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Abstract: Inspired by the forward and the reverse channels from the image-size characterization1

problem in network information theory, we introduce a functional inequality which unifies2

both the Brascamp-Lieb inequality and Barthe’s inequality, which is a reverse form of the3

Brascamp-Lieb inequality. For Polish spaces, we prove its equivalent entropic formulation using4

the Legendre-Fenchel duality theory. Capitalizing on the entropic formulation, we elaborate on a5

“doubling trick” used by Lieb and Geng-Nair to prove the Gaussian optimality in this inequality for6

the case of Gaussian reference measures.7

Keywords: Brascamp-Lieb inequality; hypercontractivity; functional-entropic duality; Gaussian8
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1. Introduction10

The Brascamp-Lieb inequality and its reverse [1] concern the optimality of Gaussian functions in11

a certain type of integral inequality.1 These inequalities have been generalized in various ways since12

their discovery, nearly 40 years ago. A modern formulation due to Barthe [5] may be stated as follows:213

Brascamp-Lieb Inequality and Its Reverse ([5, Theorem 1]). Let E, E1, . . . , Em be Euclidean spaces, and
Bi : E→ Ei be linear maps. Let (ci)

m
i=1 and D be positive real numbers. Then the Brascamp-Lieb inequality

∫ m

∏
i=1

f ci
i (Bix)dx ≤ D

m

∏
i=1

(∫
fi(xi)dxi

)ci

, (1)

for all nonnegative measurable functions fi on Ei, i = 1, . . . , m, holds if and only if it holds whenever
fi, i = 1, . . . , m are centered Gaussian functions3. Similarly, for F a positive real number, the reverse
Brascamp-Lieb inequality, also known as Barthe’s inequality4,

∫
sup

(yi) : ∑m
i=1 ciB∗i yi=x

m

∏
i=1

f ci
i (yi)dx ≥ F

m

∏
i=1

(∫
fi(yi)dyi

)ci

, (2)

for all nonnegative measurable functions fi on Ei, i = 1, . . . , m, holds if and only if it holds for all centered14

Gaussian functions.15

1 Not to be confused with the “variance Brascamp-Lieb inequality” (cf. [2][3][4]), which generalizes the Poincaré inequality.
2 [5, Theorem 1] actually contains additional assumptions, which make the best constants D and F positive and finite, but are

not really necessary for the conclusion to hold ([5, Remark 1]).
3 A centered Gaussian function is of the form x 7→ exp(r− x>Ax), where A is a positive semidefinite matrix and r ∈ R.
4 B∗i denotes the adjoint of Bi .
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For surveys on the history of both the Brascamp-Lieb inequality and Barthe’s inequality and their
applications, see e.g. [6][7]. The Brascamp-Lieb inequality can be seen as a generalization of several
other inequalities, including Hölder’s inequality, the sharp Young inequality, the Loomis-Whitney
inequality, the entropy power inequality (cf. [6] or the survey paper [8]), hypercontractivity and
the logarithmic Sobolev inequality [9]. Furthermore, the Prékopa-Leindler inequality can be
seen as a special case of the Barthe’s inequality. Due in part to their utility in establishing
impossibility bounds, these functional inequalities have attracted a lot of attention in information
theory [10][11][12][13][14][15][16][17], theoretical computer science [18][19][20][21][22], and statistics
[23][24][25][26][27][28], to name only a small subset of the literature. Over the years, various proofs of
these inequalities have been proposed [1][29][30][31]. Among these, Lieb’s elegant proof [29], which
is very close to one of the techniques that will be used in this paper, employs a doubling trick that
capitalizes on the rotational invariance property of the Gaussian function: if f is a one-dimensional
Gaussian function, then

f (x) f (y) = f
(

x− y√
2

)
f
(

x + y√
2

)
. (3)

Since (1) and (2) have the same structure modulo the direction of the inequality, a common viewpoint
is to consider (1) and (2) as dual inequalities. This viewpoint successfully captures the geometric
aspects of (1) and (2). Indeed, it is known that

D · F = 1 (4)

as long as D, F < ∞ [5]. Moreover, both D and F are equal to 1 under Ball’s geometric condition [32]: E1,
. . . , Em are dimension 1 and

m

∑
i=1

ciBiB∗i = I (5)

is the identity matrix. While fruitful, this “dual” viewpoint does not fully explain the asymmetry16

between the forward and the reverse inequalities: there is a sup in (2) but not in (1).17

This paper explores a different viewpoint. In particular, we propose a single inequality that unifies18

(1) and (2). Accordingly, we should reverse both sides of (2) to make the inequality sign consistent19

with (1). To be concrete, let us first observe that (1) and (2) can be respectively restated in the following20

more symmetrical forms (with changes of certain symbols):21

• For all nonnegative functions g and f1, . . . , fm such that

g(x) ≤
m

∏
i=1

f
cj
j (Bjx), ∀x, (6)

we have

∫
E

g ≤ D
m

∏
j=1

(∫
Ej

f j

)cj

. (7)

• For all nonnegative measurable functions g1, . . . gl and f such that

l

∏
i=1

gbi
i (zi) ≤ f (

l

∑
i=1

biB∗i zi), ∀z1, . . . , zl , (8)
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we have

l

∏
i=1

(∫
Ei

gi

)bi

≤ D
∫

E
f . (9)

Note that in both cases, the optimal choice of one function ( f or g) can be explicitly computed from the
constraints, hence the conventional formulations in (1) and (2). Generalizing further, we can consider
the following problem: let X , Y1, . . . ,Ym, Z1, . . . ,Zl be measurable spaces. Consider measurable maps
φj : X → Yj, j = 1, . . . , m and ψ : X → Zi, i = 1, . . . , l. Let b1, . . . , bl and c1, . . . , cm be nonnegative
real numbers. Let ν1, . . . , νl be measures on Z1, . . . ,Zl , and µ1, . . . , µm be measures on Y1, . . . ,Ym,
respectively. What is the smallest D > 0 such that for all nonnegative f1, . . . , fm on Y1, . . .Ym and
g1, . . . , gl on Z1, . . . ,Zl satisfying

l

∏
i=1

gbi
i (ψi(x)) ≤

m

∏
j=1

f
cj
j (φj(x)), ∀x, (10)

we have

l

∏
i=1

(∫
gidνi

)bi

≤ D
m

∏
j=1

(∫
f jdµj

)cj

? (11)

Except for special case of l = 1 (resp. m = 1), it is generally not possible to deduce a simple expression22

from (10) for the optimal choice of gi (resp. f j) in terms of the rest of the functions. We will refer to (11)23

as a forward-reverse Brascamp-Lieb inequality.24

One of the motivations for considering multiple functions on both sides of (11) comes from25

multiuser information theory: independently but almost simultaneously with the discovery of the26

Brascamp-Lieb inequality in mathematical physics, in the late 1970s, information theorists including27

Ahslwede, Gács and Körner [33][34] invented the image-size technique for proving strong converses28

in source and channel networks. An image-size inequality is a characterization of the tradeoff of29

the measures of certain sets connected by given random transformations (channels). Although not30

the way treated in [33][34], an image-size inequality can essentially be obtained from a functional31

inequality similar to (11) by taking the functions to be (roughly speaking) the indicator functions of32

sets. In the case of (10), the forward channels φ1, . . . , φm and the reverse channels ψ1, . . . , ψl degenerate33

into deterministic functions. In this paper, motivated by information theoretic applications similar34

to those of the image-size problems, we will consider further generalizations of (11) to the case35

of random transformations. Since the functional inequality is not restricted to indicator functions,36

it is strictly stronger than the corresponding image-size inequality. As a side remark, [35] uses37

functional inequalities that are variants of (11) together with a reverse hypercontractivity machinery to38

improve the image-size plus blowing-up machinery of [36], and shows that the non-indicator function39

generalization is crucial for achieving the optimal scaling of the second-order rate expansion.40

Of course, to justify the proposal of (11) we must also prove that (11) enjoys certain nice41

mathematical properties; this is the main goal of the present paper. Specifically, we focus on two42

aspects of (11): equivalent entropic formulation and Gaussian optimality.43

In the mathematical literature (e.g. [31][37][38][33][39][40][41][42][43])) it is known that certain44

integral inequalities are equivalent to inequalities involving relative entropies. In particular, Carlen,45

Loss and Lieb [44] and Carlen and Cordero-Erausquin [31] proved that the Brascamp-Lieb inequality46

is equivalent to the superadditivity of relative entropy. In this paper we prove that the forward-reverse47

Brascamp-Lieb inequality (11) also has an entropic formulation, which turns out to be very close to48

the rate region of certain multiuser information theory problems (but we will clarify the different in49

the text). In fact, Ahlswede, Csiszár and Körner [36][34] essentially derived image-size inequalities50

from similar entropic inequalities. Because of the reverse part, the proof of equivalence of (11) and51
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corresponding entropic inequality is more involved than the forward case considered in [31] beyond the52

case of finite X , Yj, Zi, and certain machineries from min-max theory appear necessary. In particular,53

the proof involves a novel use of the Legendre-Fenchel duality theory. Next, we give a basic version of54

our main result on the functional-entropic duality (more general versions will be given later). In order55

to streamline its presentation, all formal definitions of notation are postponed to Section 2.56

Theorem 1 (Dual formulation of forward-reverse Brascamp-Lieb inequality). Assume that57

i) m and l are positive integers, d ∈ R, X is a compact metric space;58

ii) bi ∈ (0, ∞), νi is a finite Borel measure on a Polish space Zi, and QZi |X is a random transformation from X59

to Zi, for each i = 1, . . . , l;60

iii) cj ∈ (0, ∞), µj is a finite Borel measure on a Polish space Yj, and QYj |X is a random transformation from61

X to Yi, for each j = 1, . . . , m;62

iv) For any (PZi )
l
i=1 such that ∑l

i=1 D(PZi‖νi) < ∞, there exists PX such that PX → QZi |X → PZi ,63

i = 1, . . . , l and ∑m
j=1 D(PYj‖µj) < ∞, where PX → QYj |X → PYj , j = 1, . . . , m.64

