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Abstract: Recent advances in recording and real-time analysis of surface electromyographic signals 11 
(sEMG) have fostered the use of sEMG human-machine interfaces for controlling personal 12 
computers, prostheses of upper limbs, and exoskeletons among others. Despite a relatively high 13 
mean performance, sEMG-interfaces still exhibit strong variance in the fidelity of gesture 14 
recognition among different users. Here we systematically study the latent factors determining the 15 
performance of sEMG-interfaces in synthetic tests and in an arcade game. We show that the degree 16 
of muscle cooperation and the amount of the body fatty tissue are the decisive factors in synthetic 17 
tests. Our data suggest that these factors can only be adjusted by a long-term training, which 18 
promotes fine-tuning of low-level neural circuits driving the muscles. A short-term training has no 19 
effect on synthetic tests, but significantly increases the game scoring. This implies that it works at a 20 
higher decision-making level, not relevant for synthetic gestures. We propose a procedure that 21 
enables quantification of the gestures’ fidelity in a dynamic gaming environment. For each 22 
individual subject the approach allows identifying “problematic” gestures that decrease gaming 23 
performance. This information can be used for optimizing the training strategy and for adapting 24 
the signal processing algorithms to individual users, which could be a way for a qualitative leap in 25 
the development of future sEMG-interfaces.  26 

Keywords: electromyography, human-computer interface, motor control, pattern classification, 27 
artificial neural networks 28 

 29 

1. Introduction 30 

Multichannel recordings of the surface electromyographic signals (sEMG) allow inferring on the 31 
activity of different groups of muscles involved in certain movements [1-5]. Then each specific 32 
movement can be associated with the so-called sEMG-pattern reflecting the degree of contraction of 33 
a set of muscles. This, in turn, enables the identification of movements by classification of the 34 
sEMG-patterns and, finally, building a human-machine interface based on sEMG recordings [6-9]. 35 

Recent advances in hardware and software for sEMG recording and real-time data analysis fostered 36 
the use of sEMG human-machine interfaces for controlling a variety of devices such as, e.g., personal 37 
computers [8, 10], prostheses of upper limbs [11, 12], and exoskeletons [6, 7, 13, 14] among others. 38 
Despite the device diversity, the performance of different mathematical strategies involved in the 39 
pattern recognition and classification differs only slightly among each other [11, 15]. Overall, the 40 
performance of sEMG-interfaces has not yet reached the level acceptable for their massive 41 
commercial use. 42 
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Most methods of extraction of the representative features from sEMG signals are based either on 43 
amplitude characteristics and autoregressive models or on the time-frequency analysis and 44 
spatiotemporal features [9, 16, 17]. The pattern classification is usually achieved by linear 45 
discriminant analysis (LDA), support vector machines, Bayesian statistics, and artificial neural 46 
networks (ANN) [16, 18-24]. One of the most important measures of the efficiency of 47 
sEMG-interfaces is the accuracy of motion recognition, which is mostly applicable in synthetic tests. 48 
The comparison of different classifiers based on LDA [25-27], linear regression models [28], and 49 
ANN [9, 12, 29] has shown that the mean recognition accuracy of rather simple body movements can 50 
be high enough. It depends on the number of gestures to be recognized and may lie in the range 51 
[0.93, 0.96] [20, 26, 30]. In average, diverse approaches may differ by a few percent among each other. 52 
However, at the same time the recognition accuracy and the interface performance may vary 53 
significantly (up to 70%) among different users. The latter strongly limits deployment of 54 
sEMG-interfaces in society. 55 

The main difficulty in achieving high performance with different persons resides in a wide set of 56 
individual characteristics of different subjects, which requires a tedious fine-tuning of interfaces. 57 
Moreover, even for the same user some characteristics may change in time. For instance, the 58 
interface performance can degrade significantly due to displacement or shift of recording electrodes, 59 
perspiration of skin, fatigue, muscles “crosstalk”, muscle fitness, etc. [10, 31]. Thus, a long-term 60 
remaining open question is: What are the main factors determining the interface performance? Or 61 
more explicitly: Is it the chosen algorithm or the user anatomy, or his/her motor-control ability? An 62 
experimentally supported answer to this question may reroute the research efforts directed to 63 
solving latent problems of sEMG-interfaces, which could lead to a qualitative leap in their design. 64 

To approach this problem here we employ two complementary experimental strategies. We 65 
investigate the interface performance in synthetic tests (i.e., under single individual gestures) and in 66 
a gaming environment. In the former case we achieve controllable and repeatable conditions, while 67 
in the latter we examine the user experience in “real-life” scenarios. We then systematically study 68 
the latent factors influencing the interface performance. In particular, we quantify i) the degree of 69 
muscle cooperation, i.e., the coordinated contribution of synergist and antagonist muscles in a hand 70 
movement and ii) the user’s constitution, i.e., the content of the body fatty tissue. We show that these 71 
factors can significantly limit the performance of an sEMG-interface in synthetic tests and provide 72 
insight on the social groups of subjects influenced by each factor. We also study how a short-term 73 
and a long-term training can affect the use of interfaces. Surprisingly, the short-term training plays 74 
no role in synthetic tests, but significantly increases the gaming performance. We then provide a 75 
method for quantification of the gesture recognition fidelity in a dynamic environment. Note that in 76 
this case most of the indexes commonly used in the literature are not applicable. We then discuss the 77 
differences between the effects of short-term and long-term training and how this information can be 78 
used for optimizing the training strategy and adapting the signal processing algorithms to the needs 79 
of individual users. 80 

2. Materials and Methods 81 

2.1 Subjects and short-term training 82 

For experimental purpose we recruited 37 healthy volunteers of either sex (24 women and 13 men) 83 
from 18 to 41 years old and of different fitness and training (12 trained and 25 not trained subjects). 84 
In the context of this work by "trained" we mean persons who regularly practice sport or other 85 
activities related to manual small motility (playing guitar, embroidery, etc.). The study complied 86 
with the Helsinki declaration adopted in June 1964 (Helsinki, Finland) and revised in October 2000 87 
(Edinburg, Scotland). The Ethics Committee of the Lobachevsky State University of Nizhny 88 
Novgorod approved the experimental procedure (protocol N06 from 06.07.2017). All participants 89 
gave their written consent. All subjects had no previous experience in dealing with sEMG-interfaces. 90 
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Fourteen out of 37 subjects (8 women and 6 men) also participated in a ten-day training that 91 
consisted in practicing individual synthetic hand gestures and playing a testing arcade game. 92 

