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Abstract

We do fuzzification the concept of domination in crisp graph by using membership
values of nodes, α-strong arcs and arcs. In this paper, we introduce a new variation on
the domination theme which we call vertex domination. We determine the vertex
domination number γv for several classes of fuzzy graphs, specially complete fuzzy graph
and complete bipartite fuzzy graphs. The bounds is obtained for the vertex domination
number of fuzzy graphs. Also the relationship between M -strong arcs and α-strong is
obtained. In fuzzy graphs, monotone decreasing property and monotone increasing
property is introduced. We prove the vizing’s conjecture is monotone decreasing fuzzy
graph property for vertex domination. we prove also the Grarier-Khelladi’s conjecture is
monotone decreasing fuzzy graph property for it. We obtain Nordhaus-Gaddum (NG)
type results for these parameters. The relationship between several classes of operations
on fuzzy graphs with the vertex domination number of them is studied.

Keywords: Fuzzy graph, α-strong arcs, Weight of nodes, vertex domination
AMS Subject Classification: 05C72, 05C69, 03E72, 94D05

1 Introduction

In 1965, Zadeh published his seminal paper “fuzzy sets” (Ref. [77]) which described
fuzzy set theory and consequently fuzzy logic. Fuzzy graphs were introduced by
Rosenfeld (Ref. [56]) and Yeh and Bang (Ref. [73]) independently in 1975. The concept
of domination in fuzzy graphs was introduced by A.Somasundaram and
S.Somasundaram (Ref. [63]). They defined domination using effective edges in fuzzy
graph (Refs. [63] and [64]). Nagoorgani and Chandrasekharan defined domination in
fuzzy graphs using strong arcs (Ref. [47]). Manjusha and Sunitha discussed some
concepts in domination and total domination in fuzzy graphs using strong arcs
(Refs. [36] and [37]).

We first briefly illustrate our opinion. The rest of this paper is organized as follows.
In Section 2, we lay down the preliminary results which recall some basic concepts of
fuzzy graph, path, cycle, connectedness, complete fuzzy graph, order, size, complement,
types of arcs consists of α-strong, β-strong,δ-strong and M -strong, bipartite fuzzy
graph, complete bipartite fuzzy graph, star fuzzy graph, be isolated, domatic partition,
Vizing’s conjecture, Gravier and Khelladi’s conjecture, some operations on fuzzy graphs
consists of cartesian product, join and union, Nordhaus-Gaddum (NG) results and
finally we conclude this section with Remark (2.1) and In Section 3, The vertex
domination number of a fuzzy graph is defined in a classic way, Definition (3.1), (3.3),
(3.4). We determine vertex domination number for several classes of fuzzy graphs
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consists of complete fuzzy graph, Proposition (3.10), empty fuzzy graph, Proposition
(3.11), star fuzzy graph, Proposition (3.13), complete bipartite fuzzy graph, Proposition
(3.14). We give an upper bound for the vertex domination number of fuzzy graphs,
Proposition (3.15). For any fuzzy graph the Nordhaus-Gaddum(NG)’result holds,
Theorem (3.16). Finding domatic partition of size two in fuzzy graph G of order n ≥ 2
is studied, Theorem (3.19). We improve upper bound for the vertex domination number
of fuzzy graphs without isolated nodes, Theorem (3.20). We also improve
Nordhaus-Gaddum(NG)’result for fuzzy graphs without isolated nodes, Corollary (3.21).
We give the relationship between M -strong arcs and α-strong arcs, Corollary (3.24). We
give a necessary and sufficient condition for vertex domination which is half of order, In
fact fuzzy graphs with vertex domination which is half of order is characterized in the
special case, Theorem (3.26). The vertex domination of union of two fuzzy graphs is
studied, Proposition (3.27). Also the vertex domination of union of fuzzy graphs Family
is discussed, Corollary (3.28). The concepts of both monotone increasing fuzzy graph
property, Definition (3.29), and monotone decreasing fuzzy graph property, Definition
(3.31), are introduced. The result in relation with vizing’s conjecture by using α-strong
arc and monotone decreasing fuzzy graph property is determined, Theorem (3.34).
Some results in relation with vizing’s conjecture by using α-strong arc and spanning
fuzzy subgraph is studied, Corollary (3.35). The vertex domination of join of two fuzzy
graphs is studied, Proposition (3.36). Also the vertex domination of join of fuzzy graphs
Family is discussed, Corollary (3.37). The result in relation with Gravier and Khelladi’s
conjecture by using α-strong arc and monotone decreasing fuzzy graph property is
determined, Theorem (3.38). We conclude this section with Some result in relation with
Gravier and Khelladi’s conjecture by using α-strong arc and spanning fuzzy subgraph is
studied, Corollary (3.39). In Section 4, We give 9 practical applications in relation with
these concepts.