Then the following two statements are equivalent:65

1. If the nonnegative continuous functions (gi), ( f j) are bounded away from 0 and satisfy

l

∑
i=1

biQZi |X(gi) ≤
m

∑
j=1

cjQYj |X( f j) (12)

then

l

∏
i=1

(∫
gidνi

)bi

≤ exp(d)
m

∏
j=1

(∫
f jdµj

)cj

(13)

2. For any (PZi ) such that D(PZi‖νi) < ∞5, i = 1, . . . , l,

l

∑
i=1

biD(PZi‖νi) + d ≥ inf
PX

m

∑
j=1

cjD(PYj‖µj) (14)

where PX → QYj |X → PYj , j = 1, . . . , m, and the infimum is over PX such that PX → QZi |X → PZi ,66

i = 1, . . . , l.67

Next, in a similar vein as the proverbial result that “Gaussian functions are optimal” for the68

forward or the reverse Brascamp-Lieb inequality, we show in this paper that Gaussian function69

functions are also optimal for the forward-reverse Brascamp-Lieb inequality, particularized to the case70

of Gaussian reference measures and linear maps. The proof scheme is based on rotational invariance71

(3), which can be traced back in the functional setting to Lieb [29]. More specifically, we use a variant72

for the entropic setting introduced by Geng and Nair [45], thereby taking advantage of the dual73

formulation of Theorem 1.74

5 Of course, this assumption is not essential (if we adopt the convention that the infimum in (14) is +∞ when it runs over an
empty set).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 April 2018                   doi:10.20944/preprints201804.0005.v1

Peer-reviewed version available at Entropy 2018, 20, 418; doi:10.3390/e20060418

http://dx.doi.org/10.20944/preprints201804.0005.v1
http://dx.doi.org/10.3390/e20060418


5 of 31

Forward-reverse Brascamp-Lieb (13)

Forward part

Strong data processing inequality [33]

Reverse hypercontractivity with one negative parameter (115)

Reverse part

Hypercontractivity (108) Reverse hypercontractivity with
positive parameters (111)

Figure 1. The forward-reverse Brascamp-Lieb inequality generalizes several other functional
inequalities/information theoretic inequalities. For more discussions on these relations see the extended
version [7].

Theorem 2. Consider b1, . . . , bl , c1, . . . , cm, D ∈ (0, ∞). Let E1, . . . , El , E1, . . . , Em be Euclidean spaces, and
let Bji : Ei → Ej be a linear map for each i ∈ {1, . . . , l} and j ∈ {1, . . . , m}. Then, for all continuous functions
f j : Ej → [0,+∞), gi : Ei → [0, ∞) satisfying

l

∏
i=1

gbi
i (xi) ≤

m

∏
j=1

f
cj
j

(
l

∑
i=1

Bjixi

)
, ∀x1, . . . , xl , (15)

we have

l

∏
i=1

(∫
gi

)bi

≤ D
m

∏
j=1

(∫
f j

)cj

, (16)

if and only if for all centered Gaussian functions f1, . . . , fm, g1, . . . , gl satisfying (15), we have (16).75

As mentioned, in the literature on the forward or the reverse Brascamp-Lieb inequalities, it is76

known that a certain geometric condition (5) ensures that the best constant equals 1. Next, we also77

identify a particular case where the best constant in the forward-reverse inequality equals 1:78

Theorem 3. Let l be a positive integer, and let M := (mji)1≤j≤l,1≤i≤l be an orthogonal matrix. For any
nonnegative continuous functions ( f j)

l
j=1 (gi)

l
i=1 on R such that

l

∏
i=1

gi(xi) ≤
l

∏
j=1

f j

(
l

∑
i=1

mjixi

)
, ∀xl ∈ Rl , (17)

we have

l

∏
i=1

∫
gi(x)dx ≤

l

∏
i=1

∫
f j(x)dx. (18)

The rest of the paper is organized as follows: Section 2 defines notation and reviews some basic79

theory of convex duality. Section 3 proves Theorem 1 and also presents its extensions to the settings80

of noncompact spaces or general reverse channels. Section 4 proves the Gaussian optimality in the81

entropic formulation, under a certain “non-degenerate” assumption where the linear maps Bji’s are82

regularized by an additive noise, which guarantees the existence of extremizers. Then, a limiting83
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argument in Appendix F lets the noise vanish, which, combined with the equivalence between the84

functional and entropic formulations, establishes Theorem 2 and Theorem 3.85

2. Review of the Legendre-Fenchel Duality Theory86

Our proof of the equivalence of the functional and the entropic inequalities uses the87

Legendre-Fenchel duality theory, a topic from convex analysis. Before getting into that, a recap88

of some basics on the duality of topological vector spaces seems appropriate. Unless otherwise89

indicated, we assume Polish spaces and Borel measures6. Of course, this covers the cases of Euclidean90

and discrete spaces (endowed with the Hamming metric, which induces the discrete topology, making91

every function on the discrete set continuous), among others. Readers interested in discrete spaces92

only may refer to the (much simpler) argument in [47] based on the KKT condition.93

Notation 1. Let X be a topological space.94

• Cc(X ) denotes the space of continuous functions on X with a compact support;95

• C0(X ) denotes the space of all continuous functions f on X that vanish at infinity (i.e. for any96

ε > 0 there exists a compact set K ⊆ X such that | f (x)| < ε for x ∈ X \ K);97

• Cb(X ) denotes the space of bounded continuous functions on X ;98

• M(X ) denotes the space of finite signed Borel measures on X ;99

• P(X ) denotes the space of probability measures on X .100

We consider Cc, C0 and Cb as topological vector spaces, with the topology induced from the sup101

norm. The following theorem, usually attributed to Riesz, Markov and Kakutani, is well-known in102

functional analysis and can be found in, e.g. [48][49].103

Theorem 4 (Riesz-Markov-Kakutani). If X is a locally compact, σ-compact Polish space, the dual7 of both104

Cc(X ) and C0(X ) isM(X ).105

Remark 1. The dual space of Cb(X ) can be strictly larger thanM(X ), since it also contains those linear106

functionals that depend on the “limit at infinity” of a function f ∈ Cb(X ) (originally defined for those107

f that do have a limit at infinity, and then extended to the whole Cb(X ) by the Hahn-Banach theorem;108

see e.g. [48]).109

Of course, any µ ∈ M(X ) is a continuous linear functional on C0(X ) or Cc(X ), given by

f 7→
∫

f dµ (19)

where f is a function in C0(X ) or Cc(X ). As is well known, Theorem 4 states that the converse is also
true under mild regularity assumptions on the space. Thus, we can view measures as continuous
linear functionals on a certain function space;8 this justifies the shorthand notation

µ( f ) :=
∫

f dµ (20)

which we employ in the rest of the paper. This viewpoint is the most natural for our setting since in110

the proof of the equivalent formulation of the forward-reverse Brascamp-Lieb inequality we shall use111

the Hahn-Banach theorem to show the existence of certain linear functionals.112

6 A Polish space is a complete separable metric space. It enjoys several nice properties that we use heavily in this section,
including Prokhorov theorem and Riesz-Kakutani theorem (the latter is related to the fact that every Borel probability
measure on a Polish space is inner regular, hence a Radon measure). Short introductions on the Polish space can be found in
e.g. [37][46].

7 The dual of a topological vector space consists of all continuous linear functionals on that space, which is naturally also
topological vector space (with the weak∗ topology).

8 In fact, some authors prefer to construct measure theory by defining a measure as a linear functional on a suitable measure
space; see Lax [48] or Bourbaki [50].
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Definition 1. Let Λ : Cb(X ) → (−∞,+∞] be a lower semicontinuous, proper convex function. Its
Legendre-Fenchel transform Λ∗ : Cb(X )∗ → (−∞,+∞] is given by

Λ∗(`) := sup
u∈Cb(X )

[`(u)−Λ(u)]. (21)

Let ν be a nonnegative finite Borel measure on a Polish space X , and define the convex functional
on Cb(X ):

Λ( f ) := log ν(exp( f )) (22)

= log
∫

exp( f )dν. (23)

Then, note that the relative entropy has the following alternative definition: for any µ ∈ M(X ),

D(µ‖ν) := sup
f∈Cb(X )

[µ( f )−Λ( f )] (24)

which agrees with the more familiar definition D(µ‖ν) := µ(log dµ
dν ) when ν is a probability measure,113

by the Donsker-Varadhan formula (c.f. [46, Lemma 6.2.13]). If µ is not a probability measure, then114

D(µ‖ν) as defined in (24) is +∞.115

Given a bounded linear operator T : Cb(Y)→ Cb(X ), the dual operator T∗ : Cb(X )∗ → Cb(Y)∗ is
defined in terms of

T∗µX : Cb(Y)→ R;

f 7→ µX(T f ), (25)

for any µX ∈ Cb(X )∗. Since P(X ) ⊆M(X ) ⊆ Cb(X )∗, T is said to be a conditional expectation operator116

if T∗P ∈ P(Y) for any P ∈ P(X ). The operator T∗ is defined as the dual of a conditional expectation117

operator T, and in a slight abuse of terminology, is said to be a random transformation from X to Y .118

For example, in the notation of Theorem 1, if g ∈ Cb(Y) and QY|X is a random transformation119

from X to Y , the quantity QY|X(g) is a function on X , defined by taking the conditional expectation.120

Also, if PX ∈ P(X ), we write PX → QY|X → PY to indicate that PY ∈ P(Y) is the measure induced on121

Y by applying QY|X to PX .122

Remark 2. From the viewpoint of category theory (see for example [51][52]), Cb is a functor123

from the category of topological spaces to the category of topological vector spaces, which is124

contra-variant because for any continuous, φ : X → Y (morphism between topological spaces),125

we have Cb(φ) : Cb(Y)→ Cb(X ), u 7→ u ◦ f where u ◦ φ denotes the composition of two continuous126

functions, reversing the arrows in the maps (i.e. the morphisms). On the other hand,M is a covariant127

functor andM(φ) : M(X ) → M(Y), µ 7→ µ ◦ φ−1, where µ ◦ φ−1(B) := µ(φ−1(B)) for any Borel128

measurable B ⊆ Y . “Duality” itself is a contra-variant functor between the category of topological129

spaces (note the reversal of arrows in Fig. 2). Moreover, Cb(X )∗ =M(X ) and Cb(φ)
∗ =M(φ) if X130

and Y are compact metric spaces and φ : X → Y is continuous. Definition 2 can therefore be viewed131

as the special case where φ is the projection map:132

Definition 2. Suppose φ : Z1 ×Z2 → Z1, (z1, z2) 7→ z1 is the projection to the first coordinate.133