2.2 sEMG-interface, “pacman” game, and synthetic tests 93 

For experimental assessment of an sEMG-interface we have developed a hardware-software 94 
complex called MyoCursor. The system consists of a MYO Thalmic bracelet worn on a user’s 95 
forearm and a PC with a Bluetooth receiver running specially designed software (Fig. 1A). 96 

The bracelet is equipped with eight sensors equally spaced around forearm that simultaneously 97 
acquire myographic signals. The signals are sent through a Bluetooth interface to a PC. We used the 98 
MYO SDK to access raw eight-channel data, while the built-in software of the bracelet was disabled. 99 
Acquired signals are processed by MyoCursor software in real-time. The software recognizes hand 100 
gestures and estimates the muscle effort that finally are used for controlling a game module.  101 

Gaming environment. The game module replicates the well-known arcade game “pacman” (Fig. 1A, 102 
inset). The user’s objective is to control by hand gestures displacements of pacman on the screen and 103 
to catch “cherry” as fast as possible. 104 

 105 
Figure 1. Software design of the sEMG-interface. A) Main window of MyoCursor software (on background) and game 106 
window (foreground). A user controls by hand gestures “pacman” (yellow icon) and aims at reaching “cherries” (shown in 107 
red), which also can move. In the main window the current gesture “go left” (G2) is shadowed by red. Blue traces show 108 
sEMG patterns recorded from eight electrodes of the Myo bracelet. B) Sketch of calculation of the pacman movement by an 109 
artificial neural network. Raw sEMG (blue traces) are used to evaluate RMS signals [black traces, Eq. (1)]. At the same 110 
time the mean power (MP) is calculated [green trace, Eq. (3)]. The ANN classifies RMS patterns and yields an output for 111 
controlling the movement direction (푞 , 푞 , 푞 , 푞 ). The “left-right” and “up-down” differences are multiplied by the MP to 112 
get proportional control [(훥푋, 훥푌) in Eq. (5)]. 113 

To control pacman we selected the following seven hand gestures as basic motor patterns: G0, hand 114 
at rest (Rst in Fig. 1A), was used for relaxation and elimination of а constant trend (see below); G1 115 
and G2, wrist flexion and extension, imitated movements to the left and to the right, respectively; G3 116 
and G4, radial and ulnar deviations, simulated up and down movements, respectively. Besides, we 117 
included four additional gestures (5-8 in Fig. 1A) that are combinations of pairs of G1 - G4. For 118 
example, simultaneous wrist flexion, G1, and radial deviation, G3, served for diagonal left-up 119 
movement. We also used G9, hand clenched in a fist (L in Fig. 1A) for simulation of the mouse-left 120 
click; and G10, extended palm (fingers either together or separately, R in Fig. 1A) for imitation of the 121 
mouse-right click. 122 

Synthetic tests. The gaming environment reproduces real-life scenarios of the use of an 123 
sEMG-interface. However, due to its dynamic nature it makes difficult quantification of errors and 124 
tuning of the interface. Therefore, in our experiments we also performed synthetic tests. The subjects 125 
were asked to perform sequentially individual static gestures (go left, pause, go right, pause, etc.). 126 
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The collected data were processed off-line. Note that synthetic data also were used for a supervised 127 
training of ANN.   128 

2.3 Real-time processing of sEMG 129 

To process in real-time sEMG signals we employed two different approaches: 1) ANN-based and 2) 130 
Linear Discriminant Analysis (LDA). 131 

ANN approach. The data flow 풙(풕) ∈ ℝퟖ was divided into 200 ms overlapping time windows at a 132 
100 ms step (풕 = ퟎ, ퟏ, ퟐ,… is the discrete time with the sampling rate of 1 kHz). Then the root mean 133 
square (RMS) of the sEMG activity over each time window was evaluated (Fig. 1B) [32]: 134 

푽(푡) =
1
푁 풙(푡 − 푛) ,				 (1)

where 푁 = 200 is the number of samples in a time window and 푡 = 푀푘 (푘 = 2,3,4,…) with 푀 =135 
100 being the time shift between consecutive windows. The RMS data, as a composite feature of the 136 
current hand gesture, were fed into an ANN with one hidden layer containing eight neurons (Fig. 137 
1B). 138 

The network neurons apply weighted sum over their inputs 풛 ∈ ℝ , and use sigmoidal activation 139 
function to generate output 푦: 140 

푦 = 퐹[(풘, 풛)],											퐹(푢) =  , (2)

where 풘 ∈ ℝ  is the vector of the synaptic weights and (⋅,⋅) stands for the inner product. In the 141 
output layer four neurons provide left, right, up, and down values 풒 = (푞 , 푞 , 푞 ,푞 )  for a given 142 
gesture. The learning, i.e., the adjustment of the neuronal weights {풘풊}, is achieved by the standard 143 
back-propagation algorithm [33]. 144 

Each basic gesture (G1 – G4) corresponds to a single target class. Thus, each output neuron (Fig. 1B) 145 
should yield 1 for its own class and 0 for the others. To accommodate the compound gestures (e.g., 146 
“left-up”, G6) during learning we used the target value 1/√2 for the corresponding two output 147 
neurons. Such a choice allows generating a compound vector output with unitary length for the 148 
basic and compound gestures, i.e., ||풒|| = 1. Once the learning is deemed finished, the online 149 
controlling of pacman can be enabled. To move pacman along the X-axis (Y-axis) we used the value 150 
proportional to the difference of the output neurons (Fig. 1B) responsible for gestures "left" and 151 
"right" ("up" and "down"), i.e., (푞 − 푞 ) and (푞 − 푞 ). 152 

LDA approach. sEMG data can be considered as points in a multidimensional space ℝ . The aim of 153 
LDA algorithm is to use a set of hyper-planes (of dimension ℝ ) to separate the data into different 154 
classes. A separating hyper-plane is obtained by seeking for the projection maximizing the distance 155 
among the means of the classes and minimizing the inter-class variance. This technique demands a 156 
very low computational power that makes it suitable for online sEMG classification. Earlier studies 157 
have shown that the LDA-classifier is quite simple and handy, and in general provides good results 158 
[34]. Similar to the ANN approach, here RMS data were fed to the input of the LDA-classifier 159 
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implemented in Matlab (function "classify"). First the routine was configured and then run on the 160 
same data used in the ANN approach. 161 

