], hybrid ANN and EPS [106], and generalized regression neural network (GRNN) [40,107]. 
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Besides, the combination of ANN and mathematical morphology has been applied for the 

transformer fault diagnosis [108]. Hence, recently, combining with DGA, the development of ANN 

theory, which is based on non-linear parallel processing technique, provides a new way for 

transformer fault diagnosis. 

Here, the ANN is a type of non-linear dynamic network system that simulates the structure of 

human brain neurons. It has abilities of large-scale parallel information processing, strong fault 

tolerance, robustness and self-learning function [109]. It can map the input and output relationships 

of highly non-linear and unascertained systems [110]. Hence, ANN is very suitable for solving the 

issues of transformer fault diagnosis [111–113]. 

3.1. Basic Idea of Transformer Fault Diagnosis System Based on ANN 

The basic idea of an ANN-based transformer fault diagnosis system can be stated as follows. 

First, the input and ideal output of the system are used as the type of characteristic gas dissolved in 

transformer oil and the type of fault corresponding to the characteristic gas, respectively. Second, 

the input variable produces the actual outputs through the ANN. Lastly, the deviation between the 

ideal output and the actual output is employed to dynamically adjust the connection weights of 

ANN, thus forming a network structure with transformer fault decision classification function. 

Hence, the working process of the ANN-based transformer diagnosis system consists of two 

stages as follows [114]: 

· Learning stage. In the process of learning, gas analysis data and other various testing data 

which come from the calculation results of historical data of the transformer will be treated as 

data sets to be read into the neural network, and then the weights and thresholds will be 

calculated via the BP learning calculation method. 

· Working stage. During the fault diagnosis, the testing samples from different power 

transformers will be calculated to obtain actual outputs of the network, and finally these 

outputs will be compared with expected outputs of the network. In general, the ANN-based 

transformer fault diagnosis system uses a modular structure, in which the sample training of 

each module is conducted independently. In the main module of ANN, horizontal and 

longitudinal, historical and current comprehensive analysis and judgment will be conducted 

according to the analysis result of each module. Then, the result of analysis and judgment 

propagates through the forward channel to each hidden layer node of the main module. After 

that, the result is propagated to each node of the output layer via the action of activation 

function. Finally, the diagnosis conclusion can be output through the activity function of the 

output point. 

Hence, for a given training sample, ANN has the following functional advantages: 

(a) ANN can better implement the failure mode representation and then form the required 

decision classification areas. 

(b) ANN can simplify the process of sample training. 

(c) The nodes, hidden-layer nodes, and activation function of the network are tended to be 

simple, which accelerates the speed of diagnosing. 

(d) The fuzzy logic theory has been introduced into ANN, which can better address some 

issues with data uncertainty. 

3.2. ANN-Based Transformer Fault Diagnosis Using DGA: A Survey 

In addition to the above basic operation stages, generally the first step is to normalize the input 

variables of the network, such as when a fuzzy technique has been used to conduct data 

pre-processing [111], in order to reduce the impact of different order of magnitude of the input 

variables in the network on the network convergence performance. Furthermore, the number of 

hidden-layer nodes of the network will also affect the network convergence performance; 

accordingly, Wang et al. [115] took the application of single hidden-layer neural network in the 
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DGA-based transformer fault diagnosis as an example, and based on which, the influence of the 

number of hidden-layer nodes on the training effect and generalization ability of the network has 

been elaborated. On the basis of [115], Zhang et al. [37] investigated the application of double 

hidden-layer neural network in DGA-based transformer fault diagnosis, in which the convergence 

speed and training error of the network with different numbers of hidden layers and same numbers 

of input and output nodes are compared, and the results show that the proposed method has a 

better effect in fault diagnosis. 

The training algorithm of neural network usually adopts a BP algorithm, hence Liu [116], 

based on collected 105 learning samples, adopted a supervised learning BP neural network for 

diagnosis and the accuracy of diagnosis was over 83%; Zhang et al. [37] deemed that the neural 

network with a single hidden layer has the best classification effect after investigating the influence 

of double-layer BP network structure on chromatographic diagnosis results, and it has the 

minimum amount of computation and at the same time it fully satisfies the requirements of the 

non-linear mapping between the failure phenomenon and the cause. However, there are some 

defects in the BP algorithm, such as the fact it easily falls into local convergence (i.e., easily falls into 

local minima), the accuracy of the solution is not high, and higher requirements for initial values. 

To address this concern, various improved algorithms have been proposed, such as the BP neural 

network for variable learning rate [106], the homotopic BP algorithm [117], and the BP algorithm 

with momentum term [118]. Apart from the common BP neural network structure, there are some 

other types of network structure, such as probabilistic neural network structure [119], combined 

genetic algorithm (GA) multi-layer feedforward network [120], competitive learning theory based 

self-organized network [121], RBF network [122,123], and WNN [67,124–127]. These improved 

ANN-based models have enhanced the accuracy of transformer fault diagnosis to varying degrees, 

which can be seen a new exploration of transformer fault diagnosis. 

In the 1990s Zhang et al. [37] proposed an ANN approach to the diagnosis and detection of 

faults in oil-filled power transformers based on DGA, in which a two-step ANN method is 

employed to detect faults with or without involving cellulose that obtains a good diagnosis 

accuracy; Castro and Miranda [43] described a new methodology for mapping a neural network 

into a rule-based fuzzy inference system, in order to make explicit the knowledge captured during 

the learning stage. The proposed method is applied in transformer fault diagnosis using DGA and 

illustrates the good results obtained and the knowledge discovery made possible. In order to extract 

knowledge from trained ANN so that the user can gain a better understanding of the solution 

arrived by the neural network, Bhalla et al. [39] applied a pedagogical approach for rule extraction 

from functions approximating ANN with application to incipient fault diagnosis using the 

concentrations of the gases dissolved in transformer oil as the inputs. This proposed methodology 

has been successfully applied in transformer incipient fault diagnosis. Lin et al. [40] proposed a 

combined predicting model based on kernel principal component analysis and a GRNN using an 

improved fruit fly optimization algorithm to select the smooth factor. This method shows a better 

data fitting ability and more accurate prediction ability compared with SVM and grey model (GM) 

methods. In order to improve the accuracy of ANN applied in the transformer fault diagnosis, Yi et 

al. [41] proposed a variant of probabilistic neural network with self-adaptive strategy, called 

self-adaptive probabilistic neural network, which can solve the transformer fault diagnosis problem 

and shows a more accurate prediction and better generalization performance when compared with 

other neural networks. Moreover, Meng et al. [42] presented a novel hybrid self-adaptive training 

approach-based RBFNN for power transformer fault diagnosis, which clearly demonstrates the 

improved classification accuracy compared with other alternatives and shows that it can be 

employed as a reliable transformer fault diagnosis tool. In addition, Souahlia et al. [46] used an 

improved combination of Rogers and Doernenburg ratios DGA to make MLP neural network-based 

decisions for power transformers fault diagnosis. This developed pre-processing approach can 

significantly improve the diagnosis accuracies for power transformer fault classification. Besides, 

Dong et al. [124] proposed a least squares weighted fusion algorithm integrated with rough set and 

fuzzy WNN (FWNN) for transformer fault diagnosis using DGA. In this method, on the one hand it 
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can better improve the diagnosis accuracy, when the output vector of single FWNN has the similar 

element. On the other hand, its diagnosis accuracy cannot be limited by the neural network hidden 

layer number and correlated training parameter. This proposed mechanism shows good diagnosis 

classification ability. 

Hence, the brief overview above shows that ANN has been widely used in transformer fault 

diagnosis based on the DGA technique. Notwithstanding, although ANN can deal with very 

complicated classification problems, and it has achieved good results in DGA-based transformer 

fault diagnosis, there are still some shortcomings in ANN diagnosis technique as follows: 

(a) Its performance is limited by the number of selected training samples, thus its diagnostic 

performance generally depends on the completeness of the training sample. 

(b) Users can only see the inputs and outputs (it operates like a black box) so the process of 

intermediate analysis and deduction cannot be understand. 

(c) The representation and utilization of knowledge is generally single, imperfect and incomplete. 

(d) The phenomenon of oscillation easily occurs in the identification and affects the application of 

ANN in high-accuracy transformer fault diagnosis. 

As a result, more and more researchers tend to combine the ANN diagnosis techniques with 

other intelligent algorithms, which is expected to become a rapid development direction of 

transformer fault diagnosis based on DGA in the future. For example, a RBFNN-based transformer 

fault diagnosis model was developed in [128], but the process of modelling is more complicated. 

Among most neural network models, GRNN is a neural network with a high parallelism, thus it 

just needs a small sampling of data while the output results of the network can still be converged to 

the optimal regression surface with a simple algorithm structure, high approximation accuracy, and 

better non-linear convergence performance [129]. Based on GRNN, Ding et al. [107] developed a 

transformer fault diagnosis model based on the DGA method and GRNN, in which the input 

eigenvector of the GRNN-based fault diagnosis model is achieved via the DGA method. This model 

is employed to conduct simulation experiment based on four typical fault diagnosis cases of a main 

transformer in a certain substation, and at the same time it is compared with the diagnosis results of 

the typical BP neural network (BPNN), and Levenberg Marguardt algorithm (LM)-improved BPNN 

(called LM-BPNN). The simulation showed that this combined DGA and GRNN transformer fault 

diagnosis model has faster diagnosis speed, higher classification accuracy, stronger generalization 

ability and the establishment of the model is simple. Here, according to [107], the principle of 

GRNN algorithm is briefly introduced as follows: the GRNN is composed of four layers, including 

input layer, model layer, summation layer and output layer. Based on non-linear regression 

analysis, GRNN uses sampling data as a post-condition for Parzen non-parametric estimation. Note 

that GRNN does not need to know the exact equation form, but just needs to calculate the 

probability density function so as to obtain original equation form. Hence, GRNN obtains the joint 

probability density function between independent and dependent variables from the sample data 

sets. As elaborated in [107], assume that two random variables are x and y, and the joint probability 

density is f(x, y), and then the regression expression of y for x is shown as: 
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By using the Parzen non-parametric estimation theory, the probability density function f(x0, y) 

of the sample sets (xi, yi) (i = 1, 2, 3, …, n) can be obtained as shown in (2), where n is the content of 

sample sets. p is the number of dimensions. σ is the distribution density of the RBF: 
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Based on (2), the predictive output of y can be obtained as shown in (3) and its final simplified 

form is shown in (4) as follows: 
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Apart from GRNN in [107], ANN can be combined with other intelligent algorithms for 

transformer fault diagnosis based on the DGA technique. Ghanizadeh and Gharehpetian [130] 

proposed a new method which combines ANN with cross-correlation-based features. This 

developed model is employed to discriminate between mechanical defects and electrical faults, 

which are as two major faults in power transformer windings. The principle of this model is shown 

in Figure 2. This proposed method can precisely discriminate among disc-to-disc short circuit faults, 

radial deformation and axial displacement defects and determine their location or extent with a 

good accuracy. 

 

Figure 2. The principle of the model developed in [130]. 

Besides, a model combined estimation of distribution algorithm (EDA) with ANN is developed 

in [131], called EDA-ANN method, which is employed to realize the fault recognition with 

dissolved gas data. This EDA is a new population evolutionary algorithm based on a probabilistic 

model. In this EDA-ANN model, the outcomes can be put out with continuous inputs, thus the 

model can realize the transformer fault recognition with the continuous value of the inputs. The 

case based on some real fault data shows that this proposed method is feasible and accurate. The 

ANN can be trained by using adaptive back-propagation learning algorithm that converges much 

faster than the conventional back-propagation algorithm, based on which, Patel and Khubchandani 

[132] presented an improved ANN-based model to recognize the incipient faults of power 

transformers, which can improve the diagnosis accuracy of the conventional DGA approaches. In 

[108], Shi et al. proposed a new method which is based on mathematical morphology and ANN, in 

order to solve the discrimination between the magnetizing inrush and the internal fault of a power 

transformer when designing differential transformer protection. The ANN can also be combined 

with wavelet transform, and on this basis, Vanamadevi et al. [133] aimed at describing a method for 

the detection and classification of impulse faults in a transformer winding using the wavelet 

transform and an ANN, which is proved to be satisfactory in detection and classification of faults. 

In addition, Ying et al. [134] demonstrated a risk assessment method based on the combination of 

FAHP and ANN, in which the FAHP is employed to analyze the hierarchy structure of power 

 

Stage I
Stage II

Stage III

Stage VI

Develop the 
detailed model

of a real 1.2 MVA 
transformer 

winding by using 
geometrical 

dimensions and 
specifications

Obtain the 
frequency 
response 

characteristics for 
intact and 

defected cases by 
using EMTP/ATP

Select some 
features based on 
cross-correlation 

and other 
mathematical 

patterns from the 
obtained signals

Signals
Features

Use these 
features to train 

an ANN 
classifier

Objects

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2018                   doi:10.20944/preprints201804.0109.v2

http://dx.doi.org/10.20944/preprints201804.0109.v2


 

 

transformer and construct a fuzzy matrix. The results show that this FAHP-ANN method can 

overcome the disadvantage of ANN model structure in traditional risk assessment method, and it 

also shortens the time of assessment, increases the precision of the data and achieves the pre-set 

target. Swarm intelligence algorithms also have been combined with ANN in recent years, for 

example, Nashruladin [135] presented an application of ANN and GA for transformer 

winding/insulation faults diagnosis using DGA. In this model, a back-propagation training method 

is applied in ANN to detect the faults without cellulose involvement. At the same time, the GA is 

used to locate the optimal values to enhance the accuracy of fault detection. Besides, the DGA is 

chosen to diagnose the transformer faults and enables to carry out during online operation of the 

transformer. For another example, Zhang [136] proposed an evolutionary ANN programming 

based on Super SAB algorithm, which can improve diagnostic accuracy of conventional DGA 

methodologies. In this model, the Super SAB algorithm can provide both higher learning efficiency 

and stronger generalization capacity versus standard BP and Bold-Driver algorithm used in DGA, 

thus the author deemed that this algorithm possesses a promising future in the diagnostic field for 

power transformer equipment. 

To sum up this section, we can conclude that ANN has been widely used in current 

transformer fault diagnosis based on DGA techniques. To overcome the defects of ANN, many 

improved ANN structures have been proposed by researchers, which can improve the accuracy of 

the fault diagnoses to a certain degree. In the future, the development of ANN in transformer fault 

diagnosis based on DGA will tend to be combined with more and more intelligent tools and 

algorithms, such as fuzzy logic, grey theory, EPS, SI algorithm, DL, reinforcement learning (RL), 

and other ML methods. This will be a promising development direction for the DGA-based 

transformer fault diagnosis in the future. A summary of the application of ANN in DGA-based 

transformer fault diagnosis is presented in Table 6. 

Table 6. A summary for the application of ANN in DGA based transformer fault diagnosis. 

Advantages and Disadvantages Working Process Primary Means 

▪ large-scale parallel information 

processing ability 

▪ strong fault tolerance 

▪ robustness and self-learning 

function 

▪ can map the input and output 

relationships of highly 

non-linear and unascertained 

systems 

▪ better address some issues with 

data uncertainty 

▪ performance is limited by 

training samples 

▪ cannot understand the process of 

intermediate analysis and 

deduction 

▪ oscillation can easily occur  

▪ learning stage: read 

various testing data 

sets into the neural 

network, and then 

calculate the weights 

and thresholds via 

BP learning 

▪ working stage: 

calculate the testing 

samples to obtain 

actual outputs which 

are then compared 

with expected 

outputs, and finally 

output diagnosis 

conclusion via the 

activity function of 

the output point 

▪ improved probabilistic neural network [41,119] 

▪ RBF neural network [42,122,123,128,129] 

▪ knowledge discovery-based neural network [43] 

▪ knowledge extraction-based neural network [44] 

▪ fuzzy reasoning-based neural network [45] 

▪ MLP neural network-based decision [46] 

▪ BP neural network [103] 

▪ recurrent ANN [104] 

▪ DL based ANN [105] 

▪ hybrid ANN and EPS [106] 

▪ GRNN [40,107] 

▪ combined with mathematical morphology [108] 

▪ combined GA multi-layer feedforward network 

[120,135] 

▪ combined with competitive learning theory [121] 

▪ WNN and FWNN [67,124–127] 

▪ EDA-ANN [131] 

▪ combined with FAHP [134] 

4. Application of Fuzzy Theory in DGA-Based Transformer Fault Diagnosis 

4.1. Fuzzy Theory Description 

The fuzziness introduced here refers to the uncertainty of the objective things in the real world 

in terms of state, property, etc. The most fundamental reason for this phenomenon is that the state 

of a thing is not unique, which means for between the states of right and wrong, there may be many 

intermediate and transitional states, and many states may even coincide, so there is no definite 

boundary between different states [137]. This fuzziness generally exists in objective things. The 

study of the interrelationship between fuzzy things is called fuzzy theory [137]. Hence, fuzzy theory 
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is a kind of intelligent technique with a complete fuzzy inference system, by introducing linguistic 

variables and approximation reasoning as fuzzy logic based on classical set theory, in order to 

achieve fuzzification of classical set theory. 

In the study of fuzzy theory, the concept of membership function is introduced. This function 

is used describe a function from a fully membership status to a completely non-membership state, 

in which the degree of membership is employed to evaluate the degree of similarity of fuzzy 

information. The introduction of membership function can help fuzzy theory better solve the 

fuzziness of man’s natural language, thus the membership function is one of the most core concepts 

of fuzzy theory. The characteristics of fuzzy theory lie in the positive recognition of the existence of 

subjective issues, thus the fuzzy set theory can be applied to deal with these issues that are not easy 

to be quantified in the real world, so as to deal with man’s subjective evaluation issues in an 

appropriate and reliable manner. Fuzzy theory has been widely applied in comprehensive 

evaluation of things, and this evaluation method is called fuzzy comprehensive evaluation method. 

Its basic principle is demonstrated as follows: 

· First, determine the evaluation factors and its evaluation criteria and weights, so as to establish 

the factor set of evaluation object. In addition, it is essential to construct the evaluation grade, 

for example, the operation state of power transformer can be divided into four grades, 

including normal state, attention state, abnormal state and serious state. 

