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1 Abstract: Inspired by the forward and the reverse channels from the image-size characterization
2= problem in network information theory, we introduce a functional inequality which unifies
s both the Brascamp-Lieb inequality and Barthe’s inequality, which is a reverse form of the
«  Brascamp-Lieb inequality. For Polish spaces, we prove its equivalent entropic formulation using
s the Legendre-Fenchel duality theory. Capitalizing on the entropic formulation, we elaborate on a
s “doubling trick” used by Lieb and Geng-Nair to prove the Gaussian optimality in this inequality for
7 the case of Gaussian reference measures.
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o 1. Introduction

I

1 The Brascamp-Lieb inequality and its reverse [1] concern the optimality of Gaussian functions in
12 a certain type of integral inequality.! These inequalities have been generalized in various ways since
1 their discovery, nearly 40 years ago. A modern formulation due to Barthe [5] may be stated as follows:?

Brascamp-Lieb Inequality and Its Reverse ([5, Theorem 1]). Let E, Eq, ..., E;; be Euclidean spaces, and
B;: E — E; be linear maps. Let (c;)"., and D be positive real numbers. Then the Brascamp-Lieb inequality

/ilificf(Bix) dx < Dili (/fi(xi)dxl)q , (1)

for all nonnegative measurable functions f; on E;, i = 1,...,m, holds if and only if it holds whenever
fi,i = 1,...,m are centered Gaussian functions®. Similarly, for F a positive real number, the reverse
Brascamp-Lieb inequality, also known as Barthe’s inequality*,

/(y,) sup Im—[ﬁi(}’i) dx > Fﬁ (/fi(yi)dyl) k , @)

i) Ty ciBiyi=xi=1

1 for all nonnegative measurable functions f;on E;, i = 1,...,m, holds if and only if it holds for all centered
s Gaussian functions.

Not to be confused with the “variance Brascamp-Lieb inequality” (cf. [2][3][4]), which generalizes the Poincaré inequality.
[5, Theorem 1] actually contains additional assumptions, which make the best constants D and F positive and finite, but are
not really necessary for the conclusion to hold ([5, Remark 1]).

A centered Gaussian function is of the form x — exp(r — x Ax), where A is a positive semidefinite matrix and r € R.

4 B! denotes the adjoint of B;.
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For surveys on the history of both the Brascamp-Lieb inequality and Barthe’s inequality and their
applications, see e.g. [6][7]. The Brascamp-Lieb inequality can be seen as a generalization of several
other inequalities, including Holder’s inequality, the sharp Young inequality, the Loomis-Whitney
inequality, the entropy power inequality (cf. [6] or the survey paper [8]), hypercontractivity and
the logarithmic Sobolev inequality [9]. Furthermore, the Prékopa-Leindler inequality can be
seen as a special case of the Barthe’s inequality. Due in part to their utility in establishing
impossibility bounds, these functional inequalities have attracted a lot of attention in information
theory [10][11][12][13][14][15][16][17], theoretical computer science [18][19][20][21][22], and statistics
[23][24][25][26][27][28], to name only a small subset of the literature. Over the years, various proofs of
these inequalities have been proposed [1][29][30][31]. Among these, Lieb’s elegant proof [29], which
is very close to one of the techniques that will be used in this paper, employs a doubling trick that
capitalizes on the rotational invariance property of the Gaussian function: if f is a one-dimensional
Gaussian function, then

x—vy X+ y)
x = — . 3
f(x)f(y) f(\@)f(ﬁ ®)
Since (1) and (2) have the same structure modulo the direction of the inequality, a common viewpoint

is to consider (1) and (2) as dual inequalities. This viewpoint successfully captures the geometric
aspects of (1) and (2). Indeed, it is known that

D-F=1 4)

as long as D, F < oo [5]. Moreover, both D and F are equal to 1 under Ball’s geometric condition [32]: Eq,
..., Ey; are dimension 1 and

m
Y BB =1 (5)
i=1

1s is the identity matrix. While fruitful, this “dual” viewpoint does not fully explain the asymmetry
1z between the forward and the reverse inequalities: there is a sup in (2) but not in (1).

18 This paper explores a different viewpoint. In particular, we propose a single inequality that unifies
1o (1) and (2). Accordingly, we should reverse both sides of (2) to make the inequality sign consistent
20 with (1). To be concrete, let us first observe that (1) and (2) can be respectively restated in the following
=z more symmetrical forms (with changes of certain symbols):

o For all nonnegative functions g and fy, ..., fu such that

gx) <TTf (Bx), ¥x, ©)

.

I
—

we have

égﬁD}ﬁ(/ﬁﬁ)q. @)

o For all nonnegative measurable functions g1, ... g; and f such that

1

1
[Tsi(z) < f(YbiBiz), Va,...,z, ®)
i=1

i=1
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we have

1

q(/}sg)b <D [f. ©)

1=

Note that in both cases, the optimal choice of one function (f or g) can be explicitly computed from the
constraints, hence the conventional formulations in (1) and (2). Generalizing further, we can consider
the following problem: let X', V1, ..., Vi, Z1,..., Z; be measurable spaces. Consider measurable maps
¢ X — J)]-,j =1,...mand : X — Z;,i =1,...,1. Letby,...,byand ¢y, ..., c; be nonnegative
real numbers. Let vy,...,v; be measures on Z,..., Z;, and yq,..., 4n be measures on YV, ..., Vyu,
respectively. What is the smallest D > 0 such that for all nonnegative f,..., f, on Vi, ...V and
81,...,810n Zy,..., 2 satisfying

[Tk (i) < T 17 @), v, (10)
we have

f[ ( / gidvi)b[ <] ( / fjdw) E (a1)

22 Except for special case of [ = 1 (resp. m = 1), it is generally not possible to deduce a simple expression
23 from (10) for the optimal choice of g; (resp. f;) in terms of the rest of the functions. We will refer to (11)
2« as a forward-reverse Brascamp-Lieb inequality.

25 One of the motivations for considering multiple functions on both sides of (11) comes from
2 multiuser information theory: independently but almost simultaneously with the discovery of the
2z Brascamp-Lieb inequality in mathematical physics, in the late 1970s, information theorists including
2 Ahslwede, Gacs and Korner [33][34] invented the image-size technique for proving strong converses
20 in source and channel networks. An image-size inequality is a characterization of the tradeoff of
30 the measures of certain sets connected by given random transformations (channels). Although not
a1 the way treated in [33][34], an image-size inequality can essentially be obtained from a functional
;2 inequality similar to (11) by taking the functions to be (roughly speaking) the indicator functions of
s sets. In the case of (10), the forward channels ¢, ..., ¢, and the reverse channels 1, . . ., ; degenerate
s« into deterministic functions. In this paper, motivated by information theoretic applications similar
s to those of the image-size problems, we will consider further generalizations of (11) to the case
s of random transformations. Since the functional inequality is not restricted to indicator functions,
sz it is strictly stronger than the corresponding image-size inequality. As a side remark, [35] uses
ss functional inequalities that are variants of (11) together with a reverse hypercontractivity machinery to
3 improve the image-size plus blowing-up machinery of [36], and shows that the non-indicator function
20 generalization is crucial for achieving the optimal scaling of the second-order rate expansion.

a Of course, to justify the proposal of (11) we must also prove that (11) enjoys certain nice
«2 mathematical properties; this is the main goal of the present paper. Specifically, we focus on two
a3 aspects of (11): equivalent entropic formulation and Gaussian optimality.

4 In the mathematical literature (e.g. [31][37][38][33][39][40][41][42][43])) it is known that certain
« integral inequalities are equivalent to inequalities involving relative entropies. In particular, Carlen,
s Loss and Lieb [44] and Carlen and Cordero-Erausquin [31] proved that the Brascamp-Lieb inequality
4z is equivalent to the superadditivity of relative entropy. In this paper we prove that the forward-reverse
s Brascamp-Lieb inequality (11) also has an entropic formulation, which turns out to be very close to
4 the rate region of certain multiuser information theory problems (but we will clarify the different in
so the text). In fact, Ahlswede, Csiszar and Korner [36][34] essentially derived image-size inequalities
51 from similar entropic inequalities. Because of the reverse part, the proof of equivalence of (11) and


http://dx.doi.org/10.20944/preprints201804.0005.v1
http://dx.doi.org/10.3390/e20060418

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 April 2018 d0i:10.20944/preprints201804.0005.v1

4 of 31

sz corresponding entropic inequality is more involved than the forward case considered in [31] beyond the
ss case of finite X, J;, Z;, and certain machineries from min-max theory appear necessary. In particular,
s« the proof involves a novel use of the Legendre-Fenchel duality theory. Next, we give a basic version of
ss our main result on the functional-entropic duality (more general versions will be given later). In order
se  to streamline its presentation, all formal definitions of notation are postponed to Section 2.