2.4 Proportional control 162 

To introduce proportional control (i.e., depending on the gesture “strength”) we employed an 163 
approach similar to that described in Refs. [35, 36]. We estimated the muscle effort by evaluating the 164 
mean power (MP) over all sEMG sensors [32]: 165 

푃(푡) = ∑ ||풙(푡 − 푛)	|| 	, (3)

where 퐾 is the number of sEMG channels (in our case 퐾	 = 	8). Then the pacman speed could be set 166 
proportional to the mean power (Fig. 1B). 167 

Due to some intrinsic jitter in the muscle tone we usually observed a slow involuntary drift of 168 
pacman on the screen. To eliminate this artifact, the trend defined by the relaxed hand state (Fig. 1A, 169 
Rst) was subtracted from the pacman controlling signals. Thus, we define the pacman’s velocity by: 170 

푣(푡) = 퐻(푝(푡) − 푝 ), (4)

where 푝(푡) = 푃(푡)/푃  is the relative mean power, 푝  is the drift threshold, and 퐻(푢) =171 
max(0, 푢) is the rectifier function. Finally, the pacman’s displacement 훥 along the X- and Y-axes on 172 
the screen is given by: 173 

훥(푡) = 20푣(푡)(푞 (푡) − 푞 (푡), 푞 (푡) − 푞 (푡)). (5)

2.5 Performance of sEMG interface  174 

For estimating the performance of the sEMG-interface in synthetic tests we employed two measures. 175 
The first was the so-called F-measure [37], which is based on the precision and recall values obtained 176 
from the classification results [32]:  177 

푃 = 	,				푅 = 		, (6)

where TP is the number of true positives, i.e., correctly recognized gestures; FP is the number of false 178 
positives, i.e., a classifier recognizes other gesture as its own; and FN is the number of false 179 
negatives, i.e., a classifier does not recognize its own gesture. Then the F-measure is given by: 180 

퐹 = 	. (7)

This measure is convenient for quantifying the interface performance in synthetic tests since it can be 181 
calculated both for each gesture separately and for all of them together. Note that in the latter case a 182 
classifier is tested on “known” gestures hence 퐹푁	 = 	0 and thus 푅	 = 	0.  183 

We used the F-measure for comparing the performance of the ANN and LDA classifiers in the task 184 
of classification of four main gestures G1 - G4. However, the compound gestures (G5 – G8) require 185 
different approach. Indeed, in this case the output of the ANN is not binary and thus the assignment 186 
of TP, FP, and FN is not straightforward. We then used the mean squared error of the difference 187 
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between the network output 풒 and target classification 풖. The error was evaluated over 푁 trials 188 
and M neurons in the last layer (in our case M = 7): 189 

퐸 =	
1
푁푀 ||풒 − 풖 || .			 (8)

The mean squared error (8) was calculated for the network training and testing sets. It served as a 190 
criterion to stop the learning procedure, as soon as the error started increasing on test samples. In 191 
average, the learning process required about 5000 training epochs and took less than 1 min on a 192 
standard Intel Core i5 PC. 193 

Our experimental data show that 퐸  varies strongly from one person to another in the range 194 
[0.009, 0.054]. The empirical distribution of 퐸  deviates significantly from a normal distribution (a 195 
Lilliefors test rejected the null-hypothesis of normality, 푝	 = 	0.04; median 퐸 	= 0.022, quartiles 196 
푄 = 0.017 and 푄 = 0.027). Thus, to use parametric statistics we normalized the distribution by 197 
applying logarithmic transformation and introduced the performance index:  198 

푅푒 = ln
퐸
퐸 		.	 (9)

The distribution of 푅푒 was close enough to a Gaussian distribution (a Lilliefors test accepted the 199 
null-hypothesis of normality, 푝	 > 	0.5).  200 

2.6 Assessment of factors influencing performance of sEMG-interface in synthetic tests 201 

Body Fat (BF) index. To test the correlation between the classification error and anatomic features of 202 
the users, for each subject we estimated the amount of fatty tissue in the body by the fat monitor 203 
OMRON BF306. Personal anthropometric characteristics, i.e., weight, height, age, and sex were 204 
introduced into the analyzer. The device measures the impedance from hand to hand and calculates 205 
the body fat (BF) in percentage based on the collected data. In our study the subjects had the BF 206 
index in the range [4, 44]%. 207 

Synergist-Antagonist Coefficient (SAC). Each body movement involves contraction and extension 208 
of various muscles. These concurrent processes must be perfectly synchronized and tuned to 209 
perform movements optimal in terms of the energy consumption and precision. To verify the 210 
influence of the “muscle functional efficiency” of a subject on the sEMG-interface performance we 211 
developed a novel measure: the coefficient of activation of synergist-antagonist muscles or SAC. It 212 
will be thoroughly discussed in Sect. 3.2. 213 

2.7 Quantification of interface performance in gaming environment 214 

To study the performance of the sEMG-interface in real-life scenarios we conducted experiments 215 
with the pacman game. While playing, the subjects freely move their hands thus we get no clear 216 
reference on the gesture performed in each time instant. Therefore, the above-described indexes are 217 
not applicable directly. We then developed a measure based on an analysis of trajectory of pacman 218 
controlled by users while persecuting cherries (Fig. 1A, inset).  219 
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At each game trial the trajectories of pacman and of cherries (Fig. 1A, inset, shown in yellow and 220 
red) where acquired together with the gestures provided by the ANN (variable 풒(푡)). These data 221 
were downsampled in such a way that each trajectory, i.e., the position of pacman at given time 222 
instant {흆 (푡 )}, had no more than 60-100 points (about 50 ms between consecutive points). Then we 223 
estimated the velocity vector, i.e., the direction of motion of pacman by finite difference: 224 

흎 (푡 ) =
흆 (푡 ) − 흆 (푡 )

푡 − 푡 		.	 (10)

The same procedure was applied to the trajectory of cherries yielding the location 흆 (푡 ) and the 225 
velocity 흎 (푡 ). Using these data we can evaluate the quality of the decision made by the user. 226 

