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Abstract: Herein, we introduce a boron nitride nanosheet (BNNS)-reinforced cellulose nanofiber 19 
(CNF) film as a sustainable oxygen barrier film that can potentially be applied in food packaging. 20 
Most of commodity plastics are oxygen-permeable. CNF exhibits an ideal oxygen transmittance rate 21 
(OTR) of <1 cc/m2/day in highly controlled conditions. A CNF film typically fabricated by the air 22 
drying of a CNF aqueous solution reveals an OTR of 19.08 cc/m2/day. The addition of 0-5 wt% BNNS 23 
to the CNF dispersion before drying results in a composite film with highly improved OTR, 4.7 24 
cc/m2/day, which is sufficient for meat and cheese packaging. BNNS as a 2D nanomaterial increases 25 
the pathway of oxygen gas and reduces the chances of pin-hole formation during film fabrication 26 
involving water drying. In addition, BNNS improves the mechanical properties of the CNF films 27 
(Young’s modulus and tensile strength) without significant elongation reductions, probably due to 28 
the good miscibility of CNF and BNNS in the aqueous solution. BNNS addition also produces 29 
negligible color change, which is important for film aesthetics. An in vitro cell experiment was 30 
performed to reveal the low cytotoxicity of the CNF/BNNS composite. This composite film has great 31 
potential as a sustainable high-performance food packaging material. 32 

Keywords: cellulose nanofiber; boron nitride nanosheet; oxygen barrier; food packaging 33 
 34 

1. Introduction 35 
Synthetic polymers such as polyethylene (PE), polypropylene (PP), and polyethylene 36 

terephthalate (PET) have been widely used as food and medicine packaging materials owing to their 37 
high strength, low cost, viscoelastic properties, and chemical resistance. The oxygen barrier 38 
properties of food and medicine packaging films are vital to prevent the oxidation of food and 39 
medicine. However, most polymeric films are oxygen permeable and exhibit a high oxygen 40 
transmission rate (OTR) of 40–1000 cc/m2/day [1-5]. 41 

Halogenated and metalized polymeric films can achieve an OTR of 0.1–10 cc/m2/day [6-9]. 42 
However, these polymer films pose many environmental and health threats [6-9]. For example, the 43 
incineration of aluminum-coated PET films and polyvinylidene chloride (PVDC) produces fine dust 44 
and dioxins, respectively. In general, metalized polymeric films are not recyclable.  45 
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Cellulose nanofiber (CNF) is a sustainable and biocompatible nanomaterial [10] and is a 46 
potential food and medicine packaging material [11-19]. It is produced by mechanically 47 
disintegrating highly crystalline nanofibrils in cellulose bulk, the most abundant biomass [10,20]. 48 
Coatings and films composed of CNF can achieve an OTR of less than 1 cc/m2/day, which is suitable 49 
for the packaging of most foods and medicines [11-19].  50 

It is questionable whether the oxygen barrier performance of CNFs can be reproduced in an 51 
industrial setting. CNF films are typically produced from an aqueous dispersion by air drying, and 52 
the resultant films often exhibit high OTR values (19.08 cc/m2/day, by our measurement), because the 53 
capillary force during drying results in a heterogeneous surface [20]. The OTR value is as high as that 54 
of bare PET.  55 

 Two dimensional (2D) nanomaterials, including graphene and MoS2, have been introduced in 56 
polymeric films and shown to improve the oxygen barrier properties of the resulting matrix films, 57 
because the layered structure increases the pathway distance for oxygen gas [21-24]. Graphene and 58 
MoS2 are colored and have high optical absorption coefficients [25,26]. Their addition to milky or 59 
transparent CNF films decreases the esthetic value of the produced packaging material. In addition, 60 
graphene is cytotoxic [27]; these disadvantages limit the food packaging applications of 2D 61 
nanomaterials.  62 

Boron nitride nanosheet (BNNS) is a 2D nanomaterial having several advantages as a filler for 63 
food packaging films. It can be produced on a larger scale with lower costs than graphene [28,29]. In 64 
addition, it is white-colored and known to be less cytotoxic than the 2D nanomaterials considered 65 
previously [30]. 66 