sz Theorem 1 (Dual formulation of forward-reverse Brascamp-Lieb inequality). Assume that

se 1) mand [ are positive integers, d € R, X is a compact metric space;
o ii) b; € (0,00), v; is a finite Borel measure on a Polish space Z;, and Q| x is a random transformation from X

60 to Zj, foreachi=1,...,1;

e iii) ¢; € (0,00), y; is a finite Borel measure on a Polish space Y;, and Qy]_‘ x is a random transformation from
62 XtoY, foreachj=1,...,m;

es iv) For any (Pz)!_, such that Y D(Pzllvi) < oo, there exists Px such that Px — Qzx — Pz,
64 i=1,...,1and Z}-":l D(Pyj||yj) < oo, where Px — Qyjlx — Py].,j =1,...,m.

es Then the following two statements are equivalent:

1. If the nonnegative continuous functions (g;), (f;) are bounded away from 0 and satisfy

1 m
Y biQzx(8i) <), ¢jQy; x (fj) (12)
i—1 =1

then

l

I1 (/ gide')bi < exp(d)

m
i=1 =1

11(/ fam )’ (13)

]

2. Forany (Pyz,) such that D(Pz,||v;) < 0®,i=1,...,],

! m
ZibiD(PZi||vi) +d> ilg}(fZ%ch(Pyijj) (14)
i= j=
o6 where Py — QY],‘X — Py],,j = 1,...,m, and the infimum is over Px such that Px — QZ,»\X — Pz,
o7 i=1,...,L
o8 Next, in a similar vein as the proverbial result that “Gaussian functions are optimal” for the

e forward or the reverse Brascamp-Lieb inequality, we show in this paper that Gaussian function
7o functions are also optimal for the forward-reverse Brascamp-Lieb inequality, particularized to the case
7 of Gaussian reference measures and linear maps. The proof scheme is based on rotational invariance
72 (3), which can be traced back in the functional setting to Lieb [29]. More specifically, we use a variant
7s  for the entropic setting introduced by Geng and Nair [45], thereby taking advantage of the dual
7a formulation of Theorem 1.

5 Of course, this assumption is not essential (if we adopt the convention that the infimum in (14) is +oo when it runs over an

empty set).
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Forward-reverse Brascamp-Lieb (13)

\

Forward part Reverse part

Hypercontractivity (108) ‘

Reverse hypercontractivity with
positive parameters (111)

’ Strong data processing inequality [33]

’ Reverse hypercontractivity with one negative parameter (115)

Figure 1. The forward-reverse Brascamp-Lieb inequality generalizes several other functional
inequalities /information theoretic inequalities. For more discussions on these relations see the extended
version [7].

Theorem 2. Consider by,...,b;,c1,...,cm, D € (0,00). Let Eq, ..., E|, EY, ..., E™ be Euclidean spaces, and
let Bj;: Ej — EJ be a linear map for eachi € {1,...,1} and j € {1,...,m}. Then, for all continuous functions
fis Bl = [0, +00), gi: E; — [0, 00) satisfying

l

m ) 1
Hgibi(xi) S Hf]C] <ZB]1XZ> ’ VXl,...,Xl, (15)

we have

b,' m C]'
[1(/s) <oIT(/5) 16
i=1 =1

s if and only if for all centered Gaussian functions f1, ..., fm, &1, - -, 81 satisfying (15), we have (16).

76 As mentioned, in the literature on the forward or the reverse Brascamp-Lieb inequalities, it is

7z known that a certain geometric condition (5) ensures that the best constant equals 1. Next, we also
e identify a particular case where the best constant in the forward-reverse inequality equals 1:

nonnegative continuous functions ( f]-)é-:1 (g1)}_; on R such that

1 1 1
Hgi(xi) < Hf] < m]'ixi> , Vil eR, (17)
i=1

i=1 j=1
we have
l l
H/gi(x)dx < H/fj(x)dx. (18)
i=1 i=1
79 The rest of the paper is organized as follows: Section 2 defines notation and reviews some basic

s theory of convex duality. Section 3 proves Theorem 1 and also presents its extensions to the settings
s of noncompact spaces or general reverse channels. Section 4 proves the Gaussian optimality in the
s2 entropic formulation, under a certain “non-degenerate” assumption where the linear maps Bj;’s are
ez regularized by an additive noise, which guarantees the existence of extremizers. Then, a limiting
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s« argument in Appendix F lets the noise vanish, which, combined with the equivalence between the
es functional and entropic formulations, establishes Theorem 2 and Theorem 3.

ss 2. Review of the Legendre-Fenchel Duality Theory

87 Our proof of the equivalence of the functional and the entropic inequalities uses the
es Legendre-Fenchel duality theory, a topic from convex analysis. Before getting into that, a recap
e of some basics on the duality of topological vector spaces seems appropriate. Unless otherwise
%0 indicated, we assume Polish spaces and Borel measures®. Of course, this covers the cases of Euclidean
o1 and discrete spaces (endowed with the Hamming metric, which induces the discrete topology, making
o2 every function on the discrete set continuous), among others. Readers interested in discrete spaces
oz only may refer to the (much simpler) argument in [47] based on the KKT condition.

sa Notation 1. Let X’ be a topological space.

95

C.(X') denotes the space of continuous functions on X’ with a compact support;
Co(X') denotes the space of all continuous functions f on X that vanish at infinity (i.e. for any

926

o7 € > 0 there exists a compact set L C X such that |f(x)| < e forx € X\ K);

o8 e C;(X) denotes the space of bounded continuous functions on X;

99 e M (X) denotes the space of finite signed Borel measures on X’;

100 e P(X) denotes the space of probability measures on X'.

101 We consider C,, Cy and Cj, as topological vector spaces, with the topology induced from the sup

102 norm. The following theorem, usually attributed to Riesz, Markov and Kakutani, is well-known in
103 functional analysis and can be found in, e.g. [48][49].

s Theorem 4 (Riesz-Markov-Kakutani). If X is a locally compact, o-compact Polish space, the dual” of both
10 Co(X) and Co(X) is M(X).

s Remark 1. The dual space of C;(X) can be strictly larger than M (X'), since it also contains those linear
107 functionals that depend on the “limit at infinity” of a function f € C,(X’) (originally defined for those
10s [ that do have a limit at infinity, and then extended to the whole C,(X') by the Hahn-Banach theorem;
100 see e.g. [48]).

Of course, any y € M(X) is a continuous linear functional on Cy(X) or C.(X), given by

£ [ ru (19)

where f is a function in Cy(X') or Cc(&X'). As is well known, Theorem 4 states that the converse is also
true under mild regularity assumptions on the space. Thus, we can view measures as continuous
linear functionals on a certain function space;? this justifies the shorthand notation

p(f) = [ fau 20)

10 which we employ in the rest of the paper. This viewpoint is the most natural for our setting since in
1 the proof of the equivalent formulation of the forward-reverse Brascamp-Lieb inequality we shall use
12 the Hahn-Banach theorem to show the existence of certain linear functionals.

A Polish space is a complete separable metric space. It enjoys several nice properties that we use heavily in this section,
including Prokhorov theorem and Riesz-Kakutani theorem (the latter is related to the fact that every Borel probability
measure on a Polish space is inner regular, hence a Radon measure). Short introductions on the Polish space can be found in
e.g. [37][46].

The dual of a topological vector space consists of all continuous linear functionals on that space, which is naturally also
topological vector space (with the weak™ topology).

In fact, some authors prefer to construct measure theory by defining a measure as a linear functional on a suitable measure
space; see Lax [48] or Bourbaki [50].
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Definition 1. Let A: Cp(X) — (—00,+o0] be a lower semicontinuous, proper convex function. Its
Legendre-Fenchel transform A*: C,(X)* — (—o00, 00| is given by

AN (0):= sup [L(u)— Au)]. (21)
ueCy(X)

Let v be a nonnegative finite Borel measure on a Polish space &X', and define the convex functional

on Cp(X):
A(f) = logv(exp(f)) (22)
= log / exp(f)dv. (23)
Then, note that the relative entropy has the following alternative definition: for any y € M(X),
D(pllv) == sup [u(f) = A(f)] (24)
feG(X)

11z which agrees with the more familiar definition D(yu||v) := u(log %) when v is a probability measure,
us by the Donsker-Varadhan formula (c.f. [46, Lemma 6.2.13]). If u is not a probability measure, then
us  D(p||v) as defined in (24) is +oo.
Given a bounded linear operator T: C,()) — Cp(X), the dual operator T*: C,(X)* — Cp(Y)* is
defined in terms of

T*}lxi Cb(y) — R,‘
f=ux(Tf), (25)

ue forany puyx € Cy(X)*. Since P(X) C M(X) C Cp(X)*, T is said to be a conditional expectation operator
ur if T*P € P()Y) for any P € P(X). The operator T* is defined as the dual of a conditional expectation
ue operator T, and in a slight abuse of terminology, is said to be a random transformation from X to Y.

