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Abstract. The vibration signal of the engine contains strong background noise and many kinds 
of modulating components, which is difficult to diagnose. Variational mode decomposition 
(VMD) is a recently introduced adaptive signal decomposition algorithm with a solid 
theoretical foundation and good noise robustness compared with empirical mode 
decomposition (EMD). VMD can effectively avoid endpoint effect and modal aliasing. However, 
VMD cannot effectively eliminate the random noise in the signal, so the random decrement 
technique is introduced to solve the problem. Based on the crankshaft bearing fault simulation 
experiment, the four kinds of wear state vibration signals are decomposed by VMD, and the 
modal components with smaller permutation entropy are selected as fault components. Then 
the fault component is processed by the random decrement technique, and the Hilbert 
envelope spectrum of the fault component is obtained. Compared with the fault feature 
extraction method based on EMD and EEMD, the feature extraction results of the proposed 
method are better than those of the above two methods. The simulation analysis and the 
simulation test of the crankshaft bearing fault verify the effectiveness of the proposed method. 
 
Keywords: variational mode decomposition; random decrement technique; crankshaft bearing; 
engine; feature extraction 
 

1 Introduction 

The engine is a complex mechanical device, with the characteristics of multi-source, multi 
moving parts, and complex work. The engine has both rotational and reciprocating motion. 
Vibration signals are fully used in fault diagnosis because of their convenience [1-2]. The 
vibration signal of engine is composed of multi-component complex signals, and its amplitude 
varies with time. For the complex multi-component signal, it is usually necessary to decompose 
it into a number of single-component AM-FM signals, and each component is analyzed to 
extract amplitude and frequency information. 

In order to solve the above problems, Huang et al. introduced an adaptive signal processing 
technique called empirical mode decomposition (EMD) [3-4], which has demonstrated 
outstanding performance in dealing with nonlinear and nonpstationary signals. This technique 
has been applied in many fields, such as biomedical image analysis [5], fault diagnosis of rolling 
element bearings [6], signal de-noising [7-9], and voice signal analysis [10]. But there are still 
some problems for EMD, such as endpoint effect and modal aliasing [11]. Wu [12] proposed 
Ensemble Empirical Mode Decomposition (EEMD). Different white noises are added to the 
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original signal for EMD, and multiple decomposition results are averaged to obtain the final 
Intrinsic Mode Function (IMF). The high frequency modulation information in the signal can be 
separated very well, and the modal aliasing of EMD is well suppressed [13]. However, the white 
noise can easily lead to the reconstruction error for EEMD. 

In recent years, Konstantin, Dragomiretskiy et al. proposed variational modal 
decomposition [14], which is essentially composed of several adaptive Wiener filters and has 
good noise robustness. Compared with EMD, VMD has strong mathematical theory basis. So it 
can effectively alleviate or avoid a series of problems that exist in EMD, and has higher 
operation efficiency. VMD is widely used in various engineering fields [15-18]. An X.L. et al. 
applied VMD to the bearing fault diagnosis of the wind turbine, and realized the effective 
discrimination of the bearing fault [19]. By combining VMD with detrended fluctuation analysis 
(DFA), Liu et al. successfully extracted gear fault characteristics [20]. By combining VMD with 
independent component analysis (ICA), Yao et al. successfully separated the piston knock and 
combustion noise of the engine [21]. However, there is nothing VMD can do about the random 
noise in the signal. 

In order to solve the problem, the random decrement technique (RDT) is introduced in this 
paper. Random decrement technique is a method of identification of modal parameters, which 
is first proposed by Cole [22-23] in 70s. The basic concept of RDT is to assume a system with 
stationary random excitation, and its response is the superposition of both deterministic and 
random responses. The deterministic response is separated from the random response, and 
the random response is eliminated by using the statistical mean method. Finally, a 
deterministic free attenuation signal is obtained by filtering. RDT has been widely used in many 
fields such as vibration modal analysis [24], and structural damage detection [25]. 