2 Preliminary

We provide some basic background for the paper in this section.
Some of the books discussing these various themes are Bezdek and Pal [7],

Lootsma [35], Morderson and Malik [40], Comelius . T. Leondes [34] and Klir and Bo
Yuan [31]. We shall now list below some basic definitions and results from [41], [56].
Also Background on fuzzy graphs and the following definitions can be found in them.

we lay down the preliminary results which recall some basic concepts of fuzzy graph,
path, cycle, connectedness, complete fuzzy graph, order, size, complement, types of arcs
consists of α-strong, β-strong,δ-strong and M -strong, bipartite fuzzy graph, complete
bipartite fuzzy graph, star fuzzy graph, be isolated, domatic partition, Vizing’s
conjecture, Gravier and Khelladi’s conjecture, some operations on fuzzy graphs consists
of cartesian product, join and union, Nordhaus-Gaddum (NG) results and finally we
conclude this section with Remark (2.1)

We recall that a fuzzy subset of a set S is a function of S into the closed interval [0,
1], [77]. A fuzzy graph is denoted by G = (V, σ, µ) such that µ({x, y}) ≤ σ(x) ∧ σ(y) for
all x, y ∈ V where V is a vertex set, σ is a fuzzy subset of V and µ is a fuzzy relation on
V . We call σ the fuzzy node set (or fuzzy vertex set) of G and µ the fuzzy arc set (or
fuzzy edge set) of G, respectively. We consider fuzzy graph G with no loops and assume
that V is finite and nonempty, µ is reflexive (i.e., µ({x, x}) = σ(x), for all x) and
symmetric (i.e., µ({x, y}) = µ({y, x}), for all x, y ∈ V ). In all the examples σ and µ is
chosen suitably. In any fuzzy graph, the underlying crisp graph is denoted by
G∗ = (V,E) where V and E are domain of σ and µ, respectively. This definition of
fuzzy graph is essentially the same as the one appearing in [56]. The fuzzy graph
H = (τ, ν) is called a partial fuzzy subgraph of G = (σ, µ) if ν ⊆ µ and τ ⊆ σ. Similarly,
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the fuzzy graph H = (τ, ν) is called a fuzzy subgraph of G = (V, σ, µ) induced by P if
P ⊆ V, τ(x) = σ(x) for all x ∈ P and ν({x, y}) = µ({x, y}) for all x, y ∈ P. For the sake
of simplicity, we sometimes call H a fuzzy subgraph of G. We say that the partial fuzzy
subgraph (τ, ν) spans the fuzzy graph (σ, µ) if σ = τ. In this case, we call (τ, ν) a
spanning fuzzy subgraph of (σ, µ).

For the sake of simplicity, we sometimes write xy instead of {x, y}
A path P of length n is a sequence of distinct vertices u0, u1, · · · , un such that

µ(ui−1, ui) > 0, i = 1, 2, · · · , n and the degree of membership of a weakest edge is
defined as its strength. If u0 = un and n ≥ 3 then P is called a cycle and P is called a
fuzzy cycle, if it contains more than one weakest edge. The strength of a cycle is the
strength of the weakest edge in it. The strength of connectedness between two vertices
x and y is defined as the maximum of the strengths of all paths between x and y and is
denoted by µ.

A fuzzy graph G = (V, σ, µ) is connected if for every x, y in V, CONNG(x, y) > 0.
A fuzzy graph G is said complete if µ(uv) = σ(x) ∧ σ(y). for all u, v ∈ V.
The order p and size q of a fuzzy graph G = (V, σ, µ) are defined p = Σx∈V σ(x) and

q = Σx,y∈V µ(xy).
The complement of a fuzzy graph G, denoted by Ḡ is defined to Ḡ = (V, σ, µ̄) where

