

Article

A Forward-Reverse Brascamp-Lieb Inequality: Entropic Duality and Gaussian Optimality

Jingbo Liu ^{1*}, Thomas A. Courtade ², Paul W. Cuff ³, Sergio Verdú ¹

¹ Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544; {jingbo,verdu}@princeton.edu

² Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, 94720-1770; courtade@berkeley.edu

³ Renaissance Technologies; paul.cuff@gmail.com

* Correspondence: jingbo@princeton.edu

Abstract: Inspired by the forward and the reverse channels from the image-size characterization problem in network information theory, we introduce a functional inequality which unifies both the Brascamp-Lieb inequality and Barthe's inequality, which is a reverse form of the Brascamp-Lieb inequality. For Polish spaces, we prove its equivalent entropic formulation using the Legendre-Fenchel duality theory. Capitalizing on the entropic formulation, we elaborate on a “doubling trick” used by Lieb and Geng-Nair to prove the Gaussian optimality in this inequality for the case of Gaussian reference measures.

Keywords: Brascamp-Lieb inequality; hypercontractivity; functional-entropic duality; Gaussian optimality; network information theory; image size characterization

1. Introduction

The Brascamp-Lieb inequality and its reverse [1] concern the optimality of Gaussian functions in a certain type of integral inequality.¹ These inequalities have been generalized in various ways since their discovery, nearly 40 years ago. A modern formulation due to Barthe [5] may be stated as follows:²

Brascamp-Lieb Inequality and Its Reverse ([5, Theorem 1]). *Let E, E_1, \dots, E_m be Euclidean spaces, and $\mathbf{B}_i: E \rightarrow E_i$ be linear maps. Let $(c_i)_{i=1}^m$ and D be positive real numbers. Then the Brascamp-Lieb inequality*

$$\int \prod_{i=1}^m f_i^{c_i}(\mathbf{B}_i \mathbf{x}) d\mathbf{x} \leq D \prod_{i=1}^m \left(\int f_i(\mathbf{x}_i) d\mathbf{x}_i \right)^{c_i}, \quad (1)$$

for all nonnegative measurable functions f_i on E_i , $i = 1, \dots, m$, holds if and only if it holds whenever f_i , $i = 1, \dots, m$ are centered Gaussian functions³. Similarly, for F a positive real number, the reverse Brascamp-Lieb inequality, also known as Barthe's inequality⁴,

$$\int_{(\mathbf{y}_i): \sum_{i=1}^m c_i \mathbf{B}_i^* \mathbf{y}_i = \mathbf{x}} \prod_{i=1}^m f_i^{c_i}(\mathbf{y}_i) d\mathbf{x} \geq F \prod_{i=1}^m \left(\int f_i(\mathbf{y}_i) d\mathbf{y}_i \right)^{c_i}, \quad (2)$$

for all nonnegative measurable functions f_i on E_i , $i = 1, \dots, m$, holds if and only if it holds for all centered Gaussian functions.

¹ Not to be confused with the “variance Brascamp-Lieb inequality” (cf. [2][3][4]), which generalizes the Poincaré inequality.

² [5, Theorem 1] actually contains additional assumptions, which make the best constants D and F positive and finite, but are not really necessary for the conclusion to hold ([5, Remark 1]).

³ A centered Gaussian function is of the form $\mathbf{x} \mapsto \exp(r - \mathbf{x}^\top \mathbf{A} \mathbf{x})$, where \mathbf{A} is a positive semidefinite matrix and $r \in \mathbb{R}$.

⁴ \mathbf{B}_i^* denotes the adjoint of \mathbf{B}_i .

For surveys on the history of both the Brascamp-Lieb inequality and Barthe's inequality and their applications, see e.g. [6][7]. The Brascamp-Lieb inequality can be seen as a generalization of several other inequalities, including Hölder's inequality, the sharp Young inequality, the Loomis-Whitney inequality, the entropy power inequality (cf. [6] or the survey paper [8]), hypercontractivity and the logarithmic Sobolev inequality [9]. Furthermore, the Prékopa-Leindler inequality can be seen as a special case of the Barthe's inequality. Due in part to their utility in establishing impossibility bounds, these functional inequalities have attracted a lot of attention in information theory [10][11][12][13][14][15][16][17], theoretical computer science [18][19][20][21][22], and statistics [23][24][25][26][27][28], to name only a small subset of the literature. Over the years, various proofs of these inequalities have been proposed [1][29][30][31]. Among these, Lieb's elegant proof [29], which is very close to one of the techniques that will be used in this paper, employs a doubling trick that capitalizes on the rotational invariance property of the Gaussian function: if f is a one-dimensional Gaussian function, then

$$f(x)f(y) = f\left(\frac{x-y}{\sqrt{2}}\right)f\left(\frac{x+y}{\sqrt{2}}\right). \quad (3)$$

Since (1) and (2) have the same structure modulo the direction of the inequality, a common viewpoint is to consider (1) and (2) as dual inequalities. This viewpoint successfully captures the geometric aspects of (1) and (2). Indeed, it is known that

$$D \cdot F = 1 \quad (4)$$

as long as $D, F < \infty$ [5]. Moreover, both D and F are equal to 1 under Ball's *geometric condition* [32]: E_1, \dots, E_m are dimension 1 and

$$\sum_{i=1}^m c_i \mathbf{B}_i \mathbf{B}_i^* = \mathbf{I} \quad (5)$$

is the identity matrix. While fruitful, this "dual" viewpoint does not fully explain the asymmetry between the forward and the reverse inequalities: there is a sup in (2) but not in (1).

This paper explores a different viewpoint. In particular, we propose a single inequality that unifies (1) and (2). Accordingly, we should reverse both sides of (2) to make the inequality sign consistent with (1). To be concrete, let us first observe that (1) and (2) can be respectively restated in the following more symmetrical forms (with changes of certain symbols):

- For all nonnegative functions g and f_1, \dots, f_m such that

$$g(\mathbf{x}) \leq \prod_{i=1}^m f_j^{c_j}(\mathbf{B}_j \mathbf{x}), \quad \forall \mathbf{x}, \quad (6)$$

we have

$$\int_E g \leq D \prod_{j=1}^m \left(\int_{E_j} f_j \right)^{c_j}. \quad (7)$$

- For all nonnegative measurable functions g_1, \dots, g_l and f such that

$$\prod_{i=1}^l g_i^{b_i}(\mathbf{z}_i) \leq f\left(\sum_{i=1}^l b_i \mathbf{B}_i^* \mathbf{z}_i\right), \quad \forall \mathbf{z}_1, \dots, \mathbf{z}_l, \quad (8)$$

we have

$$\prod_{i=1}^l \left(\int_{E_i} g_i \right)^{b_i} \leq D \int_E f. \quad (9)$$

Note that in both cases, the optimal choice of one function (f or g) can be explicitly computed from the constraints, hence the conventional formulations in (1) and (2). Generalizing further, we can consider the following problem: let $\mathcal{X}, \mathcal{Y}_1, \dots, \mathcal{Y}_m, \mathcal{Z}_1, \dots, \mathcal{Z}_l$ be measurable spaces. Consider measurable maps $\phi_j: \mathcal{X} \rightarrow \mathcal{Y}_j, j = 1, \dots, m$ and $\psi: \mathcal{X} \rightarrow \mathcal{Z}_i, i = 1, \dots, l$. Let b_1, \dots, b_l and c_1, \dots, c_m be nonnegative real numbers. Let ν_1, \dots, ν_l be measures on $\mathcal{Z}_1, \dots, \mathcal{Z}_l$, and μ_1, \dots, μ_m be measures on $\mathcal{Y}_1, \dots, \mathcal{Y}_m$, respectively. What is the smallest $D > 0$ such that for all nonnegative f_1, \dots, f_m on $\mathcal{Y}_1, \dots, \mathcal{Y}_m$ and g_1, \dots, g_l on $\mathcal{Z}_1, \dots, \mathcal{Z}_l$ satisfying

$$\prod_{i=1}^l g_i^{b_i}(\psi_i(x)) \leq \prod_{j=1}^m f_j^{c_j}(\phi_j(x)), \quad \forall x, \quad (10)$$

we have

$$\prod_{i=1}^l \left(\int g_i d\nu_i \right)^{b_i} \leq D \prod_{j=1}^m \left(\int f_j d\mu_j \right)^{c_j} ? \quad (11)$$

22 Except for special case of $l = 1$ (resp. $m = 1$), it is generally not possible to deduce a simple expression
23 from (10) for the optimal choice of g_i (resp. f_j) in terms of the rest of the functions. We will refer to (11)
24 as a *forward-reverse Brascamp-Lieb inequality*.

25 One of the motivations for considering multiple functions on both sides of (11) comes from
26 multiuser information theory: independently but almost simultaneously with the discovery of the
27 Brascamp-Lieb inequality in mathematical physics, in the late 1970s, information theorists including
28 Ahslwede, Gács and Körner [33][34] invented the *image-size* technique for proving strong converses
29 in source and channel networks. An image-size inequality is a characterization of the tradeoff of
30 the measures of certain sets connected by given random transformations (channels). Although not
31 the way treated in [33][34], an image-size inequality can essentially be obtained from a functional
32 inequality similar to (11) by taking the functions to be (roughly speaking) the indicator functions of
33 sets. In the case of (10), the *forward channels* ϕ_1, \dots, ϕ_m and the *reverse channels* ψ_1, \dots, ψ_l degenerate
34 into deterministic functions. In this paper, motivated by information theoretic applications similar
35 to those of the image-size problems, we will consider further generalizations of (11) to the case
36 of random transformations. Since the functional inequality is not restricted to indicator functions,
37 it is strictly stronger than the corresponding image-size inequality. As a side remark, [35] uses
38 functional inequalities that are variants of (11) together with a reverse hypercontractivity machinery to
39 improve the image-size plus blowing-up machinery of [36], and shows that the non-indicator function
40 generalization is crucial for achieving the optimal scaling of the second-order rate expansion.

41 Of course, to justify the proposal of (11) we must also prove that (11) enjoys certain nice
42 mathematical properties; this is the main goal of the present paper. Specifically, we focus on two
43 aspects of (11): equivalent entropic formulation and Gaussian optimality.

44 In the mathematical literature (e.g. [31][37][38][33][39][40][41][42][43])) it is known that certain
45 integral inequalities are equivalent to inequalities involving relative entropies. In particular, Carlen,
46 Loss and Lieb [44] and Carlen and Cordero-Erausquin [31] proved that the Brascamp-Lieb inequality
47 is equivalent to the superadditivity of relative entropy. In this paper we prove that the forward-reverse
48 Brascamp-Lieb inequality (11) also has an entropic formulation, which turns out to be very close to
49 the rate region of certain multiuser information theory problems (but we will clarify the different in
50 the text). In fact, Ahlswede, Csiszár and Körner [36][34] essentially derived image-size inequalities
51 from similar entropic inequalities. Because of the reverse part, the proof of equivalence of (11) and

52 corresponding entropic inequality is more involved than the forward case considered in [31] beyond the
 53 case of finite $\mathcal{X}, \mathcal{Y}_j, \mathcal{Z}_i$, and certain machineries from min-max theory appear necessary. In particular,
 54 the proof involves a novel use of the Legendre-Fenchel duality theory. Next, we give a basic version of
 55 our main result on the functional-entropic duality (more general versions will be given later). *In order*
 56 *to streamline its presentation, all formal definitions of notation are postponed to Section 2.*

57 **Theorem 1** (Dual formulation of forward-reverse Brascamp-Lieb inequality). *Assume that*

58 **i)** *m and l are positive integers, $d \in \mathbb{R}$, \mathcal{X} is a compact metric space;*
 59 **ii)** *$b_i \in (0, \infty)$, ν_i is a finite Borel measure on a Polish space \mathcal{Z}_i , and $Q_{Z_i|X}$ is a random transformation from \mathcal{X}
 60 to \mathcal{Z}_i , for each $i = 1, \dots, l$;*
 61 **iii)** *$c_j \in (0, \infty)$, μ_j is a finite Borel measure on a Polish space \mathcal{Y}_j , and $Q_{Y_j|X}$ is a random transformation from
 62 \mathcal{X} to \mathcal{Y}_j , for each $j = 1, \dots, m$;*
 63 **iv)** *For any $(P_{Z_i})_{i=1}^l$ such that $\sum_{i=1}^l D(P_{Z_i} \| \nu_i) < \infty$, there exists P_X such that $P_X \rightarrow Q_{Z_i|X} \rightarrow P_{Z_i}$,
 64 $i = 1, \dots, l$ and $\sum_{j=1}^m D(P_{Y_j} \| \mu_j) < \infty$, where $P_X \rightarrow Q_{Y_j|X} \rightarrow P_{Y_j}$, $j = 1, \dots, m$.*

65 *Then the following two statements are equivalent:*

1. *If the nonnegative continuous functions $(g_i), (f_j)$ are bounded away from 0 and satisfy*

$$\sum_{i=1}^l b_i Q_{Z_i|X}(g_i) \leq \sum_{j=1}^m c_j Q_{Y_j|X}(f_j) \quad (12)$$

then

$$\prod_{i=1}^l \left(\int g_i d\nu_i \right)^{b_i} \leq \exp(d) \prod_{j=1}^m \left(\int f_j d\mu_j \right)^{c_j} \quad (13)$$

2. *For any (P_{Z_i}) such that $D(P_{Z_i} \| \nu_i) < \infty^5$, $i = 1, \dots, l$,*

$$\sum_{i=1}^l b_i D(P_{Z_i} \| \nu_i) + d \geq \inf_{P_X} \sum_{j=1}^m c_j D(P_{Y_j} \| \mu_j) \quad (14)$$

66 *where $P_X \rightarrow Q_{Y_j|X} \rightarrow P_{Y_j}$, $j = 1, \dots, m$, and the infimum is over P_X such that $P_X \rightarrow Q_{Z_i|X} \rightarrow P_{Z_i}$,
 67 $i = 1, \dots, l$.*

68 Next, in a similar vein as the proverbial result that “Gaussian functions are optimal” for the
 69 forward or the reverse Brascamp-Lieb inequality, we show in this paper that Gaussian function
 70 functions are also optimal for the forward-reverse Brascamp-Lieb inequality, particularized to the case
 71 of Gaussian reference measures and linear maps. The proof scheme is based on rotational invariance
 72 (3), which can be traced back in the functional setting to Lieb [29]. More specifically, we use a variant
 73 for the entropic setting introduced by Geng and Nair [45], thereby taking advantage of the dual
 74 formulation of Theorem 1.

5 Of course, this assumption is not essential (if we adopt the convention that the infimum in (14) is $+\infty$ when it runs over an empty set).