• Cb(φ) : Cb(Z1)→ Cb(Z1 ×Z2) is called a canonical map, whose action is almost trivial: it sends a134

function of zi to itself, but viewed as a function of (z1, z2).135

• M(φ) : M(Z1 ×Z2)→M(Z1) is called marginalization, which simply takes a joint distribution136

to a marginal distribution.137

The Fenchel-Rockafellar duality (see [37, Theorem 1.9], or [53] in the case of finite dimensional138

vector spaces) usually refers to the k = 1 special case of the following result.139
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Theorem 5. Assume that A is a topological vector space whose dual is A∗. Let Θj : A → R ∪ {+∞},
j = 0, 1, . . . , k, for some positive integer k. Suppose there exist some (uj)

k
j=1 and u0 := −(u1 + · · ·+ uk) such

that

Θj(uj) < ∞, j = 0, . . . , k (26)

and Θ0 is upper semicontinuous at u0. Then

− inf
`∈A∗

[
k

∑
j=0

Θ∗j (`)

]
= inf

u1,...,uk∈A

[
Θ0

(
−

k

∑
j=1

uj

)
+

k

∑
j=1

Θj(uj)

]
. (27)

For completeness, we provide a proof of this result, which is based on the Hahn-Banach theorem140

(Theorem 6) and is similar to the proof of [37, Theorem 1.9].141

Proof. Let m0 be the right side of (27). The ≤ part of (27) follows trivially from the (weak) min-max
inequality since

m0 = inf
u0,...,uk∈A

sup
`∈A∗

{
k

∑
j=0

Θj(uj)− `(
k

∑
j=0

uj)

}
(28)

≥ sup
`∈A∗

inf
u0,...,uk∈A

{
k

∑
j=0

Θj(uj)− `(
k

∑
j=0

uj)

}
(29)

= − inf
`∈A∗

[
k

∑
j=0

Θ∗j (`)

]
. (30)

It remains to prove the ≥ part, and it suffices to assume without loss of generality that m0 > −∞. Note
that (26) also implies that m0 < +∞. Define convex sets

Cj := {(u, r) ∈ A×R : r > Θj(u)}, j = 0, . . . , k; (31)

B := {(0, m) ∈ A×R : m ≤ m0}. (32)

Observe that these are nonempty sets because of (26). Also C0 has nonempty interior by the assumption
that Θ0 is upper semicontinuous at u0. Thus, the Minkowski sum

C := C0 + · · ·+ Ck (33)

is a convex set with a nonempty interior. Moreover, C ∪ B = ∅. By the Hahn-Banach theorem
(Theorem 6), there exists (`, s) ∈ A∗ ×R such that

sm ≤ `

(
k

∑
j=0

uj

)
+ s

k

∑
j=0

rj. (34)

For any m ≤ m0 and (uj, rj) ∈ Cj, j = 0, . . . , k. From (32) we see (34) can only hold when s ≥ 0.
Moreover, from (26) and the upper semicontinuity of Θ0 at u0 we see the ∑k

j=0 uj in (34) can take value
in a neighbourhood of 0 ∈ A, hence s 6= 0. Thus, by dividing s on both sides of (34) and setting
`← −`/s, we see that

m0 ≤ inf
u0,...,uk∈A

[
−`
(

k

∑
j=0

uj

)
+

k

∑
j=0

Θj(uj)

]
(35)

= −
[

k

∑
j=0

Θ∗j (`)

]
(36)
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which establishes ≥ in (27).142

Theorem 6 (Hahn-Banach). Let C and B be convex, nonempty disjoint subsets of a topological vector space A.143

1. If the interior of C is non-empty, then there exists ` ∈ A∗, ` 6= 0 such that

sup
u∈B

`(u) ≤ inf
u∈C

`(u). (37)

2. If A is locally convex, B is compact, and C is closed, then there exists ` ∈ A∗ such that

sup
u∈B

`(u) < inf
u∈C

`(u). (38)

Remark 3. The assumption in Theorem 6 that C has nonempty interior is only necessary in the infinite144

dimensional case. However, even if A in Theorem 5 is finite dimensional, the assumption in Theorem 5145

that Θ0 is upper semicontinuous at u0 is still necessary, because this assumption was not only used in146

applying Hahn-Banach, but also in concluding that s 6= 0 in (34).147

3. The Entropic-Functional Duality148

In this section we prove Theorem 1 and some of its generalizations.149

3.1. Compact X150

We first state a duality theorem for the case of compact spaces to streamline the proof. Later we151

show that the argument can be extended to a particular non-compact case.9 Our proof based on the152

Legendre-Fenchel duality (Theorem 5) was inspired by the proof of the Kantorovich duality in the153

theory of optimal transportation (see [37, Chapter 1], where the idea was credited to Brenier).154

Recall from Section 2 that a random transformation (a mapping between probability measures)155

is formally the dual of a conditional expectation operator. Suppose PYj |X = T∗j , j = 1, . . . , m and156

PZi |X = S∗i , i = 1, . . . , l.

Cb(X )

Cb(Z1) 3 g1

Cb(Z2) 3 g2

Cb(Y1) 3 f1

Cb(Y2) 3 f2

S1

S2

T1

T2

P(X ) 3 PX

P(Z1) 3 PZ1

P(Z2) 3 PZ2

P(Y1) 3 PY1

P(Y2) 3 PY2

S∗1

S∗2

T∗1

T∗2

Figure 2. Diagrams for Theorem 1.

157

Proof of Theorem 1. We can safely assume d = 0 below without loss of generality (since otherwise158

we can always substitute µ1 ← exp
(

d
c1

)
µ1).159

9 Theorem 1 is not included in the conference paper [47], but was announced in the conference presentation.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 April 2018                   doi:10.20944/preprints201804.0005.v1

Peer-reviewed version available at Entropy 2018, 20, 418; doi:10.3390/e20060418

http://dx.doi.org/10.20944/preprints201804.0005.v1
http://dx.doi.org/10.3390/e20060418


10 of 31

1)⇒2) This is the nontrivial direction which relies on certain (strong) min-max type results. In
Theorem 5, put10

Θ0 : u ∈ Cb(X ) 7→
{

0 u ≤ 0;
+∞ otherwise.

(39)

Then,

Θ∗0 : π ∈ M(X ) 7→
{

0 π ≥ 0;
+∞ otherwise.

(40)

For each j = 1, . . . , m, set

Θj(u) := cj inf log µj

(
exp

(
1
cj

v

))
(41)

where the infimum is over v ∈ Cb(Y) such that u = Tjv; if there is no such v then Θj(u) := +∞160

as a convention. Observe that161

• Θj is convex: indeed given arbitrary u0 and u1, suppose that v0 and v1 respectively achieve162

the infimum in (41) for u0 and u1 (if the infimum is not achievable, the argument still163

goes through by the approximation and limit argument). Then for any α ∈ [0, 1], vα :=164

(1− α)v0 + αv1 satisfies uα = Tjvα where uα := (1− α)u0 + αu1. Thus, the convexity of Θj165

follows from the convexity of the functional in (23);166

• Θj(u) > −∞ for any u ∈ Cb(X ). Otherwise, for any PX and PYj := T∗j PX we have

D(PYj‖µj) = sup
v
{PYj(v)− log µj(exp(v))} (42)

= sup
v
{PX(Tjv)− log µj(exp(v))} (43)

= sup
u∈Cb(X )

{
PX(u)−

1
cj

Θj(cju)

}
(44)

= +∞ (45)

which contradicts the assumption that ∑m
j=1 cjD(PYj‖µj) < ∞ in the theorem;167

• From the steps (42)-(44), we see Θ∗j (π) = cjD(T∗j π‖µj) for any π ∈ M(X ), where the168

definition of D(·‖µj) is extended using the Donsker-Varadhan formula (that is, it is infinite169

when the argument is not a probability measure).170

Finally, for the given (PZi )
l
i=1, choose

Θm+1 : u ∈ Cb(X ) 7→
{

∑l
i=1 PZi (wi) if u = ∑l

i=1 Siwi for some wi ∈ Cb(Zi);
+∞ otherwise.

(46)

Notice that171

• Θm+1 is convex;172

10 In (39), u ≤ 0 means that u is pointwise non-positive.
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• Θm+1 is well-defined (that is, the choice of (wi) in (46) is inconsequential). Indeed if (wi)
l
i=1

is such that ∑l
i=1 Siwi = 0, then

l

∑
i=1

PZi (wi) =
l

∑
i=1

S∗i PX(wi) (47)

=
l

∑
i=1

PX(Siwi) (48)

= 0, (49)

where PX is such that S∗i PX = PZi , i = 1, . . . , l, whose existence is guaranteed by the173

assumption of the theorem. This also shows that Θm+1 > −∞.174

•

Θ∗m+1(π) := sup
u
{π(u)−Θm+1(u)} (50)

= sup
w1,...,wl

{
π

(
l

∑
i=1

Siwi

)
−

l

∑
i=1

PZi (wi)

}
(51)

= sup
w1,...,wl

{
l

∑
i=1

S∗i π(wi)−
l

∑
i=1

PZi (wi)

}
(52)

=

{
0 if S∗i π = PZi , i = 1, . . . , l;

+∞ otherwise.
(53)

Invoking Theorem 5 (where the uj in Theorem 5 can be chosen as the constant function uj ≡ 1,
j = 1, . . . , m + 1):

inf
π : π≥0, S∗i π=PZi

m

∑
j=1

cjD(T∗j π‖µj)

= − inf
vm ,wl : ∑m

j=1 Tjvj+∑l
i=1 Siwi≥0

[
m

∑
j=1

cj log µj

(
exp

(
1
cj

vj

))
+

l

∑
i=1

PZi (wi)

