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Abstract: Nonlinear rheological properties of chiral crystal cholesteryl oleyl carbonate (COC)1

in blue phase III are investigated under different shear deformations; large amplitude oscillatory2

shear, step shear deformation, and continuous shear flow. Rheology of the liquid crystal is3

significantly affected by structural rearrangement of defects under shear flow. One of the examples4

on the defect-mediated rheology is the blue phase rheology. Blue phase is characterized by three5

dimensional network structure of the disclination lines. It has been numerically studied that the6

rheological behavior of the blue phase is dominated by destruction and creation of the disclination7

networks. In this study, we find that the nonlinear viscoelasticity of BPIII is characterized by8

the fracture of the disclination networks. Depending on the degree of the fracture, the nonlinear9

viscoelasticity is divided into two regimes; the weak nonlinear regime where the disclination10

network locally fractures but still show elastic response, and the strong nonlinear regime where11

the shear deformation breaks up the networks, which results in a loss of the elasticity. Continuous12

shear deformation reveals that a series of the fracture process delays with shear rate. The shear rate13

dependence suggests that force balance between the elastic force acting on the disclination lines and14

the viscous force determines the fracture behavior.15

Keywords: Cholesteric Blue Phase III; Nonlinear Viscoelasticity; Disclination Network; Fracture16

1. Introduction17

Defect-mediated phenomena are widely observed not only in the macroscopic properties such18

as phase behavior and rheology of the liquid crystalline systems but also in microscopic structure19

formation of colloids such as a nematic-driven particle self-assembly [1–3]. Many features of defects20

make the liquid crystals attractive for emerging applications such as the material design, optical21

sensors and manipulations [4]. Though it has been generally acccepted that the defects play a decisive22

role on the material properties of the liquid crystals, systematic study on the liquid crystal rheology23

is still required [5,6].24

Blue phases (BPs) are known as frustrated intermediate phases appearing between cholesteric25

phase and isotropic phase which can be found in a narrow temperature range [1,7–10]. In the presence26

of chiral constituents, the director rotates in two directions due to its strong molecular chiralities and27

forms a double twist cylinder (DTC) structure with a period of ∼ 100 nm, which require creating a28

network of topological −1/2 disclination lines [9]. BPs are classified into three sub-phases, BPI, BPII,29

and BPIII, depending on their disclination network structures. BPI and BPII are characterized by the30

body-centered cubic and simple cubic lattices, respectively [9,11]. Disclination networks in BPI and31

BPII consisting of an ordered array of the disclination lines are responsible for a rich variety of their32
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rheological behaviors [12–14]. In numerical simulations of the blue phase rheology, shear deformation33

produces an oscillatory shear stress response because of periodic break and reconnection of the elastic34

disclination lines in the microscopic scale [15–17]. Furthermore, as a result of the recombination of35

the disclination networks, the ordered disclination arrangement of BPI and BPII transforms into an36

amorphous-like network structure. Experimentally, interesting findings are a soft solid-like response37

of BPI and BPII supported by their disclination networks and appearance of a shear-induced structure38

in BPI [13,14]. The shear-induced phase in the BPI shows a higher elasticity than that in the quiescent39

state.40

On the contrary to BPI and BPII, BPIII does not have a long range ordering [18–20]. The41

symmetry of BPIII is the same as that of the isotropic phase, and its structure is characterized by42

amorphous-like random network of the disclination lines. Amorphous BPIII undergoes the phase43

transition into ordered blue phase by applying electric field [21]. Similar phase transition phenomena44

may take place under shear flow, which will cause rearrangement of the disordered disclination line45

networks. If the shear-enhanced elasticity can be related to the recombination of the disclination46

networks, it is interesting to elucidate: what mechanism causes the shear-enhanced elasticity, and47

how different is the rheological properties between amorphous network structure (BPIII) and ordered48

network structure (BPI and BPII). In order to clarify the difference between amorphous and ordered49

phases, rheological characterization of BPIII is required.50

In this study, we explore the nonlinear rheology of the BPIII from the view point of the51

rearrangement of the amorphous disclination networks. We use cholesteryl oleyl carbonate (COC),52

which forms the BPIII within a narrow temperature range between chiral nematic and isotropic53

phases. This paper is organized as follows. Following section provides experimental results on54