µ̄(xy) = σ(x) ∧ σ(y)− µ(xy) for all x, y ∈ V.
An arc of a fuzzy graph is called α-strong if its weights is greater than strength of

connectedness of its end nodes when it is deleted. Depending on CONNG(x, y) of an
arc xy in a fuzzy graph G, Mathew and Sunitha [68] defined three types of arcs. Note
that CONNG−xy(x, y) is the strength of connectedness between x and y in the fuzzy
graph obtained from G by deleting the arc xy. An arc xy in G is α-strong if
µ(xy) > CONNG−xy(x, y). An arc xy in G is β-strong if µ(xy) = CONNG−xy(x, y).
An arc xy in G is δ-arc if µ(xy) < CONNG−xy(x, y). An arc uv of a fuzzy graph is
called an M -strong arc if µ(uv) = σ(u) ∧ σ(v). In order to avoid confusion with the
notion of strong arcs introduced by Bhutani and Rosenfeld [15], we shall call strong in
the sense of Mordeson as M-strong [46].

A fuzzy graph G is said bipartite if the vertex set V can be partitioned into two
nonempty sets V1 and V2 such that µ(v1v2) = 0 if v1, v2 ∈ V1 or v1, v2 ∈ V2. Moreover,
if µ(uv) = σ(u) ∧ σ(v) for all u ∈ V1 and v ∈ V2 then G is called a complete bipartite
graph and is denoted by Kσ1, σ2 , where σ1 and σ2 are respectively the restrictions of σ
to V1 and V2. In this case, If |V1| = 1 or |V2| = 1 then the complete bipartite graph is
said a star fuzzy graph which is denoted by K1,σ.

A node u is said isolated if µ(uv) = 0 for all v 6= u.
A domatic partition is a partition of the vertices of a graph into disjoint dominating

sets. The maximum number of disjoint dominating sets in a domatic partition of a
graph is called its domatic number.

In graph theory, Vizing’s conjecture [17] concerns a relation between the domination
number and the cartesian product of graphs. This conjecture was first stated by Vadim
G. Vizing (1968), and states that, if γ(G) denotes the minimum number of vertices in a
dominating set for G, then

γ(G�H) ≥ γ(G)γ(H).

Vizing’s conjecture from 1968 asserts that the domination number of the. Cartesian
product of two graphs is at least as large as the product of their domination numbers.

Gravier and Khelladi (1995) conjectured a similar bound for the domination number
of the tensor product of graphs; however, a counterexample was found by Klavz̆ar
Zmazek (1996) [30]. Since Vizing proposed his conjecture, many mathematicians have
worked on it, with partial results described below. For a more detailed overview of these
results, see Bres̆ar et al. (2012) [8]

The cartesian product G = G1 ×G2 [39] of two fuzzy graphs
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Gi = (Vi, σi, µi), i = 1, 2 is defined as a fuzzy graph G = (V × V, σ1 × σ2, µ1 × µ2)
where E = {{uu2, uv2}|u ∈ V1, u2v2 ∈ E2} ∪ {{u1w, v1w}|u1v1 ∈ E1, w ∈ V2}. Fuzzy
sets σ1 × σ2 and µ1 × µ2 are defined as (σ1 × σ2)(u1, u2) = σ1(u1) ∧ σ2(u2) and
∀u ∈ V1,∀u2v2 ∈ E2, (µ1 × µ2)({uu2, uv2}) = σ1(u) ∧ µ2(u2v2) and
∀u1v1 ∈ E1,∀w ∈ V2, (µ1 × µ2)({u1w, vw}) = µ1(u1v1) ∧ σ2(w).

The union G = G1 ∪G2 [39] of two fuzzy graphs Gi = (Vi, σi, µi), i = 1, 2 is defined
as a fuzzy graph G = (V1 ∪ V2, σ1 ∪ σ2, µ1 ∪ µ2) where E = E1 ∪ E2. Fuzzy sets σ1 ∪ σ2
and µ1 ∪ µ2 are defined as (σ1 ∪ σ2)(u) = σ1(u) if u ∈ V1 − V2, (σ1 ∪ σ2)(u) = σ2(u) if
u ∈ V2 − V1, and (σ1 ∪ σ2)(u) = σ1(u) ∨ σ2(u) if u ∈ V1 ∩ V2. Also
(µ1 ∪ µ2)(uv) = µ1(uv) if uv ∈ E1 − E2 and (µ1 ∪ µ2)(uv) = µ2(uv) if uv ∈ E2 − E1,
and (µ1 ∪ µ2)(uv) = µ1(uv) ∨ µ2(uv) if uv ∈ E1 ∩ E2.