]
(54)

where vm denotes the collection of the functions v1, . . . , vm, and similarly for wl . Note that the
left side of (54) is exactly the right side of (14). For any ε > 0, choose vj ∈ Cb(Yj), j = 1, . . . , m
and wi ∈ Cb(Zi), i = 1, . . . , l such that ∑m

j=1 Tjvj + ∑l
i=1 Siwi ≥ 0 and

ε−
m

∑
j=1

cj log µj

(
exp

(
1
cj

vj

))
−

l

∑
i=1

PZi (wi) > inf
π : π≥0, S∗i π=PZi

m

∑
j=1

cjD(T∗j π‖µj) (55)

Now invoking (13) with f j := exp
(

1
cj

vj

)
, j = 1, . . . , m and gi := exp

(
− 1

bi
wi

)
, i = 1, . . . , l, we

upper bound the left side of (55) by

ε−
l

∑
i=1

bi log νi(gi) +
l

∑
i=1

biPZi (log gi) ≤ ε +
l

∑
i=1

biD(PZi‖νi) (56)

where the last step follows by the Donsker-Varadhan formula. Therefore (14) is established since175

ε > 0 is arbitrary.176
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2)⇒1) Since νi is finite and gi is bounded by assumption, we have νi(gi) < ∞, i = 1, . . . , l. Moreover
(13) is trivially true when νi(gi) = 0 for some i, so we will assume below that νi(gi) ∈ (0, ∞) for
each i. Define PZi by

dPZi

dνi
=

gi
νi(gi)

, i = 1, . . . , l. (57)

Then for any ε > 0,

l

∑
i=1

bi log νi(gi) =
l

∑
i=1

bi[PZi (log gi)− D(PZi‖νi)] (58)

<
m

∑
j=1

cjPYj(log f j) + ε−
m

∑
j=1

cjD(PYj‖µj) (59)

≤ ε +
m

∑
j=1

cj log µj( f j) (60)

where177

• (59) uses the Donsker-Varadhan formula, and we have chosen PX , PYj := T∗j PX , j = 1, . . . , m
such that

l

∑
i=1

biD(PZi‖νi) >
m

∑
j=1

cjD(PYj‖µj)− ε (61)

• (60) also follows from the Donsker-Varadhan formula.178

The result follows since ε > 0 can be arbitrary.179

180

Remark 4. Condition iv) in the theorem imposes a rather strong assumption on (Si): for simplicity,181

consider the case where |X |, |Zi| < ∞. Then Condition iv) assumes that for any (PZi ), there exists182

PX such that PZi = S∗i PX . This assumption is certainly satisfied when (Si) are induced by coordinate183

projections; the case of l = 1 and PZ|X being a reverse erasure channel gives a simple example where184

PZ|X is not a deterministic map.185

Next we give a generalization of Theorem 1 which alleviates the restriction on (Si):186

Theorem 7. Theorem 1 continues to hold if Condition iv) therein is weakened to the following:187

• For any PX such that D(S∗i PX‖νi) < ∞, i = 1, . . . , l, there exists P̃X such that S∗i P̃X = S∗i PX for each i188

and ∑m
j=1 cjD(T∗j P̃X‖µj) < ∞ for each j.189

and the conclusion of the theorem will be replaced by the equivalence of the following two statements:190

1. For any nonnegative continuous functions (gi), ( f j) bounded away from 0 and such that

l

∑
i=1

biSi log gi ≤
m

∑
j=1

cjTj log f j (62)

we have

inf
(g̃i) : ∑l

i=1 biSi log g̃i≥∑l
i=1 biSi log gi

l

∏
i=1

ν
bi
i (g̃i) ≤ exp(d)

m

∏
j=1

µ
cj
j ( f j). (63)
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2. For any (PX) such that D(S∗i PX‖νi) < ∞, i = 1, . . . , l,

l

∑
i=1

biD(S∗i PX‖νi) + d ≥ inf
P̃X : S∗i P̃X=S∗i PX

m

∑
j=1

cjD(T∗j P̃X‖µj). (64)

In Appendix A we show that Theorem 7 indeed recovers Theorem 1 for the more restricted class191

of random transformations.192

Proof. Here we mention the parts of the proof that need to be changed: upon specifying ( f j) and (gi)

right after (55), we select (g̃i) such that

l

∑
i=1

biSi log g̃i ≥
l

∑
i=1

biSi log gi (65)

l

∑
i=1

bi log νi(g̃i) ≤
m

∑
j=1

cj log µj( f j) + ε. (66)

Then, in lieu of (67), we upper-bound the left side of (55) by

2ε−
l

∑
i=1

bi log νi(g̃i) +
l

∑
i=1

biPZi (log g̃i) ≤ 2ε +
l

∑
i=1

biD(PZi‖νi) (67)

which establishes the 1)⇒2) part. For the other direction, for each i ∈ {1, 2, . . . , l} define

Λi(u) := inf
g̃i>0 : biSi log g̃i=u

bi log νi(g̃i). (68)

Then following essentially the same proof as that of Θj in (41), we see that Λi is proper convex and

Λ∗i (π) = biD(S∗i π‖µj). (69)

Moreover let

Λl+1(u) :=

{
0 if u = −∑ biSi log gi;

+∞ otherwise.
(70)

Then Λ∗l+1(π) = −∑ biS∗i π(log gi). Using the Legendre-Fenchel duality we see that for any ε > 0,

inf
(g̃i) : ∑l

i=1 biSi log g̃i≥∑l
i=1 biSi log gi

l

∑
i=1

bi log νi(g̃i)

= inf
u1,...,ul+1

{
Θ0

(
−

l+1

∑
i=1

ui

)
+

l+1

∑
i=1

Λi(ui)

}
(71)

= sup
π

{
−

l+1

∑
i=0

Θ∗i (π)

}
(72)

= sup
π≥0

{
−

l+1

∑
i=1

Θ∗i (π)

}
(73)

= sup
π≥0

{
l

∑
i=1

biS∗i π(log gi)−
l

∑
i=1

biD(S∗i π‖νi)

}
(74)

≤
l

∑
i=1

biS∗i PX(log gi)−
l

∑
i=1

biD(S∗i PX‖νi) + ε (75)
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≤
m

∑
j=1

cjT∗j P̃X(log f j)−
m

∑
j=1

cjD(T∗j P̃X‖µj) + 2ε (76)

≤ 2ε +
m

∑
j=1

cj log µj( f j) (77)

where193

• To see (75) we note that the sup in (74) can be restricted to π which is a probability measure, since194

otherwise the relative entropy terms in (74) are +∞ by its definition via the Donsker-Varadhan195

formula. Then we select PX such that (75) holds.196

• In (76), we have chosen P̃X such that

S∗i P̃X = S∗i PX , 1 ≤ i ≤ l; (78)
l

∑
i=1

biD(S∗i PX) >
m

∑
j=1

cjD(T∗j P̃X‖µj)− ε, (79)

and then applied the assumption (62). The result follows since ε > 0 can be arbitrary.197

198

Remark 5. The infimum in (14) is in fact achievable: For any (PZi ), there exists a PX that minimizes199

∑m
j=1 cjD(PYj‖µj) subject to the constraints S∗i PX = PZi , i = 1, . . . m, where PYj := T∗j PX, j = 1, . . . , m.200

Indeed, since the singleton {PZi} is weak∗-closed and S∗i is weak∗-continuous11, the set
⋂l

i=1(S
∗
i )
−1PZi201

is weak∗-closed in M(X); hence its intersection with P(X ) is weak∗-compact in P(X ), because202

P(X ) is weak∗-compact by (a simple version for the setting of a compact underlying space X of)203

the Prokhorov theorem [54]. Moreover, by the weak∗-lower semicontinuity of D(·‖µj) (easily seen204

from the variational formula/Donsker-Varadhan formula of the relative entropy, cf. [55]) and the205

weak∗-continuity of T∗j , j = 1, . . . , m, we see that ∑m
j=1 cjD(T∗j PX‖µj) is weak∗-lower semicontinuous206

in PX , and hence the existence of a minimizing PX is established.207

Remark 6. Abusing the terminology from min-max theory, Theorem 1 may be interpreted as a “strong208

duality” result which establishes the equivalence of two optimization problems. The 1)⇒2) part is the209

non-trivial direction which requires regularity on the spaces. In contrast, the 2)⇒1) direction can be210

thought of as a “weak duality” which establishes only a partial relation but holds for more general211

spaces.212

3.2. Noncompact X213

Our proof of 1)⇒2) in Theorem 1 makes use of the Hahn-Banach theorem, and hence relies214

crucially on the fact that the measure space is the dual of the function space. Naively, one might want to215

extend the the proof to the case of locally compact X by considering C0(X ) instead of Cb(X ), so that the216

dual space is stillM(X ). However, this would not work: consider the case when X = Z1×, . . . ,×Zl217

and each Si is the canonical map. Then Θm+1(u) as defined in (46) is +∞ unless u ≡ 0 (because218

u ∈ C0(X ) requires that u vanishes at infinity), thus Θ∗m+1 ≡ 0. Luckily, we can still work with219

Cb(X ); in this case ` ∈ Cb(X )∗ may not be a measure, but we can decompose it into ` = π + R where220

π ∈ M(X ) and R is a linear functional “supported at infinity”. Below we use the techniques in [37,221

Chapter 1.3] to prove a particular extension of Theorem 1 to a non-compact case.222

11 Generally, if T : A → B is a continuous map between two topologically vector spaces, then T∗ : B∗ → A∗ is a weak∗

continuous map between the dual spaces. Indeed, if yn → y is a weak∗-convergent subsequence in B∗, meaning yn(b)→ y(b)
for any b ∈ B, then we must have T∗yn(a) = yn(Ta)→ y(Ta) = T∗y(a) for any a ∈ A, meaning that T∗yn converges to T∗y
in the weak∗ topology.
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Theorem 8. Theorem 1 still holds if223

• The assumption that X is a compact metric space is relaxed to the assumption that it is a locally compact224

and σ-compact Polish space;225

• X = ∏l
i=1 Zi and Si : Cb(Zi)→ Cb(X ), i = 1, . . . , l are canonical maps (see Definition 2).226