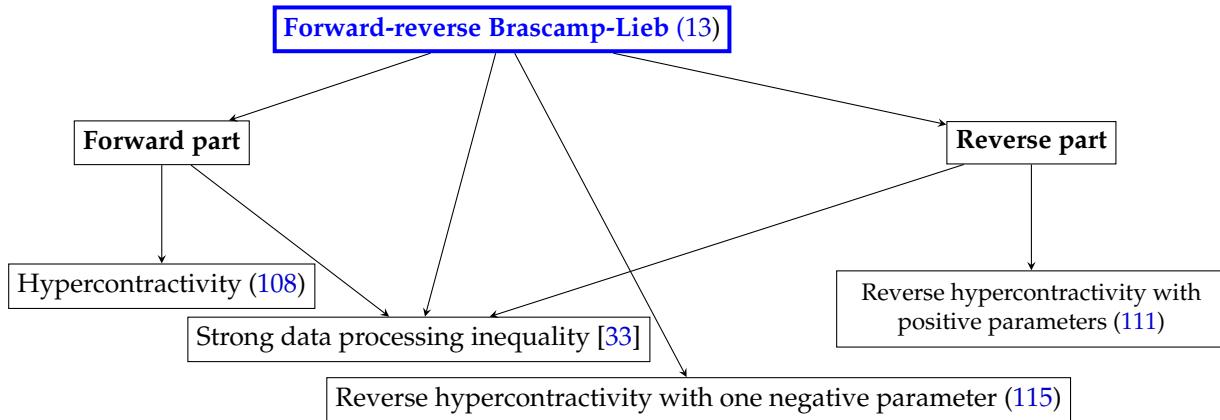


Figure 1. The forward-reverse Brascamp-Lieb inequality generalizes several other functional inequalities/information theoretic inequalities. For more discussions on these relations see the extended version [7].

Theorem 2. Consider $b_1, \dots, b_l, c_1, \dots, c_m, D \in (0, \infty)$. Let $E_1, \dots, E_l, E^1, \dots, E^m$ be Euclidean spaces, and let $\mathbf{B}_{ji}: E_i \rightarrow E^j$ be a linear map for each $i \in \{1, \dots, l\}$ and $j \in \{1, \dots, m\}$. Then, for all continuous functions $f_j: E^j \rightarrow [0, +\infty)$, $g_i: E_i \rightarrow [0, \infty)$ satisfying

$$\prod_{i=1}^l g_i^{b_i}(\mathbf{x}_i) \leq \prod_{j=1}^m f_j^{c_j} \left(\sum_{i=1}^l \mathbf{B}_{ji} \mathbf{x}_i \right), \quad \forall \mathbf{x}_1, \dots, \mathbf{x}_l, \quad (15)$$

we have

$$\prod_{i=1}^l \left(\int g_i \right)^{b_i} \leq D \prod_{j=1}^m \left(\int f_j \right)^{c_j}, \quad (16)$$

if and only if for all centered Gaussian functions $f_1, \dots, f_m, g_1, \dots, g_l$ satisfying (15), we have (16).

As mentioned, in the literature on the forward or the reverse Brascamp-Lieb inequalities, it is known that a certain geometric condition (5) ensures that the best constant equals 1. Next, we also identify a particular case where the best constant in the *forward-reverse* inequality equals 1:

Theorem 3. Let l be a positive integer, and let $\mathbf{M} := (m_{ji})_{1 \leq j \leq l, 1 \leq i \leq l}$ be an orthogonal matrix. For any nonnegative continuous functions $(f_j)_{j=1}^l$, $(g_i)_{i=1}^l$ on \mathbb{R} such that

$$\prod_{i=1}^l g_i(x_i) \leq \prod_{j=1}^l f_j \left(\sum_{i=1}^l m_{ji} x_i \right), \quad \forall x^l \in \mathbb{R}^l, \quad (17)$$

we have

$$\prod_{i=1}^l \int g_i(x) dx \leq \prod_{i=1}^l \int f_i(x) dx. \quad (18)$$

The rest of the paper is organized as follows: Section 2 defines notation and reviews some basic theory of convex duality. Section 3 proves Theorem 1 and also presents its extensions to the settings of noncompact spaces or general reverse channels. Section 4 proves the Gaussian optimality in the entropic formulation, under a certain “non-degenerate” assumption where the linear maps \mathbf{B}_{ji} ’s are regularized by an additive noise, which guarantees the existence of extremizers. Then, a limiting

⁸⁴ argument in Appendix F lets the noise vanish, which, combined with the equivalence between the
⁸⁵ functional and entropic formulations, establishes Theorem 2 and Theorem 3.

⁸⁶ 2. Review of the Legendre-Fenchel Duality Theory

⁸⁷ Our proof of the equivalence of the functional and the entropic inequalities uses the
⁸⁸ Legendre-Fenchel duality theory, a topic from convex analysis. Before getting into that, a recap
⁸⁹ of some basics on the duality of topological vector spaces seems appropriate. Unless otherwise
⁹⁰ indicated, we assume Polish spaces and Borel measures⁶. Of course, this covers the cases of Euclidean
⁹¹ and discrete spaces (endowed with the Hamming metric, which induces the discrete topology, making
⁹² every function on the discrete set continuous), among others. Readers interested in discrete spaces
⁹³ only may refer to the (much simpler) argument in [47] based on the KKT condition.

⁹⁴ Notation 1. Let \mathcal{X} be a topological space.

- ⁹⁵ • $C_c(\mathcal{X})$ denotes the space of continuous functions on \mathcal{X} with a compact support;
- ⁹⁶ • $C_0(\mathcal{X})$ denotes the space of all continuous functions f on \mathcal{X} that vanish at infinity (i.e. for any
⁹⁷ $\epsilon > 0$ there exists a compact set $\mathcal{K} \subseteq \mathcal{X}$ such that $|f(x)| < \epsilon$ for $x \in \mathcal{X} \setminus \mathcal{K}$);
- ⁹⁸ • $C_b(\mathcal{X})$ denotes the space of bounded continuous functions on \mathcal{X} ;
- ⁹⁹ • $\mathcal{M}(\mathcal{X})$ denotes the space of finite signed Borel measures on \mathcal{X} ;
- ¹⁰⁰ • $\mathcal{P}(\mathcal{X})$ denotes the space of probability measures on \mathcal{X} .

¹⁰¹ We consider C_c , C_0 and C_b as topological vector spaces, with the topology induced from the sup
¹⁰² norm. The following theorem, usually attributed to Riesz, Markov and Kakutani, is well-known in
¹⁰³ functional analysis and can be found in, e.g. [48][49].

¹⁰⁴ **Theorem 4** (Riesz-Markov-Kakutani). *If \mathcal{X} is a locally compact, σ -compact Polish space, the dual⁷ of both
¹⁰⁵ $C_c(\mathcal{X})$ and $C_0(\mathcal{X})$ is $\mathcal{M}(\mathcal{X})$.*

¹⁰⁶ Remark 1. The dual space of $C_b(\mathcal{X})$ can be strictly larger than $\mathcal{M}(\mathcal{X})$, since it also contains those linear
¹⁰⁷ functionals that depend on the “limit at infinity” of a function $f \in C_b(\mathcal{X})$ (originally defined for those
¹⁰⁸ f that do have a limit at infinity, and then extended to the whole $C_b(\mathcal{X})$ by the Hahn-Banach theorem;
¹⁰⁹ see e.g. [48]).

Of course, any $\mu \in \mathcal{M}(\mathcal{X})$ is a continuous linear functional on $C_0(\mathcal{X})$ or $C_c(\mathcal{X})$, given by

$$f \mapsto \int f d\mu \quad (19)$$

where f is a function in $C_0(\mathcal{X})$ or $C_c(\mathcal{X})$. As is well known, Theorem 4 states that the converse is also
true under mild regularity assumptions on the space. Thus, we can view measures as continuous
linear functionals on a certain function space;⁸ this justifies the shorthand notation

$$\mu(f) := \int f d\mu \quad (20)$$

¹¹⁰ which we employ in the rest of the paper. This viewpoint is the most natural for our setting since in
¹¹¹ the proof of the equivalent formulation of the forward-reverse Brascamp-Lieb inequality we shall use
¹¹² the Hahn-Banach theorem to show the existence of certain linear functionals.

⁶ A Polish space is a complete separable metric space. It enjoys several nice properties that we use heavily in this section, including Prokhorov theorem and Riesz-Kakutani theorem (the latter is related to the fact that every Borel probability measure on a Polish space is inner regular, hence a Radon measure). Short introductions on the Polish space can be found in e.g. [37][46].

⁷ The dual of a topological vector space consists of all continuous linear functionals on that space, which is naturally also topological vector space (with the weak* topology).

⁸ In fact, some authors prefer to construct measure theory by *defining* a measure as a linear functional on a suitable measure space; see Lax [48] or Bourbaki [50].

Definition 1. Let $\Lambda: C_b(\mathcal{X}) \rightarrow (-\infty, +\infty]$ be a lower semicontinuous, proper convex function. Its Legendre-Fenchel transform $\Lambda^*: C_b(\mathcal{X})^* \rightarrow (-\infty, +\infty]$ is given by

$$\Lambda^*(\ell) := \sup_{u \in C_b(\mathcal{X})} [\ell(u) - \Lambda(u)]. \quad (21)$$

Let ν be a nonnegative finite Borel measure on a Polish space \mathcal{X} , and define the convex functional on $C_b(\mathcal{X})$:

$$\Lambda(f) := \log \nu(\exp(f)) \quad (22)$$

$$= \log \int \exp(f) d\nu. \quad (23)$$

Then, note that the relative entropy has the following alternative definition: for any $\mu \in \mathcal{M}(\mathcal{X})$,

$$D(\mu\|\nu) := \sup_{f \in C_b(\mathcal{X})} [\mu(f) - \Lambda(f)] \quad (24)$$

which agrees with the more familiar definition $D(\mu\|\nu) := \mu(\log \frac{d\mu}{d\nu})$ when ν is a probability measure, by the Donsker-Varadhan formula (c.f. [46, Lemma 6.2.13]). If μ is not a probability measure, then $D(\mu\|\nu)$ as defined in (24) is $+\infty$.

Given a bounded linear operator $T: C_b(\mathcal{Y}) \rightarrow C_b(\mathcal{X})$, the dual operator $T^*: C_b(\mathcal{X})^* \rightarrow C_b(\mathcal{Y})^*$ is defined in terms of

$$\begin{aligned} T^* \mu_X: C_b(\mathcal{Y}) &\rightarrow \mathbb{R}; \\ f &\mapsto \mu_X(Tf), \end{aligned} \quad (25)$$

for any $\mu_X \in C_b(\mathcal{X})^*$. Since $\mathcal{P}(\mathcal{X}) \subseteq \mathcal{M}(\mathcal{X}) \subseteq C_b(\mathcal{X})^*$, T is said to be a *conditional expectation operator* if $T^* P \in \mathcal{P}(\mathcal{Y})$ for any $P \in \mathcal{P}(\mathcal{X})$. The operator T^* is defined as the dual of a conditional expectation operator T , and in a slight abuse of terminology, is said to be a *random transformation* from \mathcal{X} to \mathcal{Y} .

For example, in the notation of Theorem 1, if $g \in C_b(\mathcal{Y})$ and $Q_{Y|X}(g)$ is a random transformation from \mathcal{X} to \mathcal{Y} , the quantity $Q_{Y|X}(g)$ is a function on \mathcal{X} , defined by taking the conditional expectation. Also, if $P_X \in \mathcal{P}(\mathcal{X})$, we write $P_X \rightarrow Q_{Y|X} \rightarrow P_Y$ to indicate that $P_Y \in \mathcal{P}(\mathcal{Y})$ is the measure induced on \mathcal{Y} by applying $Q_{Y|X}$ to P_X .

Remark 2. From the viewpoint of category theory (see for example [51][52]), C_b is a functor from the category of topological spaces to the category of topological vector spaces, which is contra-variant because for any continuous, $\phi: \mathcal{X} \rightarrow \mathcal{Y}$ (morphism between topological spaces), we have $C_b(\phi): C_b(\mathcal{Y}) \rightarrow C_b(\mathcal{X})$, $u \mapsto u \circ f$ where $u \circ f$ denotes the composition of two continuous functions, reversing the arrows in the maps (i.e. the morphisms). On the other hand, \mathcal{M} is a covariant functor and $\mathcal{M}(\phi): \mathcal{M}(\mathcal{X}) \rightarrow \mathcal{M}(\mathcal{Y})$, $\mu \mapsto \mu \circ \phi^{-1}$, where $\mu \circ \phi^{-1}(\mathcal{B}) := \mu(\phi^{-1}(\mathcal{B}))$ for any Borel measurable $\mathcal{B} \subseteq \mathcal{Y}$. “Duality” itself is a contra-variant functor between the category of topological spaces (note the reversal of arrows in Fig. 2). Moreover, $C_b(\mathcal{X})^* = \mathcal{M}(\mathcal{X})$ and $C_b(\phi)^* = \mathcal{M}(\phi)$ if \mathcal{X} and \mathcal{Y} are compact metric spaces and $\phi: \mathcal{X} \rightarrow \mathcal{Y}$ is continuous. Definition 2 can therefore be viewed as the special case where ϕ is the projection map:

Definition 2. Suppose $\phi: \mathcal{Z}_1 \times \mathcal{Z}_2 \rightarrow \mathcal{Z}_1$, $(z_1, z_2) \mapsto z_1$ is the projection to the first coordinate.

- $C_b(\phi): C_b(\mathcal{Z}_1) \rightarrow C_b(\mathcal{Z}_1 \times \mathcal{Z}_2)$ is called a *canonical map*, whose action is almost trivial: it sends a function of z_i to itself, but viewed as a function of (z_1, z_2) .
- $\mathcal{M}(\phi): \mathcal{M}(\mathcal{Z}_1 \times \mathcal{Z}_2) \rightarrow \mathcal{M}(\mathcal{Z}_1)$ is called *marginalization*, which simply takes a joint distribution to a marginal distribution.

The Fenchel-Rockafellar duality (see [37, Theorem 1.9], or [53] in the case of finite dimensional vector spaces) usually refers to the $k = 1$ special case of the following result.

Theorem 5. Assume that A is a topological vector space whose dual is A^* . Let $\Theta_j: A \rightarrow \mathbb{R} \cup \{+\infty\}$, $j = 0, 1, \dots, k$, for some positive integer k . Suppose there exist some $(u_j)_{j=1}^k$ and $u_0 := -(u_1 + \dots + u_k)$ such that

$$\Theta_j(u_j) < \infty, \quad j = 0, \dots, k \quad (26)$$

and Θ_0 is upper semicontinuous at u_0 . Then

$$-\inf_{\ell \in A^*} \left[\sum_{j=0}^k \Theta_j^*(\ell) \right] = \inf_{u_1, \dots, u_k \in A} \left[\Theta_0 \left(-\sum_{j=1}^k u_j \right) + \sum_{j=1}^k \Theta_j(u_j) \right]. \quad (27)$$

140 For completeness, we provide a proof of this result, which is based on the Hahn-Banach theorem
141 (Theorem 6) and is similar to the proof of [37, Theorem 1.9].