To get a reference we have to calculate an optimal direction of motion, i.e., the direction of pacman 227 
providing the best intercepting strategy. There are several approaches to this problem from simple 228 
strategies to cognitive models (see, e.g., [38-40]). We, however, applied the simplest algorithm 229 
sufficient for the fastest target interception. First we solve the following equation for the interception 230 
time 푡∗ > 0:  231 

||흎 (푡 )|| 푡∗ = ||흆 (푡 ) − 흆 (푡 ) +	흎 (푡 )푡∗|| 	.	 (11)

Then we calculate the unit vector: 232 

풏(푡 ) =
흆 (푡 ) − 흆 (푡 ) +	흎 (푡 )푡∗

||흆 (푡 ) − 흆 (푡 ) +	흎 (푡 )푡∗|| ,	 (12)

defining the best direction the user can take at time instant 푡 . Note that in certain cases (e.g., small 233 
pacman’s velocity) Eq. (11) can have no solution. Then as the best direction we take: 234 

풏(푡 ) =
흆 (푡 ) − 흆 (푡 ) +	흎 (푡 )(푡 − 푡 )

||흆 (푡 ) − 흆 (푡 ) +	흎 (푡 )(푡 − 푡 )|| .	 (13)

Given the best direction (12) [or (13)] and the real direction of pacman movement we can evaluate 235 
the angular deviation 훼(푡 ) = ∠(흎 (푡 ), 풏(푡 )), which quantifies the error of the user action at time 236 
instance 푡 . Further, we apply the circular statistical analysis to describe the distribution of {훼(푡 )} 237 
at a single game trial or by averaging at a single game level, or overall for the game. 238 

To evaluate the fidelity of gestures identified by the ANN we use the ANN output vector (Fig. 1B): 239 

휹(푡 ) = (푞 (푡 ) − 푞 (푡 ), 푞 (푡 ) − 푞 (푡 )). (14)

Then the gesture at 풕풊 is considered optimal if the following inequality holds: 240 

(휹(푡 ), 풏(푡 ))
||휹(푡 )|| > 푑 , (15)

where 푑 = 0.6 is the threshold of angular deviation from the best decision (angles within 0.92 rad 241 
cone). Otherwise the gesture is classified as incorrect. Next, the optimal and incorrect gestures are 242 
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divided into groups with prevalence of “left”, “right”, “up”, and “down” components. For example, 243 
the set of “optimal left” gestures is defined by: 244 

훺 = 푖:		 휹(푡 ), 풏(푡 ) > 푑 ||휹(푡 )|| , 훿 (푡 ) < −0.2휎 ,	 (16)

where 휎 is the standard deviation of 훿 . The other sets 훺 , 훺 , 훺 , 훺 , 훺 , 훺 ,	and 245 
훺  are defined similarly to (16). Finally, we estimate the gesture rates as the relative cardinality 246 
of the sets. For example: 247 

푅 =
|훺 |
퐿 ,	 (17)

where 퐿 is the total number of gestures. 248 

3. Results 249 

3.1 General performance of sEMG-interface and short-term training  250 

To estimate the general performance of the sEMG-interface we conducted experiments with the 251 
pacman game (see Methods). In the same test to drive pacman the subjects also used more common 252 
interfaces: a joystick, and a computer mouse. To get insight on the effect of a short-term learning, 253 
testing sessions were repeated during ten days. Figure 2A summarizes the results of the game score 254 
obtained by the subjects. 255 

 

 256 
Figure 2. General performance of sEMG-interface. A) Comparative analysis of different types of interfaces in gaming 257 
environment in the first day of experiments and after a ten-day training. The training practically doubled the score obtained 258 
by the sEMG-interface, significantly increased it for joystick, and no significant changes were observed for computer 259 
mouse. B) Correlation between two experimental paradigms testing sEMG-interface: the game score vs. the performance 260 
index Re in synthetic tests for individual subjects. Straight line represents linear regression (푝	 = 	0.001). 261 

As it was expected, we obtained quite diverse game scores for different types of interfaces. Note that 262 
the hand movements and hence sEMG patterns are quite similar for sEMG-interface and joystick 263 
and differ significantly from the mouse control. Computer mouse was the handiest for playing the 264 
game. However, to our surprise results shown with joystick (i.e., under direct control of pacman) 265 
were much closer to the sEMG-interface than to mouse (note logarithmic scale in Fig. 2A). This 266 
observation suggests that the human abilities for handling different types of interfaces depend 267 
strongly on a long-term training. Indeed, the subjects participated in the experiment were wont to 268 
use mouse in their daily life and much less accustomed to joystick. Thus, we expect that quite low 269 
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game performance reached with the sEMG-interface may be improved significantly by long-term 270 
training. Our data support this hypothesis. After а short-term training lasting 10 days (14 subjects) 271 
the game score obtained with the sEMG-interface practically doubled its initial value. The 272 
performance with joystick also increased significantly, whereas no changes were observed with 273 
mouse (Fig. 2A). Thus, the incremental improvement is inversely proportional to the previous 274 
experience obtained with the interface before the experiments. 275 

Besides testing the sEMG-interface in the gaming environment we also evaluated its performance in 276 
synthetic tests while subjects were performing separate individual gestures (G1-G8). In such a case 277 
we can evaluate the performance index ܴ݁, which quantifies the error at the neural network output. 278 
Then we study the correlation between two types of experimental approaches. Each individual 279 
subject first performed synthetic gestures and we evaluated Re and then the same subject played the 280 
pacman game and we recorded the obtained score. Figure 2B shows the obtained data and results of 281 
linear regression: 282 

푆푐표푟푒 = 푎 × 푅푒 + 푏,					푎 = −952 ± 219, 푏 = 741 ± 93, (18)

which confirm strong correlation between the selected measures (푝	 = 	0.001). Thus, we can 283 
conclude that two experimental approaches (synthetic and gaming tests) provide complementary 284 
data and can be used in parallel. 285 