· Then, determine the fuzzy membership function that is used to conduct pre-processing of the 

original data of gases dissolved in transformer oil. Concretely, select the appropriate 

membership function to accurately establish the complicated fuzzy relationship between the 

transformer fault and fault phenomenon. A suitable membership function is crucial to the 

entire fault diagnosis of the transformer. In [138], Zhang et al. selects the fuzzy results of three 

ratios in the three-ratio method as the model input of the SVM, and they are x1 = C2H2/C2H4, x2 

= CH4/H2, and x3 = C2H4/C2H6. The corresponding membership functions f1(x1), f2(x2) and f3(x3) 

can be seen in [139]. The outputs of the three membership functions represent the input matrix 

of the SVM model, which are used to train or test the SVM model. 

· Next, adopt the degree of membership to describe the fuzzy boundaries of the factors 

according to the principle of fuzzy set transformation, so as to construct a fuzzy evaluation 

matrix. 

· Lastly, determine the final grade of the evaluation object through repeated calculations. 

In a power transformer, there is a lot of uncertainty and fuzziness in its fault phenomena, fault 

causes, and fault mechanisms. The traditional precise mathematical theory can hardly describe the 

relationship between them, so it is difficult to diagnose the true faults of the transformer and their 

causes. As stated above, the fuzzy theory can be used to make a quantitative analysis of human 

fuzzy thinking and fuzzy language, and find out the fuzzy judgment that is suitable for the 

computer to imitate the human brain. In the DGA data-based transformer fault diagnosis, there are 

more serious uncertainties and fuzziness among the fault phenomena, fault causes, fault 

mechanisms and fault classifications. To address it, the fuzzy theory is gradually employed by 

researchers in order to solve these issues which have fuzziness and uncertainty since the fuzzy 

theory was proposed. Hence, fuzzy theory has provided an effective approach to solving the issues 

with fuzziness and uncertainty in transformer fault diagnosis based on DGA. 

Concretely speaking, the fuzzy theory applied in the DGA-based transformer fault diagnosis 

can be described as follows [140,141]: 

(a) First, it is necessary to establish a DGA-based transformer fault database as the basic database, 

which is employed for the establishment of fuzzy rules. 

(b) Then, the DGA data of the transformer is treated as the inputs, on which fuzzification, fuzzy 

processing and defuzzification are conducted to determine the results of fuzzy diagnosis. 

(c) When the difference between the fuzzy diagnosis result and the actual result exceeds the 

pre-set threshold, it is essential to optimize the fuzzy rules based on the optimization 
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algorithms, and then circulate the whole process in turn until the optimal result of fault 

diagnosis is determined. 

4.2. Fuzzy Theory in DGA-Based Transformer Fault Diagnosis: A Survey 

Fuzzy theory, as a mathematical tool for accurately describing uncertainty relations, has 

unique advantages in the field of transformer fault diagnosis. At present, the research results in this 

area are rich. The current fuzzy diagnosis method is mainly focused on the following two research 

directions: 

The first one is to introduce the functions of self-organizing and self-learning in simple fuzzy 

technology. For example, in view of the problem that traditional three-ratio and four-ratio methods 

have some defects in coding interval, Ma et al. [142] employed the fuzzy correlation matrix to 

determine the relationship between DGA and fault types, by implementing a fuzzification of the 

coding. In addition, the system identification method is used to optimize the parameters of the 

fuzzy correlation matrix, thus achieving good diagnostic effect. 

The second one is to integrate the fuzzy diagnosis technique with other intelligent techniques 

to form hybrid fault diagnosis techniques, such as evolutionary fuzzy logic [52], grey relational 

fuzzy diagnosis algorithm [141], fuzzy Petri Nets knowledge representation algorithm [143], 

integrated neural fuzzy algorithm [55–57], FWNN [58], rough set based fuzzy diagnosis [58,144], 

fuzzy clustering algorithm [145–147], fuzzy C-means algorithm [148,149], and probabilistic fuzzy 

diagnosis algorithm [150–152]. For this research direction, a couple of examples are given as 

follows: 

For the evolutionary fuzzy logic, Huang et al. [52] proposed an evolutionary programming- 

based fuzzy system development technique to identify the incipient faults of power transformers. 

They first built a preliminary framework of the fuzzy diagnosis system, and then employed the 

proposed evolutionary programming-based development technique to automatically modify the 

fuzzy if-then rules and simultaneously adjust the corresponding membership functions. In 

comparison to results of the conventional DGA and the ANN classification methods, the proposed 

method shows superior performance both in developing the diagnosis system and in identifying 

the practical transformer fault cases. Islam et al. [53] adopted a novel fuzzy logic approach to 

develop a computer based intelligent interpretation of transformer faults using VB and C/sup 

++/programming. This proposed fuzzy logic based software is tested and tuned using over 800 

DGA case histories. It is also utilized in detection and verification of 20 transformer faults and the 

results show that this proposed diagnostic tool is very useful to both expert and novice engineers in 

DGA result interpretation. In addition, Aghaei et al. [153] used three fuzzy methods for specifying 

the internal faults of transformer through the ratio method of oil-immersed gases. The results show 

that the proposed methods are effective enough in the diagnosis of transformers internal faults. 

For the grey relational fuzzy diagnosis, Li et al. [141] adopted fuzzy clustering analysis method 

to acquire c kinds of cluster centres, in order to make up a standard chart for transformer fault 

diagnosis. On this basis, the grey incidence analysis theory was used to compute the incidence 

order of diagnosing pattern with the standard pattern. This method is proposed based on the 

combination of grey incidence analysis and fuzzy cluster. The tests show that its diagnosis accuracy 

is higher than other traditional methods. Besides, a concentration prediction model of dissolved 

gases in transformer oil based on grey relational analysis (GRA) and fuzzy SVM is proposed in 

[154]. In this method, the GRA is first used to extract key factors that have great influence on 

characteristic gases concentration. Then the fuzzy membership function is introduced to combine 

fuzzy mathematics with SVM. Here, each input sample is assigned to different weights according to 

its sampling time, which reflects the later data had a greater impact on the following prediction 

results than the earlier data. The result of an actual case proves that the proposed model can 

improve prediction precision and overcome drawbacks of traditional SVM and the shortcoming of 

considering only one or all characteristic gases method. 

For the fuzzy Petri nets (FPN) knowledge representation in transformer fault diagnosis, Wang 

and Ji [143] proposed a method of FPN knowledge representation and its rigorous inference 
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algorithm. In this model, FPN is applied in transformer for the first time and it represents relations 

between fault symptoms and faults. This FPN is very simple and clear because it only uses simple 

matrix calculation based on Petri nets theory, thus fast and accurate results can be obtained. The 

case indicates the model is correct and can provide a new tool for fast fault diagnosis of the power 

transformer. 

The integrated neural fuzzy algorithms has been widely adopted by researchers and engineers 

in theoretical research and practical application. Fan et al. [55] proposed a hybrid method which 

combines the relevance vector machine and the adaptive neural fuzzy inference system to address 

the misdiagnosis of conventional methods that is caused by ambiguous characteristic of some of the 

record data for the analysis. This algorithm can achieve an accuracy rate as high as 95% and exceeds 

single adaptive neural fuzzy inference system, SVM, and ANN in distinguishing multiple faults 

and samples with ambiguous characteristic. Analogously, a transformer fault diagnosis method 

based on neural network and fuzzy theory has been proposed in [56]. In [57], Naresh et al. 

presented a new and efficient integrated neural fuzzy approach for transformer fault diagnosis 

using DGA. This proposed approach first formulates the modelling problem of higher dimensions 

into lower dimensions and then uses the designed fuzzy rule base for the identification of fault. The 

approach has been tested on standard and practical data and it shows superior performance in 

identifying the transformer fault type. Besides, a transformer DGA diagnosis EPS based on neural 

network and fuzzy theory was developed in [98], which is called blackboard EPS. This system can 

use fuzzy theory to solve the problems of complexity, empiricism and fuzziness in transformer fault 

diagnosis, as well as can use the good pattern classification ability and self-learning ability of neural 

network to improve the accuracy of fault diagnosis of the whole system. The blackboard model 

structure of this system in [98] is shown in Figure 3. 

 

Figure 3. The blackboard model structure for transformer insulation fault diagnosis. 

For the FWNN, Dong et al. [124] integrated a rough set and FWNN with a least squares 

weighted fusion algorithm-based fault diagnosis for power transformers using DGA. The rough set 

is used as a front end of the FWNN, which is integrated with least square weighted fusion 

algorithm to simplify the input of FWNN and mine the rules whose confidence and support satisfy 

some pre-set criteria. In the model, the diagnosis accuracy cannot be limited by the neural network 

hidden layer number and correlated training parameter. By using the FWNN, this mechanism has 

good classified diagnosis ability. 

For the fuzzy clustering algorithm, an integrated grey clustering and fuzzy clustering fault 

diagnosis method is proposed in [145], based on which, a weighted fuzzy clustering algorithm has 

been applied in fault diagnosis of power transformers in [146]. In [146], the method of 

normalization and promotion compression has been proposed for the components and the 

component ratios of various characteristic gases. Besides, the attribute weights are utilized to 

express the relative degree of the importance of various data in fault partitioning, and the weighted 

fuzzy clustering algorithm is designed to accomplish fuzzy clustering and the calculation and 

optimization of clustering prototype and attribute weights. Moreover, in order to achieve an 

 
Information layer n: general fault location

.

.

.
Information layer 2: fault properties of initial judgment 
Information layer 1: whether or not it is a fault and fault 

trend

Knowledge  layer n: fault type search table
.
.
.

Knowledge layer 2: qualitative analysis of neural 
network 

Knowledge layer 1: characteristic gas method

Blackboard supervision program Scheduling team

Database Database  table Scheduling program

Blackboard Knowledge base

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2018                   doi:10.20944/preprints201804.0109.v2

http://dx.doi.org/10.20944/preprints201804.0109.v2


 

 

accurate diagnosis by DGA without experienced experts, a novel diagnosis method using fuzzy 

clustering and a RBF neural network (RBFNN) is proposed in [147]. In this neural network, fuzzy 

clustering is effective for selecting the efficient training data and reducing learning process time. 

After conducting the fuzzy clustering, based on which, the RBFNN is used to analyze and diagnose 

the state of the transformer. Various experiments show that this proposed method has good 

performance and validity in transformer fault diagnosis based on DGA. 

For the application of fuzzy C-means algorithm, Fu et al. [155] aimed at the collected 195 sets 

of fault samples, and used fuzzy clustering algorithm and fuzzy C-means algorithm for fault 

diagnosis respectively, with accuracies of 80% and 91.3%, respectively. This research shows that 

different diagnostic techniques have a great difference in the effect of diagnosis. Besides, an 

improved fuzzy C-means clustering algorithm for transformer fault has been proposed in [148], and 

a cross-correlation-aided fuzzy C-means for classification of dynamic faults in transformer winding 

during impulse testing is proposed in [149]. 

For the application of probabilistic fuzzy diagnosis algorithm, Duan et al. [150] developed a 

probabilistic neural network for fault diagnosis of transformer based on fuzzy input, and Yang et al. 

[151] applied the probability reasoning and fuzzy technique for identifying power transformer 

malfunction. Besides, in order to overcome the complexity of electric power transformer fault, Fu et 

al. [152] proposed an improved fault diagnosis model based on the research theories of electric 

power transformer fault diagnosis by predecessors. This model is developed based on fuzzy theory 

and probability reasoning, which not only can use the DGA and electric tests data, but also takes 

other observed information into account. The probability reasoning and parsimonious covering 

theory here are used to rebuild the relative probability function. The application of this model 

shows that it can identify the fault characteristic correctly even with some symptoms absent. 

Although the fuzzy diagnosis technique can be employed to diagnose the DGA-based 

transformer faults by using fuzzy membership functions, fuzzy relation equations and fuzzy 

clustering analyses, etc., it still has some limitations due to the existence of ambiguous relationships 

between the transformer fault phenomena, fault causes, fault mechanisms and fault types. For 

example, the sample data is required to be complete in the fuzzy rule table, and the fuzzy 

membership function is difficult to be determined accurately. Hence, these factors have indirectly 

affected the comprehensiveness of the diagnosis results. In the future, for the fuzzy theory-based 

transformer fault diagnosis using DGA, more and more researchers will focus on the combination 

of fuzzy theory with other intelligent diagnosis tools, such as ANN, Petri nets, WNN, DL, RL, GST, 

fuzzy clustering algorithm, fuzzy C-means algorithm, SI algorithm, evolutionary algorithm, SVM, 

and probabilistic fuzzy diagnosis algorithm. A summary for the application of fuzzy theory in DGA 

based transformer fault diagnosis is presented in Table 7. 

Table 7. A summary for the application of fuzzy theory in DGA based transformer fault diagnosis. 

Advantages and Disadvantages Working Process Primary Means 

▪ can well solve the issues with 

fuzziness and uncertainty 

▪ hard to accurately determine 

the fuzzy membership 

function 

▪ the relationship between the 

transformer faults phenomena, 

fault causes, fault mechanisms 

and fault types is ambiguous 

▪ the sample data is required to 

be complete in the fuzzy rule 

table 

▪ first establish a 

DGA-based transformer 

fault database to 

formulate fuzzy rules 

▪ then input the DGA 

data to conduct 

fuzzification, fuzzy 

processing and 

defuzzification 

▪ then optimize the fuzzy 

rules based on the 

optimization algorithms 

▪ finally repeat 

calculation in turn until 

optimal result is 

determined 

▪ employ fuzzy correlation matrix [142] 

▪ combined with evolutionary fuzzy logic [52] 

▪ combined with grey relational fuzzy diagnosis 

algorithm [141] 

▪ combined with Petri Nets knowledge 

representation algorithm [143] 

▪ combined with integrated neural fuzzy 

algorithm [55–57] 

▪ combined with FWNN [58,124] 

▪ combined with rough set [58,144] 

▪ fuzzy clustering algorithm [145–147] 

▪ fuzzy C-means algorithm [148,149,155] 

▪ probabilistic fuzzy diagnosis algorithm [150–

152] 

▪ combined with expert system [98] 

▪ combined with DL, RL, and other ML methods 
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5. Application of RST in DGA-Based Transformer Fault Diagnosis 

5.1. Rough Sets Theory Description 

The concept of rough sets has been used by more and more experts and scholars in transformer 

fault diagnosis. Moreover, the combination of RST with other intelligent means has been widely 

adopted in transformer fault diagnosis. The RST-based attribute reduction can ensure the selection 

of fewest characteristic sets with consistent diagnostic results of transformer faults, thus it provides 

a novel direction for fuzzy theory based transformer fault diagnosis [144]. The RST is an effective 

mathematical tool to deal with the fuzzy and uncertain knowledge because it does not need to 

provide any prior information beyond the data needed for the problem, thus it can be used for 

direct analysis and reasoning of data to find out the hidden knowledge and reveal the potential 

rules from the data. This is why RST has been widely used in transformer fault diagnosis, especially 

for the integrated intelligent approaches. 

The rough sets can be defined as follows [144]. A four-element group S = (U, A, V, f) is defined 

as an information system formally, among which U = {x1, x2, …, xn}; A = {a1, a2, …, am}, represents 

non-empty finite set of attributes; 
a A

V Va


 , representing value sets of attributes, here Va denotes 

the value domain of the attributes a ∈ A; f is the information function, and f: U × A → V, means it 

gives 1 information value for each attribute of each object, namely ∀a ∈ A, x ∈ U, f(x, a) ∈ Va. If A = C 

∪ D, C ∩ D = ∅, here C denotes the condition attribute set, and D represents the decision attribute 

set, thus such type of information system is also called decision-making system. The relation 

between the attribute and value described above can form a two-dimensional condition-action table, 

called decision table. 

Note that not all the condition attributes in the original decision table are necessary, and may 

some of them are unnecessary and can be removed without affecting the original decision-making 

results. Hence, for the knowledge representation using RST, the decision table after attribute 

reduction is an incomplete table which only contains necessary condition attributes used in 

decision-making, while these condition attributes possess all the knowledge of the original 

knowledge system. As illustrated in [144,156], the flow of fault diagnosis based on the RST is shown 

in Figure 4. 

 

Figure 4. The flow of fault diagnosis based on the RST presented in [144,156]. 

5.2. Rough Sets Theory in DGA-Based Transformer Fault Diagnosis: A Survey 

In current investigations, there are two major methodologies for transformer fault diagnosis 

using the RST [144]: the first one is fault diagnosis based on single RST, and the second is based on 

integration of the RST with other intelligent methods. The two categories of transformer fault 

diagnosis methods are summarized as follows. 
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In this methodology, firstly, the fault symptoms are measured as the condition attribute of 

fault classification, and the actual existing faults are treated as decision attributes to establish a 

decision table. Then the attribute reduction ability of RST is used to simplify the original decision 

table to obtain multiple attribute reductions which are equivalent to the original decision table. 

Lastly, these attribute reductions are made further simplification operations in order to remove the 

unnecessary attributes, such that the fault diagnosis rules can be achieved. On this basis, Su et al. 

[157] developed a fault diagnosis model based on RST and information entropy, which increasingly 

accelerates the computation time of diagnosis. Yuan et al. [158] proposed a diagnosis model of 

transformer faults based on a new heuristic reduction algorithm using RST, in which the 

complexity is decreased obviously comparing with general attribute reduction approaches, and the 

computation time is shortened, such that the diagnostic efficiency is improved. In the case with 

high density data, this proposed model can still provide a faster computation speed with higher 

judgment accuracy, thus it highly enhances the computation of rough sets. 