Proof. Let m_0 be the right side of (27). The \leq part of (27) follows trivially from the (weak) min-max inequality since

$$m_0 = \inf_{u_0, \dots, u_k \in A} \sup_{\ell \in A^*} \left\{ \sum_{j=0}^k \Theta_j(u_j) - \ell \left(\sum_{j=0}^k u_j \right) \right\} \quad (28)$$

$$\geq \sup_{\ell \in A^*} \inf_{u_0, \dots, u_k \in A} \left\{ \sum_{j=0}^k \Theta_j(u_j) - \ell \left(\sum_{j=0}^k u_j \right) \right\} \quad (29)$$

$$= -\inf_{\ell \in A^*} \left[\sum_{j=0}^k \Theta_j^*(\ell) \right]. \quad (30)$$

It remains to prove the \geq part, and it suffices to assume without loss of generality that $m_0 > -\infty$. Note that (26) also implies that $m_0 < +\infty$. Define convex sets

$$C_j := \{(u, r) \in A \times \mathbb{R}: r > \Theta_j(u)\}, \quad j = 0, \dots, k; \quad (31)$$

$$B := \{(0, m) \in A \times \mathbb{R}: m \leq m_0\}. \quad (32)$$

Observe that these are nonempty sets because of (26). Also C_0 has nonempty interior by the assumption that Θ_0 is upper semicontinuous at u_0 . Thus, the Minkowski sum

$$C := C_0 + \dots + C_k \quad (33)$$

is a convex set with a nonempty interior. Moreover, $C \cup B = \emptyset$. By the Hahn-Banach theorem (Theorem 6), there exists $(\ell, s) \in A^* \times \mathbb{R}$ such that

$$sm \leq \ell \left(\sum_{j=0}^k u_j \right) + s \sum_{j=0}^k r_j. \quad (34)$$

For any $m \leq m_0$ and $(u_j, r_j) \in C_j$, $j = 0, \dots, k$. From (32) we see (34) can only hold when $s \geq 0$. Moreover, from (26) and the upper semicontinuity of Θ_0 at u_0 we see the $\sum_{j=0}^k u_j$ in (34) can take value in a neighbourhood of $0 \in A$, hence $s \neq 0$. Thus, by dividing s on both sides of (34) and setting $\ell \leftarrow -\ell/s$, we see that

$$m_0 \leq \inf_{u_0, \dots, u_k \in A} \left[-\ell \left(\sum_{j=0}^k u_j \right) + \sum_{j=0}^k \Theta_j(u_j) \right] \quad (35)$$

$$= - \left[\sum_{j=0}^k \Theta_j^*(\ell) \right] \quad (36)$$

¹⁴² which establishes \geq in (27). \square

¹⁴³ **Theorem 6** (Hahn-Banach). *Let C and B be convex, nonempty disjoint subsets of a topological vector space A .*

1. *If the interior of C is non-empty, then there exists $\ell \in A^*$, $\ell \neq 0$ such that*

$$\sup_{u \in B} \ell(u) \leq \inf_{u \in C} \ell(u). \quad (37)$$

2. *If A is locally convex, B is compact, and C is closed, then there exists $\ell \in A^*$ such that*

$$\sup_{u \in B} \ell(u) < \inf_{u \in C} \ell(u). \quad (38)$$

¹⁴⁴ *Remark 3.* The assumption in Theorem 6 that C has nonempty interior is only necessary in the infinite
¹⁴⁵ dimensional case. However, even if A in Theorem 5 is finite dimensional, the assumption in Theorem 5
¹⁴⁶ that Θ_0 is upper semicontinuous at u_0 is still necessary, because this assumption was not only used in
¹⁴⁷ applying Hahn-Banach, but also in concluding that $s \neq 0$ in (34).

¹⁴⁸ 3. The Entropic-Functional Duality

¹⁴⁹ In this section we prove Theorem 1 and some of its generalizations.

¹⁵⁰ 3.1. Compact \mathcal{X}

¹⁵¹ We first state a duality theorem for the case of compact spaces to streamline the proof. Later we
¹⁵² show that the argument can be extended to a particular non-compact case.⁹ Our proof based on the
¹⁵³ Legendre-Fenchel duality (Theorem 5) was inspired by the proof of the Kantorovich duality in the
¹⁵⁴ theory of optimal transportation (see [37, Chapter 1], where the idea was credited to Brenier).

¹⁵⁵ Recall from Section 2 that a random transformation (a mapping between probability measures)
¹⁵⁶ is formally the dual of a conditional expectation operator. Suppose $P_{Y_j|X} = T_j^*$, $j = 1, \dots, m$ and
 $P_{Z_i|X} = S_i^*$, $i = 1, \dots, l$.

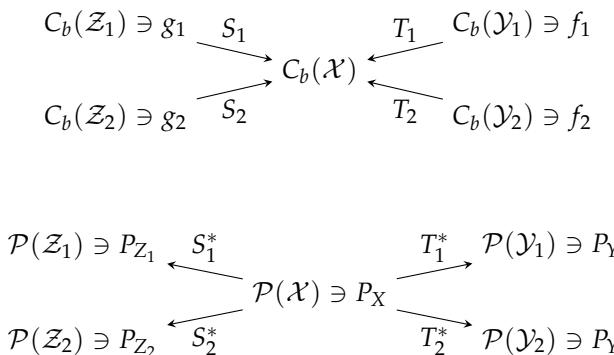


Figure 2. Diagrams for Theorem 1.

¹⁵⁷

¹⁵⁸ **Proof of Theorem 1.** We can safely assume $d = 0$ below without loss of generality (since otherwise
¹⁵⁹ we can always substitute $\mu_1 \leftarrow \exp\left(\frac{d}{c_1}\right)\mu_1$).

⁹ Theorem 1 is not included in the conference paper [47], but was announced in the conference presentation.

1)⇒2) This is the nontrivial direction which relies on certain (strong) min-max type results. In Theorem 5, put¹⁰

$$\Theta_0: u \in C_b(\mathcal{X}) \mapsto \begin{cases} 0 & u \leq 0; \\ +\infty & \text{otherwise.} \end{cases} \quad (39)$$

Then,

$$\Theta_0^*: \pi \in \mathcal{M}(\mathcal{X}) \mapsto \begin{cases} 0 & \pi \geq 0; \\ +\infty & \text{otherwise.} \end{cases} \quad (40)$$

For each $j = 1, \dots, m$, set

$$\Theta_j(u) := c_j \inf \log \mu_j \left(\exp \left(\frac{1}{c_j} v \right) \right) \quad (41)$$

where the infimum is over $v \in C_b(\mathcal{Y})$ such that $u = T_j v$; if there is no such v then $\Theta_j(u) := +\infty$ as a convention. Observe that

- Θ_j is convex: indeed given arbitrary u^0 and u^1 , suppose that v^0 and v^1 respectively achieve the infimum in (41) for u^0 and u^1 (if the infimum is not achievable, the argument still goes through by the approximation and limit argument). Then for any $\alpha \in [0, 1]$, $v^\alpha := (1 - \alpha)v^0 + \alpha v^1$ satisfies $u^\alpha = T_j v^\alpha$ where $u^\alpha := (1 - \alpha)u^0 + \alpha u^1$. Thus, the convexity of Θ_j follows from the convexity of the functional in (23);
- $\Theta_j(u) > -\infty$ for any $u \in C_b(\mathcal{X})$. Otherwise, for any P_X and $P_{Y_j} := T_j^* P_X$ we have

$$D(P_{Y_j} \| \mu_j) = \sup_v \{P_{Y_j}(v) - \log \mu_j(\exp(v))\} \quad (42)$$

$$= \sup_v \{P_X(T_j v) - \log \mu_j(\exp(v))\} \quad (43)$$

$$= \sup_{u \in C_b(\mathcal{X})} \left\{ P_X(u) - \frac{1}{c_j} \Theta_j(c_j u) \right\} \quad (44)$$

$$= +\infty \quad (45)$$

which contradicts the assumption that $\sum_{j=1}^m c_j D(P_{Y_j} \| \mu_j) < \infty$ in the theorem;

- From the steps (42)-(44), we see $\Theta_j^*(\pi) = c_j D(T_j^* \pi \| \mu_j)$ for any $\pi \in \mathcal{M}(\mathcal{X})$, where the definition of $D(\cdot \| \mu_j)$ is extended using the Donsker-Varadhan formula (that is, it is infinite when the argument is not a probability measure).

Finally, for the given $(P_{Z_i})_{i=1}^l$, choose

$$\Theta_{m+1}: u \in C_b(\mathcal{X}) \mapsto \begin{cases} \sum_{i=1}^l P_{Z_i}(w_i) & \text{if } u = \sum_{i=1}^l S_i w_i \text{ for some } w_i \in C_b(\mathcal{Z}_i); \\ +\infty & \text{otherwise.} \end{cases} \quad (46)$$

Notice that

- Θ_{m+1} is convex;

¹⁰ In (39), $u \leq 0$ means that u is pointwise non-positive.

- Θ_{m+1} is well-defined (that is, the choice of (w_i) in (46) is inconsequential). Indeed if $(w_i)_{i=1}^l$ is such that $\sum_{i=1}^l S_i w_i = 0$, then

$$\sum_{i=1}^l P_{Z_i}(w_i) = \sum_{i=1}^l S_i^* P_X(w_i) \quad (47)$$

$$= \sum_{i=1}^l P_X(S_i w_i) \quad (48)$$

$$= 0, \quad (49)$$

173 where P_X is such that $S_i^* P_X = P_{Z_i}$, $i = 1, \dots, l$, whose existence is guaranteed by the
174 assumption of the theorem. This also shows that $\Theta_{m+1} > -\infty$.

-

$$\Theta_{m+1}^*(\pi) := \sup_u \{\pi(u) - \Theta_{m+1}(u)\} \quad (50)$$

$$= \sup_{w_1, \dots, w_l} \left\{ \pi \left(\sum_{i=1}^l S_i w_i \right) - \sum_{i=1}^l P_{Z_i}(w_i) \right\} \quad (51)$$

$$= \sup_{w_1, \dots, w_l} \left\{ \sum_{i=1}^l S_i^* \pi(w_i) - \sum_{i=1}^l P_{Z_i}(w_i) \right\} \quad (52)$$

$$= \begin{cases} 0 & \text{if } S_i^* \pi = P_{Z_i}, \quad i = 1, \dots, l; \\ +\infty & \text{otherwise.} \end{cases} \quad (53)$$

Invoking Theorem 5 (where the u_j in Theorem 5 can be chosen as the constant function $u_j \equiv 1$, $j = 1, \dots, m+1$):

$$\begin{aligned} & \inf_{\pi: \pi \geq 0, S_i^* \pi = P_{Z_i}} \sum_{j=1}^m c_j D(T_j^* \pi \| \mu_j) \\ &= - \inf_{v^m, w^l: \sum_{j=1}^m T_j v_j + \sum_{i=1}^l S_i w_i \geq 0} \left[\sum_{j=1}^m c_j \log \mu_j \left(\exp \left(\frac{1}{c_j} v_j \right) \right) + \sum_{i=1}^l P_{Z_i}(w_i) \right] \end{aligned} \quad (54)$$

where v^m denotes the collection of the functions v_1, \dots, v_m , and similarly for w^l . Note that the left side of (54) is exactly the right side of (14). For any $\epsilon > 0$, choose $v_j \in C_b(\mathcal{Y}_j)$, $j = 1, \dots, m$ and $w_i \in C_b(\mathcal{Z}_i)$, $i = 1, \dots, l$ such that $\sum_{j=1}^m T_j v_j + \sum_{i=1}^l S_i w_i \geq 0$ and

$$\epsilon - \sum_{j=1}^m c_j \log \mu_j \left(\exp \left(\frac{1}{c_j} v_j \right) \right) - \sum_{i=1}^l P_{Z_i}(w_i) > \inf_{\pi: \pi \geq 0, S_i^* \pi = P_{Z_i}} \sum_{j=1}^m c_j D(T_j^* \pi \| \mu_j) \quad (55)$$

Now invoking (13) with $f_j := \exp \left(\frac{1}{c_j} v_j \right)$, $j = 1, \dots, m$ and $g_i := \exp \left(-\frac{1}{b_i} w_i \right)$, $i = 1, \dots, l$, we upper bound the left side of (55) by

$$\epsilon - \sum_{i=1}^l b_i \log \nu_i(g_i) + \sum_{i=1}^l b_i P_{Z_i}(\log g_i) \leq \epsilon + \sum_{i=1}^l b_i D(P_{Z_i} \| \nu_i) \quad (56)$$

175 where the last step follows by the Donsker-Varadhan formula. Therefore (14) is established since
176 $\epsilon > 0$ is arbitrary.

2) \Rightarrow 1) Since ν_i is finite and g_i is bounded by assumption, we have $\nu_i(g_i) < \infty$, $i = 1, \dots, l$. Moreover (13) is trivially true when $\nu_i(g_i) = 0$ for some i , so we will assume below that $\nu_i(g_i) \in (0, \infty)$ for each i . Define P_{Z_i} by

$$\frac{dP_{Z_i}}{d\nu_i} = \frac{g_i}{\nu_i(g_i)}, \quad i = 1, \dots, l. \quad (57)$$

Then for any $\epsilon > 0$,

$$\sum_{i=1}^l b_i \log \nu_i(g_i) = \sum_{i=1}^l b_i [P_{Z_i}(\log g_i) - D(P_{Z_i} \parallel \nu_i)] \quad (58)$$

$$< \sum_{j=1}^m c_j P_{Y_j}(\log f_j) + \epsilon - \sum_{j=1}^m c_j D(P_{Y_j} \parallel \mu_j) \quad (59)$$

$$\leq \epsilon + \sum_{j=1}^m c_j \log \mu_j(f_j) \quad (60)$$

where

• (59) uses the Donsker-Varadhan formula, and we have chosen $P_X, P_{Y_j} := T_j^* P_X, j = 1, \dots, m$ such that

$$\sum_{i=1}^l b_i D(P_{Z_i} \parallel \nu_i) > \sum_{j=1}^m c_j D(P_{Y_j} \parallel \mu_j) - \epsilon \quad (61)$$

• (60) also follows from the Donsker-Varadhan formula.

The result follows since $\epsilon > 0$ can be arbitrary.

□

181 *Remark 4.* Condition iv) in the theorem imposes a rather strong assumption on (S_i) : for simplicity,
 182 consider the case where $|\mathcal{X}|, |\mathcal{Z}_i| < \infty$. Then Condition iv) assumes that for any (P_{Z_i}) , there exists
 183 P_X such that $P_{Z_i} = S_i^* P_X$. This assumption is certainly satisfied when (S_i) are induced by coordinate
 184 projections; the case of $l = 1$ and $P_{Z|X}$ being a reverse erasure channel gives a simple example where
 185 $P_{Z|X}$ is not a deterministic map.

186 Next we give a generalization of Theorem 1 which alleviates the restriction on (S_i) :

187 **Theorem 7.** *Theorem 1 continues to hold if Condition iv) therein is weakened to the following:*

188 • For any P_X such that $D(S_i^* P_X \parallel \nu_i) < \infty$, $i = 1, \dots, l$, there exists \tilde{P}_X such that $S_i^* \tilde{P}_X = S_i^* P_X$ for each i
 189 and $\sum_{j=1}^m c_j D(T_j^* \tilde{P}_X \parallel \mu_j) < \infty$ for each j .

190 and the conclusion of the theorem will be replaced by the equivalence of the following two statements:

1. For any nonnegative continuous functions $(g_i), (f_j)$ bounded away from 0 and such that

$$\sum_{i=1}^l b_i S_i \log g_i \leq \sum_{j=1}^m c_j T_j \log f_j \quad (62)$$

we have

$$\inf_{(\tilde{g}_i) : \sum_{i=1}^l b_i S_i \log \tilde{g}_i \geq \sum_{i=1}^l b_i S_i \log g_i} \prod_{i=1}^l \nu_i^{b_i}(\tilde{g}_i) \leq \exp(d) \prod_{j=1}^m \mu_j^{c_j}(f_j). \quad (63)$$

2. For any (P_X) such that $D(S_i^* P_X \| \nu_i) < \infty$, $i = 1, \dots, l$,

$$\sum_{i=1}^l b_i D(S_i^* P_X \| \nu_i) + d \geq \inf_{\tilde{P}_X: S_i^* \tilde{P}_X = S_i^* P_X} \sum_{j=1}^m c_j D(T_j^* \tilde{P}_X \| \mu_j). \quad (64)$$

191 In Appendix A we show that Theorem 7 indeed recovers Theorem 1 for the more restricted class
192 of random transformations.