 The combination of CNF and BNNS is uncommon [24,31], but recently some studies have 67 
reported that BNNS/CNF composite films exhibit good thermal conductivity [32-36]. However, these 68 
studies of BNNS/CNF composites did not examine their gas barrier performance.  69 

In this study, we show that a BNNS-containing CNF composite film can achieve a low OTR of 70 
~4.7 cc/m2/day (Scheme 1). The film was prepared by simple air drying of the corresponding aqueous 71 
solution. Thus, this method is easily scalable for the production of CNF-based barrier films and is 72 
based on a sustainable aqueous system. Typically, PP, PE, and PET films exhibit the OTR values of 73 
>1000, >1000, and 10-100 cc/m2/day, respectively [1-5,13]. The oxygen barrier performance of the 74 
prepared BNNS/CNF composite film is suitable for use as a packaging film for meats and cheese [13]. 75 
The BNNS addition had minimal effect on the optical properties of the CNF film and improved the 76 
tensile strength by a factor of ~1.23 without a significant elongation reduction. In addition, the 77 
composite film did not show any cytotoxicity to a cell line.  78 

2. Materials and Methods  79 
2.1 Materials 80 

BN and an ionic liquid ([EMIM][BF4]) were purchased from Sigma Aldrich (USA). A ~3 wt% 81 
CNF aqueous dispersion was purchased from the University of Maine (ME, USA). The width and 82 
length of the CNF were ~50 nm and several μm, respectively. 83 

 84 
2.2 BNNS synthesis 85 

BNNS was synthesized as described in a previous report [36]. Briefly, BN was exfoliated and 86 
functionalized in a Taylor-Couette (TC) reactor composed of two concentric inner and outer stainless 87 
steel cylinders with a radius ratio of η = Ri/Ro = 0.92 and an aspect ratio of Γ = L/d = 2.3, where Ri is 88 
the inner cylinder radius, Ro is the outer cylinder radius, L is the cylinder length, and d is the outer 89 
cylinder diameter. BN powder was dispersed in a solution of deionized (DI) water/ionic liquid 90 
[EMIM][BF4] (0.15 vol%). The feed solution (30 mg/mL) was injected into the TC reactor and allowed 91 
to react for 1 h. After this process, the resultant dispersion samples were centrifuged (420 g, 150 min) 92 
to remove unbounded [EMIM][BF4] and un-exfoliated BN sheets. The BNNS powder samples were 93 
collected by freeze-drying for 24 h. The concentrations of BNNS in water can be adjusted up to 10 94 
mg/mL by mild sonication of BNNS powders in water. 95 

 96 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 March 2018                   doi:10.20944/preprints201803.0263.v1

Peer-reviewed version available at Polymers 2018, 10, 501; doi:10.3390/polym10050501

http://dx.doi.org/10.20944/preprints201803.0263.v1
http://dx.doi.org/10.3390/polym10050501


 3 of 16 

 

2.3 Composite film preparation 97 
Pristine CNF and CNF/BNNS nanocomposite films were prepared as follows (Scheme 1). BNNS 98 

solution (1.79 mg/ml) was dropped onto a CNF solution (0.5 wt%) under stirring, and the resultant 99 
suspension was subsequently mixed at 12000 rpm using a high-speed stirrer (Ultraturrax T25, IKA, 100 
USA) for 10 min, followed by degassing with an ultrasonic cleaner (SD-D400H, lklab Co., Korea) for 101 
20 min. A total of 100 g of the suspension was then poured into a polystyrene petri dish (150 mm in 102 
diameter) and dried under ambient conditions for 6 days. The films were peeled from the petri dish 103 
and stored in a desiccator prior to further characterization. 104 
 105 
2.4 Tensile properties  106 

Tensile tests of the films were performed with a universal testing machine (Instron 5943, Instron 107 
Corp., USA) with a 1000 N load cell. The films were cut into a dog-bone shape. The test area of the 108 
samples was 26.5 mm in length, 3.2 mm in width, and 70.0 μm thick. The tests were performed at a 109 
strain rate of 1 mm/min under ambient conditions. A total of three specimens were tested for each 110 
type of sample. 111 
 112 
2.5 Oxygen transmission rate 113 