(2) Integration of RST with other intelligent algorithms 

The first direction is to integrate RST with EPS, which is generally focused on establishment of 

complete knowledge base in EPS-based transformer fault diagnosis system. Xiang [159] proposed a 

fault diagnosis EPS based on RST, which integrates RST with EPS. Based on the attribute reduction 

of the decision table formed by the historical fault data of the transformer, the knowledge base of 

node network rule set that meets the requirement of confidence level is established with different 

reductive levels, by calculating rough membership of the rule, thus it is able to achieve accurate 

diagnosis results with some fault-tolerant ability, even if the gas chromatograph analysis data is 

incomplete. In addition, Zuo [160] proposed a new intelligent fault diagnosis method based on RST 

and EPS, in order to improve diagnosis precision and decrease misinformation diagnosis, according 

to the intelligence complementary strategy. In this model, RST is employed to handle inexact and 

uncertain knowledge for pattern recognition with the target of removing redundant information 

and seeking for reduced decision tables, so as to obtain the minimum fault feature subset. Besides, 

EPS here with an independent knowledge base is used to make knowledge maintenance more 

convenient and have easy reasoning process to explain. 

The second is integration with ANN, in which the abilities of ANN such as non-linear feature, 

parallel processing and self-organizing and self-learning can be perfectly employed. On this basis, 

Yu et al. [161] first used RST to conduct attribute reduction for the original sample sets to form 

reduced rule sets, hence rough set network is treated as front-end system and then the sample sets 

after attribute reduction by RST are conducted as input sample sets of the ANN to form a rough set 

and ANN-based transformer fault diagnosis system. Zhang et al. [162] proposed to firstly use DGA 

knowledge-based continuous attributes to discretize some attributes in the decision table and at the 

same time use natural algorithm and partition with same frequency to discretize some other 

attributes. After that, RST is used to reduce the attributed of the discretized data. Lastly, the 

obtained minimum decision table is used to train the error BF algorithm-based neural network. 

Besides, Li et al. [163] proposed a new power transformer fault diagnosis method based on RST and 

an improved artificial immune network classification algorithm, which can achieve the minimal 

diagnostic rules via simplifying expert knowledge and reducing fault symptoms, learning the 

features of fault samples, and obtaining the memory antibody cells pool with capability of 

representing the fault samples better than those without class information. This proposed model 

has better capability to classify single-fault and multiple-fault samples as well as higher diagnosis 

precision, by comparing with the IEC three-ratio method and BP neural network. 

The third is integration with fuzzy sets theory. To this end, Xiong et al. [164] presented a new 

diagnosis measure with the gas ratios method for transformer incipient faults. In the diagnosis 

process, an information decision system has been built in which a data-mining algorithm is 

developed to extract fuzzy rough rules and thus determine the topology of multi-table decision 

base according to the attributes set. This proposed diagnosis system using the actual dissolved 

gases in transformer oil confirms that the extracted rules allow diagnosis results to be satisfied with 

a satisfactory accuracy for diagnosis ratio. However, the single RST for transformer fault diagnosis 
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needs a high requirement on precision of experiment data samples, besides the conventional RST 

cannot be employed to address continuous attributes, such that it generally needs to discretize the 

data samples. Hence, in actual application, more and more researchers choose to integrate the RST 

with other intelligent algorithms when using it for transformer fault diagnosis. Besides, Wang [165] 

also proposed a fault diagnosis method for power transformers based on rough set and fuzzy rules, 

which can realize effective fuzzy reasoning and obtain accurate diagnosis results. 

The fourth is integration with BN, namely a Bayesian Network. In this direction, the BN and 

RST can be both employed to process the incomplete data. However, the direct utilization of the 

two cannot be satisfied with the actual demands of fault diagnosis due to the lower judgment 

accuracy when the key attributes are missing. To address this, Wang et al. [166] integrated the BN 

classifier with RST organically and applied it to fault diagnosis of a transformer, by developing a 

comprehensive transformer fault diagnosis model combining dissolved gas in transformer oil and 

other electrical testing data samples. The basic idea of the model is to use the attribute reduction 

technique in RST to achieve reduction of the expert knowledge and diminution of the fault features, 

such that the minimal diagnosis rule and inputting it to the BN to reduce the complexity of the 

network structure as well as the difficulty of acquiring fault features. Moreover, Wang et al. [167] 

proposed a new transformer fault diagnosis based on RST and BN, in which the expert knowledge 

can be simplified as well as fault symptoms can be reduced through the reduction approach of RST 

information table, and the diagnostic rules can be mined. Besides, the BN can realize probability 

reasoning to describe changes of fault symptoms and analyse fault reasons of the transformer. This 

proposed method shows correctness and effectiveness in some practical fault diagnosis examples. 

Furthermore, Xie et al. [168] combined the BN classifier and rough set reduction theory together in 

order to establish a BN classification model based on expert knowledge and statistical data, in 

which the DGA data and electrical tests are integrated as the input set of diagnosis, and the 

probabilistic reasoning and sequencing of potential fault types are actualized, such that improving 

the reliability of the diagnosis. This proposed method is capable of dealing with missing 

information and shows a better fault-tolerant feature and can achieve high accuracy. 

The fifth is combination with SVM, in which the SVM can be employed to better address the 

issues of small sample learning and has been research highlights in the field of ML internationally. 

The combination of the two can fully take advantages of the SVM in aspect of accurate binary class 

classification as well as the RST in aspect of dealing with small complete information and rapid 

diagnosis. On this basis, Jiang and Ni [169] proposed a transformer fault diagnosis method based 

on the combination of rough sets and SVM, in which the rough sets are employed to establish the 

decision table and the rough set theory is applied to simplify the expert knowledge to obtain the 

diagnosis rules with attribute reduction and implement rough diagnosis for the transformer, and 

then the SVM is adopted to conduct accurate fault diagnosis with the function of accurate binary 

class classification. Wu et al. [170] employed the rough sets and SVM to build a model for the 

location of the transformer fault diagnosis. In this model, the results of the oil data and the electrical 

experimental data are first combined and reduced based on rough set theory, in order to establish 

the mapping of the faults and the information. Then, this mapping is classified by the SVM 

classifier, thus the rough faulty point of the transformer can be diagnosed. This proposed model 

shows a satisfactory accuracy of obtaining rough faulty point of the transformer. 

The last direction is combination with a Petri network. In this application, the RST is generally 

employed to obtain the minimal diagnosis rule based on its stronger data analysis ability, 

compression capability and fault-tolerant, in order to establish the optimal Petri network model 

whose parallel reasoning ability is used for more effective transformer fault diagnosis. Wang et al. 

[171] developed a model to improve the efficiency of intelligent approaches based on prior 

knowledge, in which the RST is employed to reduce the many redundant features in the 

transformer fault diagnosis rules and the optimal Petri nets are built to realize fast and parallel 

reasoning. This developed model shows an invariable fault classification after reduction and that 

the main features are close to actual experiences. Besides, Wang et al. [172] integrated the RST and 

fuzzy Petri nets for synthetic fault diagnosis of oil-immersed power transformers, based on 
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complementary strategy. According to the minimal rules which are mined through reduction 

approach of RST information table, the complexity of fuzzy Petri nets structure and difficulties of 

fault symptom acquisition are largely lessened. Meanwhile, the fuzzy Petri nets are employed to 

describe changes of fault symptoms and analyse operating status of the transformer based on its 

parallel and fuzzy reasoning capability. This proposed method shows correctness and effectiveness 

in the practical fault examples. 

Besides the directions summarized above, some researchers have also combined the RST with 

other intelligent tools for transformer fault diagnosis, for example, Zhou et al. [173] integrated the 

RST and evidence theory for transformer fault diagnosis, in which the rough set is induced to 

calculate the importance degree of condition attribute to decision attribute and act as basic 

probability assignment of recognition framework. In the same recognition framework, different 

evidence is combined to obtain information on the fault types of decision classification information. 

This proposed method can effectively improve the single fault diagnosis accuracy and also give 

information about compound fault analysis. In addition, Shu et al. [174] brought Extenics and RST 

into fault diagnosis of the transformer, in which the attribute predigesting method in RST is 

employed to classify the attribute term which needed by each fault diagnosis. In this method, the 

DGA testing datum is used to be attribute set and the standard fault model of the transformer is 

used to be the decision set for diagnosis. Besides, the association function from Extenics is utilized 

to count each fault degree. This method has been applied to diagnose 76 DGA testing data and it 

shows better diagnosis results than the IEC method. It is indicated that the RST can be combined 

with grey theory for fault prediction of power transformer, based on which, Fei and Sun [175] 

proposed a new method for transformer fault prediction, in which the improved three-ratio 

attribute decision table is constructed and simplified by the knowledge acquisition method based 

on rough sets, and the ratios of feature gases can be predicted by GM and their future state feature 

can be obtained. According to the minimal rules, the incipient fault can be predicted, and its 

probability can be acquired by combination rules’ credibility with the number of the fault acquired 

from predicted feature of gases’ ratios. The testing results show that this method is effective and 

correct in fault prediction examples. In addition, Song et al. [176] established an immune model for 

transformer fault diagnosis by combining the strong ability of recognition and learning in the 

artificial immune system with the attribute’s objectively reduction of the RST together. Results 

show that this developed model has high diagnosis accuracy, strong robustness and good learning 

ability. 

In the future, for the RST-based transformer fault diagnosis using DGA, more and more 

researchers will focus on the combination of it with other intelligent diagnosis tools, such as ANN, 

Petri nets, WNN, DL, GST, fuzzy clustering algorithm, fuzzy C-means algorithm, SI algorithm, 

SVM, and probabilistic fuzzy diagnosis algorithm. Especially for the combination of RST and ML 

algorithms and this may be aimed at the following aspects: the analysis of the cause of fault, the 

characteristic gases generation mechanism based fault diagnosis, and the exploration of new 

diagnosis approaches and strategies. This will be a new breakthrough in fault diagnosis techniques 

of the oil-immersed power transformer based on DGA. A summary of the applications of RST in 

DGA-based transformer fault diagnosis is presented in Table 8. 

Table 8. A summary for the application of RST in DGA-based transformer fault diagnosis. 

Advantages and Disadvantages Categories Primary Means 

▪ effective in dealing with fuzzy and 

uncertain knowledge 

▪ does not need to provide any prior 

information beyond the data 

needed for the problem 

▪ direct analysis and reasoning of the 

data samples 

▪ can effectively find the hidden 

knowledge and reveal potential 

rules from the data 

▪ single RST 

based fault 

diagnosis 

▪ integration 

of RST with 

other 

intelligent 

algorithms 

▪ combined with information entropy [157] 

▪ combined with new heuristic reduction algorithm [158] 

▪ integrated with expert system [159,160] 

▪ integrated with ANN [161–163] 

▪ integrated with fuzzy set theory [164,165] 

▪ integrated with Bayesian network [166–168] 

▪ integrated with SVM [169,170] 

▪ integrated with Petri network [171,172] 

▪ integrated with evidence theory [173] 

▪ integrated with attribute predigesting method [174] 

▪ combined with improved three-ratio attribute decision [175] 
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▪ combined with artificial immune system [176] 

▪ combined with DL, fuzzy C-means algorithm, SI algorithms, 

probabilistic fuzzy theory 

6. Application of GST in DGA-Based Transformer Fault Diagnosis 

6.1. Grey System Description 

Grey system theory (GST) was proposed by Deng in 1982 [177,178] and has been developed 

rapidly [179–183] since that time. GST is a method to study the issues with features of less data, 

poor information and uncertainty. This method is a theoretical result developed on the basis of the 

practice of fuzzy mathematics. This theory after years of research and development has formed the 

analysis system relied on grey relational space, the method system based on grey sequence 

generation, the model system with GM as the core, and the technical system with the system 

analysis, evaluation, modelling, prediction and decision-making as the principal parts [184]. 

In GST, the small samples with some known information and some unknown information, as 

well as the uncertain systems with poor information are treated as research objectives, and their 

valuable information is extracted mainly through the generation and development of the known 

information part of the research object, such that realizing correct description and effective control 

of the operation behaviour and evolution rule of the system [185–187]. In the field of engineering, 

the depth of colour is generally adopted to describe the clarity degree of information. For example, 

the black box is used to describe a system or object whose internal information is completely 

unknown. Hence, in GST, black is used to express the meaning of the information completely 

unknown, white to express the information completely known, and grey to express that part of the 

information is clear and part of the information is unknown. Correspondingly, the system with 

unknown information is called black system, the system with completely known information is 

called white system, and the system with partial known information and partial unknown 

information is called grey system [177–179]. 

For the research objective in this paper, namely the oil-immersed power transformer, its fault 

diagnosis system can be seen as a typical grey system, due to the fact the relationships between 

some fault causes and fault results in the transformer fault diagnosis system are not well-defined, as 

well as it cannot clearly determine which kinds of gases dissolved in oil cause even when a fault 

occurs [187]. Consequently, the GST model as an effective tool is with the characters of less data, 

high precision and without prior information, which has been widely used in transformer fault 

diagnosis based on DGA. As defined in [177,178], the system that only masters or can only obtain 

part of the control information is called a grey control system, or grey system for short. Accordingly, 

the matrix with some known mathematical properties as well as some known elements is called 

grey matrix, and the parameters that have some known mathematical properties while its concrete 

values are unknown are called grey parameters. Hence, as first defined in [178], the grey matrix A is 

given as: 
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where A is the grey matrix, denoted by  ij A , here the general grey parameters are denoted by 

ij , namely 1unknown,ij ij R    . R1 is the set of all real numbers. The zero operation of grey 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2018                   doi:10.20944/preprints201804.0109.v2

http://dx.doi.org/10.20944/preprints201804.0109.v2


 

 

parameters is defined as 0 , 0      . Apart from zero operation, the results of the four 

fundamental operations of arithmetic between grey parameters, as well as between grey parameters 

band white parameters are still grey parameters. G generally represents the grey area, system, 

concept, matrix, number, control law, etc. Accordingly, W is the general symbol for the white. S is 

the element set of the matrix A. SG and SW are the grey parameter set and white parameter set in A, 

respectively. Based on (5), the following system is called grey linear system in [178], denoted by GL 

as: 

   
 

 

, ,

, ,

ij pq

kl

ij pq kla b c W

   


 




X AX + BU A = B =

Y CX, C =  (6) 

Based on the definition given in [178], the GST model mainly includes grey analysis model, 

grey clustering evaluation model, GM series model, grey decision model, grey combination model, 

grey system prediction model and GRA model. Among them, the most important theory in the grey 

decision model is the weighted grey target theory. Recently, the weighted grey target theory and 

GRA model have been extensively adopted in fault diagnosis of the transformer [59–66,185–187]. 

The two are briefly introduced as follows: 

(1) Weighted grey theory. The substance of weighted grey theory is to set a grey target under 

the condition of no standard mode, and then find the bull’s eye in the grey target through the grey 

target theory. Next, the models of indexes are compared with the standard model, and finally the 

models of these indexes are implemented grade division to determine the evaluation grade [59]. As 

the author already studied in [59], the approaching degree (i.e., the grey-correlation degree) 

0( , )jx x  and the weight value qi can be calculated as: 

0 0

1

1
( , ) ( ( ), ( ))

n

j j

k

x x x k x k
n

 


   (7) 

mea
mea

mea

1mea
mea

mea

| ( ) |1
(1 ), if ( )

, where 1
| ( ) |1

(1 ), if ( )

n

i i

i

i
i

n
q q

i
i

n

 
 



 
 






 


 

  


  (8) 

where 
0( , )jx x  represents the degree of the bull’s-eye of a mode close to that of the standard 

state mode, called the approaching degree. 1,2, ,k n , and n is the sum total of the index modes 

and the indexes. i is the number of the index. 
mea  is the average value of the contribution degree 

of all the indexes, thus the weight that corresponds to 
mea  should be 1/n. 

Based on (7) and (8), finally, the weighted approaching coefficient 
0( ( ), ( ))ik k    and the 

weighted approaching degree of 
i , namely 

0( , )i    can be obtained as [59]: 
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where [0,1]  . 
0 ( )i k  represents the grey-correlation difference information between the 

sequence to be evaluated 
i  and the bull’s-eye 

0 . 
0( , )i    means the degree of each mode 

close to the standard state mode. 

According to (7)–(10), the weighted grey theory can used to carry out pattern recognition, 

pattern clarification and pattern optimal selection. The evaluation flow of weighted grey theory is 

shown in Figure 5. In Figure 5, the data of DGA is made as the state evaluation parameters to 
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conduct evaluation on the internal oil-paper insulation system of the transformer, so as to achieve 

the grade of operation status of the transformer [59], as shown in Figure 6. 

 

Figure 5. The evaluation flow of weighted grey theory. 

 

Figure 6. The grading of operation status of the transformer. 

(2) GRA model. GRA is a kind of analysis method which is based on the GST. The basic idea of 

GRA is to determine the degree of correlation between the factors according to the similarity degree 

of the geometric shape of their variation curves. Through quantitative analysis of the development 

trend of dynamic processes, this method can achieve the comparison of geometric relations of 

statistical data related to time series, so as to find out the grey relational degree among all factors 

[154,188]. As elaborated in [154], the grey relational degree is introduced to measure the affinity 

among the factors, in order to obtain the main factors affecting the concentration of each kind of 

characteristic gas. This is because no definite qualitative and quantitative description for the 

relation between the content of gas dissolved in transformer oil, oil temperature and load can be 

found, and uncertainty exists in the mutual restriction relation between the gases. Hence, according 

to [154], assume that the reference array is X0 = {X0(k)|k = 1, 2, …, n}, and the comparative array is Xi 

= {Xi(k)|k = 1, 2, …, n}, where i = 1, 2, …, n. Firstly, the original data are made being dimensionless 

as:  
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where k = 1, 2, …, n and i = 1, 2, …, n. 

Then, the grey relational coefficient [154] can be calculated as:  
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where ( )i k  is the grey relational coefficient between x0(k) and xi(k), which reflects the tightness of 

the two sequence at a certain time. The constant ρ is the discrimination coefficient, with a value 
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range of (0, 1), and generally the smaller the ρ, the larger the discrimination. In order to improve the 

difference between the relational coefficients, the ρ is taken 0.5 in [154]. Based on the grey relational 

coefficient of each point, the grey relational degree between Xi and X0 is obtained [154] as: 
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n

i i

k

k
n

 
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where k = 1, 2, …, n and i = 1, 2, …, m. 