Proof. Here we mention the parts of the proof that need to be changed: upon specifying (f_j) and (g_i) right after (55), we select (\tilde{g}_i) such that

$$\sum_{i=1}^l b_i S_i \log \tilde{g}_i \geq \sum_{i=1}^l b_i S_i \log g_i \quad (65)$$

$$\sum_{i=1}^l b_i \log \nu_i(\tilde{g}_i) \leq \sum_{j=1}^m c_j \log \mu_j(f_j) + \epsilon. \quad (66)$$

Then, in lieu of (67), we upper-bound the left side of (55) by

$$2\epsilon - \sum_{i=1}^l b_i \log \nu_i(\tilde{g}_i) + \sum_{i=1}^l b_i P_{Z_i}(\log \tilde{g}_i) \leq 2\epsilon + \sum_{i=1}^l b_i D(P_{Z_i} \| \nu_i) \quad (67)$$

which establishes the $1 \Rightarrow 2$ part. For the other direction, for each $i \in \{1, 2, \dots, l\}$ define

$$\Lambda_i(u) := \inf_{\tilde{g}_i > 0: b_i S_i \log \tilde{g}_i = u} b_i \log \nu_i(\tilde{g}_i). \quad (68)$$

Then following essentially the same proof as that of Θ_j in (41), we see that Λ_i is proper convex and

$$\Lambda_i^*(\pi) = b_i D(S_i^* \pi \| \mu_j). \quad (69)$$

Moreover let

$$\Lambda_{l+1}(u) := \begin{cases} 0 & \text{if } u = -\sum b_i S_i \log g_i; \\ +\infty & \text{otherwise.} \end{cases} \quad (70)$$

Then $\Lambda_{l+1}^*(\pi) = -\sum b_i S_i^* \pi(\log g_i)$. Using the Legendre-Fenchel duality we see that for any $\epsilon > 0$,

$$\begin{aligned} & \inf_{(\tilde{g}_i): \sum_{i=1}^l b_i S_i \log \tilde{g}_i \geq \sum_{i=1}^l b_i S_i \log g_i} \sum_{i=1}^l b_i \log \nu_i(\tilde{g}_i) \\ &= \inf_{u_1, \dots, u_{l+1}} \left\{ \Theta_0 \left(-\sum_{i=1}^{l+1} u_i \right) + \sum_{i=1}^{l+1} \Lambda_i(u_i) \right\} \end{aligned} \quad (71)$$

$$= \sup_{\pi} \left\{ -\sum_{i=0}^{l+1} \Theta_i^*(\pi) \right\} \quad (72)$$

$$= \sup_{\pi \geq 0} \left\{ -\sum_{i=1}^{l+1} \Theta_i^*(\pi) \right\} \quad (73)$$

$$= \sup_{\pi \geq 0} \left\{ \sum_{i=1}^l b_i S_i^* \pi(\log g_i) - \sum_{i=1}^l b_i D(S_i^* \pi \| \nu_i) \right\} \quad (74)$$

$$\leq \sum_{i=1}^l b_i S_i^* P_X(\log g_i) - \sum_{i=1}^l b_i D(S_i^* P_X \| \nu_i) + \epsilon \quad (75)$$

$$\leq \sum_{j=1}^m c_j T_j^* \tilde{P}_X(\log f_j) - \sum_{j=1}^m c_j D(T_j^* \tilde{P}_X \| \mu_j) + 2\epsilon \quad (76)$$

$$\leq 2\epsilon + \sum_{j=1}^m c_j \log \mu_j(f_j) \quad (77)$$

193 where

194 • To see (75) we note that the sup in (74) can be restricted to π which is a probability measure, since
 195 otherwise the relative entropy terms in (74) are $+\infty$ by its definition via the Donsker-Varadhan
 196 formula. Then we select P_X such that (75) holds.
 • In (76), we have chosen \tilde{P}_X such that

$$S_i^* \tilde{P}_X = S_i^* P_X, \quad 1 \leq i \leq l; \quad (78)$$

$$\sum_{i=1}^l b_i D(S_i^* P_X) > \sum_{j=1}^m c_j D(T_j^* \tilde{P}_X \| \mu_j) - \epsilon, \quad (79)$$

197 and then applied the assumption (62). The result follows since $\epsilon > 0$ can be arbitrary.

198 \square

199 *Remark 5.* The infimum in (14) is in fact achievable: For any (P_{Z_i}) , there exists a P_X that minimizes
 200 $\sum_{j=1}^m c_j D(P_{Y_j} \| \mu_j)$ subject to the constraints $S_i^* P_X = P_{Z_i}$, $i = 1, \dots, m$, where $P_{Y_j} := T_j^* P_X$, $j = 1, \dots, m$.
 201 Indeed, since the singleton $\{P_{Z_i}\}$ is weak*-closed and S_i^* is weak*-continuous¹¹, the set $\bigcap_{i=1}^l (S_i^*)^{-1} P_{Z_i}$
 202 is weak*-closed in $\mathcal{M}(X)$; hence its intersection with $\mathcal{P}(\mathcal{X})$ is weak*-compact in $\mathcal{P}(\mathcal{X})$, because
 203 $\mathcal{P}(\mathcal{X})$ is weak*-compact by (a simple version for the setting of a compact underlying space \mathcal{X} of
 204 the Prokhorov theorem [54]). Moreover, by the weak*-lower semicontinuity of $D(\cdot \| \mu_j)$ (easily seen
 205 from the variational formula/Donsker-Varadhan formula of the relative entropy, cf. [55]) and the
 206 weak*-continuity of T_j^* , $j = 1, \dots, m$, we see that $\sum_{j=1}^m c_j D(T_j^* P_X \| \mu_j)$ is weak*-lower semicontinuous
 207 in P_X , and hence the existence of a minimizing P_X is established.

208 *Remark 6.* Abusing the terminology from min-max theory, Theorem 1 may be interpreted as a “strong
 209 duality” result which establishes the equivalence of two optimization problems. The $1) \Rightarrow 2)$ part is the
 210 non-trivial direction which requires regularity on the spaces. In contrast, the $2) \Rightarrow 1)$ direction can be
 211 thought of as a “weak duality” which establishes only a partial relation but holds for more general
 212 spaces.

213 3.2. Noncompact \mathcal{X}

214 Our proof of $1) \Rightarrow 2)$ in Theorem 1 makes use of the Hahn-Banach theorem, and hence relies
 215 crucially on the fact that the measure space is the dual of the function space. Naively, one might want to
 216 extend the proof to the case of *locally compact* \mathcal{X} by considering $C_0(\mathcal{X})$ instead of $C_b(\mathcal{X})$, so that the
 217 dual space is still $\mathcal{M}(\mathcal{X})$. However, this would not work: consider the case when $\mathcal{X} = \mathcal{Z}_1 \times \dots \times \mathcal{Z}_l$
 218 and each S_i is the canonical map. Then $\Theta_{m+1}(u)$ as defined in (46) is $+\infty$ unless $u \equiv 0$ (because
 219 $u \in C_0(\mathcal{X})$ requires that u vanishes at infinity), thus $\Theta_{m+1}^* \equiv 0$. Luckily, we can still work with
 220 $C_b(\mathcal{X})$; in this case $\ell \in C_b(\mathcal{X})^*$ may not be a measure, but we can decompose it into $\ell = \pi + R$ where
 221 $\pi \in \mathcal{M}(\mathcal{X})$ and R is a linear functional “supported at infinity”. Below we use the techniques in [37,
 222 Chapter 1.3] to prove a particular extension of Theorem 1 to a non-compact case.

11 Generally, if $T: A \rightarrow B$ is a continuous map between two topologically vector spaces, then $T^*: B^* \rightarrow A^*$ is a weak* continuous map between the dual spaces. Indeed, if $y_n \rightarrow y$ is a weak*-convergent subsequence in B^* , meaning $y_n(b) \rightarrow y(b)$ for any $b \in B$, then we must have $T^* y_n(a) = y_n(Ta) \rightarrow y(Ta) = T^* y(a)$ for any $a \in A$, meaning that $T^* y_n$ converges to $T^* y$ in the weak* topology.

223 **Theorem 8.** *Theorem 1 still holds if*

224 • *The assumption that \mathcal{X} is a compact metric space is relaxed to the assumption that it is a locally compact*
 225 *and σ -compact Polish space;*
 226 • $\mathcal{X} = \prod_{i=1}^l \mathcal{Z}_i$ and $S_i: C_b(\mathcal{Z}_i) \rightarrow C_b(\mathcal{X})$, $i = 1, \dots, l$ are canonical maps (see Definition 2).

Proof. The proof of the “weak duality” part $2) \Rightarrow 1)$ still works in the noncompact case, so we only need to explain what changes need to be made in the proof of $1) \Rightarrow 2)$ part. Let Θ_0 be defined as before, in (39). Then for any $\ell \in C_b(\mathcal{X})^*$,

$$\Theta_0^*(\ell) = \sup_{u \leq 0} \ell(u) \quad (80)$$

227 which is 0 if ℓ is nonnegative (in the sense that $\ell(u) \geq 0$ for every $u \geq 0$), and $+\infty$ otherwise. This
 228 means that when computing the infimum on the left side of (27), we only need to take into account of
 229 those nonnegative ℓ .

Next, let Θ_{m+1} be also defined as before. Then directly from the definition we have

$$\Theta_{m+1}^*(\ell) = \begin{cases} 0 & \text{if } \ell(\sum_i S_i w_i) = \sum_i P_{Z_i}(w_i), \quad \forall w_i \in C_b(\mathcal{Z}_i), i = 1, \dots, l; \\ +\infty & \text{otherwise.} \end{cases} \quad (81)$$

For any $\ell \in C_b^*(\mathcal{X})$. Generally, the condition in the first line of (81) does not imply that ℓ is a measure. However, if ℓ is also nonnegative, then using a technical result in [37, Lemma 1.25] we can further simplify:

$$\Theta_{m+1}^*(\ell) = \begin{cases} 0 & \text{if } \ell \in \mathcal{M}(\mathcal{X}) \text{ and } S_i^* \ell = P_{Z_i}, \quad i = 1, \dots, l; \\ +\infty & \text{otherwise.} \end{cases} \quad (82)$$

230 This further shows that when we compute the left side of (27) the infimum can be taken over ℓ which
 231 is a coupling of (P_{Z_i}) . In particular, if ℓ is a probability measure, then $\Theta_j^*(\ell) = c_j D(T_j^* \ell \| \mu_j)$ still holds
 232 with the Θ_j defined in (41), $j = 1, \dots, m$. Thus the rest of the proof can proceed as before. \square

233 *Remark 7.* The second assumption is made in order to achieve (82) in the proof.

234 4. Gaussian Optimality

235 Recall that the conventional Brascamp-Lieb inequality and its reverse ((1) and (2)) state that
 236 centered Gaussian functions exhaust such inequalities, and in particular, verifying those inequalities is
 237 reduced to a finite dimensional optimization problem (only the covariance matrices in these Gaussian
 238 functions are to be optimized). In this section we show that similar results hold for the forward-reverse
 239 Brascamp-Lieb inequality as well. Our proof uses the rotational invariance argument mentioned in
 240 Section 1. Since the forward-reverse Brascamp-Lieb inequality has dual representations (Theorem 8),
 241 in principle, the rotational invariance argument can be applied either to the functional representation
 242 (as in Lieb’s paper [29]) or the entropic representation (as in Geng-Nair [45]). Here, we adopt the latter
 243 approach. We first consider a certain “non-degenerate” case where the existence of an extremizer is
 244 guaranteed. Then, Gaussian optimality in the general case follows by a limiting argument (Appendix F),
 245 establishing Theorem 2 and Theorem 3.

246 4.1. Non-Degenerate Forward Channels

247 This subsection focuses on the following case:

248 *Assumption 1.* • Fix Lebesgue measures $(\mu_j)_{j=1}^m$ and Gaussian measures $(\nu_i)_{i=1}^l$ on \mathbb{R} ;
 249 • non-degenerate (Definition 3 below) linear Gaussian random transformation $(P_{Y_j|X})_{j=1}^m$ (where
 250 $\mathbf{X} := (X_1, \dots, X_l)$) associated with conditional expectation operators $(T_j)_{j=1}^m$;

251 • $(S_i)_{i=1}^l$ are induced by coordinate projections;
 252 • positive (c_j) and (b_i) .

253 *Definition 3.* We say $(Q_{Y_1|X}, \dots, Q_{Y_m|X})$ is *non-degenerate* if each $Q_{Y_j|X=0}$ is an n_j -dimensional Gaussian
 254 distribution with invertible covariance matrix.

Given Borel measures P_{X_i} on \mathbb{R} , $i = 1, \dots, l$, define

$$F_0((P_{X_i})) := \inf_{P_X} \sum_{j=1}^m c_j D(P_{Y_j} \| \mu_j) - \sum_{i=1}^l b_i D(P_{X_i} \| \nu_i) \quad (83)$$

255 where the infimum is over Borel measures P_X that has (P_{X_i}) as marginals. Note that (83) is well-defined
 256 since the first term cannot be $+\infty$ under the non-degenerate assumption, and the second term cannot
 257 be $-\infty$. The aim of this subsection is to prove the following:

258 **Theorem 9.** $\sup_{(P_{X_i})} F_0((P_{X_i}))$, where the supremum is over Borel measures P_{X_i} on \mathbb{R} , $i = 1, \dots, l$, is achieved
 259 by some Gaussian $(P_{X_i})_{i=1}^l$, in which case the infimum in (83) is achieved by some Gaussian P_X .

260 Naturally, one would expect that Gaussian optimality can be established when $(\mu_j)_{j=1}^m$ and $(\nu_i)_{i=1}^l$
 261 are either Gaussian or Lebesgue. We made the assumption that the former is Lebesgue and the latter is
 262 Gaussian so that certain technical conditions can be justified more easily. More precisely, the following
 263 observation shows that we can regularize the distributions by a second moment constraint for free:

Proposition 10. $\sup_{(P_{X_i})} F_0((P_{X_i}))$ is finite and there exist $\sigma_i^2 \in (0, \infty)$, $i = 1, \dots, l$ such that it equals

$$\sup_{(P_{X_i}) : \mathbb{E}[X_i^2] \leq \sigma_i^2} F_0((P_{X_i})). \quad (84)$$

264 **Proof.** when μ_j is Lebesgue and $P_{Y_j|X}$ is non-degenerate, $D(P_{Y_j} \| \mu_j) = -h(P_{Y_j}) \leq -h(P_{Y_j|X})$ is
 265 bounded above (in terms of the variance of additive noise of $P_{Y_j|X}$). Moreover, $D(P_{X_i} \| \nu_i) \geq 0$ when ν_i
 266 is Gaussian, so $\sup_{(P_{X_i})} F_0((P_{X_i})) < \infty$. Further, choosing $(P_{X_i}) = (\nu_i)$ and using the covariance matrix
 267 to lower bound the first term in (83) shows that $\sup_{(P_{X_i})} F_0((P_{X_i})) > -\infty$.