The OTRs of the composite films at different loadings of BNNS were measured with an 114 
automated oxygen permeability testing machine (Lyssy L100-5000, Systech Instruments Ltd, UK). 115 
The test area of the samples was 65 cm2 and the tests were performed at 23 °C and 50% relative 116 
humidity using high purity oxygen gas (99.999%) following the ASTM D3985 standard protocol. 117 
 118 
2.6 Characterization 119 

The light transmittance spectra of the films were measured from 400 to 800 nm with a UV-vis 120 
spectrophotometer (UV-2600, Shimadzu, Japan). The structure and morphology of the prepared 121 
nanocomposite films were characterized using a field emission scanning electron microscope (FE-122 
SEM, MIRA 3 XMU, TESCAN, Czech Republic) equipped with the OIMTM-technology from 123 
EDAX/TSL, operating at an acceleration voltage of 10 kV. The FE-SEM samples were prepared by 124 
vacuum sputtering Pt onto the dried sample under ambient conditions. Transmission electron 125 
microscopy (TEM) images were obtained using an E.M. 912 Ω energy-filtering TEM (EF TEM 120 kV) 126 
and a JEM-3010 HR TEM (300 kV). A scanning transmission electron microscope (STEM) was 127 
operated with a probe focused to 0.2 nm and a camera length of 20 cm. The scan raster was 512 × 512 128 
points with a dwell time of 8.5 sec per scan. 129 
 130 
2.7 Cytotoxicity test  131 

The cell viability test was performed on the surfaces of pristine and 5 wt% BNNS-containing 132 
composite CNF films [37-39]. The fully swollen film disks with the same diameter as the 24-well plate 133 
were immersed in ethanol for 12 h and washed with PBS just before cell seeding. A mouse pre-134 
osteoblast cell line, MC3T3-E1, was cultured in minimal essential medium-alpha (MEM-α; Hyclone) 135 
supplemented with 10% fetal bovine serum (FBS; Hyclone) and 1% penicillin/streptomycin (Hyclone) 136 
at 37 °C under a humidified atmosphere of 5% CO2 and 95% air. The subconfluent cells were detached 137 
using 0.25% trypsin-EDTA (Hyclone), and the viable cells were counted using the trypan blue assay. 138 
The cells were further seeded onto film-containing and empty wells as a control in a 24-well plate at 139 
a density of approximately 3 × 104 cells per well and cultured for 3 days. The number of viable cells 140 
as a function of culture time (0 to 3 days) was determined via a colorimetric assay (CCK-8, Dojindo); 141 
the number of viable cells is proportional to the light absorbance value at 450 nm. 142 

3. Results and discussion 143 
3.1 Appearance of CNF and BNNS solutions 144 

The CNF and BNNS aqueous dispersions are opaque and translucent, respectively, and both are 145 
white-colored (Figure 1). The similar color of the BNNS filler and CNF film is beneficial for esthetic 146 
reasons. The CNF and BNNS particles did not precipitate even after 1 year, indicating that both 147 
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particles were stably dispersed in the aqueous solutions. Other types of cellulose nanomaterials with 148 
surface charges, such as cellulose nanocrystals and carboxylated CNF, are transparent [20]. However, 149 
CNF has no surface charge and its fibers were partially aggregated, resulting in an opaque dispersion 150 
[20].  151 
 152 
3.2 Analysis of BNNS particles 153 

BNNS was prepared as a nanometer thick sheet. The dimensions of the synthesized BNNS 154 
particles were investigated using a zeta sizer, SEM, and TEM (Figure 2). The zeta average size and 155 
polydispersity (PDI) of the BNNS particles were ~1084 nm and ~0.85, respectively (Figure 2A). The 156 
particle size is represented as the hydrodynamic diameter of an equivalent sphere. Thus, the zeta 157 
average size would be similar to the longest length of the nanosheets. The relatively low PDI suggests 158 
that the TC reactor-based exfoliation produced uniformly sized BNNS particles. The >1000 nm length 159 
of BNNS is the main reason that its aqueous solutions are translucent. 160 