The expression of the grey relational degree 
i  reflects the degree of correlation between Xi 

and X0, and it shows that the larger the 
i , the higher the degree of correlation between the two, 

thus the closer the relationship between them and the closer the development trend and speed of 

them. 

6.2. Grey System Theory in DGA-Based Transformer Fault Diagnosis: A Survey 

As previously stated, the fault diagnosis system of the transformer can be considered as a 

typical grey system. Here, the GRA of fault of the transformer is performed by employing the grey 

theory to identify and classify the symptom pattern of the faults as well as the fault modes. Hence, 

according to [59,154], the procedures of GRA can be described as follows: 

(a) First, construct a comparative sequence based on the inputs of the data of DGA. 

(b) Next, use the GRA method to calculate the grey correlation between the comparative sequence 

and the reference sequence. 

(c) Lastly, according to the calculated grey correlation, the principle to be followed is that the 

larger the grey correlation, the closer the actual fault mode to the reference fault mode is. 

Based on the procedures above, the application of GRA in transformer fault diagnosis has 

presented a lot of research achievements in recent years. Li et al. [185] used GST to analyse 

transformer insulation fault, in which a grey cluster model and the relevant model are developed 

for insulation fault diagnosis. This proposed method has been successfully applied in some fault 

examples using oil-chromatogram data of five transformers, which shows that it is valid to analyse 

fault pattern and locate the fault position with a good prospect of wide application. On this basis, 

the transformer fault diagnosis method based on grey correlation entropy is proposed in [189], 

which has been verified feasible and effective by an example. Compared with the traditional 

three-ratio method, this proposed method is better in fault diagnosis under the same conditions. 

However, the diagnosis result of the method in [189] is susceptible to external disturbances. To 

address this issue, Li and Zhao [187] proposed a transformer fault diagnosis method based on 

entropy weight optimization and weighted grey correlation degree, in which five kinds of gases 

dissolved in oil are made as characteristic parameters to verify that this proposed model is valid 

and good in fault diagnosis, thus the problem of external interference is solved well. In addition, Li 

[190] proposed to use the weighted grey target theory to evaluate the operation status of the 

transformer. In this work, seven groups of fault identification sequence are obtained through 

statistical analysis of 300 sets of transformer fault data samples. In the 100 sets of normal operation 

data of the power transformer, the accuracy rate of fault judgment is reached 98%. In the 100 sets of 

fault data, the accuracy rate is reached 96%.  

Besides the research work introduced above, the author in [59] proposed a method which 

realizes dynamic modelling for reliability assessment of transformer oil-paper insulation systems 

using hot spot temperature (HST) and grey target theory. This developed model contains a 

HST-based static ageing failure model and a grey target theory based dynamic correction model, 

thus it corresponds to two stages: transformer ageing process description and winding HST 

calculation stage, and life expectancy dynamic modification stage. The combination of the two 

models can dynamically modify the life expectancy of the transformer using actual data of DGA. 

The entire dynamic correction process can be seen in Figure 7. 
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Figure 7. The dynamic modification process of the model developed by the author in [59]. 

In addition, a concentration prediction model of dissolved gases in transformer oil based on 

GRA and fuzzy SVM is proposed in [154], which considers the influence of oil temperature and 

loads on oil-dissolved gases. In this model, the GRA is employed to extract key factors that have 

great influence on characteristic gases concentration as attributes of input samples of the SVM 

regression modelling. Besides, the fuzzy membership function is employed to combine fuzzy 

mathematics and SVM. The result of an actual case shows that this proposed model is effective, and 

can improve prediction precision and overcome drawbacks of traditional SVM and the shortcoming 

of considering only one or all characteristic gases method. Dong et al. [60] presented an approach of 

fault diagnosis based on model-diagnosis for power transformers after analyzing in depth the 

relationship between the reason and symptom of the fault. In the method, the action and function of 

the transformer, symptom set and fault set can be established based on the known knowledge, 

experiences, and collected fault examples. The grey correlation in the model is employed to assist to 

describe the similarity between the faults and symptoms, such that the diagnosis results in more 

detail can be achieved. The examples of diagnosis show that the approach is quite efficient, flexible 

and fault-tolerant. Song et al. [61] presented a new method based on grey relation entropy to 

address the issue of code deficiency exists in the IEC/IEEE standard (such as ratio code nonentity) 

and complexity of fault diagnosis for the transformer. This method integrates grey relation analysis 

and information entropy, which can overcome defects of original grey relation analysis, such as 

partial relation and information losing. Analogously, Chang et al. [62] proposed a fault diagnosis 

method for transformer based on the DGA and grey relational theory, which is available for the 

transformer fault diagnosis and has fault classified ability. Lin et al. [63] proposed a method for 

dissolved-gases prediction and fault diagnosis in oil-immersed transformers using grey 

prediction-clustering analysis. In this model, DGA is employed to detect and monitor abnormal 

conditions in transformer, the grey prediction GM(1, 2) model is used to forecast the further trends 

of both combustible and non-combustible gases by using the variant information of hydrogen, and 

the grey clustering analysis is applied for internal faults diagnosis. Tests with field gas records 

show the model is effective in dissolved gases forecast and fault diagnosis. Song et al. [64] 

employed the GRA method to diagnose the fault patterns of power transformers, in which a group 

of reference sequences are selected from fault data and they are analyzed and compared with other 

methods. The results show that GRA is a useful tool for evaluating the faults of power transformers 

and the diagnosis method is effective. Aimed at the all gas features of a traction transformer when a 

fault occurs, Zhao and Li [191] proposed a method based on the improved grey correlation analysis 

model for fault diagnosis of traction transformers. This method can fully utilize the overall DGA 

information and can make use of the advantages of grey correlation analysis in dealing with less 

samples and lean grey information, such that it can avoid the partial correlation and information 

loss. Examples show that this model can determine fault types of the traction transformer 

effectively with higher diagnosis accuracy than ever. In addition, in order to solve the problem of 
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randomness and fuzziness in transformer fault diagnosis, Xu et al. [192] proposed a new fault 

diagnosis method based on feedback cloud entropy model, in which the collected fault examples of 

chromatographic data for transformer oil after statistical analysis are put into Bayesian feedback 

backward cloud generator as cloud drop, and then the parameter values of fault characteristic gases 

cloud model is employed to build the transformer fault diagnosis standard normal cloud model. 

This built model has integrated cloud correlation coefficient and information entropy theory, which 

can reduce the dependence on the single standard normal cloud model and dig more information of 

the dissolved-gases in oil, such that improving the accuracy of transformer fault diagnosis. Results 

of example show that the model has well theoretical value and application prospects with a higher 

accuracy of transformer fault diagnosis. Besides, a unified GRA on transformer DGA fault 

diagnosis is conducted in [193]; Liu et al. [194] carried out GRA for insulation condition assessment 

of power transformers based on conventional dielectric response measurement, which can provide 

reliable and effective insulation diagnosis; Zhou et al. [195] proposed to use GRA and integrated 

weight determination for timely fault identification, in which the weight of each indicator is 

determined by integrating analytic hierarchy process and entropy methods. This model can 

effectively improve the accuracy of fault diagnosis. 

Based on the above research summary, the GRA method has been widely applied for 

DGA-based transformer fault diagnosis and fault identification, which has good accuracy for some 

faults that are more difficult to be judged, such as dampness. However, GRA for DGA data under 

normal circumstances sometimes suffers from misjudgment phenomena, and some researchers 

have pointed out that this may be caused by the diagnostic system input [187], but the specific 

reasons are not very clear currently. This is also one of the reasons that limits the wide application 

of GRA in transformer fault diagnosis based on DGA. Hence, as previously stated, many scholars 

deem that the chromatographic data should be compared with the warning value by the 

conventional method before utilization of the GRA. If the data shows a fault, then the GRA can be 

applied for fault judgment and diagnosis. In the future, the development direction of GRA should 

be focused on its combination with other intelligent diagnosis tools, such as improved SVM, fuzzy 

theory, cloud entropy model, BN, ML and data mining techniques. A summary for the application 

of GST in DGA-based transformer fault diagnosis is presented in Table 9. 

Table 9. A summary for the application of GST in DGA-based transformer fault diagnosis. 

Advantages and Disadvantages Procedures of GRA Primary Means 

▪ needs less data for fault 

diagnosis 

▪ high precision  

▪ without prior information 

▪ good at dealing with the 

small samples with some 

information known and 

some information unknown, 

as well as the uncertain 

systems with poor 

information 

▪ first construct a 

comparative sequence 

▪ then use GRA to 

calculate grey 

correlation between 

comparative sequence 

and reference 

sequence 

▪ lastly determine the 

actual fault mode 

according to the 

calculated grey 

correlation 

▪ weighted grey target theory [59–66,185–

187,190] 

▪ GRA model [154,188] 

▪ combined with hot spot temperature [59] 

▪ combined with fuzzy SVM [154] 

▪ grey relation entropy [61] 

▪ grey prediction-clustering analysis [63] 

▪ improved grey correlation analysis model 

[191] 

▪ combined with feedback cloud entropy 

model [192] 

▪ combined with improved SVM, cloud 

entropy model, BN, ML and data mining 

techniques 

7. Application of Other Intelligent Algorithms in DGA-Based Transformer Fault Diagnosis 

The DGA-based transformer fault diagnosis system is a complex system in which various 

uncertain factors and unknown information are remained under cover, causing fuzziness and 

randomness in addressing these uncertain issues. In addition to the five main categories of research 

approaches and techniques summarized above, there are some other intelligent algorithms, such as 

artificial immune algorithm (AIA) [72,163,176], GA [67,68,196], improved artificial fish swarm 
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optimizer (IAFSO) [197–199], PSO [69,77,80], dynamic clustering (DC) [79,81], WA [83,124–127], 

SVM [5,68,72,77,80,85,154,169,170,188,199], BN [87,166–168], information fusion technology [200–

202], extreme learning machine (ELM) [203–205], DL [70,71,105,206,207], optimized neural network 

[208,209], and evidential reasoning approach [45,75,151,210–217], that have been consecutively 

employed by more and more scholars in fault diagnosis and decision making of the transformer 

based on DGA in recent years. In this section, these intelligent algorithms and techniques are 

divided into SI algorithms, data mining techniques, ML approaches and other intelligent tools, 

which are systematically summarized as follows. 

7.1. Swarm Intelligence Algorithms 

7.1.1. Swarm Intelligence Algorithms Introduction 

With the study of biologically inspired computation, the self-organization behaviour of some 

social animals has aroused the widespread interest of scientists, who have found that the 

individuals of some social animal species in Nature tend to possess no intelligence and simple 

behaviour while a swarm of them exhibits strong intelligence with complex behaviour 

characteristics when they work together, such as birds foraging, fish fleeing, etc. Based on this 

phenomenon, the SI algorithm was proposed and developed by scholars, which performs 

excellently in solving complex problems in the aspects of searching and optimization [218]. The 

basic idea of an SI algorithm is reflected in imitating the population behaviour of the biological 

species in Nature to construct a stochastic optimization algorithm in which the optimization and 

search process is simulated as an individual’s foraging or evolution process in a population. In this 

simulated process, the point in the search space is used to imitate the individual of a population in 

nature and meanwhile the objective function of the issue to be solved is measured as the adaptive 

ability of the individual to the environment in the population, such that the process of positive 

natural selection or foraging process is compared to the optimization iteration process of replacing 

poor feasible solution with better feasible solution in the search process. Hence, a SI algorithm as a 

type of iterative optimization algorithm represents the collective behaviour of decentralized and 

self-organized systems, regardless of natural or artificial, with features of generation and test [219]. 

SI algorithm includes GA, AIA, ant colony optimizer (ACO), PSO, bacterial foraging optimization 

(BFO), artificial fish swarm optimizer (AFSO), artificial bee colony (ABC), firefly optimization 

algorithm (FOA), bat optimization algorithm (BOA), etc. These optimization algorithms as a new 

type of evolutionary algorithm have been successfully applied to the fields of function optimization 

due to the characters of distribution, self-organization, and strong robustness [219]. Several typical 

SI algorithms mentioned here are briefly introduced as follows, as well as their possible 

applications in the DGA-based transformer fault diagnosis and decision making. 

7.1.2. Application of SI Algorithms in Transformer Fault Diagnosis 

(1) GA: it is a randomized search method evolved from imitating of the evolutionary laws of 

the biosphere [220], which is initially proposed by Holland. The main principle of GA is based on 

Darwin’s concept of biological evolution and Mendel’s theory of genetic variability, with the aim of 

achieving random global search and optimization by imitating the mechanism of biological 

evolution in nature [221]. The main features of GA are reflected in the following aspects: conduct 

direct operation to structural objects; have better global optimization ability and a search space that 

can automatically obtain and guide optimization; the search direction can be adjusted adaptively; 

there is no need for certain rules. The mathematical model of standard GA (SGA) can be described 

as: SGA = (C, E, P0, N, Φ, Г, Ψ, T), where C, E, P0, N, Φ, Г, Ψ, and T represent the individual coding 

method, individual fitness evaluation function, initial population, size of population, selection 

operator, crossover operator, mutation operator and iterative termination condition of GA, 

respectively. Based on this, the flow chart of SGA is illustrated in Figure 8. 
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Figure 8. The flow chart of SGA. 

According to the principle of GA shown in Figure 8, Pan et al. [67] presented a fault diagnostic 

method based on a real-encoded hybrid GA evolving a wavelet neural network (WNN), which can 

be employed to optimize the structure and the parameters of WNN instead of humans in the same 

training process. This method overcomes some defects of a BP algorithm of WNN, the optimal 

procedure is easily stacked into the local minima and cases strictly demand initial value, for 

example, and can achieve a satisfactory compromise among network complexity, convergence and 

generalization ability. A number of examples are carried out in this model, which show that it has 

good classification capability for the single- and multiple-fault samples of power transformers as 

well as high fault diagnostic accuracy. In order to select appropriate SVM parameters, Fei and 

Zhang [68] proposed a SVM with genetic algorithm-based model for fault diagnosis of a power 

transformer, in which the GA is used to optimize the parameters of the SVM. This model is 

employed to test the experimental data from several electric power companies in China and the 

results indicate that this developed model can achieve higher diagnostic accuracy than IEC 

three-ratio methods, normal SVM classifier and ANN. Besides, aimed at the inherent disadvantages 

of BPNN, such as local optimization, over-fitting and difficulties in convergence, Zhang et al. [196] 

integrated a combination ratio of taking advantages of IEC and Doernenburg into GA and fuzzy 

C-means clustering algorithm optimized BP, based on which, a novel model has been built 

successfully and it shows a better diagnosis accuracy rate and generalization ability than other 

models. In this model, fuzzy C-means clustering algorithm and GA can significantly overcome the 

disadvantages of data training and BP, thus it offers the potential of implementation for real-time 

diagnosis systems. Analogously, in order to avoid getting easily trapped into the minimal value 

locally and strict requirements on the initial value which would make fault diagnosis difficult to 

some extent, Chen and Yun [222] employed the evolutionary rule of the survival of the fittest to 

carry out a global optimization search for the transformer fault results which may contain the 

possible solutions. Finally, the optimal solution is found. The example shows that GA applied in 

this developed model can effectively prevent the diagnosis results from falling into local optimum, 

and the convergence performance is better than the traditional least square method. In addition, 

Mahvi and Behjat [223] also used the GA to estimate the detailed model of the damaged winding by 

the fault from the measured low-frequency response data up to 10 kHz. The experiments made on a 

test transformer show that the newly developed method is sufficiently able and sensitive to detect 

and localize faults of only few shorted turns on the transformer windings. 

(2) AIA: it is a new evolutionary theory which is inspired by the biological immune system, 

which introduces the immune mechanism based on the original theoretical framework of 

evolutionary algorithm, and imitates the function of the natural immune system [224]. In AIA, the 

affinity of antibodies and antigens is treated as the matching degree between the feasible solution 

and the objective function, such that the affinity between antibodies ensures the diversity of feasible 

solutions, the heredity and variation of the superior antibody is promoted by calculating the 

expected survival rate of antibodies, and the feasible solutions after selection and optimization 

stored by the memory cell unit are employed to restrain the continuous generation of similar 

feasible solutions and to accelerate the search to the global optimal solution. At the same time, 
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when the similar problems appear again, the better solution and even the optimal solution of these 

problems can be generated rapidly. Hence, as stated here, the basic procedures of the AIA are 

successively presented as [224]: problem identification; antibody group generating; calculate the 

fitness value of antibodies; produce the immune memory cells; selection of the antibodies, including 

promotion and restraint; evolution of the antibodies; updating of the antibody population; and 

termination. Based on this, the basic flow chart of AIA [224] is illustrated in Figure 9. 

 

Figure 9. The basic flow chart of AIA. 

Based on the principle of AIA introduced above, Yuan et al. [225] employed AIA in 

DGA-based transformer fault diagnosis, in which the optimal fault results are screened by the 

immune mechanism, and the accuracy of diagnosis is improved compared with the traditional 

three-ratio method. Moreover, based on genetic SVM and grey AIA, Zheng et al. [72] proposed a 

two-classifier cascade power transformer fault diagnosis algorithm, which is employed to solve the 

problem of both single and multiple power transformer fault diagnosis. Here, the first classifier is 

presented as SVM classified fault or normal state of power transformer and the high-frequency 

variation based on dynamic vaccine mechanism generates a new antibody. The experiments 

indicate that this proposed method combines genetic SVM with grey AIA and dynamic vaccine 

mechanism can effectively classify single and multi-fault of the power transformer and raise the 

fault diagnosis accuracy and diagnosis speed. In this diagnosis method [72], the flow charts of 

transformer fault diagnosis and grey AIA based dynamic vaccine mechanism are shown in Figures 

10 and 11, respectively. 