Let G = G1 +G2 denote the join [39] of two fuzzy graphs Gi = (Vi, σi, µi), i = 1, 2 is
defined as a fuzzy graph G = (V1 ∪ V2, σ1 + σ2, µ1 + µ2) where E = E1 ∪ E2 ∪ E

′
and

E
′

is the set of all edges joining vertices of V1 with the vertices of V2, and we assume
that V1 ∩ V2 = ∅. Fuzzy sets σ1 + σ2 and µ1 + µ2 are defined as
(σ1 + σ2)(u) = (σ1 ∪ σ2)(u) and ∀u ∈ V1 ∪ V2; (µ1 + µ2)(uv) = (µ1 ∪ µ2)(uv) if
uv ∈ E1 ∪ E2 and (µ1 + µ2)(uv) = σ1(u) ∧ σ2(v) if uv ∈ E′

.
The classical paper [49] of Nordhaus and Gaddum established the inequalities for the

chromatic numbers of a graph G = (V,E) and its complement Ḡ. We are concerned
with analogous inequalities involving domination parameters in graphs. We begin with a
brief overview of Nordhaus-Gaddum (NG) inequalities for several domination-related
parameters. For each generic invariant µ of a graph G, let µ = µ(G) and µ̄ = µ(Ḡ).
Inequalities on µ+ µ̄ and µ.µ̄ exist in the literature for only a few of the many
domination-related parameters and most of these results are of the additive form. In
1972 Jaeger and Payan [26] published the first NG results involving domination.
Cockayne and Hedetniemi [18] sharpened the upper bound for the sum. Laskar and
Peters [33] improved this bound for the case when both G and Ḡ are connected. A
much improved bound was established for the case when neither G nor Ḡ has isolated
nodes by Bollobás and Cockayne [14] and by Joseph and Arumugam [27] independently.

Remark 2.1. For the sake of simplicity, we do sometimes

• writing xy instead of {x, y}.

• calling x both vertex and node.

• calling xy both edge and arc.

• writing Cartesian product both � and ×.

• saying σ(x) and µ(xy) with different literature, e.g. value, weight, membership
value and etc.

3 Main Results

In this section, we provide the main results.
The vertex domination number of a fuzzy graph is defined in a classic way,

Definition (3.1), (3.3), (3.4).

Definition 3.1. Let G = (σ, µ) be a fuzzy graph on V. Let x, y ∈ V. We say that x
dominates y in G as α-strong if the arc {x, y} is α-strong.

Example 3.2. By attention to fuzzy graph In Figure (1), the arcs v2v5, v2v4, v3v4 and
v1v3 are α-strong and the arcs v1v4, v1v2 and v4v5 are not α-strong.
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Definition 3.3. A subset S of V is called a α-strong dominating set in G if for
every v 6∈ S, there exists u ∈ S such that u dominates v.

Definition 3.4. Let S be the set of all α-strong dominating sets in G, the vertex

domination number of G is defined as minD∈S [Σu∈D(σ(u) + ds(u)
d(u) )] and it is denoted

by γv(G). If d(u) = 0, then we consider ds(u)
d(u) equal with 0. The α-strong dominating

set that is correspond to γv(G) is called by vertex dominating set. We also say

Σu∈D(σ(u) + ds(u)
d(u) ), vertex weight of D, for every D ∈ S and it is denoted by wv(D).

Example 3.5. By attention to fuzzy graph In Figure (1), the set {v2, v3} is the
α-strong dominating set. This set is also vertex dominating set in fuzzy graph G. Hence
γv(G) = 1.75 + 0.9 + 0.7 = 3.35. So γv(G) = 3.35.

Theorem 3.6. [38] If G is a complete fuzzy graph, then all arcs are strong.

Theorem 3.7. [38] If G is a complete bipartite fuzzy graph, then all arcs are strong.

Remark 3.8. If G is a complete fuzzy graph, then all arcs are α-strong.

Remark 3.9. If G is a complete bipartite fuzzy graph, then all arcs are α-strong.

It is well known and generally accepted that the problem of determining the
domination number of an arbitrary graph is a difficult one. Because of this, researchers
have turned their attention to the study of classes of graphs for which the domination
problem can be solved in polynomial time.