Proof. The proof of the “weak duality” part 2)⇒1) still works in the noncompact case, so we only
need to explain what changes need to be made in the proof of 1)⇒2) part. Let Θ0 be defined as before,
in (39). Then for any ` ∈ Cb(X )∗,

Θ∗0(`) = sup
u≤0

`(u) (80)

which is 0 if ` is nonnegative (in the sense that `(u) ≥ 0 for every u ≥ 0), and +∞ otherwise. This227

means that when computing the infimum on the left side of (27), we only need to take into account of228

those nonnegative `.229

Next, let Θm+1 be also defined as before. Then directly from the definition we have

Θ∗m+1(`) =

{
0 if `(∑i Siwi) = ∑i PZi (wi), ∀wi ∈ Cb(Zi), i = 1, . . . l;

+∞ otherwise.
(81)

For any ` ∈ C∗b (X ). Generally, the condition in the first line of (81) does not imply that ` is a measure.
However, if ` is also nonnegative, then using a technical result in [37, Lemma 1.25] we can further
simplify:

Θ∗m+1(`) =

{
0 if ` ∈ M(X ) and S∗i ` = PZi , i = 1, . . . , l;

+∞ otherwise.
(82)

This further shows that when we compute the left side of (27) the infimum can be taken over ` which230

is a coupling of (PZi ). In particular, if ` is a probability measure, then Θ∗j (`) = cjD(T∗j `‖µj) still holds231

with the Θj defined in (41), j = 1, . . . , m. Thus the rest of the proof can proceed as before.232

Remark 7. The second assumption is made in order to achieve (82) in the proof.233

4. Gaussian Optimality234

Recall that the conventional Brascamp-Lieb inequality and its reverse ((1) and (2)) state that235

centered Gaussian functions exhaust such inequalities, and in particular, verifying those inequalities is236

reduced to a finite dimensional optimization problem (only the covariance matrices in these Gaussian237

functions are to be optimized). In this section we show that similar results hold for the forward-reverse238

Brascamp-Lieb inequality as well. Our proof uses the rotational invariance argument mentioned in239

Section 1. Since the forward-reverse Brascamp-Lieb inequality has dual representations (Theorem 8),240

in principle, the rotational invariance argument can be applied either to the functional representation241

(as in Lieb’s paper [29]) or the entropic representation (as in Geng-Nair [45]). Here, we adopt the latter242

approach. We first consider a certain “non-degenerate” case where the existence of an extremizer is243

guaranteed. Then, Gaussian optimality in the general case follows by a limiting argument (Appendix F),244

establishing Theorem 2 and Theorem 3.245

4.1. Non-Degenerate Forward Channels246

This subsection focuses on the following case:247

Assumption 1. • Fix Lebesgue measures (µj)
m
j=1 and Gaussian measures (νi)

l
i=1 on R;248

• non-degenerate (Definition 3 below) linear Gaussian random transformation (PYj |X)
m
j=1 (where249

X := (X1, . . . , Xl)) associated with conditional expectation operators (Tj)
m
j=1;250
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• (Si)
l
i=1 are induced by coordinate projections;251

• positive (cj) and (bi).252

Definition 3. We say (QY1|X, . . . , QYm |X) is non-degenerate if each QYj |X=0 is an nj-dimensional Gaussian253

distribution with invertible covariance matrix.254

Given Borel measures PXi on R, i = 1, . . . , l, define

F0((PXi )) := inf
PX

m

∑
j=1

cjD(PYj‖µj)−
l

∑
i=1

biD(PXi‖νi) (83)

where the infimum is over Borel measures PX that has (PXi ) as marginals. Note that (83) is well-defined255

since the first term cannot be +∞ under the non-degenerate assumption, and the second term cannot256

be −∞. The aim of this subsection is to prove the following:257

Theorem 9. sup(PXi
) F0((PXi )), where the supremum is over Borel measures PXi on R, i = 1, . . . , l, is achieved258

by some Gaussian (PXi )
l
i=1, in which case the infimum in (83) is achieved by some Gaussian PX.259

Naturally, one would expect that Gaussian optimality can be established when (µj)
m
j=1 and (νi)

l
i=1260

are either Gaussian or Lebesgue. We made the assumption that the former is Lebesgue and the latter is261

Gaussian so that certain technical conditions can be justified more easily. More precisely, the following262

observation shows that we can regularize the distributions by a second moment constraint for free:263

Proposition 10. sup(PXi
) F0((PXi )) is finite and there exist σ2

i ∈ (0, ∞), i = 1, . . . , l such that it equals

sup
(PXi

) : E[X2
i ]≤σ2

i

F0((PXi )). (84)

Proof. when µj is Lebesgue and PYj |X is non-degenerate, D(PYj‖µj) = −h(PYj) ≤ −h(PYj |X) is264

bounded above (in terms of the variance of additive noise of PYj |X). Moreover, D(PXi‖νi) ≥ 0 when νi265

is Gaussian, so sup(PXi
) F0((PXi )) < ∞. Further, choosing (PXi ) = (νi) and using the covariance matrix266

to lower bound the first term in (83) shows that sup(PXi
) F0((PXi )) > −∞.267

To see (84), notice that

D(PXi‖νi) = D(PXi‖ν
′
i ) +E[ıν′i‖νi

(X)] (85)

= D(PXi‖ν
′
i ) + D(ν′i‖νi) (86)

≥ D(ν′i‖νi) (87)

where ν′i is a Gaussian distribution with the same first and second moments as Xi ∼ PXi . Thus268

D(PXi‖νi) is bounded below by some function of the second moment of Xi which tends to ∞ as the269

second moment of Xi tends to ∞. Moreover, as argued in the preceding paragraph the first term in270

(83) is bounded above by some constant depending only on (PYj |X). Thus, we can choose σ2
i > 0,271

i = 1, . . . , l large enough such that if E[X2
i ] > σ2

i for some of i then F0((PXi )) < sup(PXi
) F0((PXi )),272

irrespective of the choices of PX1 , . . . , PXi−1 , PXi+1 , . . . , PXl . Then these σ1, . . . , σl are as desired in the273

proposition.274

The non-degenerate assumption ensures that the supremum is achieved:275

Proposition 11. Under Assumption 1,276

1. For any (PXi )
l
i=1, the infimum in (83) is attained by some Borel PX.277
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2. If (PYj |Xl )m
j=1 are non-degenerate (Definition 3), then the supremum in (84) is achieved by some Borel278

(PXi )
l
i=1.279

The proof of Proposition 11 is given in Section E. After taking care of the existence of the280

extremizers, we get into the tensorization properties which are the crux of the proof:281

Lemma 12. Fix (P
X(1)

i
), (P

X(2)
i
), (µj), (Tj), (cj) ∈ [0, ∞)m, and let Sj be induced by coordinate projections.

Then

inf
P

X(1,2) : S∗⊗2
i P

X(1,2)=P
X(1)

i
×P

X(2)
i

m

∑
j=1

cjD(P
Y(1,2)

j
‖µ⊗2

j ) = ∑
t=1,2

m

∑
j=1

cj inf
P

X(t)
: S∗i P

X(t)
=P

X(t)
i

D(P
Y(t)

j
‖µj) (88)

where for each j,

P
Y(1,2)

j
:= T∗⊗2

j PX(1,2) (89)

on the left side and

P
Y(t)

j
:= T∗⊗2

j PX(t) (90)

on the right side, t = 1, 2.282

Proof. We only need to prove the nontrivial ≥ part. For any PX(1,2) on the left side, choose PX(t) on the
right side by marginalization. Then

D(P
Y(1,2)

j
‖µ⊗2

j )−∑
t

D(P
Y(t)

j
‖µj) = I(Y(1)

j ; Y(2)
j ) (91)

≥ 0 (92)

for each j.283

We are now ready to show the main result of this section.284

Proof of Theorem 9. 1. Assume that (P
X(1)

i
) and (P

X(2)
i
) are maximizers of F0 (possibly equal). Let

PX1,2
i

:= P
X(1)

i
× P

X(2)
i

. Define

X+ :=
1√
2

(
X(1) + X(2)

)
; (93)

X− :=
1√
2

(
X(1) − X(2)

)
. (94)

Define (Y+
j ) and (Y−j ) analogously. Then Y+

j |{X
+ = x+, X− = x−} ∼ QYj |X=x+ is independent285

of x− and Y−j |{X
+ = x+, X− = x−} ∼ QYj |X=x− is independent of x+.286

2. Next we perform the same algebraic expansion as in the proof of tensorization:

2

∑
t=1

F0

((
P

X(t)
i

)l

i=1

)
= inf

P
X(1,2) : S∗⊗2

j P
X(1,2)=P

X(1,2)
j

∑
j

cjD(P
Y(1,2)

j
‖µ⊗2

j )−∑
i

biD(P
X(1,2)

i
‖ν⊗2

i ) (95)

= inf
PX+X− : S∗⊗2

j PX+X−=PX+
j X−j

∑
j

cjD(PY+
j Y−j
‖µ⊗2

j )−∑
i

biD(PX+
i X−i
‖ν⊗2

i )

(96)
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≤ inf
PX+X− : S∗⊗2

j PX+X−=PX+
j X−j

∑
j

cj

[
D(PY+

j
‖µj) + D(PY−j |X+‖µj|PX+)

]

−∑
i

bi

[
D(PX+

i
‖νi) + D(PX−i |X

+
i
‖νi|PX+

i
)
]

(97)

≤∑
j

cj

[
D(P?

Y+
j
‖µj) + D(P?

Y−j |X+‖µj|P?
X+)

]
−∑

i
bi

[
D(P?

X+
i
‖νi) + D(P?

X−i |X+‖νi|P?
X+)
]

(98)

= F0

((
P?

X+
i

)l

i=1

)
+
∫

F0

((
P?

X−i |X+

)l

i=1

)
dP?