Besides the research work in [72], AIA-improved can be combined with Li et al. [163] proposed 

a new power transformer fault diagnosis method based on RST (RST) and improved artificial 

immune network classification algorithm, according to the complementary strategy. In this method, 

the minimal diagnostic rules are obtained through reduction approach of RST information table. In 

the first step, both the antigens and memory antibodies with class information are added into the 

artificial immune network and then are trained to learn the features of fault samples. In the second 

step, the k-nearest neighbor method is employed to classify the fault samples. Tests show that this 

proposed method has better capability to classify single- and multiple-fault samples with higher 

diagnosis accuracy than the IEC three-ratio method and BPNN. Similarly, Song et al. [176] also 

developed a transformer fault diagnosis model based on the rough set and AIA, which has high 

diagnosis accuracy, strong robustness and good learning ability. Yuan et al. [225] also used AIA for 

fault diagnosis of the power transformer, which can obtain higher accuracy of diagnosis compared 

with the results of IEC three-ratio methods. 

Currently, many immune mechanisms and theories have been investigated, and some of them 

have been applied in the artificial immune system [224], including B-cells, T-cells, antibody, antigen, 

immune learning, immune memory, immune network theory, immune risk theory, clonal selection 

theory, affinity maturation, negative selection, affinity, gene pool, diversity, distribution, the innate 

immune system, the adaptive immune system, immune response, immune tolerance, immune 

system hierarchy, etc. The DGA-based transformer fault diagnosis can obtain inspiration from these 

mechanisms and theories, which will be a new development direction in the future. Besides, the 

AIA can be combined with the computational immunology to make a new breakthrough in the 
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future, which will be able to establish some new artificial immune system theories, such as the 

optimization oriented immune computation theory, data mining oriented immune mining theory, 

and control oriented immune control theory. 

 

Figure 10. The genetic SVM and grey AIA-based transformer fault diagnosis flow chart presented in 

[72]. 

 

Figure 11. The grey AIA based dynamic vaccine mechanism flow chart presented in [72]. 

(3) ACO: it is also called ant algorithm, is a probabilistic technique employed to find the best 

solution. ACO was proposed by Marco Dorigo [226,227]. In ACO, a single ant in the population can 

leaves a substance called pheromone on the path it passes during the process of foraging, and it can 

perceive the intensity of the pheromone in this process. At the same time, the ants move towards 

the high intensity pheromone. Hence, the collective foraging of ant population is shown as a 

positive feedback phenomenon to the pheromone, based on which, the optimal path is gradually 

approximated and finally it can be found. Here, the optimal path is found through the positive 

feedback and distributed collaboration, which can be seen as the main feature of ACO. Aiming at 

parameters are confirmed by the cross-validation, Mo [228] proposed the ACO, SVM and IEC 

method-based model, called ACSVM-IEC, for the transformer fault diagnosis, which can find out 

the optimum accurately in a wide range, and is robust and practical for transformer fault diagnosis. 

Based on the accurate assessment of DGA on the insulation condition of power transformer, Liu et 

al. [229] proposed an approach of ACO-SVM to recognize histograms of characteristic dissolved-gas 

in transformer oil. Here, the DGA data of transformer oil with normal operation and four types of 

typical power transformer faults are selected, and the characteristic dissolved-gases are employed 

to establish histograms. This approach to DGA-based transformer fault diagnosis integrates the IEC 

three-ratio method, SVM and ACO-SVM, which shows effectiveness in improving the accuracy of 

the recognition for characteristic dissolved-gas histograms compared with the other two methods. 

Analogously, Niu et al. [230] also proposed a fault diagnosis method for the power transformer 

based on ACO-SVM classifier, which is effective to detect failure of transformer. Moreover, Tian et 

al. [231] proposed an improved ACO based on the transformer diagnosis data reduction, which is 

proved to have higher diagnosis accuracy rate in data reduction and have fast diagnosis speed 

compared to either traditional algorithm. Li et al. [232] combined the RBF network with ACO and 
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Fisher ratio algorithm to develop a novel model for the fault diagnosis of oil-immersed transformer, 

in which the combined ACO and Fisher ratio algorithm is employed to optimize the RBF structure. 

This method shows more effective than the ACO alone in fault diagnosis of oil-immersed 

transformer. Wei and Cui [233] investigated the power transformer fault test sequence optimization 

based on ACO. The power transformer fault test path is optimized with global optimization and 

heuristic optimal of ACO. The simulative results show the ACO based fault diagnosis method is 

feasible and effective. Besides, Qiao [234] employed the ACO to develop a transformer intelligent 

breakdown fault diagnosis system, which can overcome the defects of network to fall into partial 

minimum, and is a practical and effective method, with higher diagnosis accuracy. 

(4) PSO: it was proposed by Kennedy et al. [235] as a kind of evolutionary computing 

technique. In the PSO, each feasible solution can be treated as a particle that has two properties: 

location x and speed v. The fitness function of each particle is calculated in each round of iteration. 

Then two optimal particles will be tracked continuously and they are: the optimal location 

experienced by the current particle, called pBest, and the particle which has a global optimal 

location, called gBest. Based on the two particles, the speed and location of any particle are updated 

[218] as follows: 

1 1 2 2 min max min max( ) ( ), [ , ], [ , ]v v c r pBest x c r gBest x x x x v v v        (14) 

min max min max, [ , ], [ , ]x x v x x x v v v     (15) 

where ω represents inertia weight, which controls the impact of past speed on current speed. c1 and 

c2 are normal numbers, representing acceleration factors. r1 and r2 are two random numbers 

distributed uniformly in [0, 1]. Hence, the algorithm flow of PSO is introduced as follows: 

Step 1: initialization, namely the speed v and location x of each particle are set randomly. 

Step 2: calculate the fitness function of each particle. 

Step 3: for each particle, its fitness is compared with the pBest, if the current particle is better, 

then pBest = x. 

Step 4: for each particle, its fitness is compared with the gBest, if the current particle is better, 

then gBest = x. 

Step 5: update the speed and location of each particle according to (14) and (15). 

Step 6: if the end conditions are not met, then go back to step 2; otherwise, output the speed v 

and location x of the optimal particle. 

On this basis, PSO and the combination of it with other intelligent approaches have been 

gradually employed by researchers in the field of DGA-based transformer fault diagnosis. To this 

end, Tang et al. [69] developed a Parzen windows-based classifier for transformer fault diagnosis, 

which is able to interpret transformer DGA with a probabilistic scheme. The PSO as a global 

optimizer is employed to optimize the parameters of Parzen windows to improve the fault 

classification accuracy. This method improves both the diagnosis accuracy and computational 

efficiency when it is compared with a number of fault classification techniques. Fei et al. [77] 

proposed a PSO-SVM model to forecast dissolved gases content in power transformer oil, among 

which the PSO is employed to determine the free parameters of the SVM. The tests show that this 

model can achieve greater forecasting accuracy than GM and ANN under the circumstances of 

small samples. In addition, Liao and Zheng [80] developed a forecasting model on dissolved gases 

in oil-filled power transformers based on PSO-least squares support vector regression. In order to 

improve the performances of SVM classifier for the purpose of incipient faults syndrome diagnosis 

of power transformers, Lee et al. [236] proposed a PSO-based encoding technique to improve the 

accuracy of classification. Experiments on real operational data demonstrate that this proposed 

approach is effective, has high efficiency, and can make operation faster and also increase the 

accuracy of the classification. Moreover, in view of non-linear characteristics between fault 

symptoms and fault types of transformers, Cheng et al. [237] combined the WNN with an improved 

PSO in order to design a novel model for transformer fault diagnosis using the data of DGA. This 

model is constructed by three-layer WNNs, and is trained by an improved PSO. The PSO applied in 
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this model can accelerate the training speed of WNN and improve the accuracy of training. The 

simulative experiments demonstrate that this improved PSO and WNN can be effectively applied 

to transformer fault diagnosis using DGA and provides a new way for transformer fault diagnosis. 

(5) BFO: it is a new optimization method proposed based on the basic laws of the growth and 

evolution of bacterial colonies. The biological basis of BFO is the intelligent expression of 

Escherichia coli in the process of foraging in human intestinal tract. The location of bacteria is 

updated according to three iterative procedures: chemotaxis, reproduction and dispelling, so that 

bacteria can tend to a nutrient rich place. Based on this main principle of BFO, Geethanjali et al. [238] 

proposed an entirely new approach for detection and discrimination of different operating and 

fault conditions of power transformers. In the proposed scheme, ANN techniques have been 

applied to transformer protection to distinguish internal faults from normal operation, magnetizing 

inrush currents and external faults. In addition, Gopila and Gnanambal [239] developed a 

Hyperbolic S-Transform BFO technique to solve an optimization problem that is formulated by the 

task of detecting inrush and internal fault in power. In this technique, the BFO has been 

demonstrated the capability of identifying the maximum number of faults covered with minimum 

test cases and therefore improving the fault detection efficiency in a wise manner. 

(6) AFSO: it was proposed by Li in [240,241] as a SI algorithm to simulate the foraging activities 

of fishes. The main principle of AFSO is to adopt the idea of a bottom-up approach to complete 

optimization, by simulating the three basic behaviours of fishes: foraging, gathering and pursuing. 

Hence, AFSO has some advantages such as fast optimization speed, global optimization ability and 

strong parallel processing capability. Although the AFSO has a lower requirement for the initial 

values and can be realized easily, it also has some defects, such as the optimization precision is not 

high and the convergence rate is slower in later period. To address it, some improved AFSO 

algorithms have been proposed by scholars and have been successfully applied in the transformer 

fault diagnosis using DGA data. For some examples, Yu et al. [197] proposed an IAFSO to optimize 

the weight and threshold of the BP. The global searching ability of the IAFSO approach is utilized 

to find the global optimization solution, so that it can overcome the slower convergence velocity 

and easily getting into local extremum of the BP neural network. Experimental results indicate that 

the proposed IAFSO can improve both convergence velocity and veracity to some extent. Geng et al. 

[198] proposed a hybrid AFSO and frog leaping algorithm to identify J-A parameters, which 

combined the advantages of fast convergence from AFSO and high local search accuracy from a 

frog leaping algorithm. The results show that the hysteresis curve generated from the proposed 

hybrid algorithm has a great consistency with the measured curve. In addition, Yu et al. [199] also 

developed a model based on the IAFSO and SVM and it has been applied in transformer fault 

diagnosis. In this model, the IAFSO is utilized to find the optimization solution of the SVM 

parameters. Experimental results show that the proposed algorithm can find out the optimum 

accurately in a wide range. 

(7) ABC: it was proposed by Karaboga in 2005, as a kind of biomimetic algorithm employed to 

simulate the intelligent search behaviour of a bee colony [242]. ABC is developed to simulate the 

process of honey collection by bees in Nature, and in this process, various stages of the tasks will be 

completed by bees in the population in the process of honey collecting, according to their different 

functions, and then the optimal solution of the problem is found through the collection and sharing 

of information and food sources. Hence, ABC has the characteristics of less control parameters, 

simple calculation and easy implementation. To this end, Yilmaz [243] proposed a multi-objective 

ABC algorithm to estimate transformer equivalent circuit parameters. Besides, ABC is rarely 

employed in transformer fault diagnosis based on DGA data. In the future, the improved ABC and 

the combination of it with other intelligent methods may be a new breakthrough in DGA-based 

transformer fault diagnosis due to excellent characteristics of ABC. 

(8) FOA: it was proposed by Krishnanand [244]. The main principle of FOA is introduced as 

follows: a firefly attracts other companions through the fluorescence emitted by the individual’s 

fluorescein during the simulation of firefly movement, and then fireflies move to the firefly that has 

the brightest fluorescent and better location in the area, so that achieving the best location of its own. 
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On this basis, Huang et al. [245,246] proposed a transformer fault diagnostic method based on grey 

fuzzy FOA. In this method, characteristic gas coding sequences are used as inputs of training 

samples, and transformer fault types corresponding to the inputs are used as outputs to build an 

FOA-LM network, and the weight value and the threshold value of the LM network are optimized 

through an FOA. The pre-treated data of the characteristic gases of the transformer are used to train 

the network, with the aim of obtaining an optimal nerve net weight value. This method can solve 

the problems of data source shortage of transformer fault gases and low result accuracy in a 

conventional analysis method. 

(9) BOA: it was proposed by Yang in 2010 as a type of metaheuristics optimization algorithm 

[247]. BOA, as a SI algorithm, is employed to imitate bats in Nature that use sonar to avoid 

obstacles to detect prey. BOA is a new intelligent algorithm, which offers obvious improvements in 

validity and accuracy, and meanwhile it has the characteristics of a simple model, strong searching 

ability and fast convergence speed. Hence, Gong et al. [248] employed it for power transformer 

fault diagnosis based on improved BPNN. During the diagnosis, the bat algorithm of BPNN 

weights and threshold parameters optimization can improve the speed of convergence. The BPNN 

model is constructed according to the obtained parameter values, and the data are trained and 

tested. An example analysis shows that the optimization of BPNN for the fault diagnosis of the 

transformer is practical and effective. 

(10) Hybrid SI algorithms: they have been adopted by more and more researchers in power 

transformer fault diagnosis using DGA. This is because multiple limitations of a single SI algorithm 

are becoming more and more prominent, especially when dealing with a very complicated 

optimization problem. Therefore, many scholars have proposed to improve the single SI algorithm 

by drawing lessons from the features of other intelligent algorithms, as well as a hybrid SI 

algorithm to optimize the SVM parameters. Li et al. [219] found that the experimental results are 

easy to fall into local optimum, such as GA, ABC and flower pollination algorithm (FPA), after they 

compared the performance of each SI algorithm in SVM parameters optimization; At the same time, 

the convergence is slow in later stage, such as the PSO; and the optimization speed is too slow, 

although some algorithms have fast optimization speed, there is a problem of low optimization 

precision; AFSO demonstrates the best performance in the SVM parameter optimization methods 

when it is compared with several other SI algorithms; the main problem of ACO is how to 

effectively solve the problem of continuous optimization; BOA and AFSO both have the problem of 

low optimization accuracy. Hence, Li et al. gave a detailed comparison of advantages and 

disadvantages of optimizing the SVM parameters of various SI algorithms in [219], as shown in 

Table 10. 

Table 10. A detailed comparison of advantages and disadvantages of optimizing the SVM 

parameters of various SI algorithms in [219]. 

SI Algorithm Advantages Existing Problems 

GA 

▪ Possess global optimization ability 

▪ Perform distributed computing based on 

intrinsic parallelizability 

▪ Results easily fall into local optimum 

▪ Have longer training time 

▪ Have lower classification precision 

ACO 

✓ Stronger global optimization ability 

✓ Seen as a kind of positive feedback 

algorithm 

✓ Stronger robustness 

✓ Failed to deal with continuous 

optimization problems 

PSO 

▪ Have fast speed of convergence in early 

stage 

▪ High optimization precision 

▪ Have slow convergence speed in later 

stage 

▪ Easy to fall into local optimum 

AFSO 

✓ Stronger parallel processing ability 

✓ Have fast speed of optimization 

✓ Possess global optimization ability 

✓ Precision of optimization is not high 

✓ Have slower convergence rate in the later 

stage 

ABC 
▪ Less control parameters 

▪ Easy to calculate 

▪ Slow convergence rate 

▪ Easy to fall into the local optimum 

FOA ✓ Have fast speed of optimization  
✓ Slow convergence rate in the early stage 

✓ Unstable convergence rate in the later 
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stage 

BOA 
▪ Have fast speed of convergence 

▪ Have strong ability of searching 
▪ Optimization precision is not high 

SFLA 1 
✓ Less parameters and easy to implement 

✓ Have superior global optimization ability 
✓ Easy to fall into the local optimum 

FFOA 2 
▪ Have simple structure 

▪ Easy to implement 

▪ Easy to fall into the local optimum 

▪ Optimization precision is not high 

BFO 
✓ Parallel search ability 

✓ Easily jump out of local minima 

✓ Convergence rate is not fast 

✓ Optimization precision is not high 

HIAs 3 

▪ Possess stronger global search ability 

▪ Avoid premature convergence of 

algorithms 

▪ Convergence rate is improved in later stage 

/ 

Hybrid SI 

algorithm 

✓ Avoid prematurely falling into local 

optimum 

✓ Optimization of algorithms are accelerated 

✓ Optimization precision of algorithms are 

improved 

/ 

1 SFLA = shuffled frog leaping algorithm; 2 FFOA = fruit fly optimization algorithm; 3 HIAs = hybrid 

intelligence algorithms, which represents the combination of SI algorithms with other algorithms 

Based on Table 10, it can be concluded that the mixed use of SI algorithms can find the optimal 

parameters and greatly improve the prediction and classification accuracy of SVM. In addition, the 

improved algorithms not only possess the advantages of one SI algorithm, but also possess the 

advantages of another one, thus this improvement is feasible and effective. On this basis, some 

improved SI algorithms have been developed and successfully applied in the transformer fault 

diagnosis using DGA data. A brief summary is presented as follows. 

In view of timely and accurate grasp of the health status of the power transformer, and 

carrying out predictive analysis of the incipient faults, Zhang et al. [249] developed a diagnosis 

model for transformer fault based on chemical reaction optimization BPNN and fusion DGA 

method, which combines both advantages of AI and DGA method. In this proposed model, CRO 

and fusion DGA method are employed to overcome the defects of BPNN and traditional DGA 

method. The results reveal that the accuracy, iterations and training time of the model are 87.88%, 

1991 and 1927 ms, respectively. This demonstrates that the model has distinct advantages when 

compared with those of other models. Zang et al. [250] proposed a hybrid intelligent method for 

power transformer fault diagnosis, based on the integration of evolutionary programming, fuzzy 

theory, ANN and case-based reasoning. Huang and Zhao [251] proposed to combine the rough sets 

with multi-population GA for transformer fault diagnosis, in which the immigration operator and 

partial competitive rules are employed to maintain the diversity of population so as to avoid the 

results falling into local optimum. Yao [252] proposed the transformer fault diagnosis model based 

on the integration of improved AFSO and RBFNN using the data of DGA. In this model, the 

parameters and behaviours of AFSO are improved by introducing appropriate strategies, including 

adaptive strategy, fragmentation strategy, jumping behaviour, and stepping behaviour. This 

designed AFSO-RBF network shows strong superiority in diagnosis performance, and has good 

practical value in transformer fault diagnosis. Illias et al. [89] proposed a hybrid modified 

evolutionary PSO-time varying acceleration coefficient-ANN for power transformer fault diagnosis. 