We determine vertex domination number for several classes of fuzzy graphs consists
of complete fuzzy graph, Proposition (3.10), empty fuzzy graph, Proposition (3.11), star
fuzzy graph, Proposition (3.13), complete bipartite fuzzy graph, Proposition (3.14).

Proposition 3.10 (Complete fuzzy graph). If G = (V, σ, µ) is a complete fuzzy graph,
then γv(G) = minu∈V (σ(u)) + 1.

Proof. Since G is a complete fuzzy graph, all arcs are α-strong by Remark (3.8) and
each node is incident to all other nodes. Hence D = {u} is a α-strong dominating set
and ds(u) = d(u) for each u ∈ V. Hence the result follows.

Proposition 3.11 (Empty fuzzy graph). Let G = (V, σ, µ) be a fuzzy graph. Then
γv(G) = p, if G be edgeless, i.e G = K̄n.

Proof. Since G is edgeless, Hence V is only α-strong dominating set in G and none of
arcs are α-strong. so we have γv(G) = minD∈S [Σu∈Dσ(u)] = Σu∈vσ(u) = p by
Definition (3.4). so we can write γv(K̄n) = p by our notations.

Figure 1. Vertex domination

It is interesting
to note the converse of Proposition
(3.11) that does not hold.

Example 3.12. We show
the converse of Proposition (3.11)
does not hold. For this purpose, Let
V = {v1, v2, v3, v4, v5}. We define
σ on V by σ : V → [0, 1] such that

σ(v1) = 0.5, σ(v2) = 0.7, σ(v3) = 0.9, σ(v4) = 0.75, σ(v5) = 0.5

Now, The function µ : V × V → [0, 1] is defined by

µ(v1v2) = 0.005, µ(v1v4) = 0.003, µ(v1v3) = 0.009, µ(v2v4) = 0.006, µ(v2v5) = 0.009,
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µ(v3v4) = 0.008, µ(v4v5) = 0.003 such that ∀u, v ∈ V, µ(u, v) ≤ σ(u) ∧ σ(v). Finally, Let
V, σ, and µ be the vertices, value of vertices and value of edges respectively. In other
words, By attention to fuzzy graph In Figure (1), the arcs v2v5, v2v4, v3v4 and v1v3 are
α-strong and the arcs v1v4, v1v2 and v4v5 are not α-strong. So the set {v2, v3} is the
α-strong dominating set. This set is also vertex dominating set in fuzzy graph G. Hence
γv(G) = 1.75 + 0.9 + 0.7 = 3.35 = Σu∈vσ(u) = p. So G 6= K̄5 but γv(G) = p.

Proposition 3.13 (Star fuzzy graph). Let G be a star fuzzy graph. Then G = K1,σ

and γv(K1,σ) = σ(u) + 1 where u is center of G.

Proof. Let G be the star fuzzy graph with V = {u, v1, v2, · · · , vn} such that u and vi
are center and leaves of G, for 1 ≤ i ≤ n respectively. So G∗ = K∗1,n is underlying crisp
graph of G. {u} is vertex dominating set in G and all arcs are α-strong by Remark (3.9)
and due to G is bipartite fuzzy graph. Hence the result follows.

Proposition 3.14 (Bipartite fuzzy graph). Let G be the bipartite fuzzy graph which is
not star fuzzy graph. Then G = Kσ1,σ2 and γv(Kσ1,σ2) = minu∈V1,v∈V2(σ(u) +σ(v)) + 2.

Proof. Let G 6= K1,σ be bipartite fuzzy graph. Then both of V1 and V2 include more
than one vertex. In Kσ1,σ2 , all arcs are α-strong by Remark (3.9). Also each node in V1
is dominated as α-strong with all nodes in V2 and conversely. Hence in Kσ1,σ2

, the
α-strong dominating sets are V1 and V2 and any set containing 2 nodes, one in V1 and
other in V2. Hence γv(Kσ1,σ2

) = minu∈V1,v∈V2
(σ(u) + σ(v)) + 2. So the theorem is

proved.

We give an upper bound for the vertex domination number of fuzzy graphs,
Proposition (3.15).

Proposition 3.15. For any fuzzy graph G = (V, σ, µ), We have γv ≤ p.

Proof. γv(K̄n) = p by Theorem (3.11). So the result follows.

For the vertex domination number γv the following theorem gives a
Nordhaus-Gaddum type result.

For any fuzzy graph the Nordhaus-Gaddum(NG)’result holds, Theorem (3.16).