X+ (99)

≤
2

∑
t=1

F0

((
P

X(t)
i

)l

i=1

)
(100)

where287

• (95) uses Lemma 12.288

• (97) is because of the Markov chain Y+
j − X+ −Y−j (for any coupling).289

• In (98) we selected a particular instance of coupling PX+X− , constructed as follows: first we
select an optimal coupling PX+ for given marginals (PX+

i
). Then, for any x+ = (x+i )l

i=1, let

PX− |X+=x+ be an optimal coupling of (PX−i |X
+
i =x+i

). 12 With this construction, it is apparent

that X+
i − X+ − X−i and hence

D(PX−i |X
+
i
‖νi|PX+

i
) = D(PX−i |X+‖νi|PX+). (101)

• (99) is because in the above we have constructed the coupling optimally.290

• (100) is because (P(t)
Xi

) maximizes F0, t = 1, 2.291

3. Thus in the expansions above, equalities are attained throughout. Using the differentiation
technique as in the case of forward inequality, for almost all (bi), (cj), we have

D(PX−i |X
+
i
‖νi|PX+

i
) = D(PX+

i
‖νi) (102)

= D(PX−i
‖νi), ∀i (103)

where (103) is because by symmetry we can perform the algebraic expansions in a different way to292

show that (PX−i
) is also a maximizer of F0. Then I(X+

i ; X−i ) = D(PX−i |X
+
i
‖νi|PX+

i
)−D(PX−i

‖νi) =293

0, which, combined with I(X(1)
i ; X(2)

i ), shows that X(1)
i and X(2)

i are Gaussian with the same294

covariance. Lastly, using Lemma 12 and the doubling trick one can show that the optimal295

coupling is also Gaussian.296

297

4.2. A Geometric Forward-Reverse Brascamp-Lieb Inequality298

In this section we give a sketch of the proof of Theorem 3 which is simple but certain ‘technicalities”299

are not justified. A detailed proof is deferred to Appendix F.300

Proof Sketch for Theorem 3. By duality (Theorem 8) it suffices to prove the corresponding entropic
inequality. The Gaussian optimality result in Theorem 9 assumed Gaussian reference measures on
the output and non-degenerate forward channels in order to simplify the proof of the existence of

12 For a justification that we can select optimal coupling PX− |X+=x+ in a way that PX− |X+ is indeed a regular conditional
probability distribution, see [7].
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minimizers; however, supposing that Gaussian optimality extends beyond those technical conditions,
then we see that it suffices to prove that for any centered Gaussian (PXi ),

l

∑
i=1

h(PXi ) ≤ sup
PXl

l

∑
j=1

h(PYj) (104)

where the supremum is over Gaussian PXl with the marginals PX1 , . . . , PXl , and Yj := ∑l
i=1 mjiXi. Let

ai := E[X2
i ] and choose PXl = ∏l

i=1 PXi , we see (104) holds if

l

∑
i=1

log ai ≤
l

∑
j=1

log

(
l

∑
i=1

m2
jiai

)
, ∀ai > 0, i = 1, . . . , l, (105)

where (ai) are the eigenvalues and
(

∑l
i=1 mjiai

)l

i=1
are the diagonal entries of the matrix

Mdiag(ai)1≤i≤lM
>. (106)

Therefore (105) holds.301

5. Relation to Hypercontractivity and Its Reverses302

As alluded before and illustrated by Figure 1, the forward-reverse Brascamp-Lieb inequality303

generalizes several other inequalities from functional analysis and information theory; A more304

complete discussion on these relationships can be found in [7]. In this section, we focus on305

hypercontractivity, and show how its three cases all follow from Theorem 1. Among these, the306

case in Section 5.3 can be regarded as an instance of the forward-reverse inequality that cannot be307

reduced to either the forward or the reverse inequality alone. It is also interesting to note that, from308

the viewpoint of the forward-reverse Brascamp-Lieb inequality, in each of the three special cases there309

ought to be three functions involved in the functional formulation; but the optimal choice of one310

function can be computed from the other two. Therefore the conventional functional formulations311

of the three cases of hypercontractivity involve only two functions, making it non-obvious to find a312

unifying inequality.313

5.1. Hypercontractivity314

P(Y1 ×Y2)P(Z1)

P(Y1)

P(Y2)

∼=
T∗1

T∗2

Figure 3. Diagram for hypercontractivity

Fix a joint probability distribution QY1Y2 and nonnegative continuous functions F1 and F2 on Y1

and Y2, respectively, both bounded away from 0. In Theorem 1, take l ← 1, m ← 2, b1 ← 1, d ← 0,

f1 ← F
1
c1

1 , f2 ← F
1
c2

2 , ν1 ← QY1Y2 , µ1 ← QY1 , µ2 ← QY2 . Also, put Z1 = X = (Y1, Y2), and let T1 and T2

be the canonical maps (Definition 2). The constraint (12) translates to

g1(y1, y2) ≤ F1(y1)F2(y2), ∀y1, y2 (107)
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and the optimal choice of g1 is when the equality is achieved. We thus obtain the equivalence between13

‖F1‖ 1
c1
‖F2‖ 1

c2
≥ E[F1(Y1)F2(Y2)], ∀F1 ∈ L

1
c1 (QY1), F2 ∈ L

1
c2 (QY2) (108)

and

∀PY1Y2 , D(PY1Y2‖QY1Y2) ≥ c1D(PY1‖QY1) + c2D(PY2‖QY2). (109)

This equivalence can also be obtained from Theorem 1. By Hölder’s inequality, (108) is equivalent to315

saying that the norm of the linear operator sending F1 ∈ L
1
c1 (QY1) to E[F1(Y1)|Y2 = ·] ∈ L

1
1−c2 (QY2)316

does not exceed 1. The interesting case is 1
1−c2

> 1
c1

, hence the name hypercontractivity. The equivalent317

formulation of hypercontractivity was shown in [41] using a different proof via the method of318

types/typicality, which requires that |Y1|, |Y2| < ∞. In contrast, the proof based on the nonnegativity319

of relative entropy removes this constraint, allowing one to prove Nelson’s Gaussian hypercontractivity320

from the information-theoretic formulation (see [7]).321

5.2. Reverse Hypercontractivity (Positive Parameters14)322

P(Z1 ×Z2)

P(Z1)

P(Z2)

P(Y1)

S∗1

S∗2

∼=

Figure 4. Diagram for reverse hypercontractivity

Let QZ1Z2 be a given joint probability distribution, and let G1 and G2 be nonnegative functions on
Z1 and Z2, respectively, both bounded away from 0. In Theorem 1, take l ← 2, m← 1, c1 ← 1, d← 0,

g1 ← G
1

b1
1 , g2 ← G

1
b2
2 , µ1 ← QZ1Z2 , ν1 ← QZ1 , ν2 ← QZ2 . Also, put Y1 = X = (Z1, Z2), and let S1 and

S2 be the canonical maps (Definition 2). Note that the constraint (12) translates to

f1(z1, z2) ≥ G1(z1)G2(z2), ∀z1, z2. (110)

and the equality case yields the optimal choice of f1 for (13). By Theorem 1 we thus obtain the
equivalence between

‖G1‖ 1
b1
‖G2‖ 1

b2
≤ E[G1(Z1)G2(Z2)], ∀G1, G2 (111)

and

∀PZ1 , PZ2 , ∃PZ1Z2 , D(PZ1Z2‖QZ1Z2) ≤ b1D(PZ1‖QZ1) + b2D(PZ2‖QZ2). (112)

Note that in this setup, if Z1 and Z2 are finite, then Condition iv) in Theorem 1 is equivalent to323

QZ1Z2 � QZ1 ×QZ2 . The equivalent formulations of reverse hypercontractivity were observed in [56],324

where the proof is based on the method of types.325

13 By a standard dense-subspace argument, we see that it is inconsequential that F1 and F2 in (108) are not assumed to be
continuous nor bounded away from zero. It is also easy to see that the nonnegativity of F1 and F2 is inconsequential for
(108).

14 By “positive parameters” we mean the b1 and b2 in (112) are positive.
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5.3. Reverse Hypercontractivity (One Negative Parameter15)326

P(Z1 ×Y2)P(Z1)

P(Y1)

P(Y2)

S∗1
∼=

T∗2

Figure 5. Diagram for reverse hypercontractivity with one negative parameter

In Theorem 1, take l ← 1, m ← 2, c1 ← 1, d ← 0. Let Y1 = X = (Z1, Y2), and let S1 and T2 be
the canonical maps (Definition 2). Suppose that QZ1Y2 is a given joint probability distribution, and
set µ1 ← QZ1Y2 , ν1 ← QZ1 , µ2 ← QY2 in Theorem 1. Suppose that F and G be arbitrary nonnegative

continuous functions on Y2 and Z1, respectively, which are bounded away from 0. Take g1 ← G
1

b1 ,

f2 ← F−
1
c2 . in Theorem 1. The constraint (12) translates to

f1(z1, y2) ≥ G(z1)F(y2), ∀z1, y2. (113)

Note that (13) translates to

‖G‖ 1
b1
≤ QY2Z1( f1)Q

c2
Y2
(F−

1
c2 ) (114)

for all F, G, and f1 satisfying (113). It suffices to verify (114) for the optimal choice f1 = GF, so (114) is
reduced to

‖F‖ 1
−c2
‖G‖ 1

b1
≤ E[F(Y2)G(Z1)], ∀F, G. (115)

By Theorem 1, (115) is equivalent to

∀PZ1 , ∃PZ1Y2 , D(PZ1Y2‖QZ1Y2) ≤ b1D(PZ1‖QZ1) + (−c2)D(PY2‖QY2). (116)

Inequality (115) is called reverse hypercontractivity with a negative parameter in [42], where the327

entropic version (116) is established for |Z1|, |Y2| < ∞ using the method of types. Multiterminal328

extensions of (115) and (116) (called reverse Brascamp-Lieb type inequality with negative parameters329

in [42]) can also be recovered from Theorem 1 in the same fashion, i.e., we move all negative parameters330

to the other side of the inequality so that all parameters become positive.331

In summary, from the viewpoint of Theorem 1, the results in Section 5.1,5.2 and 5.3 are degenerate332

special cases, in the sense that in any of the three cases the optimal choice of one of the functions in (13)333

can be explicitly expressed in terms of the other functions, hence this “hidden function” disappears in334