Meanwhile, Illias and Zhao [253] employed hybrid SVM-modified evolutionary PSO to identify 

transformer faults based on DGA. Wang et al. [254] developed a new hybrid evolutionary 

algorithm combining PSO and BP algorithm, called HPSO-BP algorithm, to select optimal value of 

probabilistic neural network parameters for power transformer fault diagnosis. In this model, PSO 

is employed to perform a global search to give a good direction to the global optimal region, and 

then BP algorithm is used as a fine tuning to determine the optimal solution at the final. The 

experimental results show that the proposed approach has a better ability in terms of diagnosis 

accuracy and computational efficiency.  

To sum up, SI algorithms are generally employed to optimize the parameters, such as SVM 

parameters, in the process of DGA-based transformer fault diagnosis, and a lot of research work has 
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been carried out on this. However, some defects still exist in SI algorithms. Taking GA and ACO, 

although the improved GA can avoid falling into a local optimum under certain conditions, it still 

has the possibility of falling into local optima, thus it is essential to further investigate and solve this 

problem in judging whether the algorithm is falling into and jumping out of the local optimum; 

although ACO is able to obtain a better classification performance of optimal parameter 

combinations than other SI algorithms, it still has some issues to be addressed, such as the longer 

operation time and the fact the time complexity of the algorithm is higher when the number of 

samples is increased to a certain extent, so that the convergence performance of ACO still needs to 

be further studied. In the transformer fault diagnosis using DGA data, the selection of a SVM 

parameter model is still a typical problem. A number of SI algorithms have been proposed to 

address this through optimizing the SVM parameters, based on the advantages of SI algorithms, 

such as the characters of strong distribution, self-organization and robustness. Some SI algorithms 

have been investigated, improved and applied continuously, especially for the application of 

optimizing SVM parameters, in transformer fault diagnosis using DGA data in recent years, and 

some achievements have been made in transformer fault diagnosis, which demonstrates that SI 

algorithms possess stronger parallel processing capability, fast optimization speed, and can 

effectively avoid falling into local optimum and carry out global optimization, with a high 

prediction and classification precision. However, SI algorithms cannot ensure a strong capability of 

optimization in each condition, and it also cannot guarantee that the obtained optimal parameters 

have good classification and prediction abilities for each kind of parameter model. 

Hence, there is still much room for the theoretical investigation and application of SI 

algorithms in DGA-based transformer fault diagnosis, and it is essential to combine the 

convergence of the algorithm with the prediction of optimization together and consider it at the 

same time. The research direction of SI algorithms in transformer fault diagnosis using DGA should 

be focused on the following aspects: improving the performance of SI algorithms to avoid falling 

into local optima; investigating the setting of algorithm parameters to improve the algorithm 

performance; conducting the proof of algorithm convergence; carrying out the combination of SI 

algorithms with other intelligent algorithms to develop more effective and efficient fault diagnosis 

algorithms. 

7.2. Data Mining Technology 

7.2.1. Data Mining Technology Introduction 

The application of data mining technology in DGA-based transformer fault diagnosis is 

reflected in the use of a computer to automatically process a large amount of data samples to find 

hidden relationships or rules. In this process, the data mining technology can be employed to 

model the fault symptoms of the power transformer to find the law of describing the 

interrelationship between the operating status of the transformer and its external performance. The 

process of data mining contains four procedures: data preparation, define the topics, establish the 

corresponding model, and understand the built model. For example, in the last step, after the model 

is established, the program begins to perform the task of understanding the built model, which is 

implemented mainly through the analysis of frequency index and influence value index. The 

former index explains the percentage of fault records in each group of data accounts for the current 

records. The latter index indicates the importance of a record value to the prediction, and its value 

is taken from 0 to 100. 

7.2.2. Application of Data Mining Technology in Transformer Fault Diagnosis 

Data mining technology can be applied to perform data mining of data sources and establish 

relevant models, which is beneficial to obtain the intuitive relationship between the operation state 

of transformer and the result of fault analysis, thus the prediction accuracy is high. Moreover, when 

the data source is more complex and the amount of data is larger, the more adaptable the built 

model is, thus the more practical the predictive result is. However, the process of setting up the 
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data source will be more complex. To address it, the clustering technology has been introduced in 

the DGA-based transformer fault diagnosis. Fu et al. [155] introduced the weighted fuzzy kernel 

clustering method to the power transformer fault diagnosis based on DGA, which can effectively 

solve the problem that fuzzy C-means algorithm is susceptible to the influence of sample 

distribution and initial parameters. The examples demonstrate that this proposed method can 

quickly and effectively cluster the sample data, thus it can meet the requirements of transformer 

fault diagnosis. In addition, Hao et al. [79] used the dynamic clustering algorithm to diagnose 

transformer faults, in which the artificial immune network is firstly employed to carry out immune 

memory and learning of the fault samples, so that the useful characteristics that effectively 

represent the fault samples can be extracted and used as the initial clustering centres of 

kernel-based probabilistic clustering algorithm. In the second step, GA is used to dynamically 

optimize and select the number and centres of clustering to achieve the classification of the fault 

samples. The diagnostic results indicate that the fault samples are effectively classified using this 

proposed method and the fault diagnosis precision is improved, by comparing it with the results 

obtained by BPNN. Lin et al. [63] combined the grey prediction with clustering analysis, and 

developed a relevant model to enhance oil-immersed transformer fault diagnosis using dissolved 

gases forecasting. Aiming at the problem that power transformer fault reasons are very complicated 

owing to the fuzziness and uncertainty between the failure phenomenon and failure mechanisms, 

Zheng et al. [81] proposed an iterative self-organizing data analysis technique algorithm, called 

ISODATA, based on DGA, which can largely overcome the dependence on initial cluster centre and 

can be easily applied to oil-immersed transformer fault diagnosis. In addition, Sima and Shu [255] 

established a SVM based multilevel binary tree transformer fault diagnosis model, in which the 

adaptive k-means clustering algorithm is put forward to resolve multi-class problem. 

Apart from the clustering analysis method as a kind of data mining technology applied in the 

DGA-based transformer fault diagnosis, some scholars have employed information fusion 

technology in transformer fault diagnosis. Hu et al. [200] put forward a new fault diagnosis model 

which has combined the on-line monitoring of five characteristic gases dissolved in transformer oil 

with the feature extraction of three-dimensional temperature field of power transformer. This 

model can realize fusion of the multivariate fault information of power transformer and greatly 

improve the fault diagnosis accuracy of the power transformer based on the information fusion 

technology. Based on the model, an on-line state monitoring and fault diagnosis system has been 

developed, which can change the existing maintenance and repair pattern for power transformer as 

well as realize accurate diagnosis or forecast faults of transformer intelligently. Li et al. [201] 

employed the multi-sensor information fusion technology in the power transformer fault diagnosis. 

Besides, Gong and Zhang [202] also developed the fault diagnosis model of transformer based on 

the technology of information fusion, which can achieve a perfect goal, namely the precision of fault 

diagnosis result has been enhanced definitely. 

7.3. Machine Learning 

7.3.1. Machine Learning (ML) Description 

With the continuous improvement of computing power and computing theory innovation, 

great progress has been made in ML in the past 30 years, and it is being considered by more and 

more researchers. ML has been widely employed in various areas, such as biology, medicine, 

energy, transportation and environment. Based on a conventional ML framework, new ML 

methods and theoretical framework have been continuously proposed by scholars [256,257]. The 

essence of a ML algorithm is to find a target function (f), with the aim of making it the best mapping 

between the input variable (X) and the out variable (Y), that is, Y = f(X). The most common type of 

ML is to find such Y = f(X) and use which to forecast value of Y corresponding to the new X. Such a 

process is called predictive modelling or predictive analysis whose goal is to derive the most 

accurate predictive result as much as possible. Aiming at the relationship between data acquisition 

and action selection, the mathematical models can be established to describe the theoretical 
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framework of some common ML algorithms presented in [257]. Assume that a set of data are 

obtained to make up a collection X = {xi}, i = 1, 2, …, I. if the research objective is a complex system, 

then these data are usually observed system states or outputs. For these data, a series of actions ak 

can be taken to make up a collection A = {ak(Xʹ)}, k = 1, 2, …, J. X X   represents a subset of data 

set X. Each action can generate a reward R(aj), and the data acquisition and taking action can be 

separated in time. The target is to maximize the long-term reward via ML [257], namely: 

,1
1

max ( )
j

k J

k
a j J

k

R a


 


  (16) 

If each action ak causes a loss L(ak), then according to (16), the objective function can be 

transformed into minimizing the long-term loss as:  
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k J
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a k J

k

L a


 


  (17) 

For the common supervised learning, the model presented in (17) can be further simplified as 

follows: when all data are known and have been classified correctly, then take an action to establish 

a function mapping (is usually the classification function) to minimize the classification error. 

Generally speaking, the pre-set data are subject to independent and identically distributed (i.e., 

i.i.d), then the objective function can be further expressed [257] as:  
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1

min min ,
i I

i
a a

i

L a X L x a




   (18) 

Compared with supervised learning, online ML [258] emphasizes that data is gradually 

acquired and every time a new data is acquired, the system can take an action based on all the 

acquired data. For a special case of online ML, called sequential learning, every time only one data 

is acquired as xi, and one predictive action f(xi) is generated according to the mapping function ( )f  . 

Next, the real labeled data y(xi) of xi is acquired, and then the loss generated by it can be calculated 

as L[f(xi), y(xi)]. Finally, the objective function is obtained by selecting the appropriate ( )f   to 

minimize the long-term regret value [257]: 

   
1

min ( ( )) min ,
i I

i i
f f

i

L a X L y x f x




     (19) 

where multiple actions exist, and with the increase of the number of data obtained, the actions 

taken will be optimized continuously. 

Similar to online ML, RL allows the action at at time t to influence the data xt+1 that is obtained 

at time (t + 1), thus a specific state transfer function exists as ( , ) :T X A X    , namely: 

     1 1, , Pr | ,t t t t t tT x a x x x x a x   (20) 

Then, the objective function is as:  

1 1
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max ( , ( ), )[ ( , ( )) ( )]t t t a t t t
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T x a x x R x a x V x


 



   (21) 

where ( , ( ))a t tR x a x  is the immediate reward obtained by the system in state xt taking action a(xt) at 

time t. V(xt + 1) is the long-term mean reward of the system in state xt + 1.   is the discount factor. It 

can be seen from (19) and (20) that RL is one kind of active learning [259], thus specific action can be 

taken to give consideration to both optimization objective function and exploration of input data set 

X. This is a significant improvement against online ML. Therefore, the basis of RL is to maximize 

the cumulative value of the reward obtained by agent from the environment, in order to learn the 

optimal strategy to accomplish the goal. This indicates that RL is more focused on learning strategy 

for solving problems. Deep learning (DL) is originated from investigation of ANN, thus multi-layer 

preceptor with multiple hidden layers is a common used DL model. DL has been widely used and a 
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series of breakthroughs have been achieved using DL in image recognition, speech recognition and 

natural language processing, etc. DL has been concerned by more and more researchers due to its 

strong representational ability and generalization ability. The perceived ability of DL can be 

combined with RL that has ability of decision learning to form a new ML, called deep RL. 

According to [260,261], the illustrations of RL and deep RL are demonstrated in Figures 12a,b, 

respectively. 

 

Figure 12. Principle framework diagram of RL and deep RL. (a) is the principle framework of RL; (b) 

is the principle framework of deep RL (DRL). 

7.3.2. ML-Based Transformer Fault Diagnosis 

Actually, the process of ML-based transformer fault diagnosis using DGA can be divided into 

two procedures. Firstly, establish the mapping model of state vector space of transformer to 

transformer fault type space, and then use this built model to identify the fault types of the 

transformer according to the obtained unknown data samples. According to the principle 

explanation of ML above, a brief summary is conducted in this section on the application of ML 

methods such as SVM, ELM, and DL in transformer fault diagnosis using DGA. Besides, the 

difficulty and future development direction of these ML methods in transformer fault diagnosis are 

presented as well. 

(1) SVM: in view of fault diagnosis of the transformer using ML, SVM has been widely used 

since it was proposed by Vapnik et al. in 1995. SVM is a kind of ML method based on statistical 

learning theory [262], which has great advantages in solving small sample size and non-linear 

problems. SVM is a two-classifier which distinguish transformer faults by constructing 

multi-branch classification SVM. In recent years, SVM is generally employed in combination with 

AI algorithms to develop new algorithms or improved AI algorithms, which are then used to 

optimize and design misjudgment penalty factors, thus enhancing the role of empty rotation 

sample in the construction of the classification hyperplane, and suppressing deviation of the 

hyperplane. On this basis, Bacha et al. [5] proposed an intelligent fault classification approach to 

power transformer DGA. Here, SVM as a powerful tool is employed to deal with the problem with 

small sampling (i.e., small amounts of training data), nonlinearity and high dimension (i.e., large 

amounts of input data), hence SVM is applied to establish the power transformer faults 

classification and to choose the most appropriate gas signature. In this method, the experimental 

data from the Tunisian Company of Electricity and Gas are tested and the test results indicate that 

the extension method and SVM approach can significantly improve the diagnosis accuracy for 

power transformer fault classification. In order to effectively select appropriate SVM parameters, 

Fei and Zhang [68] combined SVM with GA to develop a novel algorithm for fault diagnosis of a 

power transformer, called SVM-GA algorithm. In this algorithm, GA is employed to select 

appropriate free parameters of SVM. Experimental results indicate that this proposed method can 

achieve higher diagnosis accuracy than IEC three-ratio methods, normal SVM classifier and ANN. 

Zheng et al. [72] proposed a two-classifier cascade power transformer fault diagnosis algorithm to 
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solve the problem of both single and multiple power transformer fault diagnosis. In this algorithm, 

SVM classified fault or normal state of power transformer is made as the first classifier, and GA is 

used to optimize the kernel function parameter of SVM. Genetic SVM combined with grey artificial 

immune and dynamic vaccine mechanism can effectively classify single- and multi-fault of power 

transformer. In addition, Fei et al. [77] made full use of strong global search capability of PSO and 

then developed a PSO-SVM model to forecast dissolved gases content in power transformer oil, 

among which PSO is employed to determine free parameters of SVM. This PSO-SVM method can 

achieve greater forecasting accuracy than GM, and ANN under the circumstances of small sample. 

Analogously, Liao and Zheng proposed a PSO-least squares support vector regression-based 

forecasting model on dissolved gases in oil-filled power transformer, in which the least 

squares-SVM regression model with RBF kernel is established to facilitate the forecasting model, 

and the PSO is employed to optimize the hyper-parameters needed in least squares-SVM regression. 

Shah and Bhalja [85] implemented discrimination between internal faults and other disturbances in 

transformer using the SVM-based protection scheme. Sima et al. [154] combined the GRA with 

fuzzy SVMs to form a novel concentration prediction model of dissolved gases in transformer oil, 

which has considered the influence of oil temperature and loads on oil-dissolved gases. This 

developed model has made full use of advantages of GRA to extract the key factors that have great 

influence on characteristic gases concentration and that acted as attributes of input samples of the 

SVM regression modelling using fuzzy membership function. Likewise, the SVM-based fault 

diagnosis algorithm of transformer using DGA has been developed both in [169,170]. In the two 

investigations, the rough set theory has been integrated into SVM to obtain the rough faulty point 

of the power transformer with a satisfactory accuracy. In addition, Zhang et al. [188] developed a 

new SVM model for fault diagnosis of oil-immersed transformers based on an improved imperialist 

competitive algorithm (IICA), in which SVM is introduced as an effective fault diagnosis technique 

based on DGA for transformers with maximum generalization ability, and the IICA is employed to 

optimize the SVM parameters appropriately. Three classification benchmark sets are investigated in 

[188] based on PSO-SVM and IICA-SVM with four multiple classification schemes to select the best 

scheme for transformer fault diagnosis. Meanwhile, Chao et al. [199] thoroughly investigated the 

combined improved artificial fish swarm and SVM applied in transformer fault diagnosis; and 

Wang et al. [263] made use of the distinctive strength of SVM algorithm in solving small sample 

size problems and applied the SVM in DGA-based transformer fault diagnosis, by employing the 

cross-validation based grid search method to determine the parameters of SVM, so as to construct 

the power transformer fault diagnosis model, which is better used in practice.  

(2) Extreme learning machine (ELM): ELM has been introduced into DGA-based transformer 

fault diagnosis in recent years. ELM is an emerging learning algorithm which is proposed for the 

single-hidden-layer feedback neural network by Professor Huang in 2004 [264]. ELM is 

characterized by the fact that the weight matrix and biasing of the input layer and the hidden layer 

are generated randomly only at one time, without the need of iterative optimization. The only 

solution to the parameter is the weight matrix of hidden layer and output layer, which is obtained 

by the generalized inverse matrix method, so that the solving process is more quickly [265,266]. 

ELM has achieved good application in speech recognition, fault diagnosis, and image classification, 

especially the ELM has been applied to the fault diagnosis of the power transformer currently due 

to the characters of fast learning speed and good generalization of it. According to [267], the 

network structure of ELM is illustrated in Figure 13a, where m, L, and n are the number of nodes of 

the input layer, hidden layer and output layer, respectively, y is the output of the ELM network, 

and x1, x2, …, xp are the training samples. 