To see (84), notice that

$$D(P_{X_i} \| \nu_i) = D(P_{X_i} \| \nu'_i) + \mathbb{E}[\iota_{\nu'_i \| \nu_i}(X)] \quad (85)$$

$$= D(P_{X_i} \| \nu'_i) + D(\nu'_i \| \nu_i) \quad (86)$$

$$\geq D(\nu'_i \| \nu_i) \quad (87)$$

268 where ν'_i is a Gaussian distribution with the same first and second moments as $X_i \sim P_{X_i}$. Thus
 269 $D(P_{X_i} \| \nu_i)$ is bounded below by some function of the second moment of X_i which tends to ∞ as the
 270 second moment of X_i tends to ∞ . Moreover, as argued in the preceding paragraph the first term in
 271 (83) is bounded above by some constant depending only on $(P_{Y_j|X})$. Thus, we can choose $\sigma_i^2 > 0$,
 272 $i = 1, \dots, l$ large enough such that if $\mathbb{E}[X_i^2] > \sigma_i^2$ for some of i then $F_0((P_{X_i})) < \sup_{(P_{X_i})} F_0((P_{X_i}))$,
 273 irrespective of the choices of $P_{X_1}, \dots, P_{X_{i-1}}, P_{X_{i+1}}, \dots, P_{X_l}$. Then these $\sigma_1, \dots, \sigma_l$ are as desired in the
 274 proposition. \square

275 The non-degenerate assumption ensures that the supremum is achieved:

276 **Proposition 11.** Under Assumption 1,

277 1. For any $(P_{X_i})_{i=1}^l$, the infimum in (83) is attained by some Borel P_X .

278 2. If $(P_{Y_j|X^l})_{j=1}^m$ are non-degenerate (Definition 3), then the supremum in (84) is achieved by some Borel
 279 $(P_{X_i})_{i=1}^l$.

280 The proof of Proposition 11 is given in Section E. After taking care of the existence of the
 281 extremizers, we get into the tensorization properties which are the crux of the proof:

Lemma 12. Fix $(P_{X_i^{(1)}})$, $(P_{X_i^{(2)}})$, (μ_j) , (T_j) , $(c_j) \in [0, \infty)^m$, and let S_j be induced by coordinate projections. Then

$$\inf_{P_{\mathbf{X}^{(1,2)}}: S_i^{*\otimes 2} P_{\mathbf{X}^{(1,2)}} = P_{X_i^{(1)}} \times P_{X_i^{(2)}}} \sum_{j=1}^m c_j D(P_{Y_j^{(1,2)}} \| \mu_j^{\otimes 2}) = \sum_{t=1,2} \sum_{j=1}^m c_j \inf_{P_{\mathbf{X}^{(t)}}: S_i^{*} P_{\mathbf{X}^{(t)}} = P_{X_i^{(t)}}} D(P_{Y_j^{(t)}} \| \mu_j) \quad (88)$$

where for each j ,

$$P_{Y_j^{(1,2)}} := T_j^{*\otimes 2} P_{\mathbf{X}^{(1,2)}} \quad (89)$$

on the left side and

$$P_{Y_j^{(t)}} := T_j^{*\otimes 2} P_{\mathbf{X}^{(t)}} \quad (90)$$

282 on the right side, $t = 1, 2$.

Proof. We only need to prove the nontrivial \geq part. For any $P_{\mathbf{X}^{(1,2)}}$ on the left side, choose $P_{\mathbf{X}^{(t)}}$ on the right side by marginalization. Then

$$D(P_{Y_j^{(1,2)}} \| \mu_j^{\otimes 2}) - \sum_t D(P_{Y_j^{(t)}} \| \mu_j) = I(Y_j^{(1)}; Y_j^{(2)}) \quad (91)$$

$$\geq 0 \quad (92)$$

283 for each j . \square

284 We are now ready to show the main result of this section.

Proof of Theorem 9. 1. Assume that $(P_{X_i^{(1)}})$ and $(P_{X_i^{(2)}})$ are maximizers of F_0 (possibly equal). Let $P_{X_i^{1,2}} := P_{X_i^{(1)}} \times P_{X_i^{(2)}}$. Define

$$\mathbf{X}^+ := \frac{1}{\sqrt{2}} (\mathbf{X}^{(1)} + \mathbf{X}^{(2)}); \quad (93)$$

$$\mathbf{X}^- := \frac{1}{\sqrt{2}} (\mathbf{X}^{(1)} - \mathbf{X}^{(2)}). \quad (94)$$

285 Define (Y_j^+) and (Y_j^-) analogously. Then $Y_j^+ | \{\mathbf{X}^+ = \mathbf{x}^+, \mathbf{X}^- = \mathbf{x}^-\} \sim Q_{Y_j|X=\mathbf{x}^+}$ is independent
 286 of \mathbf{x}^- and $Y_j^- | \{\mathbf{X}^+ = \mathbf{x}^+, \mathbf{X}^- = \mathbf{x}^-\} \sim Q_{Y_j|X=\mathbf{x}^-}$ is independent of \mathbf{x}^+ .

2. Next we perform the same algebraic expansion as in the proof of tensorization:

$$\sum_{t=1}^2 F_0 \left(\left(P_{X_i^{(t)}} \right)_{i=1}^l \right) = \inf_{P_{\mathbf{X}^{(1,2)}}: S_j^{*\otimes 2} P_{\mathbf{X}^{(1,2)}} = P_{X_j^{(1,2)}}} \sum_j c_j D(P_{Y_j^{(1,2)}} \| \mu_j^{\otimes 2}) - \sum_i b_i D(P_{X_i^{(1,2)}} \| \nu_i^{\otimes 2}) \quad (95)$$

$$= \inf_{P_{\mathbf{X}^+ \mathbf{X}^-}: S_j^{*\otimes 2} P_{\mathbf{X}^+ \mathbf{X}^-} = P_{X_j^+ X_j^-}} \sum_j c_j D(P_{Y_j^+ Y_j^-} \| \mu_j^{\otimes 2}) - \sum_i b_i D(P_{X_i^+ X_i^-} \| \nu_i^{\otimes 2}) \quad (96)$$

$$\leq \inf_{P_{\mathbf{X}^+ \mathbf{X}^-} : S_j^{* \otimes 2} P_{\mathbf{X}^+ \mathbf{X}^-} = P_{X_j^+ X_j^-}} \sum_j c_j \left[D(P_{Y_j^+} \| \mu_j) + D(P_{Y_j^- | \mathbf{X}^+} \| \mu_j | P_{\mathbf{X}^+}) \right] \\ - \sum_i b_i \left[D(P_{X_i^+} \| \nu_i) + D(P_{X_i^- | X_i^+} \| \nu_i | P_{X_i^+}) \right] \quad (97)$$

$$\leq \sum_j c_j \left[D(P_{Y_j^+}^* \| \mu_j) + D(P_{Y_j^- | \mathbf{X}^+}^* \| \mu_j | P_{\mathbf{X}^+}^*) \right] \\ - \sum_i b_i \left[D(P_{X_i^+}^* \| \nu_i) + D(P_{X_i^- | \mathbf{X}^+}^* \| \nu_i | P_{\mathbf{X}^+}^*) \right] \quad (98)$$

$$= F_0 \left(\left(P_{X_i^+}^* \right)_{i=1}^l \right) + \int F_0 \left(\left(P_{X_i^- | \mathbf{X}^+}^* \right)_{i=1}^l \right) dP_{\mathbf{X}^+}^* \quad (99)$$

$$\leq \sum_{t=1}^2 F_0 \left(\left(P_{X_i^{(t)}} \right)_{i=1}^l \right) \quad (100)$$

287 where

288 • (95) uses Lemma 12.
 289 • (97) is because of the Markov chain $Y_j^+ - \mathbf{X}^+ - Y_j^-$ (for any coupling).
 • In (98) we selected a particular instance of coupling $P_{\mathbf{X}^+ \mathbf{X}^-}$, constructed as follows: first we select an optimal coupling $P_{\mathbf{X}^+}$ for given marginals $(P_{X_i^+})$. Then, for any $\mathbf{x}^+ = (x_i^+)_i$, let $P_{\mathbf{X}^- | \mathbf{X}^+ = \mathbf{x}^+}$ be an optimal coupling of $(P_{X_i^- | X_i^+ = x_i^+})$.¹² With this construction, it is apparent that $X_i^+ - \mathbf{X}^+ - X_i^-$ and hence

$$D(P_{X_i^- | X_i^+} \| \nu_i | P_{X_i^+}) = D(P_{X_i^- | \mathbf{X}^+} \| \nu_i | P_{\mathbf{X}^+}). \quad (101)$$

290 • (99) is because in the above we have constructed the coupling optimally.
 291 • (100) is because $(P_{X_i^{(t)}})$ maximizes F_0 , $t = 1, 2$.

3. Thus in the expansions above, equalities are attained throughout. Using the differentiation technique as in the case of forward inequality, for almost all (b_i) , (c_j) , we have

$$D(P_{X_i^- | X_i^+} \| \nu_i | P_{X_i^+}) = D(P_{X_i^+} \| \nu_i) \quad (102)$$

$$= D(P_{X_i^-} \| \nu_i), \quad \forall i \quad (103)$$

292 where (103) is because by symmetry we can perform the algebraic expansions in a different way to
 293 show that $(P_{X_i^-})$ is also a maximizer of F_0 . Then $I(X_i^+; X_i^-) = D(P_{X_i^- | X_i^+} \| \nu_i | P_{X_i^+}) - D(P_{X_i^-} \| \nu_i) =$
 294 0, which, combined with $I(X_i^{(1)}; X_i^{(2)})$, shows that $X_i^{(1)}$ and $X_i^{(2)}$ are Gaussian with the same
 295 covariance. Lastly, using Lemma 12 and the doubling trick one can show that the optimal
 296 coupling is also Gaussian.

297 \square

298 4.2. A Geometric Forward-Reverse Brascamp-Lieb Inequality

299 In this section we give a sketch of the proof of Theorem 3 which is simple but certain ‘technicalities’
 300 are not justified. A detailed proof is deferred to Appendix F.

Proof Sketch for Theorem 3. By duality (Theorem 8) it suffices to prove the corresponding entropic inequality. The Gaussian optimality result in Theorem 9 assumed Gaussian reference measures on the output and non-degenerate forward channels in order to simplify the proof of the existence of

¹² For a justification that we can select optimal coupling $P_{\mathbf{X}^- | \mathbf{X}^+ = \mathbf{x}^+}$ in a way that $P_{\mathbf{X}^- | \mathbf{X}^+}$ is indeed a regular conditional probability distribution, see [7].

minimizers; however, supposing that Gaussian optimality extends beyond those technical conditions, then we see that it suffices to prove that for any centered Gaussian (P_{X_i}) ,

$$\sum_{i=1}^l h(P_{X_i}) \leq \sup_{P_{X^l}} \sum_{j=1}^l h(P_{Y_j}) \quad (104)$$

where the supremum is over Gaussian P_{X^l} with the marginals P_{X_1}, \dots, P_{X_l} , and $Y_j := \sum_{i=1}^l m_{ji} X_i$. Let $a_i := \mathbb{E}[X_i^2]$ and choose $P_{X^l} = \prod_{i=1}^l P_{X_i}$, we see (104) holds if

$$\sum_{i=1}^l \log a_i \leq \sum_{j=1}^l \log \left(\sum_{i=1}^l m_{ji}^2 a_i \right), \quad \forall a_i > 0, i = 1, \dots, l, \quad (105)$$

where (a_i) are the eigenvalues and $\left(\sum_{i=1}^l m_{ji} a_i \right)_{i=1}^l$ are the diagonal entries of the matrix

$$\mathbf{M} \text{diag}(a_i)_{1 \leq i \leq l} \mathbf{M}^\top. \quad (106)$$

Therefore (105) holds. \square

5. Relation to Hypercontractivity and Its Reverses

As alluded before and illustrated by Figure 1, the forward-reverse Brascamp-Lieb inequality generalizes several other inequalities from functional analysis and information theory; A more complete discussion on these relationships can be found in [7]. In this section, we focus on hypercontractivity, and show how its three cases all follow from Theorem 1. Among these, the case in Section 5.3 can be regarded as an instance of the forward-reverse inequality that cannot be reduced to either the forward or the reverse inequality alone. It is also interesting to note that, from the viewpoint of the forward-reverse Brascamp-Lieb inequality, in each of the three special cases there ought to be three functions involved in the functional formulation; but the optimal choice of one function can be computed from the other two. Therefore the conventional functional formulations of the three cases of hypercontractivity involve only two functions, making it non-obvious to find a unifying inequality.

5.1. Hypercontractivity

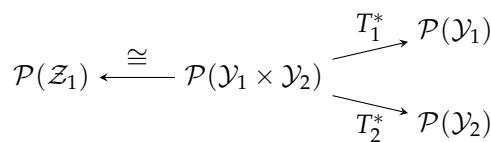


Figure 3. Diagram for hypercontractivity

Fix a joint probability distribution $Q_{Y_1 Y_2}$ and nonnegative continuous functions F_1 and F_2 on \mathcal{Y}_1 and \mathcal{Y}_2 , respectively, both bounded away from 0. In Theorem 1, take $l \leftarrow 1$, $m \leftarrow 2$, $b_1 \leftarrow 1$, $d \leftarrow 0$, $f_1 \leftarrow F_1^{\frac{1}{c_1}}$, $f_2 \leftarrow F_2^{\frac{1}{c_2}}$, $\nu_1 \leftarrow Q_{Y_1 Y_2}$, $\mu_1 \leftarrow Q_{Y_1}$, $\mu_2 \leftarrow Q_{Y_2}$. Also, put $Z_1 = X = (Y_1, Y_2)$, and let T_1 and T_2 be the canonical maps (Definition 2). The constraint (12) translates to

$$g_1(y_1, y_2) \leq F_1(y_1)F_2(y_2), \quad \forall y_1, y_2 \quad (107)$$

and the optimal choice of g_1 is when the equality is achieved. We thus obtain the equivalence between¹³

$$\|F_1\|_{\frac{1}{c_1}} \|F_2\|_{\frac{1}{c_2}} \geq \mathbb{E}[F_1(Y_1)F_2(Y_2)], \quad \forall F_1 \in L^{\frac{1}{c_1}}(Q_{Y_1}), F_2 \in L^{\frac{1}{c_2}}(Q_{Y_2}) \quad (108)$$

and

$$\forall P_{Y_1 Y_2}, \quad D(P_{Y_1 Y_2} \| Q_{Y_1 Y_2}) \geq c_1 D(P_{Y_1} \| Q_{Y_1}) + c_2 D(P_{Y_2} \| Q_{Y_2}). \quad (109)$$

³¹⁵ This equivalence can also be obtained from Theorem 1. By Hölder's inequality, (108) is equivalent to
³¹⁶ saying that the norm of the linear operator sending $F_1 \in L^{\frac{1}{c_1}}(Q_{Y_1})$ to $\mathbb{E}[F_1(Y_1)|Y_2 = \cdot] \in L^{\frac{1}{1-c_2}}(Q_{Y_2})$
³¹⁷ does not exceed 1. The interesting case is $\frac{1}{1-c_2} > \frac{1}{c_1}$, hence the name hypercontractivity. The equivalent
³¹⁸ formulation of hypercontractivity was shown in [41] using a different proof via the method of
³¹⁹ types/typicality, which requires that $|\mathcal{Y}_1|, |\mathcal{Y}_2| < \infty$. In contrast, the proof based on the nonnegativity
³²⁰ of relative entropy removes this constraint, allowing one to prove Nelson's Gaussian hypercontractivity
³²¹ from the information-theoretic formulation (see [7]).