3.2 Synergist-Antagonist Coefficient (SAC) 286 

The MYO bracelet records sEMG signals from a forearm, which has a number of muscles that 287 
participate in performing different gestures (Fig. 3A). We then identified those of them that 288 
significantly contribute to the synthetic gestures G1-G4. To this end the sEMG recordings have been 289 
processed by independent component analysis (ICA), which has been previously shown to be 290 
effective for the analysis of multielectrode recordings of local field potentials (LFP) [41-43]. There is 291 
an important similarity between LFP and sEMG. Indeed, in both cases electrical signals are 292 
generated by various sources (neuronal and muscle membranes for LFP and sEMG, respectively) 293 
and are mixed on external electrodes (extracellular and surface for LFP and sEMG, respectively). The 294 
data model in the case of sEMG (similar to LFP) can be written in the following form: 295 

푽(푡) = 푾 푠 (푡), (19)

where 푽(푡) ∈ ℝ  are the RMS of the sEMG signals, {푾 } is the set of loadings (weight vectors), and 296 
{푠 (푡)} are the time activations. Thus, the recorded signals are represented as a linear combination of 297 
contributions from 푚 sources (muscles). The ICA estimates both the loadings and time activations 298 
from the original data.  299 

Our studies have shown that sEMG signals are mainly contributed by five sources, i.e., 푚 = 5 (Fig. 300 
3B). Moreover, these sources are well localized in space (loadings 푾  are strongly peaked at certain 301 
electrodes) and coincide with anatomical location of five muscles (Figs. 3A and 3B): 1) flexor carpi 302 
radialis (FR), 2) flexor carpi ulnaris (FU), 3) extensor carpi radialis longus (ER), 4) extensor digitorum (ED), 303 
and 5) extensor carpi ulnaris (EU). Other muscles (e.g., palmaris longus) may also contribute to gestures 304 
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G1-G4 and, consequently, to sEMGs, but their signals are weak enough and can be neglected while 305 
dealing with the SAC.  306 

 307 

Figure 3. Synergist-antagonist coefficient describing the muscle functional efficiency. A) Sketch of five main muscles (in 308 
two mirrored projections) involved in synthetic gestures G1-G4: extensor carpi radialis longus (ER), extensor digitorum 309 
(ED), extensor carpi ulnaris (EU), flexor carpi radialis (FR), and flexor carpi ulnaris (FU). B) Independent component 310 
analysis of an sEMG recording. The loadings of five components (left) and the corresponding activations (right), while a 311 
subject performs four main gestures G1-G4. C) Traces of activations of two synergist and two antagonist muscles (in red and 312 
blue, respectively) for each of the gestures G1-G4. 313 

Thus, given that the MYO bracelet has been placed correctly on a subject’s forearm, we can accept 314 
that electrodes 2, 4, 5, 6, and 8 capture exclusively the activity of the corresponding main muscles. 315 
Figure 3B (right) shows the activation of the independent components (main muscles) when a 316 
subject performs gestures G1 – G4. The activity exhibits clear patterns for each of the four gestures.  317 

For the sake of simplicity and taking into account the symmetry of activations we selected four 318 
muscles out of five: FR, ER, EU, FU (Fig. 3A). Depending on the hand gesture, these muscles can act 319 
either as synergists or antagonists. The quantification of the contribution of synergist and antagonist 320 
muscles has been earlier used by Kurenkov and colleagues [44] for optimizing injection of toxins in 321 
clinical practices. We here take the activities in electrodes 2, 4, 6, and 8 as the reference of the 322 
contraction of the corresponding muscles and calculate the mean RMS values over several samples 323 
for four basic gestures G1-G4: 324 

푽 =
1
푀 퐕(푡). (20)

Within our approach each gesture has two synergist muscles and two antagonist ones. We thus 325 
introduce the synergist 푆 and antagonist 퐴 indexes by using the corresponding elements of the 326 
vector 퐕 ∈ ℝ  (Fig. 3C): 327 

 G1 ("left"): 푆 = 푉 + 푉 , 퐴 =	푉 + 푉  328 
 G2 ("right"): 푆 = 푉 + 푉 , 퐴 =	푉 + 푉   329 
 G3 ("up"): 푆 = 푉 + 푉 , 퐴 =	푉 + 푉   330 
 G4 ("down"): 푆 = 푉 + 푉 , 퐴 =	푉 + 푉   331 
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Then the ratio 푆 /퐴 ∈ (0,∞) reflects the muscle functional efficiency, while a subject performs 332 
gesture 푘. Finally, the synergist-antagonist coefficient for a subject is given by averaging the ratios 333 
over all M gestures: 334 

SAC = ln
1
푀 푆 /퐴 . (21)

Note that the logarithmic scaling in (21) serves for normalization of the coefficient. Then SAC = 0 335 
means that synergist and antagonist muscles are equally activated by the gesture, whereas SAC > 0 336 
(SAC < 0) indicates prevalence of synergetic (antagonistic) muscles’ contraction. We thus expect that 337 
higher SAC values correspond to better coordination of muscles while performing different gestures 338 
and hence should result in a lower error rate of the sEMG-interface.  339 

Figure 4 shows the SAC obtained in groups of physically trained and not trained people for each of 340 
the main gestures G1-G4. We remind that by "trained" we mean persons who regularly practice sport 341 
or other activities related to manual small motility. For three gestures out of four (G2-G4) the mean 342 
value of the SAC is higher for trained people, as we expected. For G1 (wrist flexion) the means are 343 
practically the same. This is because G1 is the most natural gesture that does not require strong 344 
muscle activation. On the available data the statistically significant difference appears in the case of 345 
G2 only (Fig. 4, t-test, p = 0.03). Note that this is the gesture (wrist extension) with the maximal SAC, 346 
which requires strong muscle activation and coordination. Non-significant differences observed in 347 
other cases may be due to not sufficient statistics.  348 

 349 

Figure 4. Synergist-antagonist coefficient (SAC) for trained and not trained subjects (mean values and standard errors are 350 
shown; star marks statistically significant difference).  351 
 352 

3.3 Similar means and high variance of sEMG performance for different classifiers 353 

Above we mentioned that different types of classifiers usually provide similar performance when 354 
applied to sEMG signals. Let us now confirm this observation in an example of the ANN and LDA 355 
classifiers. 356 