Theorem 3.16. For any fuzzy graph G = (V, σ, µ), The Nordhaus-Gaddum result holds.
In other words, we have γv + γ̄v ≤ 2p.

Proof. G is fuzzy graph. So Ḡ is also fuzzy graph. We implement Theorem (3.15) on G
and Ḡ. Then γv ≤ p and γ̄v ≤ p. Hence γv + γ̄v ≤ 2p. So the theorem is proved.

The following theorems on dominating sets in graphs are the first results about
domination and were presented by Ore in his book Theory of Graphs [69].

Definition 3.17 ( [47]). A α-strong dominating set D is called a minimal α-strong
dominating set if no proper subset of D is a α-strong dominating set.

Theorem 3.18 ( [47]). Let G be a fuzzy graph without isolated nodes. If D is a
minimal α-strong dominating set then V −D is a α-strong dominating set.

Finding a domatic partition of size 1 is trivial and finding a domatic partition of size
2 (or establishing that none exists) is easy but finding a maximum-size domatic
partition (i.e., the domatic number), is computationally hard. Finding domatic
partition of size two in fuzzy graph G of order n ≥ 2 is easy by the following.

Theorem 3.19 ( [47]). Every connected graph G of order n ≥ 2 has a α-strong
dominating set D whose complement V −D is also a α-strong dominating set.
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We improve upper bound for the vertex domination number of fuzzy graphs without
isolated nodes, Theorem (3.20).

Theorem 3.20. For any fuzzy graph G = (V, σ, µ) without isolated nodes, We have
γv ≤ p

2 .

Proof. Let D be a minimal dominating set of G. Then by Theorem (3.19), V-D is a
α-strong dominating set of G. Then γv(G) ≤ wv(D) and γv(G) ≤ wv(V −D).

Therefore 2γv(G) ≤ wv(D) + wv(V −D) ≤ p which implies γv ≤ p
2 . Hence the proof

is completed.

We also improve Nordhaus-Gaddum(NG)’result for fuzzy graphs without isolated
nodes, Corollary (3.21).

Corollary 3.21. Let G be a fuzzy graph such that both G and Ḡ have no isolated
nodes. Then γv + γ̄v ≤ p,where γ̄v is the vertex domination number of Ḡ. Moreover,
equality holds if and only if γv = γ̄v = p

2 .

Proof. By the Implement of Theorem (3.20) on G and Ḡ, we have γv(G) = γv ≤ p
2 , and

γv(Ḡ) = γ̄v(G) = γ̄v ≤ p
2 . So γv + γ̄v ≤ p

2 + p
2 = p. Hence γv + γ̄v ≤ p.

Suppose γv = γ̄v = p
2 , then obviously γv + γ̄v = p. Conversely, suppose γv + γ̄v ≤ p.

Then we have γv ≤ p
2 and γ̄v ≤ p

2 . If either γv <
p
2 or γ̄v <

p
2 , then γv + γ̄v < p, which

is a contradiction. Hence the only possibility case is γv = γ̄v = p
2 .

Remark 3.22. Note that when we use the definition of domination number in [13,14,15],
Theorem (3.20) and Corollary (3.21) are hold.

Proposition 3.23. Let G = (V, σ, µ) be a fuzzy graph. If all arcs have equal value, the
G has no α-strong edge.

Proof. Obviously the result is hold by using Definition (3.1).

We give the relationship between M -strong arcs and α-strong arcs, Corollary (3.24).

Corollary 3.24. Let G = (V, σ, µ) be a fuzzy graph. If all arcs are M -strong, the G
has no α-strong edge.

Proof. Obviously the result is hold by using Proposition (3.23).

Figure 2. M-strong arcs and
α-strong arcs

The following
example illustrates this concept.

Example 3.25.
In Figure (2) , all arcs are M -strong
but there is no α-strong arcs in this
fuzzy graph. Obviously this result
is hold by using Definition (3.3).

We give a necessary
and sufficient condition for vertex
domination which is half of order,
In fact fuzzy graphs with vertex

domination which is half of order is characterized in the special case, Theorem (3.26).