linear and nonlinear viscoelastic behavior. First we prove that COC forms the BPIII in between55

isotropic and chiral nematic phases. Then, we show nonlinear viscoelastic behavior of the BPIII56

under three different shear deformations; oscillatory shear, step shear, and continuous shear57

deformations. Nonlinear shear modulus obtained under large amplitude oscillatory shear suggests58

that the nonlinear viscoelastic behavior can be classified into two regimes; a weak nonlinear regime59

where BPIII has a slight elastic resistance even under large oscillation, and a strong nonlinear regime60

where the BPIII loses the elasticity. Nonlinear relaxation modulus after the step shear strain clarifies61

that the distribution of the relaxation time broadens with the increase of the step strain amplitude.62

These findings are attributed to the fracture of the disclination networks responsible for the BPIII63

rheology. Stress growth behavior provides a series of transient process on the orientation and the64

fracture of the disclination networks. These experimental results on nonlinear viscoelasticity of the65

disclination networks are summarized in section 3. Section 4 describes the materials and experimental66

methods used in this study.67

2. Results and Discussion68

2.1. Phase Behavior69

Cholesteryl octyl carbonate (COC) is known to have BPIII between chiral nematic and isotropic70

phase. Here we confirm the existence of BPIII and identify the transition temperature in COC.71

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 March 2018                   doi:10.20944/preprints201803.0250.v1

Peer-reviewed version available at Fluids 2018, 3, 34; doi:10.3390/fluids3020034

http://dx.doi.org/10.20944/preprints201803.0250.v1
http://dx.doi.org/10.3390/fluids3020034


3 of 16

33 34 35 36 37
T /◦C

100

101

η
/
P
a
s

cooling
heating

34.0 ◦C34.6 ◦C34.8 ◦C34.9 ◦C

35.0 ◦C35.1 ◦C35.3 ◦C35.6 ◦CT = 35.9 ◦C

Figure 1. Temperature dependence of the viscosity at γ̇ = 1 s−1. Different symbols correspond
to the viscosity measured during cooling and heating process. Temperature was swept at Ṫ = 0.1
◦C/min. Arrows indicate the phase transition temperatures. Polarized microscope images at different
temperatures are also shown. Scale bar indicates 100 µm.

Figure 1 shows the temperature dependence of the viscosity at γ̇ = 1 s−1. Shear viscosity obtained72

during cooling and heating process are shown. During cooling process, the viscosity increases at T =73

35.9 ◦C and shows a peak at 34.8 ◦C. On the other hand, during heating process, the viscosity steeply74

increases at T = 34.8 ◦C and shows the peak at 35.1 ◦C. After the increase, the viscosity decreases75

and coincides with that during the cooling process. Similar viscosity curve for COC was presented76

by some papers [22,23]. The steep increase in the viscosity during cooling and heating process is77

attributed to the BPIII formation.78

Polarized microscope images at different temperatures show dark blue images, which are a79

typical texture of BPIII. On the contrary to BPI and BPII, BPIII shows no platelet texture which is80

a typical for BPI and BPII with ordered alignment of DTCs. As temperature decreases the image81

becomes gradually bright. When the temperature is lowered below T = 34.8 ◦C, oily streaks which82

are a typical defect line for the cholesteric phase appears. These results suggest that COC forms the83

BPIII in the temperature range of 34.8 ◦C < T < 35.9 ◦C. In the following, all of experiments are carried84

out at T = 35.1 ◦C.85

2.2. Linear Rheology86

Here we show that BPIII is an elastic phase and its viscoelasticity resembles the soft solid-like87

materials. We first perform the dynamic shear moduli measurement in the linear range (γ0 = 0.03). In88

addition to that, we show the strain amplitude dependence of the dynamic moduli as a fundamental89

property of the nonlinear viscoelasticity.90
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Figure 2. (a) Dynamic shear moduli as a function of the angular frequency ω measured at T = 35.1 ◦C.
The strain amplitude of the oscillatory shear is γ0 = 0.03 which corresponds to the linear viscoelasticity
region. (b) Dynamic shear moduli as a function of the strain amplitude γ0. The angular frequency is
ω = 10 s−1. Symbols are the same as those in panel (a).