Based on Figure 13a, the output of ELM network is presented [267] as: 

T

1

( )
L

i i i i
i

g b


 y x  (22) 

where x1, x2, …, xp are the training sample sets of the ELM network, and their corresponding labels 

are t1, t2, …, tp, respectively.  T

i i i
g b x  is the activation function of the hidden layer. w is the 
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weight matrix sized m L . 
i

  is the weight vector between the ith node of the hidden layer and 

the input layer. bi is the bias parameter the ith node of the hidden layer. β is the weight matrix 

between the hidden layer and the output layer, sized L n . βi is the weight vector between the ith 

node of the hidden layer and the output layer. 
i

  and bi are generated randomly, making the ELM 

can directly generate the global optimum, which is finally transformed into the minimum norm 

least squares solution, with a high speed in solving. Assume that
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, then the optimization objective of ELM is demonstrated [267] 

as 
2 2

min
2

C
H T


   , where C is a penalty factor. The solution of this optimization objective of 

ELM can be solved as β = (HTH + CI)†HTT, among which A† refers to the Moore-Penrose generalized 

inverse of the matrix A. This indicates that the parameters can be obtained via direct calculation by 

ELM according to β = (HTH + CI)†HTT, thus the complexity is significantly better than the 

Max-margin domain transforms [267]. Based on this description of ELM and according to [268], the 

flow chart of ELM-based transformed fault diagnosis is demonstrated in Figure 13b. 

 

Figure 13. Illustration of ELM, among which (a) is the ELM network structure; and (b) shows the 

ELM-based transformer fault diagnosis flow chart. 

Therefore, in view of the ELM-based transformer fault diagnosis using DGA, some research 

achievements have been achieved. In the process of fault diagnosis of the transformer, Malik and 

Mishra [203] applied principle component analysis using RapidMiner software to IEC TC10 and 

related databases to identify most relevant input variables for incipient fault classification of the 

power transformer. Thereafter, ELM is implemented to classify the incipient faults of power 

transformer and its performance is compared with fuzzy-logic and ANN. The compared results 

show that ELM can provide better diagnosis results with proposed input variables. Wang et al. [204] 

presented the optimization algorithm of integrated ensemble of online sequential ELM, which has 

been applied to transformer fault diagnosis using a limited number of sample data. The 

experimental results show that this developed model has better performance in response to online 

monitoring and real-time data processing. In addition, Yuan et al. [269] proposed an integrated PSO 

and ELM method for fault diagnosis of the power transformer based on DGA. Moreover, in order 

to overcome the deficiency of three-ratio method that fault diagnosis cannot be made due to 

missing ratio coding, Du et al. [205] combined ELM with the three-ratio method to diagnose the 

fault of the power transformer through making use of the good generalization performance of ELM. 

This ELM fault diagnosis model includes the ratio of coded information by taking the component 

content of the characteristic gases in the sample and the corresponding ratio of codes as the input of 

ELM. The diagnosis results show that the model is feasible and effective in transformer fault 

diagnosis. 
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(3) Deep learning (DL): it is derived from the study of neural networks, which can be known as 

a a deep layer neural network. DL, by establishing a hierarchical model structure similar to human 

brain, can conduct feature extraction of the data that needs trained from bottom layer to top layer to 

depict the intrinsic information rich in data, so that it can improve the accuracy of classification or 

prediction. Deep Auto-Encoder Network (DAEN) is a kind of DL method, in which the training 

samples are implemented feature transformation layer by layer through constructing a ML model 

with multiple hidden layers, and then the characteristic representation of samples in the original 

space is transformed to a new feature space, so that making the classification easier and finally 

improving the accuracy of the classification. DAEN is more capable of depicting the rich intrinsic 

information of the data, thus it is a hot spot in ML internationally [105]. On this basis, DL has been 

employed by more and more researchers in DGA-based transformer fault diagnosis. Mlakić et al. 

[70] employed the DL method and infrared imaging as a tool for transformer faults detection. Cui et 

al. [71] investigated a DL-DBN (deep belief network) and two BP artificial neural networks based 

on Matlab programming by using directly DGA and characteristic gas method in transformer oil 

chromatographic analysis. Shi et al. [105] firstly constructed a classified DAEN model, and 

employed the typical classified data set to analyze and verify the classification performance of this 

model. Then, combined with the on-line monitored data of DGA for power transformed, they 

proposed a method of transformed fault diagnosis based on the classified DAEN model, which can 

optimize the parameters of classified DAEN model by the pre-training with massive unlabeled 

samples and adjust them with a few labeled samples. The results of case analysis demonstrate that 

the proposed method has higher diagnosis accuracy than those based on the BPNN and the SVM. 

Besides, Shi and Zhu [206] employed the DL neural network to the fault diagnosis of the power 

transformers, which indicates that the proposed DL neural network can effectively utilize massive 

oil characteristic online monitoring unlabeled data and a small number of fault DGA data to 

accomplish data training, and then the fault diagnosis results are presented in probabilistic forms 

with a better fault judgment performance. Moreover, aiming at current transformer saturation 

classification issues, Ali et al. [207] employed a DL approach to develop an accurate current 

transformer saturation classification method based on unsupervised feature extraction and 

supervised fine-turning strategy. In this method, auto-encoders and deep neural networks are used 

to extract features automatically without prior knowledge of optimal features. Simulation results 

show that the method can classify the different levels of current transformer saturation with a 

remarkable accuracy and has unique feature extraction capabilities. 

To sum up the survey in this section, ML methods have provided new ideas for the fault 

diagnosis of power transformers using DGA, and lots of substantive results have been achieved 

currently. However, there are still some problems to be solved. Firstly, although ML demonstrates a 

better performance in transformer fault diagnosis based on DGA, these achieved research results 

are mostly focused on fault classification while rarely involving fault location. ML can be combined 

with other intelligent algorithms for accurate location of the faults, but the location precision of 

them is not so perfect. Hence, it is one of research directions to accurately diagnose the fault of the 

transformer and locate it with a high precision in the future. Secondly, it may become possible to 

realize omnidirectional monitoring of the operation status of the power transformer in the future 

along with the high-speed development of computer information technology and AI. Hence, it is of 

great significance to investigate the intelligent ML methods by using the obtained power 

transformer operation state data samples, which can realize identification of new faults in the 

power transformer for high accuracy of diagnosis. This will be another research direction in future. 

7.4. Other Intelligent Diagnosis Tools 

In addition to the methods summarized in the previous sections in this chapter, some other 

intelligent methods as powerful diagnosis tools have been developed and applied to power 

transformer fault diagnosis using DGA. Among them, mathematical statistics method [270], WA 

[83,124–127], optimized neural network [208,209], BN [87,166–168], and evidential reasoning 
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approach [45,75,151,210–217] have already appeared and have been preliminarily applied in the 

DGA-based fault diagnosis of the power transformers, and they are briefly reviewed as follows: 

(1) Mathematical statistics methods: they are a branch of mathematics that uses statistical 

methods to analyze data and derive its conceptual regularity (i.e., statistical laws), based on the 

theory of probability. The mainstream analysis methods include regression analysis, variance 

analysis, covariance analysis, clustering analysis, discriminant analysis, principal component 

analysis, etc. On this basis, Zou [270] developed a fuzzy fault diagnosis model for power 

transformer based on a new coding membership function, in which the probability theory and 

mathematical statistics are employed to analyze the distribution of true gas-in-oil volume fraction 

and its ratio. Based on the true ratio distribution of gas-in-oil volume fraction, a method combined 

with the three-ratio coding boundary is proposed to solve the coding membership function. In 

addition, the calculation methods of code-combination fuzzy set, fault fuzzy set and cut set are 

investigated. Two sets of historical chromatogram data are tested to verify this fuzzy diagnosis and 

the test results demonstrate that the diagnosis robustness and accuracy are both improved. 

(2) WA: it is an emerging time-frequency analysis method. WA is seen as a breakthrough of 

Fourier transformation, by which the localization idea of window Fourier transformation is 

developed. The window width of WA decreases with the increase of frequency, thus it meets the 

high resolution requirement of the high-frequency signal. WA has good time-frequency localization 

characteristic and the ability of adaptive and multi-scale analysis to the signal, thus it is suitable for 

detecting transient anomalies occurring in normal signals and can demonstrate their components. 

At present, WA has been successfully applied to the fault signal analysis of electrical equipment 

and the vibration signal analysis of the mechanical equipment. In the fault diagnosis of 

transformers using DGA, WA has been adopted and some notable achievements have been made. 

Babu et al. [83] investigated the application of WA technique to transformer fault diagnosis using 

ANN. In the process of fault diagnosis, wavelets provide an efficient means of decomposing voltage 

and current signals to a detectable and discriminate features as it convolutes into different 

frequency components. In addition, Dong et al. [124] carried out fault diagnosis research for power 

transformers, by integrating the rough set and FWNN with the least square weighted fusion 

algorithm. Mao and Aggarwal [125] proposed a novel approach to the classification of the transient 

phenomenon in power transformers using combined wavelet transform and neural network. In this 

method, the wavelet transform is wavelet transform is employed to decompose the differential 

current signals of the power transformer into a series of detailed wavelet components whose 

spectral energies are calculated and used to train a neural network to discriminate an internal fault 

form the magnetizing inrush current. Similarly, the adaptive wavelet neural network (WNN) is 

adopted in [126,127] to distinguish between inrush and internal fault of the transformer. 

Considering the good time-frequency characteristics of WA, Li et al. [271] combined WA with 

neural network to form a new approach to fault diagnosis of power transformer, which can 

improve the efficiency and accuracy of fault diagnosis of the neural network system, and have 

achieved good results. 

(3) Optimized neural network. A neural network can be optimized by some intelligent algorithms, 

such as PSO. To this end, the neural network is evolved by a modified PSO algorithm to form a new 

approach to power transformer fault diagnosis in [208]. This approach can overcome the problem of 

premature convergence observed in many applications of error BP algorithm and enhance the fault 

diagnostic ability of conventional DGA in power transformer. In addition, in order to improve the 

correct judgment rate in power transformer fault diagnosis, Jia et al. [209] investigated a DGA 

method of transformer via neural network based on PSO with neighborhood operator. In this 

method, some typical gases in transformer oil are selected as the input of neural network for 

training according to correlation analysis and data pre-treatment. After that, the neural network is 

trained and optimized so as to accomplish the fault diagnosis. The experimental results indicate 

that this developed method gains good classification result and can identify faults under the 

difficult situation where transformer overheating and partial discharge coexist. Moreover, this 

method shows a higher correct judgement rate. 
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(4) BN: it is a directed acyclic graph, which is briefly introduced as follows. Suppose that the 

nodes X1, X2, X3 and X4 in a BN refer to the random variables, and the directed arc between nodes 

represents the causal relationship between variables. Here, X1, X2 and X3 are root nodes, and X4 is a 

sub-node. Each node has the corresponding conditional probability table, that is, the root nodes X1, 

X2 and X3 correspond to their respective marginal distribution P(X1), P(X2) and P(X3). The sub-node 

X4 corresponds to its conditional probability distribution  4 1 2 3, ,P X X X X . Hence, by using the 

unique conditional independence of BN, the joint probability distribution can be simplified to 

            


 
4

1 2 3 4 1 2 31 2 3 4
1

, , , , ,
i a i

i

P X X X X P X P P X P X P XX P X X X X  [272], where Pa(Xi) 

represents the parent node of Xi with i = 1, 2, 3, and 4. Based on the basic principle of BN, Wu et al. 

[87] proposed a novel method for transformer fault integrated diagnosis based on BN classifier. 

Wang et al. in [166] and [167] developed a new transformer fault diagnosis model based on rough 

set theory and BN, according to complementary strategy. In this model, the complexity of BN 

structure and difficulties of fault symptom acquisition are largely decreased based on the minimal 

rules. Meanwhile, probability reasoning can be realized by BN, which can be employed to describe 

changes of fault symptoms and analyze fault reasons of transformer. Analogously, Xie et al. [168] 

developed a transformer fault diagnosis model based on BN and rough set reduction theory, which 

is capable of dealing with missing information, embodies fault-tolerant feature and can achieve 

high accuracy. In addition, Bai et al. [272] established a three-layer BN by analyzing the causal 

relation of undesirable service conditions, fault modes and abnormal symptoms. In this network 

model, a BN reasoning method is employed to obtain the most probable explanation of the network, 

including the concurrent fault that he transformer possibly confronts, and the condition of 

abnormal symptoms that are not detected. This BN reasoning model provides an important basis 

for following diagnostic tests. Moreover, Zhu and Wu [273] conducted synthesized diagnosis on 

transformer faults based on BN, naive Bayesian classifier model, tree augmented naive Bayesian 

classifier model and BN augmented naive Bayesian. This approach uses the results of DGA 

attributes to classify power transformer’s fault types. The computing tests are implemented on 

actual samples of transformer faults and the results show that the diagnosis performance of this 

proposed hybrid approach prevails that of separated BN based classifiers and the rough set based 

approach. 

(5) Evidential reasoning approaches: they have been widely used in fault diagnosis of 

transformers using DGA. Concretely speaking, Qian et al. [75] proposed a case-based reasoning 

approach to power transformer fault diagnosis using DGA data, which has higher reliability and is 

more practical for the transformer incipient fault diagnosis. Moreover, Yang et al. [151] combined 

probability reasoning with fuzzy technique to identify power transformer malfunction. Ming et al. 

[210] developed an evidential reasoning approach to transformer fault diagnosis, which is effective 

in insulation diagnosis of transformer. In [211], the evidential reasoning approach, oil testing and 

DGA are used to implement transformer condition assessment. Based on a fuzzy reasoning method, 

Shi et al. [212] designed a transformer fault diagnosis EPS. In addition, based on the reasoning 

integration of rough set, fuzzy set and Bayesian optimal classifier, Su and Dong [213] developed a 

model for transformer fault diagnosis. Similarly, Qian et al. [214] developed a fault diagnosis 

method of power transformer, by integrating the case-based reasoning with fuzzy theory and 

neural network, through which satisfactory accuracy and well practically could be achieved. Liao et 

al. [215] developed an integrated decision-making model for condition assessment of power 

transformers using fuzzy approach and evidential reasoning method. Irungu et al. [216] developed 

an integrated fuzzy-evidential reasoning approach in fault identification of power transformers 

using DGA. The results show that the assessing model is capable of offering an overall evaluation 

of the observed transformer. In addition, Xie et al. [217] put forward a new diagnosis method based 

on fuzzy normal partition and logic reasoning for insulation fault of power transformer. In this 

method, fuzzy processing of the insulation diagnosis parameters are realized, and then the 

insulation diagnosis knowledge is acquired and the reasoning rules are built, and finally the 

reasoning results are obtained by applying reasoning in fault diagnosis. The method may improve 
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the reasoning efficiency. Moreover, it can increase the accuracy of fault diagnosis and maneuver 

ability by actual computation. 

Some conclusions can be drawn in this section. First, SI algorithms, data mining technology, 

ML and other intelligent methods have been gradually used in transformer fault diagnosis using 

DGA by more and more researchers, and these intelligent methods have achieved good diagnostic 

results and produced great economic benefits; especially for the SI algorithms, WA, ML, etc., which 

shows the potential of application in the field of transformer fault diagnosis. Second, these 

intelligent methods are not isolated in application, and they can be combined with each other to 

achieve better diagnostic results in many cases. Third, although some intelligent methods have been 

successfully applied in the field of transformer fault diagnosis, the theory of these methods is not 

very mature, especially some applications are still in exploration and experimental stage, and there 

is still a certain distance from the actual engineering application. Therefore, it needs to be perfected 

in both theoretical research and engineering application. A summary of the application of other 

intelligent algorithms in DGA-based transformer fault diagnosis is presented in Table 11. 

Table 11. A summary for the application of other intelligent algorithms in DGA based transformer 

fault diagnosis. 

Other Intelligent Algorithms Advantages and Disadvantages 

Swarm intelligence 

algorithms 

▪ GA [67,68,196,222,223] 

▪ AIA [72,163,176] 

▪ ACO [228–234] 

▪ PSO [69,77,80] 

▪ BFO [238,239] 

▪ AFSO [197–199] 

▪ ABC [243] 

▪ FOA [245,246] 

▪ BOA [248] 

▪ Hybrid SI algorithms [219] 

▪ GA: better global optimization ability 

▪ AIA: accelerated global optimal searching 

▪ ACO: higher diagnosis accuracy rate 

▪ PSO: a good global optimizer 

▪ BFO: identify maximum faults with minimum test cases 

▪ AFSO: fast optimization speed, global optimization ability and 

strong parallel processing capability 

▪ ABC: less control parameters, simple calculation and easy 

implementation 

▪ FOA: solve the problems of data source shortage of fault gases 

with high accuracy 

▪ BOA: obvious improvement in validity and accuracy, strong 

searching ability and fast convergence speed 

▪ Hybrid SI algorithms: high-speed searching, strong global 

optimization, and avoid falling into local optimality 

Data mining 

technology 

▪ weighted fuzzy kernel clustering 

method [155] 

▪ dynamic clustering algorithm 

[79,81] 

▪ combined grey prediction and 

clustering analysis [63] 

▪ iterative self-organizing data 

analysis technique [81] 

▪ SVM-based multilevel binary tree 

[255] 

▪ information fusion technology 

[202] 

▪ model the fault symptoms of transformer to find the law of 

describing interrelationship between operating status and 

external performance 

▪ beneficial to obtain intuitive relationship between operation 

state and result of fault analysis 

▪ high prediction accuracy 

▪ strong adaptability 

ML methods 

▪ SVM 

[5,68,72,77,80,85,154,169,170,188,19

9] 

▪ ELM [203–205] 

▪ DL, DRL [70,71,105,206,207] 

▪ SVM: enhance the role of empty rotation sample in the 

construction of classification hyperplane, and suppress 

deviation of hyperplane; powerful tool to deal with issues with 

small sampling, nonlinearity and high dimension 

▪ ELM: an emerging learning algorithm; without need of iterative 

optimization; fast learning speed and good generalization 

▪ DL/DRL: high accuracy of classification or prediction; unique 

feature extraction capability with a remarkable accuracy 

Other intelligent 

diagnosis tools 

▪ mathematical statistics [270] 

▪ WA [83,124–127] 

▪ optimized neural network 

[208,209] 

▪ BN [87,166–168,272,273] 

▪ evidential reasoning approach 

[45,75,151,210–217] 

▪ mathematical statistics methods: can improve the diagnosis 

robustness and accuracy 

▪ WA: good time-frequency localization characteristic and ability 

of adaptive and multi-scale analysis to signals; suitable for 

detecting transient anomalies 

▪ optimized neural network: can overcome the issue of premature 

convergence and enhance the fault diagnosis ability 

▪ BN: difficulty of fault symptom acquisition is largely decreased 

based on minimal rules 
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▪ Evidential reasoning approach: widely used; higher reliability 

and more practical for transformer incipient fault diagnosis 

8. Discussion and Prospects 

8.1. Discussion 

The power transformer DGA is not affected by external electric fields and magnetic fields, 

which easily happen in an electrified state and online, thus it has become an effective method for 

fault diagnosis of oil-immersed power transformers. On this basis, the traditional methods such as 

the characteristic gas method, the three-ratio method, and the Rogers method have been developed. 