Theorem 3.26. In any fuzzy graph G = (V, σ, µ) such that values of nodes are equal
and all arcs have same value, i.e. for ∀ui, uj ∈ V and ∀ei, ej ∈ E, we have
σ(ui) = σ(uj) and µ(ei) = µ(ej). γv = p

2 if and only if For any vertex dominating set
D in G, we have |D| = n

2 .
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Proof. Suppose D has the conditions. ds(D) = 0 by Proposition (3.23). So
γv(G) = Σu∈Dσ(u) by using Definition (3.4). Since values of nodes are equal and
|D| = n

2 , we have γv(G) = Σu∈Dσ(u) = n
2σ(u) = 1

2 (nσ(u)) = 1
2 (Σu∈V σ(u)) = 1

2 (p) = p
2 .

Hence the result is hold in this case.
Conversely, Suppose γv = p

2 . Let D = {u1, u2, · · · , un} be a vertex dominating set.
ds(D) = 0 by Proposition (3.23). So γv(G) = Σu∈Dσ(u) by using Definition (3.4).
Since γv(G) = Wv(D), we have γv = p

2 = 1
2 (Σu∈V σ(u)) = Σu∈Dσ(u). Suppose n

′ 6= n
2 .

so Σn
′′

i=1σ(vi)) = 0 which is a contradiction with ∀ui ∈ V, σ(ui) > 0. Hence n
′

= n
2 , i.e.

|D| = n
′

= n
2 . So the result is hold in this case.

The vertex domination of union of two fuzzy graphs is studied, Proposition (3.27).

Proposition 3.27. Let G1 and G2 be fuzzy graphs. The vertex dominating set of
G1 ∪G2 is D = D1 ∪D2 such that D1 and D2 are the vertex dominating set of G1 and
G2 respectively. Moreover, γv(G1 ∪G2) = γv(G1) + γv(G2).

Proof. Obviously the result is hold by using Definition of union of two fuzzy graphs.

Also the vertex domination of union of fuzzy graphs Family is discussed, Corollary
(3.28).

Corollary 3.28. Let G1, G2, · · · , Gn be fuzzy graphs. The vertex dominating set of
∪ni=1Gi is D = ∪ni=1Di such that Di is the vertex dominating set of Gi. Moreover,
γv(∪ni=1Gi) = Σni=1γv(Gi).

Proof. Obviously the result is hold by using proposition (3.27).

The concepts of both monotone increasing fuzzy graph property, Definition (3.29),
and monotone decreasing fuzzy graph property, Definition (3.31), are introduced.

Definition 3.29. We call a fuzzy graph property P monotone increasing if G ∈ P
implies G+ e ∈ P, i.e., adding an edge e to a fuzzy graph G does not destroy the
property.

Example 3.30. Connectivity and Hamiltonicity are monotone increasing properties. A
monotone increasing property is nontrivial if the empty graph K̄n 6∈ P and the complete
graph Kn ∈ P.

Definition 3.31. A fuzzy graph property is monotone decreasing if G ∈ P implies
G− e ∈ P , i.e., removing an edge from a graph does not destroy the property.

Example 3.32. Properties of a fuzzy graph not being connected or being planar are
examples of monotone decreasing fuzzy graph properties.

Remark 3.33. Obviously, a fuzzy graph property P is monotone increasing if and only if
its complement is monotone decreasing. Clearly not all fuzzy graph properties are
monotone. For example having at least half of the vertices having a given fixed degree d
is not monotone.

Let γ(G) denote the domination number of a simple graph G. Then Vizing
(1963) [17]conjectured that γ(G)γ(H) ≤ γ(G×H), where G×H is the graph product.
While the full conjecture remains open, Clark and Suen (2000) [23] have proved the
looser result γ(G)γ(H) ≤ 2γ(G×H).

Vizing stated the still open conjecture:

Conjecture (Vizing [17]). For all graphs G and H, γ(G)γ(H) ≤ γ(G×H). The
result in relation with vizing’s conjecture by using α-strong arc and monotone
decreasing fuzzy graph property is determined, Theorem (3.34).
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Theorem 3.34. The vizing’s conjecture is monotone decreasing property in fuzzy graph
G, if the edge e be α-strong and γv(G− e) = γv(G).

Proof. The fuzzy graph (G− e)×H is the spanning fuzzy subgraph of G×H, for all
fuzzy graph H. So γv((G− e)×H) ≥ γv(G×H) ≥ γv(G)γv(H) = γv(G− e)γv(H).
Hence vizing’s conjecture is also hold for G− e. Then the result follows.

Some results in relation with vizing’s conjecture by using α-strong arc and spanning
fuzzy subgraph is studied, Corollary (3.35).