110 For example, in the notation of Theorem 1, if ¢ € C()) and Qy|x is a random transformation
120 from X to ), the quantity Qy x(g) is a function on X, defined by taking the conditional expectation.
w1 Also, if Px € P(X), we write Px — Qy|x — Py to indicate that Py € P () is the measure induced on
12 ) by applying Qy/x to Px.

123 Remark 2. From the viewpoint of category theory (see for example [51][52]), C; is a functor
124 from the category of topological spaces to the category of topological vector spaces, which is
125 contra-variant because for any continuous, ¢: X — Y (morphism between topological spaces),
126 we have Cpy(¢): Cp(Y) — Cp(X), u — u o f where u o ¢ denotes the composition of two continuous
127 functions, reversing the arrows in the maps (i.e. the morphisms). On the other hand, M is a covariant
128 functor and M(¢): M(X) — M(Y), u — po¢p~!, where o ¢~ (B) := u(¢p~1(B)) for any Borel
120 measurable B C V. “Duality” itself is a contra-variant functor between the category of topological
10 spaces (note the reversal of arrows in Fig. 2). Moreover, C,(X)* = M(X) and C,(¢)* = M(¢) if X
11 and ) are compact metric spaces and ¢: X — ) is continuous. Definition 2 can therefore be viewed
132 as the special case where ¢ is the projection map:

13 Definition 2. Suppose ¢: Z1 X Z — 21, (21,22) — 21 is the projection to the first coordinate.

134 o Cy(¢): Cp(21) — Cy(21 x 2Z,) is called a canonical map, whose action is almost trivial: it sends a
138 function of z; to itself, but viewed as a function of (z1, zp).

136 o M(¢p): M(21 x Z3) = M(2,) is called marginalization, which simply takes a joint distribution
137 to a marginal distribution.

138 The Fenchel-Rockafellar duality (see [37, Theorem 1.9], or [53] in the case of finite dimensional

130 vector spaces) usually refers to the k = 1 special case of the following result.
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Theorem 5. Assume that A is a topological vector space whose dual is A*. Let ®;: A — RU {+oo},
j=0,1,...,k, for some positive integer k. Suppose there exist some (u]-);F:1 and uy := —(uq + - - - + uy) such
that

®](u]) < 0o, jZO,...,k (26)
and @y is upper semicontinuous at ug. Then

k k
5% [Z HE ] — inf [@0 <— Zu]) + Z@)j(uj)] . 27)
= &

Uy,... uy€A j=1

140 For completeness, we provide a proof of this result, which is based on the Hahn-Banach theorem
11 (Theorem 6) and is similar to the proof of [37, Theorem 1.9].

Proof. Let mg be the right side of (27). The < part of (27) follows trivially from the (weak) min-max
inequality since

mo= inf sup {Z@ uj) — Zu] } (28)

ug,..., U €A (e A*

k
> sup inf {Z u] Zu] } (29)

ZGA* ug,...,ux €A

= — inf [Z@* ] (30)

leA*

It remains to prove the > part, and it suffices to assume without loss of generality that 7y > —co. Note
that (26) also implies that 1y < 4-c0. Define convex sets

Ci:={(ur) e AxR: r>0;u)}, j=0,...k (31)
B:={(0,m) € AxR: m <mp}. (32)

Observe that these are nonempty sets because of (26). Also Cy has nonempty interior by the assumption
that ©p is upper semicontinuous at (. Thus, the Minkowski sum

C:=Cy+ ---+C (33)

is a convex set with a nonempty interior. Moreover, CUB = @. By the Hahn-Banach theorem
(Theorem 6), there exists (¢,5) € A* x R such that

k k

sm </ <Z uj> —1—5er. (34)
j=0 j=0

For any m < mg and (uj, rj) €C,j=0,. .., k. From (32) we see (34) can only hold when s > 0.

Moreover, from (26) and the upper semicontinuity of @y at 1y we see the Z;'{:o u; in (34) can take value

in a neighbourhood of 0 € A, hence s # 0. Thus, by dividing s on both sides of (34) and setting

{ + —{/s, we see that

my < inf [—f <i uj> + i ®j(uj)] (35)

Mo,.‘.,ukGA ]:0

k
“[Eerel
]:
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12 which establishes > in (27). O

13 Theorem 6 (Hahn-Banach). Let C and B be convex, nonempty disjoint subsets of a topological vector space A.

1. If the interior of C is non-empty, then there exists { € A*, £ # 0 such that

sup {(u) < inf £(u). (37)

ueB ueC

2. If A is locally convex, B is compact, and C is closed, then there exists { € A* such that

sup {(u) < ingﬁ(u). (38)

ueB ue

14 Remark 3. The assumption in Theorem 6 that C has nonempty interior is only necessary in the infinite
s dimensional case. However, even if A in Theorem 5 is finite dimensional, the assumption in Theorem 5
s that @ is upper semicontinuous at uy is still necessary, because this assumption was not only used in
17 applying Hahn-Banach, but also in concluding that s # 0 in (34).

14s 3. The Entropic-Functional Duality

140 In this section we prove Theorem 1 and some of its generalizations.

1o 3.1. Compact X

151 We first state a duality theorem for the case of compact spaces to streamline the proof. Later we

12 show that the argument can be extended to a particular non-compact case.” Our proof based on the

153 Legendre-Fenchel duality (Theorem 5) was inspired by the proof of the Kantorovich duality in the

« theory of optimal transportation (see [37, Chapter 1], where the idea was credited to Brenier).

185 Recall from Section 2 that a random transformation (a mapping between probability measures)

16 is formally the dual of a conditional expectation operator. Suppose Pyjl x = T]?k, j=1,...,mand
Pyx=5;i=1,...,1L

1

1

Cb(Zl) > 81 51 Ty Cb(yl) > fl
N —
G

Cpy(22)38 52 L () f

P(Zl) B PZ1 ST Tl* P(yﬂ ) Pyl
\ /
P(X) S Py
4/* \*>

Figure 2. Diagrams for Theorem 1.
157
1se  Proof of Theorem 1. We can safely assume d = 0 below without loss of generality (since otherwise

10 we can always substitute p; < exp (%) U1).

9 Theorem 1 is not included in the conference paper [47], but was announced in the conference presentation.
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1)=-2) This is the nontrivial direction which relies on certain (strong) min-max type results. In
Theorem 5, put10

0 u<0;
Qp: Cp(X) — — 39
0: 1 € Gy () { +o0o otherwise. 39
Then,
0 T >0;
5 X = 4
©: 7 € M) = { +o0o  otherwise. (40)
Foreachj=1,...,m,set
. 1
©;(u) := cjinflogy; | exp C—jv (41)
160 where the infimum is over v € C;()) such that u = Tjv; if there is no such v then @;(u) := +o0
161 as a convention. Observe that
162 e ©; is convex: indeed given arbitrary u® and u!, suppose that v° and ! respectively achieve
163 the infimum in (41) for u° and u! (if the infimum is not achievable, the argument still
164 goes through by the approximation and limit argument). Then for any « € [0,1], v* :=
165 (1 — a)vY + av! satisfies u* = Tiv* where u® := (1 — 2)u® + au'. Thus, the convexity of Ch
166 follows from the convexity of the functional in (23);
e Oj(u) > —ocoforany u € Cp('). Otherwise, for any Px and Py, := T Px we have
D(Py ||j) = sup{Py,(0) — log i;(exp(2))} @)
v
= sup{Px(Tjv) —log pj(exp(v))} (43)
v
1
= sup {Px(u) - ‘®j(cju)} (44)
HEC,(X) Cj
= Ho00 (45)
167 which contradicts the assumption that Z}-":l C]'D(Py]. [#;) < oo in the theorem;
168 e From the steps (42)-(44), we see ®]’-‘(7t) = ch(T]-*ﬂH]/tj) for any m € M(X'), where the
160 definition of D(-| ;) is extended using the Donsker-Varadhan formula (that is, it is infinite
170 when the argument is not a probability measure).
Finally, for the given (Pz,)!_,, choose
Zl':l Pz (w;) ifu= Zl-:1 S;w; for some w; € Cp(Z;);
: X ! : ! 4
Om1: 1 € Cp(X) = { +o0 otherwise. (46)
171 Notice that
172 o ©,,41 is convex;

10" n (39), u < 0 means that u is pointwise non-positive.
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e Oy1 is well-defined (that is, the choice of (w;) in (46) is inconsequential). Indeed if (w;)!_,
is such that Zle S;w; = 0, then

1 1
Y Pz(wi) =) i Px(w;) (47)
i=1 i=1
1
=Y Px(Siw;) (48)
i=1
=0, (49)
173 where Py is such that S;Px = Pz, i = 1,...,I, whose existence is guaranteed by the
174 assumption of the theorem. This also shows that ©,, 1 > —oo.
[ ]
041 (1) :=sup{7(u) — Op1(u)} (50)
u
1 1
= sup 7T Z Siwi — Z le.(wi) (51)
wi,---, W] i=1 i=1
1
= sup {ZSZ*N w;) ZPZ w; } (52)
wq,-.- ,‘{U] i

{ 0 lfsiﬂ.’:PZi/ 121/-'-11; (53)

+o00 otherwise.