In this paper, a new fault feature extraction method for engine crankshaft bearing is 
proposed based on the variational mode decomposition and random decrement technique. 
First, the VMD is used to decompose the fault signal into several modal components, and the 
fault components are selected according to the permutation entropy. Then the fault 
component is processed by the random decrement technique and the Hilbert envelope 
spectrum is calculated to extract the fault features. The effectiveness of the proposed method 
is verified by simulation analysis and the simulation experiment of crankshaft bearing fault. 

2 Variational Mode Decomposition 

The VMD algorithm defines the intrinsic mode function as a non-stationary AM-FM signal. 
The intrinsic mode is considered as follows: 

))(cos()()( tφtAtu kkk =                            (1) 

Where the phase )(φk t  shall satisfy the following condition: 0)( ≥′tφk ; the envelope 

line )(tAk  should satisfy the following condition: 0)( ≥tAk ; the instantaneous frequency 

)(tωk  should satisfy the following condition: )()( ′= tφtω kk . )(tAk  and )(tωk  change 

slowly, and )(tφk  changes more rapidly. 

The Hilbert transform is performed for each modal function )(tuk , and exponential 
correction is applied to obtain K modal functions. Then the frequency spectrum of the modal 
function is corrected to the estimated central frequency, and the bandwidth of the modal 
component is calculated by using Gauss smoothing. The variational constraint problem can be 
defined as follows: 
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Where ku  is the modal component, kω  is the central frequency for the modal 

component, )(tδ is the unit pulse function, and * is the convolution symbol. 
In the VMD algorithm, the secondary penalty factor and the Lagrangian multiplication 

operator are used. Then, the alternating direction method is introduced. 
1+n

ku ,
1+n

kω , and 
1+nλ are constantly updated, so that the optimal solution of the variational constraint problem 

can be solved. The expression for the modal component 
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where α  is the penalty factor, and λ  is the Lagrange multiplier. 

The expression for the modal component 
1+n

ku  in frequency domain is 
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Where kω  is the center of the modal component power spectrum. The Wiener filter is 
introduced, which makes the VMD algorithm have better noise robustness. 

Similarly, the expression for the central frequency 
1+n

kω  is 
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The stopping condition of the iteration is 
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According to the previous derivation, we get the complete algorithm for VMD, 
summarized in algorithm 1. 
 

algorithm 1: Complete optimization of VMD 
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end for 
Dual ascent for all w>=0: 
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until convergence: 
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The VMD algorithm is a linear transformation, so the signal can be reconstructed. The 
reconstructed signal can be represented as: 
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Where kû  is the final modal component, after the iteration is stopped. 

3 Random Decrement Technique 

RDT can be used to describe the impulse response of the system, and its advantage is that 
it can extract free impact response from the stationary random response in the system. The 
core is to assume that a system is subjected to stationary random excitation, and the response 
is the superposition of deterministic response determined by the initial condition and random 
response determined by the initial external load. Under the same initial conditions, stationary 
random response is divided into several sections, and the general mean of the intercept 
segments is calculated, so as to extract the free attenuation response. 

The response signal is divided into L segments, and each segment of the signal is 
expressed as xi(t), whose length is . Each response signal has the same trigger value, and the 
trigger value can be expressed as 

Liconstxtx sii ,,2,1,)( ===                             (12) 
The overall mean of the L segment signal is calculated, and the random decrement function 
can be expressed as: 
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where Lixtx sii ,,2,1,)( == . 

4 Proposed Method 

Vibration signal analysis is usually used for condition monitoring and fault diagnosis. 
However, due to the complex structure of engines, the vibration signals of engines are usually 
multi-component, non-stationary and non-Gauss. In addition, there is a large amount of 
background noise in the vibration signals of engines. Therefore, it is very difficult to extract 
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fault characteristics from the vibration signals of engines. 
The permutation entropy is a new method of mutation detection, which mainly aims at 

the spatial characteristics of time series [26-27]. The permutation entropy is very simple in 
theory and has good noise robustness. Besides, the permutation entropy also has a high 
resolution, and the output results are very intuitive. The permutation entropy reflects the 
random degree of the signal. In other words, the smaller the permutation entropy, the more 
fault information the time series has. Therefore, the permutation entropy is used to select the 
fault component in this paper. 