In the SEM image (Figure 2B), ~1 μm sized BNNS particles were observed. The length of the 161 
BNNS particles determined from the SEM images is compatible to the zeta average size. The TEM 162 
image shows a more magnified shape of a single BNNS particle (Figure 2C). In the TEM image, the 163 
BNNS is translucent, indicating that the electron beam was transmitted through the BNNS particle, 164 
likely because of its nm thickness. 165 

 166 
3.3 Preparation of BNNS-containing CNF composites 167 

Pristine CNF and BNNS/CNF composite films with the different BNNS contents of 0–5 wt% 168 
were prepared by drying the corresponding aqueous dispersions (Scheme 1). Because both CNF and 169 
BNNS were prepared as aqueous dispersions, homogenous BNNS/CNF composite films were 170 
obtained. Ionic liquids are not volatile [40-42], so during the preparation of the pristine CNF and 171 
composite films, mostly water evaporated.  172 
 173 
3.4 Optical properties of the BNNS-containing CNF composite 174 

The resultant pristine CNF and BNNS/CNF composite films were white and translucent, 175 
respectively (Figure 3A). Both pristine CNF and 5 wt% BNNS-containing CNF composite films show 176 
similar the light transmittance patterns, and a transmittance of only several % was observed at 400–177 
800 nm (Figure 3B). The 5 wt% BNNS addition exhibited only minimal effects on the light 178 
transmittance of the CNF film, and the color change was also negligible upon the addition of BNNS.  179 
 180 
3.5 Morphology of the BNNS-containing CNF composite 181 

The surface morphology of the pristine CNF and BNNS/CNF composite films was investigated 182 
by SEM (Figure 4). Figure 4A shows the typical surface morphology of a CNF film where the 183 
nanofibril structure can be observed. The SEM image of the 5 wt% BNNS containing CNF film 184 
exhibited an analogous morphology, indicating that the BNNS addition did not significantly affect 185 
the surface morphology of the CNF film. In addition, BNNS particles were not observed on the 186 
surface of the 5 wt% BNNS containing CNF film (Figure 4B).  187 

 188 
3.6 Oxygen transmission rate of BNNS-containing CNF composite 189 

As observed in previously reported 2D nanomaterials, BNNS addition improved the oxygen 190 
barrier properties of the CNF film (Figure 5). The pristine CNF film exhibited an OTR of 19.08 191 
cc/m2/day, which is similar to that of the bare PET film [1-5]. The barrier performance of the pristine 192 
CNF is not sufficient for use in most food packaging applications. As previously mentioned, CNF 193 
films typically exhibit an OTR of <1 cc/m2/day under ideal conditions. However, during large-scale 194 
production of CNF films, the capillary force induced by water drying can result in pin-holes in the 195 
film [20]. The OTR values of the BNNS-containing CNF composites gradually decreased with 196 
increasing BNNS content to 4.7 cc/m2/day. The oxygen barrier performance of the composite film is 197 
similar to that of ethylene vinyl alcohol (EVOH), a typical oxygen barrier polymeric film, and is 198 
suitable for use as a packaging film for meat and cheese [13]. Nevertheless, the OTR can still be 199 
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improved to <1 cc/m2/day, which would be similar to metalized PET and PVDC films that are used 200 
in most food packaging applications.  201 
 202 
3.7 Tensile properties of the BNNS-containing CNF composite 203 