(108), (111) or (115).335
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Appendix A. Recovering Theorem 1 from Theorem 7 as a Special Case344

Assume that PX → (PZi ) is surjective. Let 1Zi denote the constant 1 function on Zi. Define

C :=

{
(wi) : wi ∈ Cb(Zi),

l

∑
i=1

inf
zi

wi(zi) ≥ 0

}
, (A1)

which is a closed convex cone in Cb(Z1)× · · · × Cb(Zl). Given (gi) we show that ∑l
i=1 biSi log g̃i ≥

∑l
i=1 biSi log gi implies

(bi log g̃i − bi log gi)
l
i=1 ∈ C. (A2)

Indeed, we can verify that the dual cone

C∗ :=

{
(πi) :

l

∑
i=1

πi(wi) ≥ 0, ∀(wi) ∈ C
}

(A3)

=
{

λ(PZ1 , . . . , PZl ) : λ ≥ 0
}

. (A4)

Under the surjectivity assumption, we see

l

∑
i=1

πi(bi log g̃i − bi log gi) ≥ 0, ∀(πi) ∈ C∗. (A5)

Now if (A2) is not true, by the Hahn-Banach theorem (Theorem 6) we find πi ∈ M(Zi), i = 1, . . . , l
such that

l

∑
i=1

πi(bi log g̃i − bi log gi) < inf
(wi)∈C

l

∑
i=1

πi(wi) (A6)

so right side of (A6) is not −∞. Since C is a cone containing the origin, the right side of (A6) hence345

must be nonnegative, and we conclude that (πi) ∈ C∗. But then (A6) contradicts (A5).346

Appendix B. Existence of Weakly Convergent Couplings347

Lemma 13. Suppose that for each i = 1, . . . , l, PXi is a Borel measure on R and P(n)
Xi

converges weakly to348

some absolutely continuous (with respective to the Lebesgue measure) PXi as n → ∞. If PX is a coupling of349

(PXi )1≤i≤l , then, upon extraction of a subsequence, there exist couplings P(n)
X for (P(n)

Xi
)1≤i≤l which converge350

weakly to PX as n→ ∞.351

Proof. For each integer k ≥ 1, define the random variable W [k]
i := φk(Xi) where φk : R→ R∪ {e} is

the following “dyadic quantization function”:

φk : x 7→
{
b2kxc |x| ≤ k, x /∈ 2−kZ;
e otherwise,

(A7)

and let W[k] := (W [k]
i )l

i=1. Denote by W [k] := {−k2k, . . . , k2k − 1, e} the set from which W [k]
i takes

values. Note that since PXi is assumed to be absolutely continuous, the set of “dyadic points” has
measure zero:

PXi

(
∞⋃

k=1

2−kZ
)

= 0, i = 1, . . . , l. (A8)
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Since P(n)
Xi
→ PXi weakly and the assumption in the preceding paragraph precluded any positive

mass on the quantization boundaries under PXi , for each k ≥ 1 there exists some n := nk large enough
such that

P(n)

W[k]
i

(w) ≥
(

1− 1
k

)
P

W[k]
i
(w), (A9)

for each i and w ∈ W [k]. Now define a coupling P(n)
W[k] compatible with the

(
P(n)

W[k]
i

)l

i=1
induced by(

P(n)
Xi

)l

i=1
, as follows:

P(n)
W[k] :=

(
1− 1

k

)
PW[k] + kl−1

l

∏
i=1

(
P(n)

W[k]
i

−
(

1− 1
k

)
P

W[k]
i

)
. (A10)

Observe that (A10) is a well-defined probability measure because of (A9), and indeed has marginals(
P(n)

W[k]
i

)l

i=1
. Moreover, by the triangle inequality we have the following bound on the total variation

distance ∣∣∣P(n)
W[k] − PW[k]

∣∣∣ ≤ 2
k

. (A11)

Next, construct16 P(n)
X :

P(n)
X := ∑

wl∈W [k]×···×W [k]

P(n)
W[k]

(
wl
)

∏l
i=1 P(n)

W[k]
i

(wi)

l

∏
i=1

P(n)
Xi
|
φ−1

k (wi)
. (A12)

Observe that P(n)
X defined in (A12) is compatible with the P(n)

W[k] defined in (A10), and indeed has

marginals (P(n)
Xi

)l
i=1. Since n := nk can be made increasing in k, we have constructed the desired

sequence (P(nk)
X )∞

k=1 converging weakly to PX. Indeed, for any bounded open dyadic cube17 A, using
(A11) and the assumption (A8), we conclude

lim inf
k→∞

P(nk)
X (A) ≥ PX(A). (A13)

Moreover, since bounded open dyadic cubes form a countable basis of the topology in Rl , we see352

(A13) actually holds for any open set A (by writing A as a countable union of dyadic cubes, using the353

continuity of measure to pass to a finite disjoint union, and then apply (A13)), as desired.354

Appendix C. Upper Semicontinuity of the Infimum355

The following is a consequence of Lemma 13.356

16 We use P|A to denote the restriction of a probability measure P on measurable set A, that is, P|A(B) := P(A∩ B) for any
measurable B.

17 That is, a cube whose corners have coordinates being multiples of 2−k where k is some integer.
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Corollary 14. Consider non-degenerate (PYj |X). For each n ≥ 1, i = 1, . . . , l, P(n)
Xi

is a Borel measure on R,

whose second moment is bounded by σ2
i < ∞. Assume that P(n)

Xi
converges to some absolutely continuous P?

Xi
for each i. Then

lim sup
n→∞

inf
PX : S∗i PX=P(n)

Xi

m

∑
j=1

cjD(T∗j PX‖µj) ≤ inf
PX : S∗i PX=P?

Xi

m

∑
j=1

cjD(T∗j PX‖µj). (A14)

Proof. By passing to a convergent subsequence, we may assume that the limit on the left side of (A14)
exists. For any coupling P?

X of (P?
Xi
), by invoking Lemma 13 and passing to a subsequence, we find a

sequence of couplings P(n)
X of (P(n)

Xi
) that converges weakly to P?

X. It is known that under a moment
constraint, the differential entropy of the output distribution of a non-degenerate Gaussian channel
enjoys weak continuity in the input distribution (see e.g. [45, Proposition 18], [57, Theorem 7], or [58,
Theorem 1, Theorem 2]). Thus

lim
n→∞

m

∑
j=1

cjD(T∗j P(n)
X ‖µj) =

m

∑
j=1

cjD(T∗j PX‖µj) (A15)

and (A14) follows since P?
X was arbitrarily chosen.357

Appendix D. Weak Semicontinuity of Differential Entropy under a Moment Constraint358

Lemma 15. Suppose (PXn) is a sequence of distributions on Rd converging weakly to PX? , and

E[XnX>n ] � Σ (A16)

for all n. Then

lim sup
n→∞

h(Xn) ≤ h(X?). (A17)

Remark 8. The result fails without the condition (A16). Also, related results when the weak convergence359

is replaced with pointwise convergence of density functions and certain additional constraints was360

shown in [58, Theorem 1, Theorem 2] (see also the proof of [45, Theorem 5]). Those results are not361

applicable here since the density functions of Xn do not converge pointwise. They are applicable for362

the problems discussed in [45] because the density functions of the output of the Gaussian random363

transformation enjoy many nice properties due to the smoothing effect of the “good kernel”.364

Proof. It is well known that in metric spaces and for probability measures, the relative entropy is
weakly lower semicontinuous (cf. [55]). This fact and a scaling argument immediately show that, for
any r > 0,

lim sup
n→∞

h(Xn|‖Xn‖ ≤ r) ≤ h(X?|‖X?‖ ≤ r). (A18)

Let pn(r) := P[‖Xn‖ > r], then (A16) implies

E[XX>|‖Xn‖ > r] ≤ 1
pn(r)

Σ. (A19)

Therefore, since the Gaussian distribution maximizes differential entropy given a second moment
upper bound, we have

h(Xn|‖Xn‖ > r) ≤ 1
2

log
(2π)de|Σ|

pn(r)
. (A20)
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Since limr→∞ supn pn(r) = 0 by (A16) and Chebyshev’s inequality, (A20) implies that

lim
r→∞

sup
n

pn(r)h(Xn|‖Xn‖ > r) = 0. (A21)

The desired result follows from (A18), (A21) and the fact that

h(Xn) = pn(r)h(Xn|‖Xn‖ > r) + (1− pn(r))h(Xn|‖Xn‖ ≤ r) + h(pn(r)). (A22)

365

Appendix E. Proof of Proposition 11366

1. For any ε > 0, by the continuity of measure there exists K > 0 such that

PXi ([−K, K]) ≥ 1− ε

l
, i = 1, . . . , l. (A23)

By the union bound,

PX([−K, K]l) ≥ 1− ε (A24)

wherever PX is a coupling of (PXi ). Now let P(n)
X , n = 1, 2, . . . be a such that

lim
n→∞

m

∑
j=1

cjD(P(n)
Yj
‖µj) = inf

PX

m

∑
j=1

cjD(PYj‖µj) (A25)

where PYj := T∗j PX, j = 1, . . . , m. The sequence (P(n)
X ) is tight by (A24), Thus invoking Prokhorov

theorem and by passing to a subsequence, we may assume that (P(n)
X ) converges weakly to some

P?
X. Therefore P(n)

Yj
converges to P?

Yj
weakly, and by the semicontinuity property in Lemma 15 we

have

m

∑
j=1

cjD(P?
Yj
‖µj) ≤ lim

n→∞

m

∑
j=1

cjD(P(n)
Yj
‖µj) (A26)

establishing that P?
X is an infimizer.367

2. Suppose (P(n)
Xi

)1≤i≤l,n≥1 is such that E[X2
i ] ≤ σ2

i , Xi ∼ P(n)
Xi

, where (σi) is as in Proposition 10
and

lim
n→∞

F0

(
(P(n)

Xi
)l

i=1

)
= sup

(PXi
) : ΣXi

�σ2
i

F0((PXi )
l
i=1). (A27)

The regularization on the covariance implies that for each i, (P(n)
Xi

)n≥1 is a tight sequence. Thus

upon the extraction of subsequences, we may assume that for each i, (P(n)
Xi

)n≥1 converges to
some P?