VMD is a recently proposed signal decomposition method, which is essentially composed 
of a number of adaptive Wiener filters, and has good noise robustness. Compared with the 
EMD method, the VMD method has a solid mathematical theoretical foundation, and can 
effectively alleviate or avoid a series of shortcomings in the EMD method. To verify the 
efficiency of the proposed method, several experiments on engine crankshaft bearing faults 
are performed. The detailed experimental scheme is shown in Figure 1. Firstly, a single channel 
vibration signal x(t), which is a wearing fault of the engine crankshaft bearing, is collected by 
the acceleration sensor vertically fixed on the engine block. Secondly, the collected vibration 
signal x(t) is decomposed into several modal components by VMD method. Thirdly, the 
permutation entropy of each modal component is calculated respectively, and the modal 
components with smaller permutation entropy are selected as the fault components. Lastly, 
the fault components are processed by the random decrement technique and the Hilbert 
envelope spectrum is calculated to extract the fault features. 

 
Figure 1. Detailed experimental scheme. 
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5 Experimental Results 

5.1 Simulation 

Engine crankshaft bearing consists of two bearing bushings. When the crankshaft bearing 
has a wear fault, it is mainly under attack by the rotation of the crankshaft and the ignition of 
the cylinder. Therefore, the characteristic frequency of engine crankshaft bearing fault is 
mainly the rotation frequency of engine crankshaft and the ignition frequency of engine. 
Because of the complex structure of engine, the number of vibration excitation source is large, 
and the vibration source signal is modulated by several components. Therefore, the 
established simulation signal must be multi-component and non-Gauss. The simulation signal 
is as follows: 

)6sin(05.0)4sin(15.0)2sin(5.0)( 000 fπfπfπtc ++=             (13) 

)2cos()( tfπets n
Bt-=                                                         (14) 

                            )()()()( tetcTtstx +++=                                                (15) 

ξfπB n2=                                                                           (16) 
Where c(t) is a low frequency stable signal associated with the rotation frequency f0 and its 
harmonic component of the crankshaft, s(t) is the periodic impact component produced by the 
ignition of the cylinder, T is the pulse period, fn is the resonance frequency of the engine itself, 
B is the attenuation coefficient of the engine,  is the damping ratio of engine vibration and e(t) 
is Gauss white noise. The parameters are set as follows: 
f0 = 30Hz,  fn = 100Hz,  = 0.0198194, T = 0.01s. 

The sampling frequency is 20000Hz, and the number of sampling points is 16384. The 
time-domain and frequency domain waveform of the noisy simulation signal is shown in Figure 
2. As you can see in Figure 2, the signal is disturbed by the background noise. The crankshaft 
rotation frequency and the periodic impact component are not obvious, and only the 
resonance frequency of the engine can be identified. 
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Figure 2. The noisy simulation signal. 

 
According to the composition of the simulation signal, the modal number K is set to 4. 

VMD is used to decompose the simulation signal into 4 modal components, as shown in Figure 
3. As you can see from Figure 3, there are some impact components in the signal, but there is 
no more fault information. 
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Figure 3. BLIMFs decomposed by the VMD method. 

 
In order to find out the modal components containing rich fault information from the 

decomposition results, the permutation entropy of the modal components is calculated 
respectively, as shown in Table 1. 

 
Table 1. The permutation entropy of the components. 

Modal component U1 U2 U3 U4 

Permutation entropy 0.335 0.551 0.364 0.726 

 
As can be seen from table 1, the permutation entropy of component U1 and U3 is the 

smallest, that is, the two components contain the most abundant fault information. Therefore, 
U1 and U3 are selected as fault components. The Hilbert envelope spectrum of U1 and U3 is 
shown in Figure 4. 
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Figure 4. The Hilbert envelope spectrum of U1 and U3. 
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As can be seen from Figure 4, in the envelope spectrum of the component U1, 2 times the 

rotation frequency 60Hz and 4 times the rotation frequency 120Hz appear. There are many 
interference frequencies in the envelope spectrum of the component U3, and the fault 
features cannot be extracted effectively. In order to further extract the fault features, the fault 
components are processed by RDT. The trigger value is set to 1.5 times the standard deviation 
and the Hilbert envelope spectrum of the fault component is calculated, as shown in Figure 5. 
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Figure 5. The Hilbert envelope spectrum of the fault components after RDT. 