Invoking Theorem 5 (where the u; in Theorem 5 can be chosen as the constant function u; = 1,
j=1...,m+1):

inf Zc (T7 7| py)

1 20,5 = P

1
=— inf cilo ex +) Pz(w (54)
ol Ty Tyoj+ Xy S0 >0 |J2 : gy]( p( )) 12 “ l]

where v™ denotes the collection of the functions vy, . .., vy, and similarly for w'. Note that the
left side of (54) is exactly the right side of (14). For any € > 0, choose v € ch(y]-),j =1,...,m
and w; € C,(Z;),i =1,...,1such that Z}":l Tiv; + Zle S;w; > 0and

€— Zc log p; (exp (U )) ZPZ w;) inf ZC 7T||,Hj) (55)
¢j

1 >0, S = P

Now invoking (13) with f; := exp ( v]>,] =1,...,mand g; := exp (—bliw,»),i =1,...,I, we
upper bound the left side of (55) by

l / l
€—)_bilogvi(gi) + ) biPz(loggi) < e+ ) b;D(Pz]lvi) (56)
i=1 i=1 i=1
175 where the last step follows by the Donsker-Varadhan formula. Therefore (14) is established since

176 € > 0 is arbitrary.
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2)=1) Since v; is finite and g; is bounded by assumption, we have v;(g;) < o0,i =1,...,I. Moreover
(13) is trivially true when v;(g;) = 0 for some i, so we will assume below that v;(g;) € (0, ) for
each i. Define Pz, by

L= , i=1,...,1 57
dv;  vi(gi) (57)
Then for any € > 0,
Zb log v;(g:) Zb Pz, (loggi) — (PZi||Ui)] (58)
i=1 i=
m
<y ¢iPy;(log f;) + € — ) e;D(Py;l| ;) (59)
= =
m
<e+ ) cilogu;(f;) (60)
j=1

177 where

e (59) uses the Donsker-Varadhan formula, and we have chosen Py, Pyj = T]* Px,j=1,...,m

such that
! m
Y biD(Pzllvi) > ) ¢;D(Py,[luj) — € (61)
i=1 j=1
178 e (60) also follows from the Donsker-Varadhan formula.
179 The result follows since € > 0 can be arbitrary.

180 D

11 Remark 4. Condition iv) in the theorem imposes a rather strong assumption on (S;): for simplicity,
12 consider the case where |X|,|Z;| < co. Then Condition iv) assumes that for any (Pz,), there exists
13 Py such that Pz, = 57 Px. This assumption is certainly satisfied when (S;) are induced by coordinate
1« projections; the case of I = 1 and Py being a reverse erasure channel gives a simple example where
s Pz|x is not a deterministic map.

186 Next we give a generalization of Theorem 1 which alleviates the restriction on (S;):

1z Theorem 7. Theorem 1 continues to hold if Condition iv) therein is weakened to the following:

188 e Forany PX such that D(S; Px||v;) < oo,i=1,...,1, there exists Px such that S} Px = S¥Px for each i
180 and Y 1 ¢;D(T} Px||p;) < oo for each j.

10 and the conclusion of the theorem will be replaced by the equivalence of the following two statements:

1. For any nonnegative continuous functions (g;), (f;) bounded away from 0 and such that

1 m
ZbiSi loggi < ZC]TJIng] (62)
A =
we have

!
inf Hvl &) < exp(d) Hy] (f7)- (63)

(§): iy biSilog&i>Yl_; b;Siloggi i=1
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2. For any (Px) such that D(S/Px||v;) < eco,i=1,...,1,
l
Y biD(S;iPx|lv;)) +d >  inf Zc] (T} Px||p)- (64)
= Px: §;Px=S{Px j=
191 In Appendix A we show that Theorem 7 indeed recovers Theorem 1 for the more restricted class

102 Of random transformations.

Proof. Here we mention the parts of the proof that need to be changed: upon specifying (f;) and (g;)
right after (55), we select (§;) such that

l l
Z biSi logg} > Z biSi loggi (65)
i=1 i=1
l m
Zbi 10g1/i(gi) < ZC] IOg‘M](f]) + €. (66)
i=1 j=1

Then, in lieu of (67), we upper-bound the left side of (55) by
1 ! !
2¢ — Y bilogvi(gi) + ) biPz,(log &) <2e+ Y b;D(Pz|lv) (67)
i=1 i=1 i=1
which establishes the 1)=-2) part. For the other direction, for each i € {1,2,...,1} define

A; = f b;1 (§). 68
l(u) §i>0: blgllogg, Osz(gz) ( )

Then following essentially the same proof as that of ®; in (41), we see that A; is proper convex and

A7 () = BD (Sl )
Moreover let
0 ifu=-Y0bS;logg;
= ’
Apyq(u) { 400 otherwise. 70

Then A}, () = — L b;S; (log g;). Using the Legendre-Fenchel duality we see that for any € > 0,

1
l inf Y bilogvi($:)
(8i): Lizq biSilog §i>Y,i_1 biSiloggii=1

1+1 I+1
= inf {@0 (— Zul) + ZAi(ui)} (71)
" i=1 i=1

1w U141
141
=sup{—2®:f<n>} (72)
s i=0
141
= sup {— Z G)l*(n)} (73)
>0 i=1
I !
= sup {Ebisfﬂ(loggi) - sz‘D(S?”HVz‘)} (74)
>0 (i=1 i=1
! I
< Y b:S;Px(loggi) — Y b;D(S;Px||vi) +€ (75)

i=1 i=1
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1 ~
< ). ¢T Px(log f;) — Zc] (T; Px|u;) +2e (76)
=1
m
<2+ ) ¢logpi(fy) (77)
j=1
103 Where
104 o To see (75) we note that the sup in (74) can be restricted to 7t which is a probability measure, since
105 otherwise the relative entropy terms in (74) are +co by its definition via the Donsker-Varadhan
106 formula. Then we select Px such that (75) holds.
e In (76), we have chosen Px such that
SiPx =S'Px, 1<i<l; (78)
1 m .
LbD(S{Px) > L eiD(T7 Ply) =, (79)
i=1 j=1
107 and then applied the assumption (62). The result follows since € > 0 can be arbitrary.

198 D

1o Remark 5. The infimum in (14) is in fact achievable: For any (Pz,), there exists a Px that minimizes
200 Z}”:l c]'D(Py].Hyj) subject to the constraints S Px = Pz, i = 1,...m, where Py, = T]-*PX,]' =1,...,m
201 Indeed, since the singleton {Pz, } is weak*-closed and S} is weak*-continuous!!, the set Nk, (S¥)71py,
202 is weak*-closed in M (X); hence its intersection with P(X') is weak*-compact in P(X’), because
20s  P(X) is weak*-compact by (a simple version for the setting of a compact underlying space X" of)
200 the Prokhorov theorem [54]. Moreover, by the weak*-lower semicontinuity of D(-||;) (easily seen
20s from the variational formula/Donsker-Varadhan formula of the relative entropy, cf. [55]) and the
200 weak”-continuity of T, j = 1,...,m, we see that X ch(Tj* Px||p;) is weak*-lower semicontinuous
207 in Px, and hence the existence of a minimizing Py is established.

20s  Remark 6. Abusing the terminology from min-max theory, Theorem 1 may be interpreted as a “strong
200 duality” result which establishes the equivalence of two optimization problems. The 1)=-2) part is the
20 non-trivial direction which requires regularity on the spaces. In contrast, the 2)=-1) direction can be
2 thought of as a “weak duality” which establishes only a partial relation but holds for more general
212 spaces.

23 3.2. Noncompact X

214 Our proof of 1)=-2) in Theorem 1 makes use of the Hahn-Banach theorem, and hence relies
x5 crucially on the fact that the measure space is the dual of the function space. Naively, one might want to
216 extend the the proof to the case of locally compact X by considering Co(X) instead of C,(X'), so that the
a1z dual space is still M (X). However, this would not work: consider the case when X = Z;x,..., x Z;
21e and each S; is the canonical map. Then ®,,1(u) as defined in (46) is +oo unless u = 0 (because
20 1 € Co(X') requires that u vanishes at infinity), thus ©;,,; = 0. Luckily, we can still work with
220 Cy(X); in this case ¢ € C,(X)* may not be a measure, but we can decompose it into £ = 7t + R where
a1 7T € M(X) and R is a linear functional “supported at infinity”. Below we use the techniques in [37,
222 Chapter 1.3] to prove a particular extension of Theorem 1 to a non-compact case.