Xi
. We have the moment bound

E[X2
i ] = lim

K→∞
E[min{X2

i , K}] (A28)

= lim
K→∞

E[min{(X(n)
i )2, K}] (A29)

≤ σ2
i (A30)
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where Xi ∼ P?
Xi

and X(n)
i ∼ P(n)

Xi
. Then by Lemma 15,

∑
i

biD(P?
Xi
‖νi) ≤ lim

n→∞ ∑
i

biD(P(n)
Xi
‖νi) (A31)

Under the covariance regularization and the non-degenerateness assumption, we showed in
Proposition 10 that the value of (84) cannot be +∞ or −∞. This implies that we can assume (by
passing to a subsequence) that P(n)

Xi
� λ, i = 1, . . . , l since otherwise F((PXi )) = −∞. Moreover,

since
(

∑j cjD(P(n)
Yj
‖µj)

)
n≥1

is bounded above under the non-degenerateness assumption, the

sequence
(

∑i biD(P(n)
Xi
‖νi)

)
n≥1

must also be bounded from above, which implies, using (A31),

that

∑
i

biD(P?
Xi
‖νi) < ∞. (A32)

In particular, we have P?
Xi
� λ for each i. Now Corollary 14 shows that

inf
PX : S∗i PX=P?

Xi

∑
j

cjD(T∗j PX‖µj) ≥ lim
n→∞

inf
PX : S∗i PX=P(n)

Xi

∑
j

cjD(T∗j PX‖µj) (A33)

Thus (A31) and (A33) show that (P?
Xi
) is in fact a maximizer.368

Appendix F. Gaussian Optimality in Degenerate Cases: A Limiting Argument369

Appendix F.1. Proof of Theorem 3370

The proof will be based on Theorem 9, which assumes non-degenerate forward channels and
Gaussian measures on the output of the reverse channels. To that end, we will adopt an approximation
argument. For each j = 1, . . . , l, defined the linear operator Tε

j by

(Tε
j φ)(x1, . . . , xl) := E

[
φ

(
l

∑
i=1

mjixi + Nε

)]
(A34)

for any measurable function φ on R, where Nε ∼ N (0, ε). Let γ 1
ε

:= N (0, ε−1), and note that the371

density of
√

2π
ε γ 1

ε
converges pointwise to that of the Lebesgue measure.372

Lemma 16. For any ε > 0, let (Tε
j ) be defined as in (A34). Then for any Borel PXi � λ, i = 1, . . . , l,

l

∑
i=1

D(PXi‖γ 1
ε
)− l

2
log

2π

ε
≥ inf

PXl : S∗i PXl=PXi

{
−

l

∑
j=1

h(Tε∗
j PXl )

}
. (A35)

Proof. By Theorem 9, it suffices to prove (A35) when PXi is Gaussian, and from (A35) it is easy to see
that it suffices to prove the case of centered Gaussian. Let PXi = N (0, ai), i = 1, . . . , l. We can upper
bound the right side of (A35) by taking PXl = PX1 × PXl instead of the infimum, so it suffices to prove
that

ε

2

l

∑
i=1

ai −
1
2

l

∑
i=1

log ai ≥ −
1
2

l

∑
j=1

log

(
l

∑
i=1

m2
jiai + ε

)
(A36)

for any ε, a1, . . . , al ∈ (0, ∞). This is implied by the ε = 0 case, which we proved in (105).373
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By the duality of the forward-reverse Brascamp-Lieb inequality (Theorem 8)18, we conclude from374

Lemma 16 that375

Lemma 17. For any ε > 0 and nonnegative continuous ( f j), (gi) satisfying

l

∑
i=1

log gi(xi) ≤
l

∑
j=1

(Tε
j log f j)

(
xl
)

, ∀xl ∈ Rl , (A37)

we have (
2π

ε

) l
2 l

∏
i=1

∫
gidγ 1

ε
≤

l

∏
i=1

∫
f j(x)dx. (A38)

Now suppose that Theorem 3 is not true; then there are nonnegative continuous ( f j) and (gi)

satisfying (17) while

l

∏
i=1

∫
gi(x)dx >

l

∏
i=1

∫
f j(x)dx, (A39)

By the standard approximation argument, we can assume, without loss of generality, that

gi(x) = 0, ∀x : |x| ≥ R, 1 ≤ i ≤ l; (A40)

f j(x) ≥ δe−x2
, ∀1 ≤ j ≤ l, (A41)

for some R sufficiently large and δ > 0 sufficiently small. Note that for any xl ∈ [−R, R]l ,

l

∑
i=1

mjixi ∈ [−
√

lR,
√

lR]. (A42)

Since log f j is uniformly continuous on [−2
√

lR, 2
√

lR] for each j and since we assumed (A41), we
have

lim
ε→0

inf
xl∈[−R,R]l

{
l

∑
j=1

(Tε
j log f j)

(
xl
)
−

l

∑
j=1

(T0
j log f j)

(
xl
)}
≥ 0. (A43)

But since we assumed (17) and (A40), we must also have

lim
ε→0

ηε ≥ 0 (A44)

where

ηε := inf
xl∈Rl

{
l

∑
j=1

(Tε
j log f j)

(
xl
)
−

l

∑
i=1

log gi(xi)

}
. (A45)

18 Although we stated Theorem 8 for finite reference measures (µj), we see from the proof that the relatively easy direction
“entropic⇒functional” does not need this assumption. Moreover the assumption in Theorem 1 that ( f j) and (gi) are bounded
away from 0 was made to ensure that log f j and log gi are bounded functions so that the conditional expectation operators
as defined in Section 2 can be applied to them. But this assumption can be dispensed with when some specific conditional
expectation operators can be applied to noncontinuous functions, as is the case of Lemma 17.
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Put

g̃ε
1 := exp(ηε)g1, (A46)

g̃ε
i := gi, i = 1, . . . , l. (A47)

Then (g̃ε
i ) and ( f j) satisfy the constraint (A37) for any ε > 0. By applying the monotone convergence

theorem and then Lemma 17,

l

∏
i=1

∫
gi(xi)dxi ≤ lim

ε→0

(
2π

ε

) l
2 l

∏
i=1

∫
g̃ε

i dγ 1
ε

(A48)

≤
l

∏
i=1

∫
f j(x)dx (A49)

which violates the hypothesis (A39), as desired.376

Appendix F.2. Proof of Theorem 2377

The limiting argument can be extended to the vector case to prove Theorem 2. Specifically, for
each j = 1, . . . , m, define Tε

j the same as (A34) except that Nε ∼ N (0, εI), where I is the identity

matrix whose dimension is clear from the context (equal to dim(Ej) here), and let Pε
Yj |X1 ...Xl

be the

dual operator. For each i = 1, . . . , l, let νε
i :=

( 2π
ε

) 1
2 dim(Ei) · N (0, ε−1I), whose density convergences

pointwise to that of ν0
i , defined as the Lebesgue measure on Ei. Define

dε := sup

{
l

∑
i=1

bi log νε
i (gi)−

m

∑
j=1

cj log
∫

f j

}
(A50)

where the supremum is over nonnegative continuous functions f1, . . . , fm and g1, . . . , gl such that the
summands in (A50) are finite and

l

∑
i=1

bi log gi(xi) ≤
m

∑
j=1

cj(Tε
j log f j)(x1, . . . , xl), ∀x1, . . . , xl . (A51)

The same limiting argument (A39)-(A49) extended to the vector case shows that

d0 ≤ lim
ε↓0

dε. (A52)

Next, define Fε
0 (·) for (µj), (νε

i ) and Pε
Yj |X1 ...Xl

, similarly to (83). The entropic⇒functional argument

(see Footnote 18) shows that

dε ≤ sup
PX1

,...,PXl

Fε
0 (PX1 , . . . , PXl ). (A53)

But Theorem 9 based on the rotational invariance of the Gaussian measure can be extended to the
vector case, so for any ε > 0,

sup
PX1

,...,PXl

Fε
0 (PX1 , . . . , PXl ) = sup

PX1
,...,PXl

c.G.
Fε

0 (PX1 , . . . , PXl ), (A54)
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where c.G. means that the supremum on the right side is over centered Gaussian measures. The fact
that centered distributions exhaust the supremum follows easily from the definition of F0. Moreover,
from the definitions it is easy to see that Fε

0 is monotonically decreasing in ε, and in particular

sup
PX1

,...,PXl
c.G.

Fε
0 (PX1 , . . . , PXl ) ≤ sup

PX1
,...,PXl

c.G.
F0

0 (PX1 , . . . , PXl ). (A55)

To finish the proof with the above chain of inequalities, it only remains to show that the right side
of (A55) equals to the supremum in (A50) with ( f j) (gj) taken over center Gaussian functions. This
follows by similar steps as the proof of the functional⇒entropic part of Theorem 1. We briefly mention
how the idea works: suppose A is the linear space defined as the Cartesian product of R and the set of
n× n symmetric matrices. Let Λ(·) be the convex functional on A defined by

Λ(r, M) := ln
∫

expe

(
r + x>Mx

)
d x (A56)

=

{
r + n

2 ln π − 1
2 ln | −M| M � 0,

+∞ otherwise.
(A57)

The dual space of A is itself, and Λ∗ is given by

Λ∗(s, H) = sup
r, M�0

{sr + Tr(H>M)−Λ(r, M)}. (A58)

Then Λ∗(s, H) = +∞ if s 6= 1, and

Λ∗(1, H) = sup
M�0

{
Tr(H>M)− n

2
ln π +

1
2

ln | −M|
}

. (A59)

The supremum in (A59) equals +∞ if H is not positive-semidefinite. But if H is positive-semidefinite,378

the supremum equals − 1
2 ln 2πe|H|, which is equal to the relative entropy between N (0, H) and379

the Lebesgue measure (supremum achieved when M = −(2H)−1). Since the proof of Theorem 1,380

in essence, only uses the duality between convex functionals, the same algebraic steps therein also381

establish the desired matrix optimization identity.382
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