³²² 5.2. Reverse Hypercontractivity (Positive Parameters¹⁴)

$$\begin{array}{ccc} \mathcal{P}(\mathcal{Z}_1) & \xleftarrow{S_1^*} & \mathcal{P}(\mathcal{Z}_1 \times \mathcal{Z}_2) \xrightarrow{\cong} \mathcal{P}(\mathcal{Y}_1) \\ & \searrow & \swarrow \\ \mathcal{P}(\mathcal{Z}_2) & \xleftarrow{S_2^*} & \end{array}$$

Figure 4. Diagram for reverse hypercontractivity

Let $Q_{Z_1 Z_2}$ be a given joint probability distribution, and let G_1 and G_2 be nonnegative functions on \mathcal{Z}_1 and \mathcal{Z}_2 , respectively, both bounded away from 0. In Theorem 1, take $l \leftarrow 2, m \leftarrow 1, c_1 \leftarrow 1, d \leftarrow 0, g_1 \leftarrow G_1^{\frac{1}{b_1}}, g_2 \leftarrow G_2^{\frac{1}{b_2}}, \mu_1 \leftarrow Q_{Z_1 Z_2}, \nu_1 \leftarrow Q_{Z_1}, \nu_2 \leftarrow Q_{Z_2}$. Also, put $Y_1 = X = (Z_1, Z_2)$, and let S_1 and S_2 be the canonical maps (Definition 2). Note that the constraint (12) translates to

$$f_1(z_1, z_2) \geq G_1(z_1)G_2(z_2), \quad \forall z_1, z_2. \quad (110)$$

and the equality case yields the optimal choice of f_1 for (13). By Theorem 1 we thus obtain the equivalence between

$$\|G_1\|_{\frac{1}{b_1}} \|G_2\|_{\frac{1}{b_2}} \leq \mathbb{E}[G_1(Z_1)G_2(Z_2)], \quad \forall G_1, G_2 \quad (111)$$

and

$$\forall P_{Z_1}, P_{Z_2}, \exists P_{Z_1 Z_2}, \quad D(P_{Z_1 Z_2} \| Q_{Z_1 Z_2}) \leq b_1 D(P_{Z_1} \| Q_{Z_1}) + b_2 D(P_{Z_2} \| Q_{Z_2}). \quad (112)$$

³²³ Note that in this setup, if \mathcal{Z}_1 and \mathcal{Z}_2 are finite, then Condition iv) in Theorem 1 is equivalent to
³²⁴ $Q_{Z_1 Z_2} \ll Q_{Z_1} \times Q_{Z_2}$. The equivalent formulations of reverse hypercontractivity were observed in [56],
³²⁵ where the proof is based on the method of types.

¹³ By a standard dense-subspace argument, we see that it is inconsequential that F_1 and F_2 in (108) are not assumed to be continuous nor bounded away from zero. It is also easy to see that the nonnegativity of F_1 and F_2 is inconsequential for (108).

¹⁴ By "positive parameters" we mean the b_1 and b_2 in (112) are positive.

³²⁶ 5.3. Reverse Hypercontractivity (One Negative Parameter¹⁵)

$$\begin{array}{ccccc}
 & & & \cong & \mathcal{P}(\mathcal{Y}_1) \\
 & \mathcal{P}(\mathcal{Z}_1) & \xleftarrow{S_1^*} & \mathcal{P}(\mathcal{Z}_1 \times \mathcal{Y}_2) & \xrightarrow{\cong} \\
 & & & \searrow & \mathcal{P}(\mathcal{Y}_2) \\
 & & & \swarrow & T_2^*
 \end{array}$$

Figure 5. Diagram for reverse hypercontractivity with one negative parameter

In Theorem 1, take $l \leftarrow 1, m \leftarrow 2, c_1 \leftarrow 1, d \leftarrow 0$. Let $Y_1 = X = (Z_1, Y_2)$, and let S_1 and T_2 be the canonical maps (Definition 2). Suppose that $Q_{Z_1 Y_2}$ is a given joint probability distribution, and set $\mu_1 \leftarrow Q_{Z_1 Y_2}, \nu_1 \leftarrow Q_{Z_1}, \mu_2 \leftarrow Q_{Y_2}$ in Theorem 1. Suppose that F and G be arbitrary nonnegative continuous functions on \mathcal{Y}_2 and \mathcal{Z}_1 , respectively, which are bounded away from 0. Take $g_1 \leftarrow G^{\frac{1}{b_1}}$, $f_2 \leftarrow F^{-\frac{1}{c_2}}$. in Theorem 1. The constraint (12) translates to

$$f_1(z_1, y_2) \geq G(z_1)F(y_2), \quad \forall z_1, y_2. \quad (113)$$

Note that (13) translates to

$$\|G\|_{\frac{1}{b_1}} \leq Q_{Y_2 Z_1}(f_1)Q_{Y_2}^{c_2}(F^{-\frac{1}{c_2}}) \quad (114)$$

for all F, G , and f_1 satisfying (113). It suffices to verify (114) for the optimal choice $f_1 = GF$, so (114) is reduced to

$$\|F\|_{\frac{1}{-c_2}} \|G\|_{\frac{1}{b_1}} \leq \mathbb{E}[F(Y_2)G(Z_1)], \quad \forall F, G. \quad (115)$$

By Theorem 1, (115) is equivalent to

$$\forall P_{Z_1}, \exists P_{Z_1 Y_2}, \quad D(P_{Z_1 Y_2} \| Q_{Z_1 Y_2}) \leq b_1 D(P_{Z_1} \| Q_{Z_1}) + (-c_2) D(P_{Y_2} \| Q_{Y_2}). \quad (116)$$

³²⁷ Inequality (115) is called reverse hypercontractivity with a negative parameter in [42], where the
³²⁸ entropic version (116) is established for $|\mathcal{Z}_1|, |\mathcal{Y}_2| < \infty$ using the method of types. Multiterminal
³²⁹ extensions of (115) and (116) (called reverse Brascamp-Lieb type inequality with negative parameters
³³⁰ in [42]) can also be recovered from Theorem 1 in the same fashion, i.e., we move all negative parameters
³³¹ to the other side of the inequality so that all parameters become positive.

³³² In summary, from the viewpoint of Theorem 1, the results in Section 5.1, 5.2 and 5.3 are degenerate
³³³ special cases, in the sense that in any of the three cases the optimal choice of one of the functions in (13)
³³⁴ can be explicitly expressed in terms of the other functions, hence this “hidden function” disappears in
³³⁵ (108), (111) or (115).

³³⁶ **Acknowledgments:** This work was supported in part by NSF Grants CCF-1528132, CCF-0939370 (Center for
³³⁷ Science of Information), CCF-1319299, CCF-1319304, CCF-1350595 and AFOSR FA9550-15-1-0180. Jingbo Liu
³³⁸ would like to thank Professor Elliott H. Lieb for teaching the Brascamp-Lieb inequality as well as some techniques
³³⁹ used in this paper in his graduate class.

³⁴⁰ **Author Contributions:** All the authors have contributed to the problem formulation, refinement, structuring or
³⁴¹ editing of the paper. Most of the sections were written by Jingbo Liu. Parts of the sections on the existence of the
³⁴² minimizer and the Gaussian optimality were written by Thomas Courtade.

³⁴³ **Conflicts of Interest:** The authors declare no conflict of interest.

¹⁵ By “one negative parameter” we mean the b_1 is positive and $-c_2$ is negative in (116).

³⁴⁴ **Appendix A. Recovering Theorem 1 from Theorem 7 as a Special Case**

Assume that $P_X \rightarrow (P_{Z_i})$ is surjective. Let 1_{Z_i} denote the constant 1 function on Z_i . Define

$$\mathcal{C} := \left\{ (w_i) : w_i \in C_b(Z_i), \sum_{i=1}^l \inf_{z_i} w_i(z_i) \geq 0 \right\}, \quad (\text{A1})$$

which is a closed convex cone in $C_b(Z_1) \times \dots \times C_b(Z_l)$. Given (g_i) we show that $\sum_{i=1}^l b_i S_i \log \tilde{g}_i \geq \sum_{i=1}^l b_i S_i \log g_i$ implies

$$(b_i \log \tilde{g}_i - b_i \log g_i)_{i=1}^l \in \mathcal{C}. \quad (\text{A2})$$

Indeed, we can verify that the dual cone

$$\mathcal{C}^* := \left\{ (\pi_i) : \sum_{i=1}^l \pi_i(w_i) \geq 0, \forall (w_i) \in \mathcal{C} \right\} \quad (\text{A3})$$

$$= \{ \lambda(P_{Z_1}, \dots, P_{Z_l}) : \lambda \geq 0 \}. \quad (\text{A4})$$

Under the surjectivity assumption, we see

$$\sum_{i=1}^l \pi_i(b_i \log \tilde{g}_i - b_i \log g_i) \geq 0, \quad \forall (\pi_i) \in \mathcal{C}^*. \quad (\text{A5})$$

Now if (A2) is not true, by the Hahn-Banach theorem (Theorem 6) we find $\pi_i \in \mathcal{M}(Z_i)$, $i = 1, \dots, l$ such that

$$\sum_{i=1}^l \pi_i(b_i \log \tilde{g}_i - b_i \log g_i) < \inf_{(w_i) \in \mathcal{C}} \sum_{i=1}^l \pi_i(w_i) \quad (\text{A6})$$

³⁴⁵ so right side of (A6) is not $-\infty$. Since \mathcal{C} is a cone containing the origin, the right side of (A6) hence
³⁴⁶ must be nonnegative, and we conclude that $(\pi_i) \in \mathcal{C}^*$. But then (A6) contradicts (A5).

³⁴⁷ **Appendix B. Existence of Weakly Convergent Couplings**

³⁴⁸ **Lemma 13.** Suppose that for each $i = 1, \dots, l$, P_{X_i} is a Borel measure on \mathbb{R} and $P_{X_i}^{(n)}$ converges weakly to
³⁴⁹ some absolutely continuous (with respect to the Lebesgue measure) P_{X_i} as $n \rightarrow \infty$. If P_X is a coupling of
³⁵⁰ $(P_{X_i})_{1 \leq i \leq l}$, then, upon extraction of a subsequence, there exist couplings $P_X^{(n)}$ for $(P_{X_i}^{(n)})_{1 \leq i \leq l}$ which converge
³⁵¹ weakly to P_X as $n \rightarrow \infty$.

Proof. For each integer $k \geq 1$, define the random variable $W_i^{[k]} := \phi_k(X_i)$ where $\phi_k : \mathbb{R} \rightarrow \mathbb{R} \cup \{e\}$ is the following “dyadic quantization function”:

$$\phi_k : x \mapsto \begin{cases} \lfloor 2^k x \rfloor & |x| \leq k, x \notin 2^{-k} \mathbb{Z}; \\ e & \text{otherwise,} \end{cases} \quad (\text{A7})$$

and let $\mathbf{W}^{[k]} := (W_i^{[k]})_{i=1}^l$. Denote by $\mathcal{W}^{[k]} := \{-k2^k, \dots, k2^k - 1, e\}$ the set from which $W_i^{[k]}$ takes values. Note that since P_{X_i} is assumed to be absolutely continuous, the set of “dyadic points” has measure zero:

$$P_{X_i} \left(\bigcup_{k=1}^{\infty} 2^{-k} \mathbb{Z} \right) = 0, \quad i = 1, \dots, l. \quad (\text{A8})$$

Since $P_{X_i}^{(n)} \rightarrow P_{X_i}$ weakly and the assumption in the preceding paragraph precluded any positive mass on the quantization boundaries under P_{X_i} , for each $k \geq 1$ there exists some $n := n_k$ large enough such that

$$P_{W_i^{[k]}}^{(n)}(w) \geq \left(1 - \frac{1}{k}\right) P_{W_i^{[k]}}(w), \quad (\text{A9})$$

for each i and $w \in \mathcal{W}^{[k]}$. Now define a coupling $P_{\mathbf{W}^{[k]}}^{(n)}$ compatible with the $\left(P_{W_i^{[k]}}^{(n)}\right)_{i=1}^l$ induced by $\left(P_{X_i}^{(n)}\right)_{i=1}^l$, as follows:

$$P_{\mathbf{W}^{[k]}}^{(n)} := \left(1 - \frac{1}{k}\right) P_{\mathbf{W}^{[k]}} + k^{l-1} \prod_{i=1}^l \left(P_{W_i^{[k]}}^{(n)} - \left(1 - \frac{1}{k}\right) P_{W_i^{[k]}}\right). \quad (\text{A10})$$

Observe that (A10) is a well-defined probability measure because of (A9), and indeed has marginals $\left(P_{W_i^{[k]}}^{(n)}\right)_{i=1}^l$. Moreover, by the triangle inequality we have the following bound on the total variation distance

$$\left|P_{\mathbf{W}^{[k]}}^{(n)} - P_{\mathbf{W}^{[k]}}\right| \leq \frac{2}{k}. \quad (\text{A11})$$

Next, construct¹⁶ $P_{\mathbf{X}}^{(n)}$:

$$P_{\mathbf{X}}^{(n)} := \sum_{w^l \in \mathcal{W}^{[k]} \times \dots \times \mathcal{W}^{[k]}} \frac{P_{\mathbf{W}^{[k]}}^{(n)}(w^l)}{\prod_{i=1}^l P_{W_i^{[k]}}^{(n)}(w_i)} \prod_{i=1}^l P_{X_i}^{(n)}|_{\phi_k^{-1}(w_i)}. \quad (\text{A12})$$

Observe that $P_{\mathbf{X}}^{(n)}$ defined in (A12) is compatible with the $P_{\mathbf{W}^{[k]}}^{(n)}$ defined in (A10), and indeed has marginals $(P_{X_i}^{(n)})_{i=1}^l$. Since $n := n_k$ can be made increasing in k , we have constructed the desired sequence $(P_{\mathbf{X}}^{(n_k)})_{k=1}^{\infty}$ converging weakly to $P_{\mathbf{X}}$. Indeed, for any bounded open dyadic cube¹⁷ \mathcal{A} , using (A11) and the assumption (A8), we conclude

$$\liminf_{k \rightarrow \infty} P_{\mathbf{X}}^{(n_k)}(\mathcal{A}) \geq P_{\mathbf{X}}(\mathcal{A}). \quad (\text{A13})$$

³⁵² Moreover, since bounded open dyadic cubes form a countable basis of the topology in \mathbb{R}^l , we see
³⁵³ (A13) actually holds for any open set \mathcal{A} (by writing \mathcal{A} as a countable union of dyadic cubes, using the
³⁵⁴ continuity of measure to pass to a finite disjoint union, and then apply (A13)), as desired. \square

355 Appendix C. Upper Semicontinuity of the Infimum

³⁵⁶ The following is a consequence of Lemma 13.

¹⁶ We use $P|_{\mathcal{A}}$ to denote the restriction of a probability measure P on measurable set \mathcal{A} , that is, $P|_{\mathcal{A}}(\mathcal{B}) := P(\mathcal{A} \cap \mathcal{B})$ for any measurable \mathcal{B} .

¹⁷ That is, a cube whose corners have coordinates being multiples of 2^{-k} where k is some integer.