11 Generally, if T: A — B is a continuous map between two topologically vector spaces, then T*: B* — A* is a weak"

continuous map between the dual spaces. Indeed, if y, — y is a weak*-convergent subsequence in B*, meaning y, (b) — y(b)
for any b € B, then we must have T*y,,(a) = y,(Ta) — y(Ta) = T*y(a) for any a € A, meaning that T*y, converges to T*y
in the weak™ topology.
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223 Theorem 8. Theorem 1 still holds if

224 o The assumption that X is a compact metric space is relaxed to the assumption that it is a locally compact
225 and o-compact Polish space;
226 e X = Hi’:l Ziand S;: Cp(Z;) — Cp(X),i=1,...,1 are canonical maps (see Definition 2).

Proof. The proof of the “weak duality” part 2)=-1) still works in the noncompact case, so we only
need to explain what changes need to be made in the proof of 1)=>2) part. Let ©g be defined as before,
in (39). Then for any ¢ € Cp(X)*,

(€)= sup £(u) (30)

u<0

22z which is 0 if £ is nonnegative (in the sense that /(1) > 0 for every u > 0), and +oo otherwise. This
22 means that when computing the infimum on the left side of (27), we only need to take into account of
220 those nonnegative /.

Next, let ©,,,1 be also defined as before. Then directly from the definition we have

RIOE { 0 iU Siwi) = LiPz(wp), Vwi € (2, i=1,...1 (81)

+o0 otherwise.

For any ¢ € C;(X). Generally, the condition in the first line of (81) does not imply that £ is a measure.
However, if £ is also nonnegative, then using a technical result in [37, Lemma 1.25] we can further
simplify:

0 iffeM(X)andS{ =Py, i=1,...,1

82
+oc0 otherwise. (82)

®;*n+1 (6) = {

230 This further shows that when we compute the left side of (27) the infimum can be taken over ¢ which
ann is a coupling of (Pz,). In particular, if £ is a probability measure, then Sh (0) = c]-D(T].*€ |[147) still holds
232 with the Ch defined in (41), j = 1, ..., m. Thus the rest of the proof can proceed as before. [

233 Remark 7. The second assumption is made in order to achieve (82) in the proof.

23a 4. Gaussian Optimality

235 Recall that the conventional Brascamp-Lieb inequality and its reverse ((1) and (2)) state that
236 centered Gaussian functions exhaust such inequalities, and in particular, verifying those inequalities is
237 reduced to a finite dimensional optimization problem (only the covariance matrices in these Gaussian
23e  functions are to be optimized). In this section we show that similar results hold for the forward-reverse
239 Brascamp-Lieb inequality as well. Our proof uses the rotational invariance argument mentioned in
2a0  Section 1. Since the forward-reverse Brascamp-Lieb inequality has dual representations (Theorem 8),
=2a1 in principle, the rotational invariance argument can be applied either to the functional representation
22 (as in Lieb’s paper [29]) or the entropic representation (as in Geng-Nair [45]). Here, we adopt the latter
2es  approach. We first consider a certain “non-degenerate” case where the existence of an extremizer is
2as  guaranteed. Then, Gaussian optimality in the general case follows by a limiting argument (Appendix F),
2es  establishing Theorem 2 and Theorem 3.

2a6  4.1. Non-Degenerate Forward Channels

247 This subsection focuses on the following case:
a8 Assumption 1. e Fix Lebesgue measures ( ]/tj)]'-”:l and Gaussian measures (v;)!_; on R;
240 e non-degenerate (Definition 3 below) linear Gaussian random transformation (PY],‘X)]'.”:l (where

250 X := (Xy,..., X)) associated with conditional expectation operators (T]);":l,
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251 e (S;)l_ are induced by coordinate projections;
252 e positive (c;) and (b;).
253 Definition 3. We say (Qy,|x, - - - Qym‘x) is non-degenerate if each QY],|X:0 is an nj-dimensional Gaussian

254 distribution with invertible covariance matrix.

Given Borel measures Py, on R, i =1,...,/, define
1
Fo( mfZC] (Py;llnj) — Y b:D(Px, |[vi) (83)
i=1

255 where the infimum is over Borel measures Px that has (Py, ) as marginals. Note that (83) is well-defined
26 since the first term cannot be 400 under the non-degenerate assumption, and the second term cannot
27 be —co. The aim of this subsection is to prove the following:

2ss  Theorem 9. sup p, ) ((PX )), Where the supremum is over Borel measures Px, on R, i = 1,...,1, is achieved

20 by some Gaussian (PX )1 1, in which case the infimum in (83) is achieved by some Gaussian Px.

260 Naturally, one would expect that Gaussian optimality can be established when ()7, and (i),
201 are either Gaussian or Lebesgue. We made the assumption that the former is Lebesgue and the latter is
22 Gaussian so that certain technical conditions can be justified more easily. More precisely, the following
263 Observation shows that we can regularize the distributions by a second moment constraint for free:

Proposition 10. supp, y Fo((Px,)) is finite and there exist 0? € (0,00),i=1,...,1such that it equals

sup Fo((Px;)). (84)
(Px,): E[X}]<o?

2a  Proof. when y; is Lebesgue and Pyx is non-degenerate, D(Pyj ) = —h(Py].) < —h(Py]. [X) is
2es  bounded above (in terms of the variance of additive noise of Py,x). Moreover, D(Px,||vi) > 0 when v;
2 is Gaussian, so sup Py,) Fo((Px,)) < co. Further, choosing (Px,) = (v;) and using the covariance matrix
27 to lower bound the first term in (83) shows that sup, Py.) Fy((Px,)) > —oo.

To see (84), notice that

D(Px,|lvi) = D(Px[|v{) + E[t,),, (X)] (85)
= D(Px,|lv;) + D(v{||v) (86)
> D(vj|lv;) (87)

e Where v/ is a Gaussian distribution with the same first and second moments as X; ~ Px,. Thus
20 D(Px,||v;) is bounded below by some function of the second moment of X; which tends to oo as the
270 second moment of X; tends to co. Moreover, as argued in the preceding paragraph the first term in
xn (83) is bounded above by some constant depending only on (me). Thus, we can choose 07 > 0,
an i = 1,...,1 large enough such that if E[X?] > o7 for some of i then Fy((Pyx,)) < sup(p, y Fo((Px,)),
213 irrespective of the choices of Px,, ..., Px,_,, Px; l
27 proposition. [

Px,. Then these 07, ..., 07 are as desired in the

i—17 i+17 "7

275 The non-degenerate assumption ensures that the supremum is achieved:

ze  Proposition 11. Under Assumption 1,

277 1. Forany (Px,)!_,, the infimum in (83) is attained by some Borel Px.
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2

3

s 2. If (PY | Xz) " | are non-degenerate (Definition 3), then the supremum in (84) is achieved by some Borel
2790 (Px,)!_,.

280 The proof of Proposition 11 is given in Section E. After taking care of the existence of the
21 extremizers, we get into the tensorization properties which are the crux of the proof:

Lemma 12. Fix (PX(1>), (PX@), (1j), (T;), (cj) € [0,00)™, and let S; be induced by coordinate projections.

i

Then
> RESIPY
inf ¢iD(P_ ) ||u¥?) = ¢ inf D(P o lnj)  (88)
j (12) ||H j Con (t) ‘M]
Pyaa): S;FMPX(M) :PX,<1) prgz) j=1 Yj ! t=12j=1 Pxn 5iPon= X,gt) Y
where for each j,
P g = T]*®2PX(1,2) (89)
j
on the left side and
P = TPy (90)

202 ON the right side, t = 1,2.

Proof. We only need to prove the nontrivial > part. For any Py 12 on the left side, choose Py on the
right side by marginalization. Then

1 2
D(Pyoa 1) = ZD(Pys Iy) = 1075y 91)
>0 92)
203 foreachj. 0O

284 We are now ready to show the main result of this section.

Proof of Theorem 9. 1. Assume that (P, (1)) and (P, ) are maximizers of Fy (possibly equal). Let
P 12 = PX.(l) X PX(Z). Define

Xl" i i
1
+.— (x4 x@),
Xt : ﬁ(x +X®); (93)
1
= (x(H) _x®@
X = (x X ) . (94)
285 Define (Y*) and (Y;") analogously. Then YJF|{XJr =xT, X" =x"}n~ Qyx=x" is independent
286 of x~ and Y, Xt =x", X" =x"}~ Qv;jx=x- is independent of xT.