The 2D geometry of the BNNS enhanced the mechanical properties of the composite films. The 204 
tensile tests of the pure and BNNS-containing CNF films provided quantitative measures of their 205 
Young’s moduli, tensile strengths, and elongations (Figure 6). Young’s modulus, tensile strength, and 206 
elongation of the pristine CNF were ~4.68 GPa, ~88.06 MPa, and ~4.52%, respectively, which are 207 
comparable to those of previously examined CNF films [11,12]. Young’s modulus and tensile strength 208 
gradually increased with increasing BNNS content without compromising the elongation. Young’s 209 
modulus, tensile strength, and elongation of the 5 wt% BNNS-containing CNF film were ~7.15 GPa, 210 
~109.50 MPa, and ~4.51%, respectively. These Young’s modulus and tensile strength values were 211 
approximately 1.52- and 1.19-fold greater, respectively, than those of pristine CNF. In most cases, 212 
reinforcing fillers improve the tensile strength but reduce the elongation of composite materials 213 
[43,44]. In other words, the reinforced composite becomes stronger but more brittle. The 214 
improvement in stiffness without compromising stretchability indicates that the 5 wt% BNNS-215 
containing CNF film is tougher than the pristine film. The good adhesion between BNNS and CNF 216 
likely enabled the improved toughness. 217 

The tensile properties of the composites are as great as those of engineering plastics e.g. 218 
polycarbonate. Actually, the bio-based plastics e.g. polylactic acid (PLA) have poorer mechanical 219 
properties than the commodity plastics e.g. PP and PE that are widely used as food packaging films 220 
[45,46]. Along with the poor oxygen barrier, this low mechanical properties of the bio-based plastics 221 
is a main reason for the difficulty of the commercialization. Thus, this result is encouraging to increase 222 
the use of bio-based polymeric materials. 223 
 224 
3.8 In vitro cytotoxicity test of the BNNS-containing CNF composite 225 

To examine the cytotoxicity of BNNS to mammalian cells (MC3T3-E1), viable cells on an empty 226 
cell culture well were used as a control, and viable cells on pristine and 5 wt% BNNS-containing CNF 227 
films were monitored for 48 h via colorimetric assay. The number of viable cells on the pristine and 5 228 
wt% BNNS-containing CNF films gradually increased and became slightly more abundant than those 229 
on the empty well (p < 0.08) over 48 h, probably because the hydroxyl groups of CNF are more 230 
absorbable than the polystyrene surface. There was no significant difference in the number of viable 231 
cells with the addition of BNNS, indicating that BNNS exhibited no cytotoxicity towards the MC3T3-232 
E1 cells. However, the side effects of BNNS in humans have not been studied from a long-term 233 
perspective. Further testing is required to prove the lack of cytotoxicity of BNNS when BNNS is 234 
exposed to food and beverages. 235 

 236 

4. Conclusions 237 

In summary, the CNF/BNNS composite film exhibited good oxygen barrier properties and an 238 
OTR of <5 cc/m2/day, which is suitable for use a packaging material for meat and cheese. By simple 239 
addition of BNNS particles to the CNF aqueous solution, without the modifying the CNF film 240 
fabrication process, the resultant film exhibited improved oxygen barrier and tensile properties. 241 
Owing to the synergistic combination of CNF and BNNS, the tensile strength was improved without 242 
sacrificing the elongation. Finally, the composite film showed no cytotoxicity to MC3T3 cells, 243 
indicating the great potential of the prepared film for food packaging.  244 

 245 
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 372 

 373 

Scheme 1. A brief procedure to prepare pristine and BNNS-containing CNF films. 374 
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 376 
Figure 1. Apparent features of the (A) BNNS and (B) CNF aqueous dispersions. 377 
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 379 
Figure 2. (A) Zeta sizer analysis of the synthesized BNNS particle solution with Z-average 380 

size and polydispersity (PDI) values. (B) SEM and (C) TEM images of the synthesized 381 

BNNS particles. Scale bars are 5 μm and 50 nm, respectively. 382 
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 384 
Figure 3. (A) Picture and (B) UV-vis transmittance of the pristine and 5 wt% BNNS-385 

containing CNF films. 386 
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 388 

Figure 4. SEM images of (A) pristine and (B) 5 wt% BNNS-containing CNF films. 389 
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 391 
Figure 5. Oxygen transmission rates (OTR) of pristine and BNNS-containing CNF films. 392 
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 394 

Figure 6. Tensile properties of pristine and BNNS-containing CNF films: (A) Young’s 395 

modulus, (B) tensile strength, and (C) elongation.  396 
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 398 
Figure 7. Cell viability test of MC3T3 proliferation on pristine and 5 wt% BNNS-containning 399 

CNF films. 400 
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