Figure 5 shows the F-measure of the gesture recognition fidelity (see Methods) for the ANN and 357 
LDA classifiers applied over the same data set (subjects performing synthetic gestures G1-G4). For 358 
both classifiers the mean values lie in the rather narrow interval [0.88, 0.95]. However, the dispersion 359 
of the measure (inter-quartiles Q1-Q3 intervals) over different subjects is quite high, in the range [0.8, 360 
0.98]. Note that the lower bound F = 0.8 corresponds to a strongly uncomfortable situation for a user. 361 
The LDA method performs slightly better than the ANN on gestures G1 and G4, equally well on G2, 362 
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and worse on G3. Nevertheless, the statistical analysis shows no significant difference between the 363 
classifiers. Thus, the equal means and high dispersion of the performance suggest that to a great 364 
extent the limiting factors for sEMG-interfaces can be related to the individual properties of different 365 
subjects, and to a less extent to the type of classifier. Then a perfect classifier should take into account 366 
the individual user’s properties. 367 

 368 

Figure 5. Two classifiers ANN and LDA show similar recognition performance for gestures G1-G4 (all differences are not 369 
significant). 370 

 371 

3.4 Latent factors influencing sEMG performance 372 

It is reasonable to assume that a long-term training of hand muscles in daily life can lead to a more 373 
efficient motor control. Eventually, it will be reflected in more coordinated sEMG-patterns and, 374 
consequently, will lead to a better performance of the sEMG-interface. Let us now crosscheck this 375 
hypothesis. 376 

Figure 6 shows the statistic for the performance index (panel A), synergist-antagonist coefficient 377 
(panel B), and body fat index (panel C) for different groups of subjects. We observe a statistically 378 
significant difference in the performance index between physically trained and not trained people 379 
and also between men and women (Fig. 6A, t-test, 푝	 = 	0.002 and 푝	 = 	0.01, respectively). As we 380 
have seen above, the SAC for the most demanding gesture G2 exhibits statistically significant 381 
difference between trained and not trained subjects (Fig. 6B, t-test, 푝	 = 	0.03). However, there is no 382 
statistically significant difference between men and women (t-test, 푝	 = 	0.5). Oppositely, the body 383 
fat measure differs significantly between men and women (Fig. 6C, t-test, 푝	 = 	0.0004) and 384 
non-significantly between trained and not trained subjects. Thus, they are two complementary 385 
indices. The SAC is not sensitive to the body fat, but explains better muscle coordination in trained 386 
people.  387 

Let us now go into detail of the observed gross differences in the performance index between 388 
different user groups (Fig. 6A). The difference should be associated with some latent factors, 389 
individual for each subject. Here we test the level of coordination of muscles (represented by the 390 
SAC) and the percentage of fatty tissue (represented by the BF index). We then correlated the 391 
coefficients evaluated individually for each subject with the achieved performance.  392 
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 393 

Figure 6. Assessment of latent factors influencing the performance of the sEMG-interface (mean values and standard errors 394 
are shown; stars mark statistically significant changes, p < 0.05; ns stays for not significant). A) Performance index (relative 395 
error), Re. B) Synergist-antagonist coefficient, SAC. C) Body fat index, BF. 396 

 397 
Figure 7 shows the results of linear regressions. For the dependence of Re on SAC we obtained the 398 
following straight line (Fig. 7A, 푝	 = 	0.001): 399 

푅푒 = 푎 × 푆퐴퐶 + 푏,					푎 = −1.02 ± 0.22, 푏 = 1.11 ± 0.26. (22)

Thus, the performance of the sEMG-interface depends significantly on the muscle control efficiency. 400 
The error of gesture identification decreases with an increase of SAC.  401 

 402 
Figure 7. Performance of the sEMG-interface as a function of latent factors: A) The synergist-antagonist coefficient (SAC) 403 
and B) Body fat index (BF). In both cases there is a significant correlation. Blue lines represent linear regressions (푝	 =404 
	0.001 and 푝	 = 	0.01 for (A) and (B), respectively). 405 
 406 
The next question we addressed was the observed difference in the performance between men and 407 
women (Fig. 6A). Note that it cannot be explained directly by the muscle efficiency (SAC), since it is 408 
similar between men and women (Fig. 6B). Then we assume that it may be explained by the 409 
variation in the body composition and, especially, by the content of fat tissue, which is significantly 410 
higher in women (Fig. 6C). Indeed, relating the performance and the BF index we revealed a 411 
statistically significant correlation (Fig. 7B, 푝	 = 	0.01). The linear regression of the data provides: 412 

푅푒 =α × 퐵퐹 −β,								훼 = 0.018 ± 0.007,					훽 = 0.5 ± 0.18. (23)

Thus, the error of gesture identification increases with an increase of the body fat, which explains, at 413 
least partially, worse performance of female users (Figs. 6A and 6C).  414 

3.5 Short-term training in gaming environment 415 

Above (Fig. 2A) we have observed that practicing the pacman game with the sEMG-interface during 416 
ten days led to a significant increase of the game score. We, however, did not find a significant 417 
difference both in the performance index Re and in the synergist-antagonist coefficient SAC in the 418 
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synthetic gesture tests before and after the short-term training. Thus, the increase in the gaming 419 
performance can be caused by latent factors other than those captured by these indexes. We then 420 
hypothesize that the gaming improvement may be implemented at a higher decision-making level, 421 
which is not relevant for pure gestures. 422 

To test this hypothesis we performed a comparative analysis of the decisions made by users while 423 
playing the pacman game before and after short-term training. Figure 8A illustrates a representative 424 
example of two game trials at the first day (left) and after the training (right). In both cases the target 425 
(cherry in inset in Fig. 1A) moves along similar trajectories (green curves in Fig. 8A). Pacman 426 
controlled by the user starts persecution of the target also from similar positions. Therefore we have 427 
similar gaming scenarios. However, in the first day the pacman’s trajectory is significantly more 428 
twisted than in the last day (blue and red curves in Fig. 8A, respectively). This suggests that training 429 
with the sEMG-interface improves the quality of controlling of pacman, which in turn leads to a 430 
higher scoring.  431 

 432 

Figure 8. Analysis of the gaming performance of a single subject playing the pacman game at the first day and after ten-days 433 
training. A) Representative example of two game trials (in the first day and after training). Green arrowed curves show the 434 
movement of the target. Blue and red curves correspond to the trajectory of pacman. Black arrows mark the best game 435 
decisions along trajectories. B) Deviation of the user choice from the best gaming decision along the trajectories shown in 436 
(A). C) Histograms of the decision deviation from best direction along game levels (color from blue to red represents the 437 
frequency of the corresponding deviation). D) Relative frequency (probability) of the trajectory deviation from the optimal 438 
direction. E) Rates of incorrect and optimal gestures used for controlling pacman before and after training.  439 