Combined with these, some AI methods such as EPS, ANN, fuzzy theory, GST, rough sets, SAIs, 

DL, SVM, ELM, and WA have been applied in transformer fault diagnosis. However, the traditional 

DGA methods have the main defects such as lack of coding, and over absolute coding limitation. 

Currently, the main issues in the field of power transformer fault diagnosis are as follows: 

 More serious uncertainties and fuzziness among the fault phenomena, fault causes, fault 

mechanisms and fault classifications in the DGA data-based transformer fault diagnosis. 

 The accuracy of fault diagnosis by DGA without experienced experts is not high. 

 The complexity of electric power transformer fault is hard to overcome. 

 Randomness and fuzziness in transformer fault diagnosis usually exist. 

 Some intelligent fault diagnosis approaches are easily get stacked into the minimal value 

locally and strict requirement on the initial value which would make fault diagnosis difficult to 

some extent. 

 The deficiency of three-ratio method that fault diagnosis cannot be made due to missing ratio 

coding is hard to overcome. 

 The correct judgment rate in power transformer fault diagnosis is not high. 

 Insulation condition assessment is usually performed by experts with special knowledge and 

experience due to the complexity of the transformer insulation structure and various 

degradation mechanisms under multiple stresses. 

 Different orders of magnitude of the input variables in the network have an impact on the 

network convergence performance. 

 The relationship between some fault causes and fault results in the transformer fault diagnosis 

system is not well-defined, as well as it cannot clearly determine which kinds of gases 

dissolved in oil cause even when a fault occurs. 

 Relevant data samples of transformer fault diagnosis are hard to be obtained accurately. 

Hence, due to their stronger fault diagnosis ability, the intelligent algorithms have achieved 

great success in the fault diagnosis of transformer based on DGA. The AI technique based 

transformer DGA methods have become increasingly mature and practiced in transformer fault 

diagnosis. However, it should also be seen that a single intelligent state detection method can only 

reflect the status of the transformer from one aspect, thus it has a different degree of malpractice. 

For several examples, the knowledge base acquisition and validation of EPS is rather difficult, and 

it has poor abilities of learning and fault tolerance, which largely limits the development of fault 

diagnosis EPS; ANN has the defects of slow convergence speed, easy oscillation and easy to fall into 

local optimum; SVM is essentially a two-classifier algorithm, thus it has the disadvantages of 

constructing the learner and the low efficiency of classification in solving multi-class issues, and the 

kernel function selection and parameter determination are rather difficult; ELM has a fast training 

speed, but it has worse stability. In brief, the main advantages, existing problems and development 

trend of the main intelligent techniques and methods summarized in this paper in the DGA data 

based transformer fault diagnosis are presented in Table 12. 
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Table 12. A brief summary of the main advantages, existing problems and development trend of the 

main intelligent techniques and methods summarized in this paper in transformer fault diagnosis 

using DGA data. 

Main Intelligent 

Techniques and 

Methods 

Advantages Existing Problems Development Trend 

EPS 1 

▪ Comprehensive analysis and 

judgement for transformer 

operating status 

▪ Early diagnosis of the internal 

potential faults in the 

operating transformer 

▪ Effectively simulate the 

process of fault diagnosis by 

the fault diagnosis experts 

▪ Hard to obtain the complete 

knowledge base 

▪ Hard to verify the 

completeness of the 

knowledge 

▪ Generally does not have 

learning ability 

▪ Has a diagnostic error or no 

result sometimes 

▪ Has a poor fault tolerance 

▪ Troublesome maintenance 

▪ Combined with 

self-learning and 

self-association ANN 

▪ Combined with fuzzy 

theory based 

reasoning method 

under uncertainty 

▪ Combined with Petri 

nets 

▪ Combined with RST 

ANN 2 

✓ Strong learning ability 

✓ Self-organization of 

knowledge 

✓ Strong fault-tolerant ability 

✓ Easy to parallel processing 

✓ A faster speed of execution 

✓ A slow convergence speed 

✓ Network structure and 

parameter are determined by 

experiences 

✓ Hard to obtain optimal 

network structure for a specific 

problem 

✓ Improved BPNN 

✓ Combined with other 

AI technologies 

✓ Improved FWNN 

✓ Improved GRNN 

✓ Improved EDA-ANN 

Fuzzy theory 

▪ Adapt to deal with uncertainty 

▪ Fuzzy knowledge base is 

closer to man’s expression 

habits 

▪ Can deal with critical value 

coding defects in IEC/IEEE 

three-ratio 

▪ Hard to determine appropriate 

membership function for the 

input and output variables 

▪ Fuzzy rule requires the sample 

data to have completeness 

▪ Improved fuzzy 

reasoning models 

▪ Combined with other 

intelligent algorithms, 

such as SI algorithms 

▪ Combined with GRA 

RST 3 

✓ Effectively deal with 

incomplete, imprecise and 

inconsistent information 

✓ Does not need any prior 

knowledge 

✓ An EPS knowledge base with 

attributes reduction 

✓ Better fault tolerance ability 

✓ Simplicity, practicality 

✓ A single RST can hardly show 

good performance in fault data 

processing if it is not combined 

with other intelligent 

techniques and algorithms 

✓ Combined with EPS 

✓ Combined with fuzzy 

theory 

✓ Combined with ML 

✓ Combined with data 

driven 

✓ Combined with ANN 

✓ Integrated with BN 

and Petri nets 

GST 4 

▪ Can effectively extract 

valuable information 

▪ Has better ability to judge 

accurately for some difficult 

faults, such as dampness 

▪ Misjudgment occurs with 

normal DGA data sometimes 

▪ Combined with 

clustering technique 

▪ Combined with 

entropy theory 

▪ Combined with some 

intelligent 

optimization 

approaches 

SI algorithms 

✓ Strong ability of searching 

✓ Global optimization ability 

✓ The cooperative individuals 

are distributed in a population 

✓ No centralized control, has 

robustness, expandability 

✓ Individual is simple and easy 

to implement 

✓ Easy to fall into the local 

optimum  

✓ The convergence rate is 

unstable 

✓ The optimization precision is 

not high 

✓ Improvement of 

algorithm 

performance 

✓ Setting of algorithm 

parameters  

✓ Combined with other 

algorithms 

DMT 5 

▪ Effective in fault symptom 

modelling 

▪ Beneficial to obtain the direct 

connection between 

transformer operation state 

and fault analysis results 

▪ Predictive accuracy is high 

▪ Strong adaptability 

▪ The process of setting up of 

data sources is complex 

▪ Combined with ML, 

especially DL, ELM, 

and SVM 

▪ Integrated with other 

intelligent diagnosis 

tools, such as 

evidential reasoning, 

fuzzy theory, RST, and 
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ANN 

ML 6 

✓ Fast learning ability, and good 

generalization performance, 

such as ELM 

✓ Can improve the precision of 

classification and predictive, 

such as DL 

✓ Less involving the location of 

faults 

✓ Hard to achieve a strict 

analysis 

✓ Integrated with some 

advanced computer 

information technique 

✓ Combined with data 

mining technology 

✓ Combined with other 

intelligent fault 

diagnosis tools and 

methods 

1 EPS = expert system; 2 ANN = artificial neural network; 3 RST = rough sets theory; 4 GST = grey 

system theory; 5 DMT = data mining technology; 6 ML = machine learning. 

Therefore, combined with Table 12 above, the shortcomings of transformer fault diagnosis 

using intelligent algorithms is mainly reflected in the following three aspects: 

 Most of the existing intelligent diagnosis methods only diagnose the fault types of the 

transformer separately, without consideration of some of the inherent connections between 

various faults. In addition, some of them are not very mature and still in the stage of 

exploration and experiment, which will inevitably affect the results of fault diagnosis of the 

transformer using DGA. 

 Due to the cumulative effect of dissolved gas in oil and the effect of its error on sampling, the 

current intelligent diagnosis method of transformer fault based on DGA data indicates a larger 

error of diagnosis when the gas content is less, and it needs people to judge the existence of the 

fault in advance, which is no doubt harmful to the diagnosis of the potential fault. 

 In the actual operation of the transformer, there are a lot of incomplete or imperfect data of 

dissolved gas in oil, thus it is difficult to implement intelligent diagnosis according to these 

data. 

According to the issues above, in view of the shortage of single intelligent fault diagnosis 

method, on the one hand, it can be improved from the aspect of algorithm, that is, multiple 

intelligent algorithms are integrated to form a compounded network in which the algorithms are 

complementary. For example, ANN, GA and EPS can be combined closely to develop an intelligent 

fault diagnosis system with comprehensive diagnosis ability, meeting the requirements of 

improving transformer safety and economic operation level, thus it can be seen as an important 

direction for the development of fault detection and diagnosis technique of the power transformers. 

In addition, the improved PSO is integrated with fuzzy neural network in [274] to form fault 

diagnosis strategy for transformer oil chromatography monitoring, which is beneficial to balance 

the relationship between the local searching and global searching of the BP neural network, thus 

avoiding it falling into a local optimum. 

On the other hand, it can be improved from the angle of transformer detection means. When 

the fault occurs in transformer or the transformer has a potential fault, in addition to the change of 

dissolved gas in oil, the mechanical vibration and electrical properties of the transformer will also 

be changed, thus it is necessary to extract the feature data with reasonable detection methods, and 

then combine these characteristic data with the DGA data in a reasonable manner, in order to find 

the best transformer fault diagnosis method. 

8.2. Prospects 

For the existing problems in transformer fault diagnosis discussed in Section 8.1, how to 

conduct high-precision and high-accuracy fault diagnosis for the transformer based on imperfect 

DGA data requires immediate solutions. To address this, new ML algorithms provide a new idea 

for transformer fault diagnosis using DGA data. A lot of substantial results have been achieved in 

this aspect at present. ML needs to be built based on a good knowledge representation system, 

which has achieved a long-term development in the past 30 years. The defects of traditional ML 

theoretical framework have been found and determined gradually, and new ML theoretical 
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framework has been proposed continuously [256,257]. In recent years, ML has developed rapidly, 

especially when AlphaGo was developed in 2016. Since then, the multi-layer ANN based DL as 

perception together with Markov decision process based RL as decision form a pair of golden 

components. In [257], Li et al. put forward a novel theoretical framework of ML, called parallel ML, 

based on the parallel system, which can employ the parallel virtual system to generate massive 

virtual samples for ML. This provides a significant research direction in transformer fault diagnosis 

using DGA data. It needs to note that these new ML theories are still in theoretical stage, thus they 

may have some defects that have not been found. Therefore, it is essential to combine them with 

actual engineering applications and improve them continuously, which will be of great significance 

to improve the intelligent levels of fault diagnosis of the power transformer using DGA. 

Besides, the generative adversarial net (GAN) [275] can also be considered, which is able to 

automatically produce massive simulation model data via constructing a Max-min adversarial 

game system. This can solve the small sample size problems in the real environment to a large 

extent. From AlphaGo [276], AlphaGoZero [277], AlphaZero [278], and parallel system [257] to 

GAN [276], scientists have been looking for ways to solve the data sample issues of the ML. The 

obstacles to the improvement of ML intelligence have been gradually removed. ML has been 

developed from the known training sample set (limited small data) to the era of acquiring massive 

imaginary training samples (infinite large data) via self-exploration. This is a watershed in AI that 

transcends human intelligence. Hence, it will be a promising future for the DGA-based transformer 

fault diagnosis through applying the emerging ML methods and GAN technique. 

9. Conclusions 

This paper presents a detailed overview on the application status of intelligent methods in 

fault diagnosis of the oil-immersed power transformers based on DGA, including EPS, ANN, fuzzy 

theory, RST, GST, SI algorithms, data mining technology, ML, and other intelligent methods. These 

intelligent methods provide an idea for high-precision transformer fault diagnosis. The main 

contributions can be summarized as follows: 

(1) The application of these intelligent methods compensates for the shortcomings of the traditional 

DGA method, and improves the fault diagnosis ability and diagnostic accuracy of the system. 

Through the analysis of the principle, characteristics, effectiveness and feasibility of these 

intelligent diagnosis methods, the merits and defects of them are demonstrated, as well as their 

improvement schemes. This provides a reference for the researchers to choose the optimal 

approach to fault diagnosis of the oil-immersed power transformer. It is considered that the 

application of AI technology to power transformer fault diagnosis is determined by the 

characteristics of AI and the importance of power system fault diagnosis. It is the inevitable 

choice for the development of power system. Finally, the intelligent diagnosis method of 

transformer fault based on DGA is prospected, and the future development direction is analysed. 

(2) Years of operation practice have proved that the online monitoring technology of dissolved 

gases in transformer oil can diagnose, predict and track the development trends of faults, but it 

has some major defects such as coding deficiencies, excessive coding boundaries and critical 

value criterion defects. A single intelligent algorithm can meet the requirements of fault 

diagnosis under certain conditions, but inevitably will have some limitations. To address this, 

on the one hand this can be improved from the aspect of the algorithm, that is, by combining 

the traditional DGA methods with multiple AI algorithms to constitute a compound network 

in which the algorithms are complementary, and further to develop a novel composite 

intelligent algorithm, which will be the main direction of the future development of 

transformer fault diagnosis technology, and will have potential practical value and broad 

application prospect. On the other hand, it can be improved from the angle of transformer 

detection means. Concretely, when a fault occurs in transformer or the transformer has a 

potential fault, the mechanical vibration and electrical properties of the transformer will 

change, in addition to the change of dissolved gas in oil, thus it is necessary to extract the 
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feature data with reasonable detection methods. These data then are combined with the DGA 

data in a rational manner, in order to find the best fault diagnosis method for the transformer. 

(3) In the future, it will be very promising for developing new intelligent comprehensive fault 

diagnosis systems through introducing new ML theories and frameworks, the new DL based 

on multi-layer ANN, and the GAN to fault diagnosis of the transformer based on DGA. Such 

systems can automatically identify and delete bad data in some cases, with better real-time 

capability and self-adaptation. Besides, they should have the function of self-organization, 

self-learning, associations and memories, and continuous innovation in the operation. This 

system will have a very good prospect of application and it is of great significance to the 

realization of high-precision transformer fault diagnosis and fault location. 

(4) Combined with the survey made in this paper, and the status of transformer fault diagnosis in 

practice, several suggestions are given as follows: (a) we should collect a large number of 

existing examples of power transformer fault diagnosis in practice to build up an abundant 

and perfect knowledge base and case database through sorting and analyzing; (b) combine 

multiple intelligent algorithms with existing diagnosis methods to make full use of detection 

and experimental data for comprehensive diagnosis, so as to improve the comprehensive 

diagnosis capability of the system, and make the diagnostic conclusion of the system more 

instructive to the maintenance of the transformer; (c) enhance the reliability and openness of 

the diagnostic system, thus the knowledge and experience gained by the maintenance 

personnel in practice can conveniently extend and modify the knowledge base of the system so 

as to improve the diagnosis accuracy of the system; (d) speed up the development of online 

detection technology to achieve diagnosis online by the diagnostic system, so as to improve the 

level of automation of the diagnostic system; and (e) fully understand the merits and defects of 

various intelligent methods in power system fault diagnosis, and then integrate them with 

conventional IEC/IEEE three-ratios to develop an intelligent comprehensive diagnosis system, 

in which the comprehensive complementarity between the advantages of these intelligent 

methods are continuously realized to improve the security and economy of the transformer. 

(5) This paper presents a detailed and systematic survey on various intelligent methods applied in 

faults diagnosing and decisions making of the oil-immersed power transformers, by 

thoroughly investigating their merits and demerits. Moreover, their improvement schemes and 

future development trends are demonstrated. The research summary, empirical generalization 

and analysis of predicament in this paper can provide thoughts and suggestions for the 

research of complex power grid in the new environment, as well as references and guidance 

for researchers to choose the optimal approach to fault diagnosis and decision making of the 

large oil-immersed power transformers using DGA in preventive electrical tests. 
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Nomenclature 

DGA dissolved gas analysis BN Bayesian network 

ANN artificial neural network GRA grey relational analysis 

EPS expert system HST hot spot temperature 

RST rough sets theory AIA artificial immune algorithm 

GST grey system theory DC dynamic clustering 

BPA basic probability assignment WA wavelet analysis 
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HAE hydrogen-acetylene-ethylene ELM extreme learning machine 

TD thermal-discharge DL deep learning 

AI artificial intelligence SI swarm intelligence 

SVM support vector machine ACO ant colony optimizer 

MLP multi-layer perceptron BFO bacterial foraging optimization 

PSO particle swarm optimizer AFSO artificial fish swarm optimizer 

T2-FLS type-2 fuzzy logic system ABC artificial bee colony 

RBF radial basis function FOA firefly optimization algorithm 

BP back propagation BOA bat optimization algorithm 

BPNN back propagation neural network SGA standard genetic algorithm 

GRNN generalized regression neural network WNN wavelet neural network 

GA genetic algorithm FPA flower pollination algorithm 

GM grey model ML machine learning 

FWNN fuzzy wavelet neural network RL reinforcement learning 

LM Levenberg-Marguardt algorithm IICA improved imperialist competitive algorithm 

EDA estimation of distribution algorithm DAEN DeepAuto-Encoder network 

FPN fuzzy petri nets DL-DBN deep learning-deep belief network 

RBFNN radial basis function neural network GAN generative adversarial net 
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