 
As can be seen from Figure 5, after the fault components are processed by RDT, the 

rotation frequency 30Hz, 2 times the rotation frequency 60Hz, and 3 times the rotation 
frequency 90Hz appear in the envelope spectrum of U1. The ignition frequency 100Hz, 2 times 
the ignition frequency 200Hz, 3 times the ignition frequency 300Hz and 4 times the ignition 
frequency 400Hz appear in the envelope spectrum of U3. Therefore, the fault frequency and 
its harmonics are successfully extracted, that is, the proposed method has successfully 
extracted the fault features from the simulation signal. 

5.2 Experiment Condition  

The structure of engine is complex and the working environment is abominable. As a 
result, it is prone to malfunction. The crankshaft bearing is located inside the engine, so it is 
difficult to diagnose the fault. In this paper, vibration signals are collected from the vibration 
sensors on the experimental stand, as shown in Figure 6. The basic parameters of the vibration 
sensor are shown in table 2. The engine on the experimental stand is Cummins 6BT diesel 
engine, and its parameters are shown in table 3. 
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Figure 6. Measuring position of vibration sensor. 

 
Table 2. Vibration sensor parameters 

Model Sensitivity 
Frequency range 

（±3dB） 
Range Resolution 

Temperature 

range 
Weight 

Output 

connect

or 

603C01 100mV/g 0.5Hz–10KHz ±50g 350μg -54-121℃ 51 g Top 

 
Table 3. Basic parameters of the engine 

Engine type 6BT5.9-G2 Fuel type Diesel 
oil Type Inline 6 

cylinders 
Rated power 

(KW) 118 Compression ratio 17.5：1 Ignition 
sequence 153624 

Rated speed 
(RPM) 2600 Continuous power 

(KW) 86 Maximum 
torque (N·m) 558 

Radius (mm) 
×Distance (mm) 102×120 Maximum torque speed 

(r/min) 1600 

 
The fourth crankshaft bearings of Cummins EQ6BT engine are set with different clearance 

(0.10mm, 0.14mm, 0.20mm, 0.34mm) to simulate the normal, minor, moderate and severe 
wear of the connecting rod bearing. Vibration signals are collected on the left side of the 
fourth main bearings on the surface of the engine block. The sampling frequency is 20000Hz 
and the sampling points are 4096 points. 

Testing temperature is important when acquiring vibration signals. In the experiment, the 
temperature of cooling water is measured to reflect the internal temperature of engine. The 
temperature is controlled at 60-70 degrees C. 

5.3 Data Acquired  

The acquisition system is composed of collector, computer, sensor and connecting circuit, 
as shown in Figure 7. According to document [28], the optimum diagnostic speed of this type 
of engine is 1800r/min. In addition, four speeds were collected in the experiment: 800r/min, 
1300r/min, 1800r/min, and 2100r/min. The experiment proved that 1800r/min is the most 
suitable for the fault diagnosis speed. Therefore, the acquisition system set the speed of the 

Vibration Sensor 
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engine to 1800r/min. Through the theoretical calculation, the rotation frequency of the 
crankshaft is about 30Hz, and the engine ignition frequency is about 90Hz. 

 

Figure 7. Vibration signal acquisition system. 

The vibration signals of the engine under different wear conditions are collected, as 
shown in Figure 8 and Figure 9. In Figure 8 and Figure 9, there is a large amount of background 
noise in the vibration signals of different wear conditions of the the crankshaft bearing, which 
is unfavorable to the extraction of fault features.  
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Figure 8. The time domain waveform of vibration signal. 
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Figure 9. The frequency domain waveform of vibration signal. 

5.4 Experimental Data Processing  

According to the proposed method, the VMD method is used to decompose the vibration 
signals under different wear conditions. The genetic algorithm is used to determine the 
number of components [29]. According to the decomposition results of the vibration signals, 
the permutation entropy of each component under different wear conditions is calculated 
respectively, as shown in table 4. 

 
Table 4. The permutation entropy of each component under different wear conditions. 