Corollary 14. Consider non-degenerate $(P_{Y_j|X})$. For each $n \geq 1, i = 1, \dots, l$, $P_{X_i}^{(n)}$ is a Borel measure on \mathbb{R} , whose second moment is bounded by $\sigma_i^2 < \infty$. Assume that $P_{X_i}^{(n)}$ converges to some absolutely continuous $P_{X_i}^*$ for each i . Then

$$\limsup_{n \rightarrow \infty} \inf_{P_X: S_i^* P_X = P_{X_i}^{(n)}} \sum_{j=1}^m c_j D(T_j^* P_X \| \mu_j) \leq \inf_{P_X: S_i^* P_X = P_{X_i}^*} \sum_{j=1}^m c_j D(T_j^* P_X \| \mu_j). \quad (\text{A14})$$

Proof. By passing to a convergent subsequence, we may assume that the limit on the left side of (A14) exists. For any coupling P_X^* of $(P_{X_i}^*)$, by invoking Lemma 13 and passing to a subsequence, we find a sequence of couplings $P_X^{(n)}$ of $(P_{X_i}^{(n)})$ that converges weakly to P_X^* . It is known that under a moment constraint, the differential entropy of the output distribution of a non-degenerate Gaussian channel enjoys weak continuity in the input distribution (see e.g. [45, Proposition 18], [57, Theorem 7], or [58, Theorem 1, Theorem 2]). Thus

$$\lim_{n \rightarrow \infty} \sum_{j=1}^m c_j D(T_j^* P_X^{(n)} \| \mu_j) = \sum_{j=1}^m c_j D(T_j^* P_X \| \mu_j) \quad (\text{A15})$$

and (A14) follows since P_X^* was arbitrarily chosen. \square

357 Appendix D. Weak Semicontinuity of Differential Entropy under a Moment Constraint

Lemma 15. Suppose (P_{X_n}) is a sequence of distributions on \mathbb{R}^d converging weakly to P_{X^*} , and

$$\mathbb{E}[\mathbf{X}_n \mathbf{X}_n^\top] \preceq \Sigma \quad (\text{A16})$$

for all n . Then

$$\limsup_{n \rightarrow \infty} h(\mathbf{X}_n) \leq h(\mathbf{X}^*). \quad (\text{A17})$$

359 **Remark 8.** The result fails without the condition (A16). Also, related results when the weak convergence
 360 is replaced with pointwise convergence of density functions and certain additional constraints was
 361 shown in [58, Theorem 1, Theorem 2] (see also the proof of [45, Theorem 5]). Those results are not
 362 applicable here since the density functions of \mathbf{X}_n do not converge pointwise. They are applicable for
 363 the problems discussed in [45] because the density functions of the output of the Gaussian random
 364 transformation enjoy many nice properties due to the smoothing effect of the “good kernel”.

Proof. It is well known that in metric spaces and for probability measures, the relative entropy is weakly lower semicontinuous (cf. [55]). This fact and a scaling argument immediately show that, for any $r > 0$,

$$\limsup_{n \rightarrow \infty} h(\mathbf{X}_n | \|\mathbf{X}_n\| \leq r) \leq h(\mathbf{X}^* | \|\mathbf{X}^*\| \leq r). \quad (\text{A18})$$

Let $p_n(r) := \mathbb{P}[\|\mathbf{X}_n\| > r]$, then (A16) implies

$$\mathbb{E}[\mathbf{X} \mathbf{X}^\top | \|\mathbf{X}_n\| > r] \leq \frac{1}{p_n(r)} \Sigma. \quad (\text{A19})$$

Therefore, since the Gaussian distribution maximizes differential entropy given a second moment upper bound, we have

$$h(\mathbf{X}_n | \|\mathbf{X}_n\| > r) \leq \frac{1}{2} \log \frac{(2\pi)^d e |\Sigma|}{p_n(r)}. \quad (\text{A20})$$

Since $\lim_{r \rightarrow \infty} \sup_n p_n(r) = 0$ by (A16) and Chebyshev's inequality, (A20) implies that

$$\lim_{r \rightarrow \infty} \sup_n p_n(r) h(\mathbf{X}_n \mid \|\mathbf{X}_n\| > r) = 0. \quad (\text{A21})$$

The desired result follows from (A18), (A21) and the fact that

$$h(\mathbf{X}_n) = p_n(r)h(\mathbf{X}_n \mid \|\mathbf{X}_n\| > r) + (1 - p_n(r))h(\mathbf{X}_n \mid \|\mathbf{X}_n\| \leq r) + h(p_n(r)). \quad (\text{A22})$$

365

□

366 Appendix E. Proof of Proposition 11

1. For any $\epsilon > 0$, by the continuity of measure there exists $K > 0$ such that

$$P_{X_i}([-K, K]) \geq 1 - \frac{\epsilon}{l}, \quad i = 1, \dots, l. \quad (\text{A23})$$

By the union bound,

$$P_{\mathbf{X}}([-K, K]^l) \geq 1 - \epsilon \quad (\text{A24})$$

wherever $P_{\mathbf{X}}$ is a coupling of (P_{X_i}) . Now let $P_{\mathbf{X}}^{(n)}$, $n = 1, 2, \dots$ be a such that

$$\lim_{n \rightarrow \infty} \sum_{j=1}^m c_j D(P_{Y_j}^{(n)} \mid \mu_j) = \inf_{P_{\mathbf{X}}} \sum_{j=1}^m c_j D(P_{Y_j} \mid \mu_j) \quad (\text{A25})$$

where $P_{Y_j} := T_j^* P_{\mathbf{X}}$, $j = 1, \dots, m$. The sequence $(P_{\mathbf{X}}^{(n)})$ is tight by (A24), Thus invoking Prokhorov theorem and by passing to a subsequence, we may assume that $(P_{\mathbf{X}}^{(n)})$ converges weakly to some $P_{\mathbf{X}}^*$. Therefore $P_{Y_j}^{(n)}$ converges to $P_{Y_j}^*$ weakly, and by the semicontinuity property in Lemma 15 we have

$$\sum_{j=1}^m c_j D(P_{Y_j}^* \mid \mu_j) \leq \lim_{n \rightarrow \infty} \sum_{j=1}^m c_j D(P_{Y_j}^{(n)} \mid \mu_j) \quad (\text{A26})$$

establishing that $P_{\mathbf{X}}^*$ is an infimizer.

2. Suppose $(P_{X_i}^{(n)})_{1 \leq i \leq l, n \geq 1}$ is such that $\mathbb{E}[X_i^2] \leq \sigma_i^2$, $X_i \sim P_{X_i}^{(n)}$, where (σ_i) is as in Proposition 10 and

$$\lim_{n \rightarrow \infty} F_0 \left((P_{X_i}^{(n)})_{i=1}^l \right) = \sup_{(P_{X_i}) : \Sigma_{X_i} \preceq \sigma_i^2} F_0((P_{X_i})_{i=1}^l). \quad (\text{A27})$$

The regularization on the covariance implies that for each i , $(P_{X_i}^{(n)})_{n \geq 1}$ is a tight sequence. Thus upon the extraction of subsequences, we may assume that for each i , $(P_{X_i}^{(n)})_{n \geq 1}$ converges to some $P_{X_i}^*$. We have the moment bound

$$\mathbb{E}[X_i^2] = \lim_{K \rightarrow \infty} \mathbb{E}[\min\{X_i^2, K\}] \quad (\text{A28})$$

$$= \lim_{K \rightarrow \infty} \mathbb{E}[\min\{(X_i^{(n)})^2, K\}] \quad (\text{A29})$$

$$\leq \sigma_i^2 \quad (\text{A30})$$

where $X_i \sim P_{X_i}^*$ and $X_i^{(n)} \sim P_{X_i}^{(n)}$. Then by Lemma 15,

$$\sum_i b_i D(P_{X_i}^* \| \nu_i) \leq \lim_{n \rightarrow \infty} \sum_i b_i D(P_{X_i}^{(n)} \| \nu_i) \quad (\text{A31})$$

Under the covariance regularization and the non-degenerateness assumption, we showed in Proposition 10 that the value of (84) cannot be $+\infty$ or $-\infty$. This implies that we can assume (by passing to a subsequence) that $P_{X_i}^{(n)} \ll \lambda$, $i = 1, \dots, l$ since otherwise $F((P_{X_i})) = -\infty$. Moreover, since $(\sum_j c_j D(P_{Y_j}^{(n)} \| \mu_j))_{n \geq 1}$ is bounded above under the non-degenerateness assumption, the sequence $(\sum_i b_i D(P_{X_i}^{(n)} \| \nu_i))_{n \geq 1}$ must also be bounded from above, which implies, using (A31), that

$$\sum_i b_i D(P_{X_i}^* \| \nu_i) < \infty. \quad (\text{A32})$$

In particular, we have $P_{X_i}^* \ll \lambda$ for each i . Now Corollary 14 shows that

$$\inf_{P_X: S_i^* P_X = P_{X_i}^*} \sum_j c_j D(T_j^* P_X \| \mu_j) \geq \lim_{n \rightarrow \infty} \inf_{P_X: S_i^* P_X = P_{X_i}^{(n)}} \sum_j c_j D(T_j^* P_X \| \mu_j) \quad (\text{A33})$$

Thus (A31) and (A33) show that $(P_{X_i}^*)$ is in fact a maximizer.

369 Appendix F. Gaussian Optimality in Degenerate Cases: A Limiting Argument

370 Appendix F.1. Proof of Theorem 3

The proof will be based on Theorem 9, which assumes non-degenerate forward channels and Gaussian measures on the output of the reverse channels. To that end, we will adopt an approximation argument. For each $j = 1, \dots, l$, defined the linear operator T_j^ϵ by

$$(T_j^\epsilon \phi)(x_1, \dots, x_l) := \mathbb{E} \left[\phi \left(\sum_{i=1}^l m_{ji} x_i + N_\epsilon \right) \right] \quad (\text{A34})$$

371 for any measurable function ϕ on \mathbb{R} , where $N_\epsilon \sim \mathcal{N}(0, \epsilon)$. Let $\gamma_{\frac{1}{\epsilon}} := \mathcal{N}(0, \epsilon^{-1})$, and note that the
372 density of $\sqrt{\frac{2\pi}{\epsilon}} \gamma_{\frac{1}{\epsilon}}$ converges pointwise to that of the Lebesgue measure.

Lemma 16. For any $\epsilon > 0$, let (T_j^ϵ) be defined as in (A34). Then for any Borel $P_{X_i} \ll \lambda$, $i = 1, \dots, l$,

$$\sum_{i=1}^l D(P_{X_i} \| \gamma_{\frac{1}{\epsilon}}) - \frac{l}{2} \log \frac{2\pi}{\epsilon} \geq \inf_{P_{X^l}: S_i^* P_{X^l} = P_{X_i}} \left\{ - \sum_{j=1}^l h(T_j^{\epsilon*} P_{X^l}) \right\}. \quad (\text{A35})$$

Proof. By Theorem 9, it suffices to prove (A35) when P_{X_i} is Gaussian, and from (A35) it is easy to see that it suffices to prove the case of centered Gaussian. Let $P_{X_i} = \mathcal{N}(0, a_i)$, $i = 1, \dots, l$. We can upper bound the right side of (A35) by taking $P_{X^l} = P_{X_1} \times P_{X_l}$ instead of the infimum, so it suffices to prove that

$$\frac{\epsilon}{2} \sum_{i=1}^l a_i - \frac{1}{2} \sum_{i=1}^l \log a_i \geq -\frac{1}{2} \sum_{j=1}^l \log \left(\sum_{i=1}^l m_{ji}^2 a_i + \epsilon \right) \quad (\text{A36})$$

373 for any $\epsilon, a_1, \dots, a_l \in (0, \infty)$. This is implied by the $\epsilon = 0$ case, which we proved in (105). \square

³⁷⁴ By the duality of the forward-reverse Brascamp-Lieb inequality (Theorem 8)¹⁸, we conclude from
³⁷⁵ Lemma 16 that

Lemma 17. *For any $\epsilon > 0$ and nonnegative continuous (f_j) , (g_i) satisfying*

$$\sum_{i=1}^l \log g_i(x_i) \leq \sum_{j=1}^l (T_j^\epsilon \log f_j)(x^l), \quad \forall x^l \in \mathbb{R}^l, \quad (\text{A37})$$

we have

$$\left(\frac{2\pi}{\epsilon}\right)^{\frac{l}{2}} \prod_{i=1}^l \int g_i d\gamma_{\frac{1}{\epsilon}} \leq \prod_{i=1}^l \int f_j(x) dx. \quad (\text{A38})$$

Now suppose that Theorem 3 is not true; then there are nonnegative continuous (f_j) and (g_i) satisfying (17) while

$$\prod_{i=1}^l \int g_i(x) dx > \prod_{i=1}^l \int f_j(x) dx, \quad (\text{A39})$$

By the standard approximation argument, we can assume, without loss of generality, that

$$g_i(x) = 0, \quad \forall x: |x| \geq R, 1 \leq i \leq l; \quad (\text{A40})$$

$$f_j(x) \geq \delta e^{-x^2}, \quad \forall 1 \leq j \leq l, \quad (\text{A41})$$

for some R sufficiently large and $\delta > 0$ sufficiently small. Note that for any $x^l \in [-R, R]^l$,

$$\sum_{i=1}^l m_{ji} x_i \in [-\sqrt{l}R, \sqrt{l}R]. \quad (\text{A42})$$

Since $\log f_j$ is uniformly continuous on $[-2\sqrt{l}R, 2\sqrt{l}R]$ for each j and since we assumed (A41), we have

$$\lim_{\epsilon \rightarrow 0} \inf_{x^l \in [-R, R]^l} \left\{ \sum_{j=1}^l (T_j^\epsilon \log f_j)(x^l) - \sum_{j=1}^l (T_j^0 \log f_j)(x^l) \right\} \geq 0. \quad (\text{A43})$$

But since we assumed (17) and (A40), we must also have

$$\lim_{\epsilon \rightarrow 0} \eta_\epsilon \geq 0 \quad (\text{A44})$$

where

$$\eta_\epsilon := \inf_{x^l \in \mathbb{R}^l} \left\{ \sum_{j=1}^l (T_j^\epsilon \log f_j)(x^l) - \sum_{i=1}^l \log g_i(x_i) \right\}. \quad (\text{A45})$$

¹⁸ Although we stated Theorem 8 for finite reference measures (μ_j) , we see from the proof that the relatively easy direction “entropic \Rightarrow functional” does not need this assumption. Moreover the assumption in Theorem 1 that (f_j) and (g_i) are bounded away from 0 was made to ensure that $\log f_j$ and $\log g_i$ are bounded functions so that the conditional expectation operators as defined in Section 2 can be applied to them. But this assumption can be dispensed with when some specific conditional expectation operators can be applied to noncontinuous functions, as is the case of Lemma 17.

Put

$$\tilde{g}_1^\epsilon := \exp(\eta_\epsilon) g_1, \quad (\text{A46})$$

$$\tilde{g}_i^\epsilon := g_i, \quad i = 1, \dots, l. \quad (\text{A47})$$

Then (\tilde{g}_i^ϵ) and (f_j) satisfy the constraint (A37) for any $\epsilon > 0$. By applying the monotone convergence theorem and then Lemma 17,

$$\prod_{i=1}^l \int g_i(x_i) dx_i \leq \lim_{\epsilon \rightarrow 0} \left(\frac{2\pi}{\epsilon} \right)^{\frac{l}{2}} \prod_{i=1}^l \int \tilde{g}_i^\epsilon d\gamma_{\frac{1}{\epsilon}} \quad (\text{A48})$$

$$\leq \prod_{i=1}^l \int f_i(x) dx \quad (\text{A49})$$

³⁷⁶ which violates the hypothesis (A39), as desired.