2. Next we perform the same algebraic expansmn as in the proof of tensorization:

2 1
ZF°<<PX‘”> )Z oy L ciD(Pyaa [115%) = L biD(Pyoa [v72) - (99)
t=1 t - i -

. . Q*®2 —
i=1 Px(llz) N S] PX(LZ) _PXQLZ) ]
]

= Jnf Y ¢iD(Py+y- ||H}82) — Y b:D(Pys - |v?)
Pyx—: 57 Pex==Pyry— s i P
]

(96)
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< _ni Y6 [DCPy )+ DB el
PX+X7 S PX+X’7 X]er, j ] ]
L [D(Pye[vi) + D(Py 1Py | 97)
< oy [ DO )+ DU P )
L |D(Py[lvi) + D(P; |X+|\VZ\PX+>} (98)

po( ) /PO( - \x+ )dP,*(+ (99)
< ZFO (( >1> (100)

207 where
288 e (95) uses Lemma 12.
280 e (97) is because of the Markov chain Y;" — X* — Y, (for any coupling).
e In (98) we selected a particular instance of couphﬁg Py+x-, constructed as follows: first we

select an optimal coupling Py~ for given marginals ( +). Then, for any x* = (x;7)!_,, let

Px- |x+—x+ be an optimal coupling of (P XX =x ) Wlth this construction, it is apparent
that X" — X — X~ and hence

D(Py- [l Py ) = D(Py- s il Px-). (101)
200 o (99) is because in the above we have constructed the coupling optimally.
201 e (100) is because (P)((tl )) maximizes Fy, t = 1,2.

3. Thus in the expansions above, equalities are attained throughout. Using the differentiation
technique as in the case of forward inequality, for almost all (b;), (c;), we have

D(PX;\XI.*HV”PXI,*) = D(PXZ.*”Vi) (102)
= D(Px|[vi), Vi (103)
202 where (103) is because by symmetry we can perform the algebraic expansions in a different way to
203 show that (Py- ) is also a maximizer of Fy. Then I(X;"; X;") = D(Py- xi Vil Px+) = D(Py-|lvi) =
204 0, which, combined with I (Xl.(l); Xl.(z)), shows that XZ.(l) and Xl-(z) are Gaussian with the same
205 covariance. Lastly, using Lemma 12 and the doubling trick one can show that the optimal
296 coupling is also Gaussian.
297 D

208 4.2. A Geometric Forward-Reverse Brascamp-Lieb Inequality

299 In this section we give a sketch of the proof of Theorem 3 which is simple but certain ‘technicalities”
s0 are not justified. A detailed proof is deferred to Appendix F.

Proof Sketch for Theorem 3. By duality (Theorem 8) it suffices to prove the corresponding entropic
inequality. The Gaussian optimality result in Theorem 9 assumed Gaussian reference measures on
the output and non-degenerate forward channels in order to simplify the proof of the existence of

12 For a justification that we can select optimal coupling Px-|x+—x+ in a way that Px-|x+ is indeed a regular conditional
probability distribution, see [7].
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minimizers; however, supposing that Gaussian optimality extends beyond those technical conditions,
then we see that it suffices to prove that for any centered Gaussian (Py,),

1 !
h(Px,) < sup ) h(Py) (104)
=1 Px] ]:l

where the supremum is over Gaussian Py, with the marginals Px,,..., P, and Y; := 2521 m;;iX;. Let
a; := E[X?] and choose Py; = H£:1 Px,, we see (104) holds if

1 1 1
Zlogai < Zlog <Zm]2-iai>, Va; >0,i=1,...,1, (105)
i=1 =1 i=1

1
where (a;) are the eigenvalues and (Zle m ﬁai) _, are the diagonal entries of the matrix
i=

Mdiag(a;)<i< /M. (106)

1 Therefore (105) holds. [

3

o

302 5. Relation to Hypercontractivity and Its Reverses

303 As alluded before and illustrated by Figure 1, the forward-reverse Brascamp-Lieb inequality
;s generalizes several other inequalities from functional analysis and information theory; A more
;s complete discussion on these relationships can be found in [7]. In this section, we focus on
s0s hypercontractivity, and show how its three cases all follow from Theorem 1. Among these, the
307 case in Section 5.3 can be regarded as an instance of the forward-reverse inequality that cannot be
s0s  reduced to either the forward or the reverse inequality alone. It is also interesting to note that, from
;00 the viewpoint of the forward-reverse Brascamp-Lieb inequality, in each of the three special cases there
a0 ought to be three functions involved in the functional formulation; but the optimal choice of one
su  function can be computed from the other two. Therefore the conventional functional formulations
sz Of the three cases of hypercontractivity involve only two functions, making it non-obvious to find a
a3 unifying inequality.

s 5.1. Hypercontractivity

T*
N . P()
P(21) «—— P x I2)
TP

Figure 3. Diagram for hypercontractivity

Fix a joint probability distribution Qy,y, and nonnegative continuous functions F; and F, on )
and ), respectively, both bounded away from 0. In Theorem 1, take | <— 1, m <= 2,b; < 1,d < 0,
1 1
fi < E', fo < F2,v1 < Qyiy,, 1 < Qyys M2 < Qy,. Also, put Z; = X = (Y1, Y,), and let T and T,
be the canonical maps (Definition 2). The constraint (12) translates to

1y, v2) < B(1)R(y2), Yy, y2 (107)
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and the optimal choice of g7 is when the equality is achieved. We thus obtain the equivalence between'3
1 1
|Fill L[R2l 2 = E[Fi(Y1)E(Y2)], VF € L9 (Qy,), , € L2(Qy,) (108)
‘1 €2

and

VPy,y,, D(Py,v,||Qy,y,) > c1D(Py,||Qy,) + c2D(Py,||Qy, ). (109)

a5 This equivalence can also be obtained from Theorem 1. By Holder’s inequality, (108) is equivalent to

a6 saying that the norm of the linear operator sending F; € L% (Qy,) o E[Fi(V1)|Y2 =] € Lﬁ (Qv,)
sz does not exceed 1. The interesting case is 1= 5 > %, hence the name hypercontractivity. The equivalent
a1 formulation of hypercontractivity was shown in [41] using a different proof via the method of
a0 types/typicality, which requires that | )], |)z| < co. In contrast, the proof based on the nonnegativity
;20 Of relative entropy removes this constraint, allowing one to prove Nelson’s Gaussian hypercontractivity

sz2 from the information-theoretic formulation (see [7]).

22 5.2. Reverse Hypercontractivity (Positive Parameters'*)

P(21) i N
P(Zl X Zz) —> 73(371)
P(Z) 55

Figure 4. Diagram for reverse hypercontractivity

Let Qz,7, be a given joint probability distribution, and let G and G; be nonnegative functions on
Z1 and 2Z;, respectively, both bounded away from 0. In Theorem 1, take l <— 2, m <—1,¢1 <~ 1,d <0,
1 1

g1 GF,gz — GZ}Tz, H1 < Qz,7,,v1 < Qz,,v2 < Qgz,. Also,put Y1 = X = (Z1,7Z3), and let S; and
S, be the canonical maps (Definition 2). Note that the constraint (12) translates to

fi(z1,22) > G1(21)Ga(z2), V21,22 (110)
and the equality case yields the optimal choice of f; for (13). By Theorem 1 we thus obtain the
equivalence between

||G1H%”G2H% <E[G1(Z1)Ga(Z2)], YG1, Gy (111)
and
VPz,,Pz,, 3Pz,7,, D(Pz,2,|Qz,2z,) < b1D(Pz,||Qz,) + b2D(Pz,[|Qz,)- (112)

s Note that in this setup, if Z; and Z, are finite, then Condition iv) in Theorem 1 is equivalent to
20 Qz,7, < Qz, X Qz,. The equivalent formulations of reverse hypercontractivity were observed in [56],
s2s where the proof is based on the method of types.

13 By a standard dense-subspace argument, we see that it is inconsequential that F; and F, in (108) are not assumed to be

continuous nor bounded away from zero. It is also easy to see that the nonnegativity of F; and F is inconsequential for
(108).

14 By “positive parameters” we mean the b; and by in (112) are positive.
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s26  5.3. Reverse Hypercontractivity (One Negative Parameter'>)

P(21) — P(Z21 x Ya)
TP

Figure 5. Diagram for reverse hypercontractivity with one negative parameter

In Theorem 1, take I «— 1, m < 2,¢c1 < 1,d < 0. Let Y; = X = (Z1,Y>), and let S and T, be
the canonical maps (Definition 2). Suppose that Q7,y, is a given joint probability distribution, and
set u1 < Qz,v,, V1 < Qz,, #2 < Qy, in Theorem 1. Suppose that F and G be arbitrary nonnegative

1
continuous functions on ), and 21, respectively, which are bounded away from 0. Take g1 < G,

_1
f2 <= F ©.in Theorem 1. The constraint (12) translates to

fizi,y2) > G(z1)F(y2),  Vz1,42. (113)

Note that (13) translates to
_1
IGII L < Quoz, (A)QR(F 2) (114)
1

for all F, G, and f; satisfying (113). It suffices to verify (114) for the optimal choice f; = GF, so (114) is
reduced to

IFl 1[Gl < E[F(Y2)G(Z1)],  VF,G. (115)
2 1

By Theorem 1, (115) is equivalent to

VPz,, 3Pzy,, D(Pzy,|Qzy,) < b1D(Pz||Qz,) + (—c2)D(Py,||Qy,)- (116)

s27  Inequality (115) is called reverse hypercontractivity with a negative parameter in [42], where the
s entropic version (116) is established for |Z1],[),| < co using the method of types. Multiterminal
s20  extensions of (115) and (116) (called reverse Brascamp-Lieb type inequality with negative parameters
330 in [42]) can also be recovered from Theorem 1 in the same fashion, i.e., we move all negative parameters
sa1  to the other side of the inequality so that all parameters become positive.