Components Normal wear Minor wear Moderate wear Severe wear 

U1 0.368 0.364 0.332 0.315 

U2 0.424 0.414 0.407 0.418 

U3 0.563 0.563 0.534 0.565 

U4 0.610 0.658 0.560 0.624 

U5 0.637 0.638 0.649 0.664 

 
As we can see from Table 4, the permutation entropy values of the component U1 under 

different wear conditions are all the smallest, that is to say, the component U1 contains the most 
abundant fault information. Therefore, the component U1 is selected as the fault component. 
The Hilbert envelope spectrums of the component U1 under different wear conditions are 
calculated respectively, as shown in Figure 10. 
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Figure 10. The Hilbert envelope spectrums of the component U1 under different wear conditions. 

 
As can be seen from Figure 10, the characteristic frequency of the fault appears under the 

severe wear condition, and the characteristic frequency under the other wear conditions is not 
obvious enough. With the increase of the clearance of the crankshaft, the energy of the 
characteristic frequency point does not increase gradually. Therefore, the fault component is 
further processed RDT, and its Hilbert envelope spectrum is shown as shown in Figure 11. 
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Figure 11. The Hilbert envelope spectrum of the fault components after RDT. 
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As can be seen from Figure 11, in the Hilbert envelope spectrum under different wear 

conditions, the rotation frequency, such as 29.3Hz, 58.6Hz, 122.1Hz, 151.4Hz, 210Hz and 
ignition frequency, such as 87.9Hz and 180.7Hz, are found. With the increase of the clearance 
of the crankshaft, the energy of the characteristic frequency point increases gradually. In order 
to further illustrate the effect, the energy of the above characteristic frequency points in the 
Hilbert envelope spectrum is calculated respectively, as shown in Table 5. 

 
Table 5. The permutation entropy of each component under different wear conditions. 

Characteristic 
frequency(Hz) 

Normal wear Minor wear Moderate wear Severe wear 

29.3 0.0084 0.0230 0.0807 0.1890 

58.6 0.0054 0/0197 0.0402 0.0781 

87.9 0.0083 0.0199 0.0325 0.0828 

122.1 0.0039 0.0115 0.0267 0.0465 

151.4 0.0019 0.0137 00232 0.0380 

180.7 0.0117 0.0149 0.0178 0.0279 

210.0 0.0013 0.0095 0.0115 0.0252 

 
As can be seen from Table 5, with the increase of the clearance of the crankshaft, the 

energy of the characteristic frequency point increases gradually, which is in accordance with 
the fault rule set by the test. The energy of the characteristic frequency point can reflect the 
vibration intensity of the engine. The greater the clearance of the crankshaft is, the stronger 
the impact of the engine. Therefore, according to the proposed method, the characteristic 
frequency of the engine crankshaft bearing fault is successfully extracted. 

In order to further verify the advantages of VMD, the signal is processed in a similar way 
based on EMD and EEMD, as shown in Figure 12 and Figure 13.As can be seen from Figure 12 
and Figure 13, fault feature cannot be effectively extracted based on EEMD and EMD, which 
shows the advantages of the proposed method. 
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Figure 12. Feature extraction method based on EMD. 
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Figure 13. Feature extraction method based on EEMD. 
 

6 Conclusions 
In the engineering application, the mechanical structure of the engine is very complex, 

which leads to the complex transmission path of the vibration signal. As a result, the excitation 
and response of multiple vibration sources are coupled to each other, which make the 
diagnosis of crankshaft wear fault very difficult. In order to solve the above problems, a fault 
feature extraction method for engine crankshaft bearing is proposed based on the variational 
mode decomposition and random reduction technology. The research work of the simulation 
signal analysis and the fault feature extraction of the crankshaft bearing are carried out. The 
conclusions are as follows: 

(1) The proposed method can overcome the strong background noise, and successfully 
extract the rotation frequency and ignition frequency of the simulation signal. 

(2) The proposed method is applied to the fault diagnosis of engine crankshaft bearing, 
and the characteristic frequencies of crankshaft bearing fault under different wear conditions 
are successfully extracted, which shows that the proposed method is effective. In addition, 
compared with the method based on EMD and EEMD, the feature extraction result of the 
proposed method is better, which shows that the method is more advanced. 
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