To quantify the controlling quality we estimated the best gaming decisions (see Methods) at several 440 
points of pacman’s trajectories, i.e., the directions of pacman movement that would lead to the 441 
fastest target interception (Fig. 8A, black arrows). One can observe that the pacman trajectories 442 
deviate from the best decisions. Then we calculated the angular error (deviation) of the user 443 
trajectory from the best direction (Fig. 8B). As we expected the deviation obtained in the first day 444 
strongly oscillated staying far away from best directions, which led to scouring and a zigzag-like 445 
behavior. After the short-term training the angular deviation was much closer to zero (best course) 446 
and hence the user achieved faster interception (4.5 s in the first day vs 2.4 s in the last one).  447 
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We then averaged the results shown in Figs. 8A and 8B over all trajectories at different game levels. 448 
Figure 8C illustrates histograms of the decision deviation for different game levels. Indeed, training 449 
increases the frequency of optimal decisions (red color around zero deviation). This allowed the user 450 
to reach level 12 after the short-term training vs level 9 at the first day. Figure 8D shows the overall 451 
relative frequency (estimated probability) of the decisions made by the subject in the first and in the 452 
last days. We observe that the short-term training significantly improved the quality of control of 453 
pacman by the sEMG-interface. The distribution in the first day is notably wider. Moreover, the peak 454 
(most frequent decision) is shifted to negative angles, which means that in the first day the user had 455 
a bias to turn left from the best direction.     456 

The discussed statistics for a single user confirms that a short-term training can improve the user 457 
experience with the sEMG-interface. However, it does not shed light on the question way it happens. 458 
To get additional information on the user’s decisions, we separated gestures identified by the ANN 459 
controlling the movement of pacman into "optimal" and "incorrect" according with the angle 460 
between the user’s selected and the best directions. Then we identified the rates of "optimal" and 461 
"incorrect" right, left, up, and down gestures. Note that in a gaming environment the definition of 462 
pure gestures cannot be introduced. Instead, we applied a threshold criterion to the ANN output 463 
(see Methods).  464 

Figure 8E shows the rates of optimal and incorrect gestures for the selected subject. We observe that 465 
in the first day the user had serious problems with articulating gesture "up". This gesture has the 466 
highest incorrect rate and the lowest optimal rate in the first day. We note that these problems were 467 
not caused by bad recognition of gesture "up" by the classifier. Its overall rate (length of the blue bar) 468 
is similar to other gestures. The reason probably is an excessive delay of evoking this gesture by the 469 
user and as a consequence the gesture appears late and hence is identified as incorrect in the 470 
dynamic game.  471 

The articulation of gestures improves after the short-term training. The most notable result was 472 
obtained in the problematic gesture “up”. Its incorrect rate decreased while the optimal one 473 
increased significantly. Besides the user improved the rates of optimal gestures "right" and “left”. 474 
We note that the experiment was “blind”, i.e., the user was not alerted after the first day about the 475 
problem he had with gesture “up”. Nevertheless, in a commercial use of an sEMG-interface such a 476 
knowledge could be useful for a user and may allow reaching better training results. We also note 477 
that in our experiments we observed that different users had problems with different gestures. Thus, 478 
the training process should be individual. It also means that efforts to improving the sEMG-interface 479 
can be directed to the interface customization for individual users.  480 

Figure 9 shows the results averaged over fourteen subjects. We found statistically significant 481 
decrease of the angular deviation of the most frequent decision from zero and of the standard 482 
deviation of the distribution after the training (Fig. 9A, see also Fig. 8D). The short-term training also 483 
led to a better gesture articulation (Fig. 9B). The rates of all incorrect gestures decreased (statistically 484 
significant for “down” and “left”) and the rates of all optimal gestures increased (statistically 485 
significant for “left” and “right”). 486 

4. Conclusions and Discussion 487 

In this work we have systematically studied the latent factors determining the performance of 488 
sEMG-interfaces. To this end we have employed two complementary experimental strategies. From 489 
the one hand, we tested the interface performance in a gaming environment, which allowed us 490 
examining the user experience in scenarios closed to real ones. The developed “pacman” game also 491 
permitted keeping the motivation of subjects during a short-term training lasting ten days. From the 492 
other hand, to discard the influence of factors extrinsic to the interface features (e.g., gaming 493 
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strategies) and to work in controllable and repeatable conditions, we also performed synthetic tests. 494 
In this case the subjects were asked to repeat a set of individual gestures (move left, move right, etc.). 495 

 496 

Figure 9. Overall improvement in controlling pacman by the sEMG-interface after a short-term training. A) Mean 497 
characteristics of the angular deviation from best decisions: location of the maximum (most frequent decision) and the 498 
standard deviation of the distributions (see also Fig. 8D). B) Rates of incorrect and optimal gestures (stars mark statistically 499 
significant changes). 500 

The subjects recruited for experiments were wont to use computer mouse in their daily life and 501 
much less accustomed to joystick, and had never used the sEMG-interface. The gaming tests showed 502 
that a short-term training with the sEMG-interface practically doubled the game score achieved by 503 
the users. At the same time the results obtained with joystick showed also a significant increase, 504 
while playing with computer mouse revealed no changes. Moreover, the mean game score achieved 505 
with joystick was much closer to the sEMG-interface than to mouse. Thus, the game design was 506 
appropriate, since it minimized the influence of gaming skills, i.e., a high level reasoning, and 507 
unveiled features exclusively related to the interfaces. The success in the short-term training 508 
obtained with the sEMG-interface allows us foreseeing its high potential, given that appropriate 509 
training conditions will be met. 510 