332 In summary, from the viewpoint of Theorem 1, the results in Section 5.1,5.2 and 5.3 are degenerate
s33 special cases, in the sense that in any of the three cases the optimal choice of one of the functions in (13)
;3¢ can be explicitly expressed in terms of the other functions, hence this “hidden function” disappears in
a5 (108), (111) or (115).
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s Appendix A. Recovering Theorem 1 from Theorem 7 as a Special Case

Assume that Py — (Pz,) is surjective. Let 1z, denote the constant 1 function on Z;. Define
1
C:= (wi): w; € Cb(Zi)/ Zi?fwi(zi) >0, (Al)
i=1 7

which is a closed convex cone in Cy(27) x - -+ x Cy(Z)). Given (g;) we show that 25:1 b;S;log &; >
2521 b;S;log g; implies
(bilog & — bilog 81)iy € C. (A2)

Indeed, we can verify that the dual cone

l
C*:= {(71’1'): Zm(wi) >0, V(ZUZ) S C} (A3)
i=1
:{/\(PZV“-;PZ,):)\EO}- (A4)

Under the surjectivity assumption, we see

I
Z ni(bi 10gg~i — b loggl) >0, V(T[i) e C. (A5)
i=1

Now if (A2) is not true, by the Hahn-Banach theorem (Theorem 6) we find 77; € M(Z;),i=1,...,1
such that

—

I
Y mi(bilog g — bilog g;) < ( inf Y 7;(w;) (A6)

i=1 wi)el j—1

s so right side of (A6) is not —co. Since C is a cone containing the origin, the right side of (A6) hence
sas  must be nonnegative, and we conclude that (77;) € C*. But then (A6) contradicts (A5).

sz Appendix B. Existence of Weakly Convergent Couplings

sas  Lemma 13. Suppose that for each i = 1,...,1, Px, is a Borel measure on R and P)(:) converges weakly to
sa0  some absolutely continuous (with respective to the Lebesgue measure) Py, as n — oo, If Px is a coupling of
0 (Px,)1<i<1, then, upon extraction of a subsequence, there exist couplings P)((n) for (P)(g) )1<i<1 which converge
1 weakly to Px as n — oo.

Proof. For each integer k > 1, define the random variable Wl.[k]
the following “dyadic quantization function”:

= ¢r(X;) where ¢p: R — RU {e} is

|2kx|  |x| <k x¢27%Z;
: A7
Pz x> { e otherwise, (A7)
and let WK .= (Wl.[k] )!_,. Denote by WK = {2k, .. k2k —1,e} the set from which Wl.[k] takes

values. Note that since Py, is assumed to be absolutely continuous, the set of “dyadic points” has
measure Zero:

Pxi<U2kZ> =0, i=1,...,1L (A8)

k=1
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Since P)(g:) — Px, weakly and the assumption in the preceding paragraph precluded any positive

mass on the quantization boundaries under Px,, for each k > 1 there exists some 1 := ny large enough
such that

n 1
P ) = (1= ) By (o) (A9)

i i

P(")

!
Wiy compatible with the <Px&]) induced by

i=1

for each i and w € WIK. Now define a coupling
(! .
(PX]_ )i:l' as follows:
P (1= 1) p K TT (P - (1= 1) p Al
wih =\ LT ) Pwi q whk T\ T ) P ) (A10)
i= i !
Observe that (A10) is a well-defined probability measure because of (A9), and indeed has marginals

1
(Px[)k] ) . Moreover, by the triangle inequality we have the following bound on the total variation
i/ i=1

1

distance
2
R~ ] <2 a
Next, construct!® P)(("):
P(n) (wl) i
(n) ._ W (n)
Pl = Y TRy (A12)

n
w! €WK x5 WK ngl PIEV&] (w;) i=1

i

Observe that P)((n) defined in (A12) is compatible with the Px[)k] defined in (A10), and indeed has
marginals (P}(g))f:l. Since n := ny can be made increasing in k, we have constructed the desired
sequence (P)(("" ) )¢, converging weakly to Px. Indeed, for any bounded open dyadic cube'” A, using
(A11) and the assumption (A8), we conclude

111?11nfp§”k)(A) > Py(A). (A13)
—00

2 Moreover, since bounded open dyadic cubes form a countable basis of the topology in R/, we see
sz (A13) actually holds for any open set A (by writing A as a countable union of dyadic cubes, using the
s« continuity of measure to pass to a finite disjoint union, and then apply (A13)), as desired. [

s Appendix C. Upper Semicontinuity of the Infimum

356 The following is a consequence of Lemma 13.

16 We use P| 4 to denote the restriction of a probability measure P on measurable set A, that is, P| 4(B) := P(AN B) for any
measurable B.
17" That is, a cube whose corners have coordinates being multiples of 2~ where k is some integer.
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Corollary 14. Consider non-degenerate (Py].'x). Foreachn>1,i=1,...,], P)(gl_l) is a Borel measure on R,

whose second moment is bounded by o> < co. Assume that P)(:) converges to some absolutely continuous Py,
for each i. Then

lim sup in Zc (T; Pxllu)) < in Zc (T; Pxllu))- (A14)
n—yoo szpxp PSP—x]f

Proof. By passing to a convergent subsequence, we may assume that the limit on the left side of (A14)
exists. For any coupling Py of (P* ), by invoking Lemma 13 and passing to a subsequence, we find a

sequence of couplings Py " ) of (Py ( )) that converges weakly to Pg. It is known that under a moment
constraint, the differentlal entropy of the output distribution of a non-degenerate Gaussian channel
enjoys weak continuity in the input distribution (see e.g. [45, Proposition 18], [57, Theorem 7], or [58,
Theorem 1, Theorem 2]). Thus

m
Tim Y ;D(TF Y [yj) = Zc (T} Px 1)) (A15)
=1

sz and (A14) follows since Py was arbitrarily chosen. [

s Appendix D. Weak Semicontinuity of Differential Entropy under a Moment Constraint

Lemma 15. Suppose (Px,) is a sequence of distributions on R converging weakly to Px+, and

EX,X,] < T (A16)
n
for all n. Then
limsup h(Xy,) < h(X¥). (A17)
n—oo

3o Remark 8. The result fails without the condition (A16). Also, related results when the weak convergence
se0  is replaced with pointwise convergence of density functions and certain additional constraints was
ses shown in [58, Theorem 1, Theorem 2] (see also the proof of [45, Theorem 5]). Those results are not
2 applicable here since the density functions of X, do not converge pointwise. They are applicable for
363 the problems discussed in [45] because the density functions of the output of the Gaussian random
ses transformation enjoy many nice properties due to the smoothing effect of the “good kernel”.

Proof. It is well known that in metric spaces and for probability measures, the relative entropy is
weakly lower semicontinuous (cf. [55]). This fact and a scaling argument immediately show that, for
any r > 0,

limsup h(Xp[[[Xu || < 7) < ROX*[[|X*]| < 7). (A18)
n—00

Let pu(r) := P[||Xy|| > 7], then (A16) implies

EXXT ([ X > 7] < L. (A19)

pu(r)
Therefore, since the Gaussian distribution maximizes differential entropy given a second moment
upper bound, we have

1 27)e|%
Bl [ Xell > 1) < 2 log ZTEEL

> e (A20)
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Since lim,_,0 sup,, pu(r) = 0 by (A16) and Chebyshev’s inequality, (A20) implies that
lim sup py (r)h(Xa|[Xa || > ) = 0. (A21)
n
The desired result follows from (A18), (A21) and the fact that
h(Xu) = pn (X[ Xnl| > 7) 4 (1= pu (1)) X[ [ X || < 7) + h(pa(r))- (A22)
365 D
s Appendix E. Proof of Proposition 11
1. For any € > 0, by the continuity of measure there exists K > 0 such that
PXi([—K,K])Zlf% i=1,...1 (A23)
By the union bound,
Px([-KK") >1—e (A24)
wherever Py is a coupling of (PXI,). Now let P)(("), n=1,2,... be asuch that
m (n) m
lim ) ¢;D(Py"||uj) = inf ) ¢;D(Py ||p;) (A25)
n—o0 = j Px =1 ]

where Py, := Tj* Px,j=1,...,m. The sequence (P)((n)) is tight by (A24), Thus invoking Prokhorov
theorem and by passing to a subsequence, we may assume that (P)((n)) converges weakly to some

Pg. Therefore P}(,:_Z) converges to Pl*/]- weakly, and by the semicontinuity property in Lemma 15 we

have
m m (n)
Y- iD(Py 1) < Jim, Y0Py ) (A26)
= =
367 establishing that Py is an infimizer.