Corollary 3.35. Suppose the vizing’s conjecture is hold for G. Let K be the spanning
fuzzy subgraph of G such that γv(K) = γv(G). Then the vizing’s conjecture is hold for
K.

Proof. The fuzzy graph K ×H is the spanning fuzzy subgraph of G×H, for all fuzzy
graph H. So γv(K ×H) ≥ γv(G×H) ≥ γv(G)γv(H) = γv(K)γv(H). Hence the vizing’s
conjecture is also hold for K. So the result follows.

The vertex domination of join of two fuzzy graphs is studied, Proposition (3.36).

Proposition 3.36. Let G1 and G2 be fuzzy graphs. The vertex dominating set of
G1 ⊗G2 is D = D1 ∪D2 such that D1 and D2 are the vertex dominating set of G1 and
G2 respectively. Moreover, γv(G1 ⊗G2) = γv(G1) + γv(G2).

Proof. Obviously the result is hold by using Definition of join of two fuzzy graphs and
Corollary (3.24) which state in this case, M -strong arcs between two fuzzy graphs is not
α-strong which is weak arc changing strength of connectedness of G.

Also the vertex domination of join of fuzzy graphs Family is discussed, Corollary
(3.37).

Corollary 3.37. Let G1, G2, · · · , Gn be fuzzy graphs. The vertex dominating set of
⊗ni=1Gi is D = ⊗ni=1Di such that Di is the vertex dominating set of Gi. Moreover,
γv(⊗ni=1Gi) = Σni=1γv(Gi).

Proof. Obviously the result is hold by using proposition (3.36).

Gravier and Khelladi [22] conjecture a Vizing-like inequality for the domination
number of the cross product of graphs.

Gravier and Khelladi stated the still open conjecture:

Conjecture (Gravier and Khelladi [22]). For all graphs G and H,

γ(G)γ(H) ≤ 2γ(G⊗H).

The result in relation with Gravier and Khelladi’s conjecture by using α-strong arc and
monotone decreasing fuzzy graph property is determined, Theorem (3.38).

Theorem 3.38. The Gravier and Khelladi’s conjecture is monotone decreasing
property in fuzzy graph G, if the edge e be α-strong and γv(G− e) = γv(G).

Proof. The fuzzy graph (G− e)×H is the spanning fuzzy subgraph of G×H, for all
fuzzy graph H. So γv((G− e)×H) ≥ γv(G×H) ≥ γv(G)γv(H) = γv(G− e)γv(H).
Hence Gravier and Khelladi’s conjecture is also hold for G− e. Then the result
follows.
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We conclude this section with Some result in relation with Gravier and Khelladi’s
conjecture by using α-strong arc and spanning fuzzy subgraph is studied, Corollary
(3.39).

Corollary 3.39. Suppose the Gravier and Khelladi’s conjecture is hold for G. Let K be
the spanning fuzzy subgraph of G such that γv(K) = γv(G). Then the Gravier and
Khelladi’s conjecture is hold for K.

Proof. The fuzzy graph K ×H is the spanning fuzzy subgraph of G×H, for all fuzzy
graph H. So γv(K ⊗H) ≥ γv(G⊗H) ≥ γv(G)γv(H) = γv(K)γv(H). Hence the Gravier
and Khelladi’s conjecture is also hold for K. So the result follows.

4 Conclusion

Graph theory is one of the branches of modern mathematics having experienced a most
impressive development in recent years. One of the most interesting problems in graph
theory is that of Domination Theory. Nowadays domination theory ranks top among
the most prominent areas of research in graph theory and combinatorics. The theory of
domination has been the nucleus of research activity in graph theory in recent times.
The fastest growing area within graph theory is a study of domination and related
subset problems such independence, covering, matching, decomposition and labelling.
Domination boasts a host of applications to social network theory, land surveying, game
theory, interconnection network, parallel computing and image processing and so on.
Today, this theory gained popularity and remains as a major area of research. At
present, domination is considered to be one of the fundamental concepts in graph theory
and its various applications to ad hoc networks, biological networks, distributed
computing, social networks and web graphs partly explain the increased interest. More
than 1200 papers already published on domination in graphs. Without a doubt, the
literature on this subject is growing rapidly, and a considerable amount of work has
been dedicated to find different bounds for the domination numbers of graphs. However,
from practical point of view, it was necessary to define other types of dominations.
Most of these new variations required the dominating set to have additional properties.
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