³⁷⁷ *Appendix F.2. Proof of Theorem 2*

The limiting argument can be extended to the vector case to prove Theorem 2. Specifically, for each $j = 1, \dots, m$, define T_j^ϵ the same as (A34) except that $\mathbf{N}_\epsilon \sim \mathcal{N}(\mathbf{0}, \epsilon \mathbf{I})$, where \mathbf{I} is the identity matrix whose dimension is clear from the context (equal to $\dim(E^j)$ here), and let $P_{Y_j|X_1 \dots X_l}^\epsilon$ be the dual operator. For each $i = 1, \dots, l$, let $\nu_i^\epsilon := \left(\frac{2\pi}{\epsilon} \right)^{\frac{1}{2} \dim(E_i)} \cdot \mathcal{N}(\mathbf{0}, \epsilon^{-1} \mathbf{I})$, whose density converges pointwise to that of ν_i^0 , defined as the Lebesgue measure on E_i . Define

$$d^\epsilon := \sup \left\{ \sum_{i=1}^l b_i \log \nu_i^\epsilon(g_i) - \sum_{j=1}^m c_j \log \int f_j \right\} \quad (\text{A50})$$

where the supremum is over nonnegative continuous functions f_1, \dots, f_m and g_1, \dots, g_l such that the summands in (A50) are finite and

$$\sum_{i=1}^l b_i \log g_i(\mathbf{x}_i) \leq \sum_{j=1}^m c_j (T_j^\epsilon \log f_j)(\mathbf{x}_1, \dots, \mathbf{x}_l), \quad \forall \mathbf{x}_1, \dots, \mathbf{x}_l. \quad (\text{A51})$$

The same limiting argument (A39)-(A49) extended to the vector case shows that

$$d^0 \leq \lim_{\epsilon \downarrow 0} d^\epsilon. \quad (\text{A52})$$

Next, define $F_0^\epsilon(\cdot)$ for (μ_j) , (ν_i^ϵ) and $P_{Y_j|X_1 \dots X_l}^\epsilon$, similarly to (83). The entropic \Rightarrow functional argument (see Footnote 18) shows that

$$d^\epsilon \leq \sup_{P_{X_1}, \dots, P_{X_l}} F_0^\epsilon(P_{X_1}, \dots, P_{X_l}). \quad (\text{A53})$$

But Theorem 9 based on the rotational invariance of the Gaussian measure can be extended to the vector case, so for any $\epsilon > 0$,

$$\sup_{P_{X_1}, \dots, P_{X_l}} F_0^\epsilon(P_{X_1}, \dots, P_{X_l}) = \sup_{P_{X_1}, \dots, P_{X_l} \text{ c.G.}} F_0^\epsilon(P_{X_1}, \dots, P_{X_l}), \quad (\text{A54})$$

where c.G. means that the supremum on the right side is over centered Gaussian measures. The fact that centered distributions exhaust the supremum follows easily from the definition of F_0 . Moreover, from the definitions it is easy to see that F_0^ϵ is monotonically decreasing in ϵ , and in particular

$$\sup_{P_{X_1}, \dots, P_{X_l} \text{ c.G.}} F_0^\epsilon(P_{X_1}, \dots, P_{X_l}) \leq \sup_{P_{X_1}, \dots, P_{X_l} \text{ c.G.}} F_0^0(P_{X_1}, \dots, P_{X_l}). \quad (\text{A55})$$

To finish the proof with the above chain of inequalities, it only remains to show that the right side of (A55) equals to the supremum in (A50) with (f_j) (g_j) taken over center Gaussian functions. This follows by similar steps as the proof of the functional \Rightarrow entropic part of Theorem 1. We briefly mention how the idea works: suppose A is the linear space defined as the Cartesian product of \mathbb{R} and the set of $n \times n$ symmetric matrices. Let $\Lambda(\cdot)$ be the convex functional on A defined by

$$\Lambda(r, \mathbf{M}) := \ln \int \exp_e(r + \mathbf{x}^\top \mathbf{M} \mathbf{x}) d\mathbf{x} \quad (\text{A56})$$

$$= \begin{cases} r + \frac{n}{2} \ln \pi - \frac{1}{2} \ln |\mathbf{M}| & \mathbf{M} \preceq \mathbf{0}, \\ +\infty & \text{otherwise.} \end{cases} \quad (\text{A57})$$

The dual space of A is itself, and Λ^* is given by

$$\Lambda^*(s, \mathbf{H}) = \sup_{r, \mathbf{M} \succeq \mathbf{0}} \{sr + \text{Tr}(\mathbf{H}^\top \mathbf{M}) - \Lambda(r, \mathbf{M})\}. \quad (\text{A58})$$

Then $\Lambda^*(s, \mathbf{H}) = +\infty$ if $s \neq 1$, and

$$\Lambda^*(1, \mathbf{H}) = \sup_{\mathbf{M} \preceq \mathbf{0}} \left\{ \text{Tr}(\mathbf{H}^\top \mathbf{M}) - \frac{n}{2} \ln \pi + \frac{1}{2} \ln |\mathbf{M}| \right\}. \quad (\text{A59})$$

378 The supremum in (A59) equals $+\infty$ if \mathbf{H} is not positive-semidefinite. But if \mathbf{H} is positive-semidefinite,
379 the supremum equals $-\frac{1}{2} \ln 2\pi e |\mathbf{H}|$, which is equal to the relative entropy between $\mathcal{N}(\mathbf{0}, \mathbf{H})$ and
380 the Lebesgue measure (supremum achieved when $\mathbf{M} = -(2\mathbf{H})^{-1}$). Since the proof of Theorem 1,
381 in essence, only uses the duality between convex functionals, the same algebraic steps therein also
382 establish the desired matrix optimization identity.

383 References

- 384 1. Brascamp, H.J.; Lieb, E.H. Best constants in Young's inequality, its converse, and its generalization to more
385 than three functions. *Advances in Mathematics* **1976**, *20*, 151–173.
- 386 2. Brascamp, H.J.; Lieb, E.H. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems,
387 including inequalities for log concave functions, and with an application to the diffusion equation. *J. Funct.
388 Anal.* **1976**, *22*, 366–389.
- 389 3. Bobkov, S.G.; Ledoux, M. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev
390 inequalities. *Geom. Funct. Anal.* **2000**, *10*, 1028–1052.
- 391 4. Cordero-Erausquin, D. Transport inequalities for log-concave measures, quantitative forms and
392 applications. *arXiv preprint arXiv:1504.06147* **2015**.
- 393 5. Barthe, F. On a reverse form of the Brascamp-Lieb inequality. *Inventiones Mathematicae* **1998**, *134*, 335–361.
- 394 6. Bennett, J.; Carbery, A.; Christ, M.; Tao, T. The Brascamp–Lieb inequalities: finiteness, structure and
395 extremals. *Geometric and Functional Analysis* **2008**, *17*, 1343–1415.
- 396 7. Liu, J.; Courtade, T.A.; Cuff, P.; Verdú, S. Information theoretic perspectives on Brascamp-Lieb inequality
397 and its reverse. *arXiv: 1702.06260* **2017**.
- 398 8. Gardner, R. The Brunn-Minkowski inequality. *Bulletin of the American Mathematical Society* **2002**, *39*, 355–405.
- 399 9. Gross, L. Logarithmic Sobolev inequalities. *American Journal of Mathematics* **1975**, *97*, 1061–1083.
- 400 10. Erkip, E.; Cover, T.M. The efficiency of investment information. *IEEE Transactions on Information Theory*
401 *Mar.* **1998**, *44*, 1026–1040.

402 11. Courtade, T. Outer bounds for multiterminal source coding via a strong data processing inequality. Proc. of IEEE Int. Symposium on Information Theory, Istanbul, Turkey, July 2013, pp. 559–563.

403 12. Polyanskiy, Y.; Wu, Y. Dissipation of information in channels with input constraints. *IEEE Transactions on Information Theory* **2016**, *62*, 35–55.

404 13. Polyanskiy, Y.; Wu, Y. A note on the strong data-processing inequalities in Bayesian networks. <http://arxiv.org/pdf/1508.06025v1.pdf>.

405 14. Liu, J.; Cuff, P.; Verdú, S. Key capacity for product sources with application to stationary Gaussian processes. *IEEE Transactions on Information Theory* **Feb.** **2016**, *62*, 984–1005.

406 15. Liu, J.; Cuff, P.; Verdú, S. Secret key generation with one communicator and a one-shot converse via hypercontractivity. Proc. of IEEE Int. Symposium on Information Theory, June-July 2015, Hong Kong, China, pp. 710–714.

407 16. Xu, A.; Raginsky, M. Converses for distributed estimation via strong data processing inequalities. Proc. of IEEE Int. Symposium on Information Theory, June-July 2015, Hong Kong, China, July 2015, pp. 2376–2380.

408 17. Kamath, S.; Anantharam, V. On non-interactive simulation of joint distributions. *arXiv preprint arXiv:1505.00769* **2015**.

409 18. Kahn, J.; Kalai, G.; Linial, N. The influence of variables on Boolean functions. Proc. of 29th Annual Symposium on Foundations of Computer Science, 1988, pp. 68–80.

410 19. Ganor, A.; Kol, G.; Raz, R. Exponential separation of information and communication. Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, 2014, pp. 176–185.

411 20. Dvir, Z.; Hu, G. Sylvester-Gallai for arrangements of subspaces. *arXiv:1412.0795* **2014**.

412 21. Braverman, M.; Garg, A.; Ma, T.; Nguyen, H.L.; Woodruff, D.P. Communication lower bounds for statistical estimation problems via a distributed data processing inequality. *arXiv preprint arXiv:1506.07216* **2015**.

413 22. Garg, A.; Gurvits, L.; Oliveira, R.; Wigderson, A. Algorithmic aspects of Brascamp-Lieb inequalities. *arXiv preprint arXiv:1607.06711* **2016**.

414 23. Talagrand, M. On Russo's approximate zero-one law. *The Annals of Probability* **1994**, pp. 1576–1587.

415 24. Friedgut, E.; Kalai, G.; Naor, A. Boolean functions whose Fourier transform is concentrated on the first two levels. *Advances in Applied Mathematics* **2002**, *29*, 427–437.

416 25. Bourgain, J. On the distribution of the Fourier spectrum of Boolean functions. *Israel Journal of Mathematics* **2002**, *131*, 269–276.

417 26. Mossel, E.; O'Donnell, R.; Oleszkiewicz, K. Noise stability of functions with low influences: Invariance and optimality. *Annals of Mathematics* **2010**, *171*, 295–341.

418 27. Garban, C.; Pete, G.; Schramm, O. The Fourier spectrum of critical percolation. *Acta Mathematica* **2010**, *205*, 19–104.

419 28. Duchi, J.C.; Jordan, M.; Wainwright, M.J. Local privacy and statistical minimax rates. IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), 2013, pp. 429–438.

420 29. Lieb, E.H. Gaussian kernels have only Gaussian maximizers. *Inventiones Mathematicae* **1990**, *102*, 179–208.

421 30. Barthe, F. Optimal Young's inequality and its converse: a simple proof. *Geometric and Functional Analysis* **1998**, *8*, 234–242.

422 31. Carlen, E.A.; Cordero-Erausquin, D. Subadditivity of the entropy and its relation to Brascamp–Lieb type inequalities. *Geometric and Functional Analysis* **2009**, *19*, 373–405.

423 32. Ball, K. Volumes of sections of cubes and related problems. In *Geometric aspects of functional analysis*; Springer, 1989; pp. 251–260.

424 33. Ahlswede, R.; Gács, P. Spreading of sets in product spaces and hypercontraction of the Markov operator. *The Annals of Probability* **1976**, *4*, 925–939.

425 34. Csiszár, I.; Körner, J. *Information theory: coding theorems for discrete memoryless systems (Second edition)*; Cambridge University Press, 2011.

426 35. Liu, J.; van Handel, R.; Verdú, S. Beyond the Blowing-Up Lemma: Sharp Converses via Reverse Hypercontractivity. Proc. of IEEE Int. Symposium on Information Theory, Aachen, Germany, June, 2017, pp. 943–947.

427 36. Ahlswede, R.; Gács, P.; Körner, J. Bounds on conditional probabilities with applications in multi-user communication. *Probability Theory and Related Fields* **1976**, *34*, 157–177.

428 37. Villani, C. *Topics in Optimal Transportation*; Vol. 58, American Mathematical Soc., 2003.

454 38. Atar, R.; Merhav, N. Information-theoretic applications of the logarithmic probability comparison bound.
455 *IEEE Transactions on Information Theory* **Oct. 2015**, *61*, no. 10, 5366–5386.

456 39. Radhakrishnan, J. Entropy and counting. *Computational mathematics, modelling and algorithms* **2003**, *146*.

457 40. Madiman, M.M.; Tetali, P. Information inequalities for joint distributions, with interpretations and
458 applications. *IEEE Transactions on Information Theory* **2010**, *56*, 2699–2713.

459 41. Nair, C. Equivalent formulations of hypercontractivity using information measures. *International Zurich
460 Seminar*, Zurich, Switzerland, Feb. 2014.

461 42. Beigi, S.; Nair, C. Equivalent characterization of reverse Brascamp-Lieb type inequalities using information
462 measures. Proc. of IEEE Int. Symposium on Information Theory, Barcelona, Spain, July 2016.

463 43. Bobkov, S. G. and Götze, F. Exponential integrability and transportation cost related to Logarithmic Sobolev
464 inequalities. *J. Funct. Anal.* **1999**, *163*, 1–28.

465 44. Carlen, E.A.; Lieb, E.H.; Loss, M. A sharp analog of Young's inequality on S^N and related entropy
466 inequalities. *The Journal of Geometric Analysis* **2004**, *14*, 487–520.

467 45. Geng, Y.; Nair, C. The capacity region of the two-receiver Gaussian vector broadcast channel with private
468 and common messages. *IEEE Transactions on Information Theory* **April, 2014**, *60*, 2087–2104.

469 46. Dembo, A.; Zeitouni, O. *Large Deviations Techniques and Applications*; Vol. 38, Springer Science & Business
470 Media, 2009.

471 47. Liu, J.; Courtade, T.A.; Cuff, P.; Verdú, S. Brascamp-Lieb inequality and its reverse: an information theoretic
472 view. Proc. of IEEE Int. Symposium on Information Theory, Barcelona, Spain, July 2016, pp. 1048–1052.

473 48. Lax, P.D. *Functional Analysis*; John Wiley & Sons, Inc., 2002.

474 49. Tao, T. 245B, Notes 12: Continuous functions on locally compact Hausdorff spaces.
475 <https://terrytao.wordpress.com/2009/03/02/245b-notes-12-continuous-functions-on-locally-compact-hausdorff-spaces/>, Mar. 2, 2009.

477 50. Bourbaki, N. *Intégration*; (Chaps. I-IV, Actualités Scientifiques et Industrielles, no. 1175), Paris, Hermann,
478 1952.

479 51. Lane, S.M. *Categories for the Working Mathematician*; Springer Science+Business Media, 1978.

480 52. Hatcher, A. *Algebraic Topology*; 2002.

481 53. Rockafellar, R.T. *Convex Analysis*; Princeton University Press, 2015.

482 54. Prokhorov, Y.V. Convergence of random processes and limit theorems in probability theory. *Theory of
483 Probability and Its Applications* **1956**, *1*, 157–214.

484 55. Verdú, S. *Information Theory*; In preparation.

485 56. Kamath, S. Reverse hypercontractivity using information measures. Proc. of the 53rd Annual Allerton
486 Conference on Communications, Control and Computing, UIUC, Illinois, Sept.-Oct., 2015, pp. 627–633.

487 57. Wu, Y.; Verdú, S. Functional properties of minimum mean-square error and mutual information. *IEEE
488 Transactions on Information Theory* **2012**, *58*, 1289–1301.

489 58. Godavarti, M.; Hero, A. Convergence of differential entropies. *IEEE Transactions on Information Theory
490 Jan. 2004*, *50*, 171–176.