2. Suppose (P)((:l))lgigl,nzl is such that E[Xlz] < 0'1-2, X; ~ P)({’:), where (0;) is as in Proposition 10
and

lim Fo (PY)1) = sup Ro((Px)ly). (A27)

(Px,): Ex, =0}

The regularization on the covariance implies that for each i, (P}(('l_l) )n>1 is a tight sequence. Thus

upon the extraction of subsequences, we may assume that for each i, (P)((’:))nzl converges to
some Pg . We have the moment bound

E[X?] = Jim E[min{X? K} (A28)
= lim E[min{(X")2, K}] (A29)

< o? (A30)
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where X; ~ P} and Xl.(n) ~ P)((':). Then by Lemma 15,
Y biD(P,[[v;) < lim Y~ biD(P [v7) (A31)

i i

Under the covariance regularization and the non-degenerateness assumption, we showed in
Proposition 10 that the value of (84) cannot be +co or —oo. This implies that we can assume (by

passing to a subsequence) that P)(g;) < A, i=1,...,1since otherwise F((Px;)) = —oo. Moreover,

since (Z]‘ ch(P (n) | ])) is bounded above under the non-degenerateness assumption, the

sequence (Zl b; D(P ||1/Z)) o must also be bounded from above, which implies, using (A31),
that -

Y bD(Pg |lvi) < co. (A32)
i

In particular, we have P} < A for each i. Now Corollary 14 shows that

e 51%f p Zc] (T Pxlluj) >nl§%o S*‘PX Zc] (T} Pxlluj) (A33)
368 Thus (A31) and (A33) show that (P;(i) is in fact a maximizer.

o Appendix F. Gaussian Optimality in Degenerate Cases: A Limiting Argument

sro  Appendix F.1. Proof of Theorem 3

The proof will be based on Theorem 9, which assumes non-degenerate forward channels and
Gaussian measures on the output of the reverse channels. To that end, we will adopt an approximation
argument. For each j = 1,..., [, defined the linear operator Tje by

(Tffp)(xl,...,xl) =FE (A34)

I
¢ (Z mjix; + Ne)

i=1

s for any measurable function ¢ on R, where N ~ N(0,¢). Let v1 := N (0, e~ 1), and note that the

sz density of 2?”7 1 converges pointwise to that of the Lebesgue measure.

Lemma 16. For any € > 0, let (T]e) be defined as in (A34). Then for any Borel Px, < A, i=1,...,1,
I 27T . d €%
ZD(PX ||fyl flog— > inf =) W(TF Pyr) ¢ (A35)
=X j=1

Proof. By Theorem 9, it suffices to prove (A35) when Py, is Gaussian, and from (A35) it is easy to see
that it suffices to prove the case of centered Gaussian. Let Px, = N(0,a;),i=1,...,1. We can upper
bound the right side of (A35) by taking Py; = Px, X Py, instead of the infimum, so it suffices to prove
that

1 1 1 1 1 1
g Z -3, Z 0ga; > —5 ) log (Z m]%-a,- +e> (A36)
iz =1 i=1

sz foranye€,aq,...,a; € (0,00). This is implied by the € = 0 case, which we proved in (105). [
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374 By the duality of the forward-reverse Brascamp-Lieb inequality (Theorem 8)'®, we conclude from

s7s  Lemma 16 that

Lemma 17. For any € > 0 and nonnegative continuous (f;), (g;) satisfying

1 1
Y log g (x:) 2 Tflog f;) ('), vil € R, (A37)
i=1 =1

we have

(%) : ﬁ [ sidrs < Ij [ fixax. (A38)

Now suppose that Theorem 3 is not true; then there are nonnegative continuous (f;) and (g;)
satisfying (17) while

l l
H/gi(x)dx > H/f]-(x)dx, (A39)
i=1 i=1
By the standard approximation argument, we can assume, without loss of generality, that

Qi(x) =0, Vx:|x|>R1<i<I; (A40)
filx) =6, vi<j<l, (A41)

for some R sufficiently large and 6 > 0 sufficiently small. Note that for any x' € [-R, R}/,
2 mjx; € [—VIR,VIR]. (A42)

Since log f; is uniformly continuous on [~2VIR,2VIR] for each j and since we assumed (A41), we
have

lim  inf {Zli(Tf log f;) (x’) - Zl;(T].O log f;) (xl>} > 0. (A43)

€0 xle[—R,R]! i= =1
But since we assumed (17) and (A40), we must also have
limye >0 (A44)
e—0

where

1 1
e := inf {Z Telogf] ( ) Z og gi(x; } (A45)

xleR! ]=1

18 Although we stated Theorem 8 for finite reference measures (y ), we see from the proof that the relatively easy direction

“entropic=functional” does not need this assumption. Moreover the assumption in Theorem 1 that (f;) and (g;) are bounded
away from 0 was made to ensure that log f; and log g; are bounded functions so that the conditional expectation operators
as defined in Section 2 can be applied to them. But this assumption can be dispensed with when some specific conditional
expectation operators can be applied to noncontinuous functions, as is the case of Lemma 17.
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Put
81 = exp(ne)81, (A46)
Fi=g, i=1,..,1L (A47)

Then (§f) and (f;) satisfy the constraint (A37) for any € > 0. By applying the monotone convergence
theorem and then Lemma 17,

—

l _(2m\ 2 B
H/gi(xi)dxi < lim <€> H/gidfyl (A48)
I
<J1 / fi(x)dx (A49)
i=1

s7e ' which violates the hypothesis (A39), as desired.

sz Appendix F.2. Proof of Theorem 2

The limiting argument can be extended to the vector case to prove Theorem 2. Specifically, for
eachj = 1,...,m, define T]? the same as (A34) except that Ne ~ N(0,€l), where I is the identity

matrix whose dimension is clear from the context (equal to dim(E/) here), and let P\€(<|X1 X, be the
i1Xq..

27
€

pointwise to that of 19, defined as the Lebesgue measure on E;. Define

1 dim(E:
dual operator. Foreachi =1,...,1, letv§ := ( ) 2 dim(E;) - N(0,e7T), whose density convergences

! m
d° :=sup {2 bilog v (gi) — 2 ¢j log/f]} (A50)
i=1 j=1

where the supremum is over nonnegative continuous functions f, ..., fis and g1, . .., g such that the
summands in (A50) are finite and

1 m
Zb,-loggi(xi) < ZC]-(Tjelogfj)(xb...,xl), VX1, ..., X]. (A51)
i=1 =1

The same limiting argument (A39)-(A49) extended to the vector case shows that

d° < 11?01 de. (A52)
€.

Next, define F§(-) for (y;), (vf) and Py similarly to (83). The entropic=-functional argument

Y |Xq.. X7
(see Footnote 18) shows that

d® < sup Fj(Px,...,Px). (A53)

Pxy Py,

But Theorem 9 based on the rotational invariance of the Gaussian measure can be extended to the
vector case, so for any € > 0,

sup PS(PXV ey PXI) = sup PS(PXV ey PXI)’ (A54)
le ,...,le le ,...,le c.G.
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where c.G. means that the supremum on the right side is over centered Gaussian measures. The fact
that centered distributions exhaust the supremum follows easily from the definition of Fy. Moreover,
from the definitions it is easy to see that Fj is monotonically decreasing in €, and in particular

sup  E§(Px,...,Px) < sup  F§(Px,....Px). (A55)
le ,...,le c.G. le ,...,le c.G.

To finish the proof with the above chain of inequalities, it only remains to show that the right side
of (A55) equals to the supremum in (A50) with (f;) (g;) taken over center Gaussian functions. This
follows by similar steps as the proof of the functional=-entropic part of Theorem 1. We briefly mention
how the idea works: suppose A is the linear space defined as the Cartesian product of R and the set of
n x n symmetric matrices. Let A(-) be the convex functional on A defined by

A(r,M) :=1n / exp, (r + xTMx) dx (A56)
n _1 _ <
:{r+zln7r > In| —M]| M_Q, (A57)
+oo otherwise.
The dual space of A is itself, and A* is given by
A*(s,H) = sup {sr+Tr(H'M) — A(r,M)}. (A58)
r,M>0
Then A*(s,H) = 4o ifs # 1, and
1
A*(1,H) = sup {Tr(HTM) i+ In|— M|} . (A59)
M=0 2 2

s7s The supremum in (A59) equals +oo if H is not positive-semidefinite. But if H is positive-semidefinite,
s the supremum equals — 3 In27te|H|, which is equal to the relative entropy between A (0,H) and
sso  the Lebesgue measure (supremum achieved when M = —(2H)!). Since the proof of Theorem 1,
;a1 in essence, only uses the duality between convex functionals, the same algebraic steps therein also
se2  establish the desired matrix optimization identity.
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