Then we have analyzed the latent factors determining the sEMG-interface performance in synthetic 511 
tests. We thus introduced: a) The performance index Re, which quantifies the error at the neural 512 
network output; b) The F-measure, which estimates the rate of correctly and incorrectly identified 513 
gestures; and c) The synergist-antagonist coefficient (SAC), which reflects the muscle functional 514 
efficiency. Our gross results have confirmed the earlier reported data [20, 30, 34, 45] stating that the 515 
performance of sEMG-interfaces can vary significantly from person to person. For example, the 516 
inter-quartile Q1-Q3 interval of the F-measure lies in the range [0.8, 0.98]. The lower limit (F = 0.8) 517 
makes the use of an interface strongly uncomfortable for a user. These figures have been obtained 518 
with two different classifiers based on linear discriminant analysis and artificial neural networks. At 519 
different gestures the LDA method performed either slightly better or worse than ANN, but we 520 
observed no statistically significant difference between the classifiers. This suggests that a 521 
qualitative leap in the sEMG-interface performance may require novel approaches to the user 522 
training or ANN post-training procedures. A promising approach in this direction can be based on 523 
the novel concept of “high-dimensional brain” [46].  524 

Analyzing different user groups in synthetic tests we found statistically significant differences 525 
between men and women and between physically trained and not trained subjects. The higher 526 
interface performance found for men can be linked to the content of fat tissue in the body. Earlier 527 
this factor has been discussed in several studies (for review see, e.g., [47]). Fat tissue decreases the 528 
conductance of bioelectric potentials and hence it influences the amplitude of sEMG signals. This in 529 
turn reduces the signal-to-noise ratio and, as a consequence, the fidelity of gesture identification. 530 
Indeed, in our study we have revealed a statistically significant correlation between the classification 531 
error Re and the body fat index. 532 
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Next, we focused on investigating the impact of unspecific (i.e., not related to the sEMG-interface) 533 
long-term training of users. We selected a group of "trained" subjects regularly practicing sports or 534 
other activities involving manual small motility (e.g., playing guitar, embroidery). This group 535 
consisted of men and women and had a decreased body fat index. However, the decrease was not 536 
significant. Thus, we hypothesized that the difference observed between physically trained and not 537 
trained people does not reduced to the body fat index, but should also be explained by the degree of 538 
functional muscle cooperation. 539 

Using independent component analysis we have shown that sEMG signals are mainly contributed 540 
by five sources that coincide in space with anatomical location of five muscles: flexor carpi radialis, 541 
flexor carpi ulnaris, extensor carpi radialis longus, extensor digitorum, and extensor carpi ulnaris. 542 
For each individual gesture we defined synergist and antagonist muscles and evaluated their 543 
activation ratio, SAC. We thus expected that higher SAC values should correspond to better 544 
coordination of muscles and hence should result in a lower error rate of the sEMG-interface. We 545 
have checked that the SAC is not sensitive to the body fat and hence can be used to contrast our 546 
hypothesis. 547 

We have shown that the success in handling the sEMG-interface indeed depends on the SAC of a 548 
subject. For three out of four gestures the mean value of the SAC was higher for trained people, as 549 
expected. The means for the fourth gesture “go left” (G1) were the same, because it is the most 550 
natural gesture that requires no strong muscle activation. Thus, the difference between physically 551 
trained and not trained subjects besides the body fat index can be explained by a long-term training 552 
of hand muscles and related brain circuits involving motoneurons, which lead to a more efficient 553 
motor control. 554 

Practicing the pacman game with the sEMG-interface during several days led to an important 555 
increase of the game score. This effect was common for all users and thus could not be explained by 556 
the above-mentioned reasons. We then focused on investigating the impact of a short-term training. 557 
Surprisingly, we did not find significant differences both in the performance index Re and in the 558 
synergist-antagonist coefficient in synthetic tests before and after the training. Thus, in contrast to 559 
the long-term training mostly affecting muscles and low-level neural circuits, the increase in the 560 
gaming performance should be caused by latent factors working at a higher decision-making level, 561 
which are not relevant for synthetic gestures. 562 

To test this hypothesis we performed a comparative analysis of trajectories of pacman before and 563 
after the short-term training. To do that we estimated the best gaming decisions, i.e., the direction of 564 
pacman movement leading to the fastest target interception. Then we have shown that the deviation 565 
of the user’s trajectory from the best direction in the first day was significantly stronger than after the 566 
short-term training. To get additional insight on the quality of the user’s decisions, we classified 567 
gestures identified by the neural network into "optimal" and "incorrect" in accordance with the 568 
deviation from the best direction. 569 

The most notable result was the finding that different subjects have different “problematic” gestures. 570 
After the short-term training all users improved the rates of optimal gestures and decreased the rates 571 
of incorrect ones. On average the rates of all incorrect gestures decreased (statistically significant for 572 
“down” and “left”) and the rates of all optimal gestures increased (statistically significant for “left” 573 
and “right”). We note that such a result was obtained in “blind” experiments, i.e., the subjects were 574 
not alerted after the first day about the problems they might have. Nevertheless, in a commercial use 575 
of sEMG-interfaces such knowledge could be useful for optimizing the training process by paying 576 
strong attention to problematic gestures. Thus, the training process and efforts to improving 577 
sEMG-interfaces should be directed to their individual tuning. 578 
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Overall the obtained data suggest that a short-term training can improve the interface performance 579 
by some plastic changes occurring at the upper cognitive level. To achieve a progress at the low level 580 
of muscles and motoneurons a long-term training is required. However, such training demands 581 
strong motivation from a user. In our experiments we observed a significant drop in motivation 582 
already after ten days. In this respect it seems promising to study sEMG-interfaces with amputees 583 
who do not have the opportunity to use standard interfaces. In this case, the long-term training may 584 
provide social rehabilitation and improvement of the life quality through access to on-line services. 585 
Then, the mechanisms of transferring of skills acquired in short-term training to long-term 586 
neuromotor synchronization can be revealed. 587 

Finally, to support our conclusions we recall EEG studies of motor performance. In particular, it was 588 
shown that EEG of athletes exhibits changes depending on the kinematic characteristics of the 589 
performed sport and sex of subjects. These factors also influence the success in using of a 590 
neurophysiological feedback while training [48]. In line with our results it was also shown that in 591 
sensorimotor tests athletes and drummers exhibit a significant difference compared to untrained 592 
people and non-drummer musicians [49]. Sport exercises and playing drums cause adaptive effects 593 
in sensorimotor function. A short-term training with a brain-computer interface increases the level 594 
of desynchronization of the mu-rhythm in imaginary motion [50]. Thus, the development of 595 
sEMG-interfaces and specially the algorithms of signal processing should take into account the 596 
individual short-term and long-term training abilities of the users and address them at different 597 
levels. 598 
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