Figure 2(a) shows the linear dynamic shear moduli as a function of the angular frequency91

ω measured under small amplitude oscillatory shear (γ0 = 0.03) at T = 35.1 ◦C. Strain amplitude92

dependence of the dynamic shear moduli at ω = 10 s−1 is also shown in Figure 2(b). The storage93

shear modulus G′ shows a plateau modulus G0 = 54 Pa and is larger than the loss shear modulus94

G′′ in a wide range of ω. Another feature is an increase in G′′ at low ω, indicating an existence of95

a certain relaxation mode below ω = 0.1 s−1. However, we could not detect the terminal relaxation96

time within the experimental window of the frequency. Similar viscoelastic properties, the existence97

of the plateau modulus and slow relaxation, have been reported for soft solid-like materials such as98

concentrated emulsion, silica suspensions and biopolymer network systems [24–26]. Soft solid-like99

behavior has been similarly reported for BPI [13,14].100

Reminiscent behavior of the soft solid-like materials is also seen in the strain amplitude γ0101

dependence of the shear moduli [24–29]. At low γ0, the shear moduli are independent of γ0,102

indicating the linear viscoelasticity. As the γ0 is increased, however, the loss modulus G′′ shows103

a strain hardening above γ0 = 0.2 followed by a strain thinning, while the storage modulus G′
104

shows a strain thinning behavior. Hyun et al. and Sim et al. qualitatively explained the strain105

amplitude dependence of the dynamic moduli using a network model composed of segments and106

junctions [30,31]. In the network model, a segment can be regarded as a macromolecular chain or107

a microstructure connecting junctions. Junctions are nodes where intermolecular interactions are108

localized such as a crosslinking point. The network model qualitatively predicts that the strain109

hardening of G′′ is derived from the dynamic balance between the destruction and creation of the110

network junctions. In the case of the BPIII, the disclination line and their connection at nodal111

points play a role of the segment and junction in the network model. Under the oscillatory shear112

deformation, disclination network of the BPIII will be repeatedly broken and created, depending on113

their destruction and creation rates as Henrich et al. numerically presented for BPI [17]. Although the114
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structural cause of the strain hardening behavior of G′′ depends on the type of the soft matter and115

their microstructure, the strain amplitude dependence of the dynamic moduli is closely related to the116

structural rearrangement as qualitatively predicted by the network model. Raghavan et al. reported117

that the strain hardening behavior of the flocculated suspensions of a fumed silica occurs when a118

destruction of the network linkage and resultant change in the flock size appear [32]. Parthasarathy119

et al. also explained the strain hardening of an electrorheological fluid in terms of a flow-induced120

microstructural rearrangement [33]. They suggested that the hardening of G′′ is originated from a121

viscous dissipation due to slight rearrangement of unstable cluster. Increase in the strain amplitude122

causes large scale rearrangement which results in the visco-plastic behavior, i.e., decrease of G′′.123

In analogy with these qualitative explanations for the overshoot of G′′, nonlinear viscoelasticity124

of the BPIII in Figure 2(b) also arises from the flow-induced structural rearrangement through the125

fracture of the disclination networks. The overshoot of G′′ in the BPIII will be related to the increase126

of the viscous dissipation produced by the breakage of the disclination networks.127

2.3. Nonlinear Dynamic Behavior128

As the strain hardening behavior of G′′ suggests, nonlinear viscoelasticity of the BPIII will be129

mediated by the rearrangement of the disclination networks. In this section, we will present nonlinear130

viscoelastic behavior under large amplitude oscillatory shear (LAOS) and classify them into two131

regimes; weak and strong nonlinear regime, respectively. Here, we evaluate the nonlinearity only132

with the complex shear modulus G∗ instead of G′ and G′′, because the phase lag δ cannot be defined133

in the nonlinear regime.134
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Figure 3. (a) Complex shear modulus G∗ as a function of the angular frequency ω measured at T =
35.1 ◦C. G∗ obtained at various strain amplitude in the range 0.02 ≤ γ ≤ 2.0 are compared in the same
panel. (b) Nonlinear shear modulus G∗

e at ω = 0.1 s−1 is plotted as a function of the strain amplitude
γ0. Solid curve is the best fit to the equation, G∗

e ≃ G∗
e (γ0)/1 + (ξγ0)

2 with ξ = 0.2.

Figure 3(a) shows angular frequency dependence of the complex shear modulus G∗ measured135

under LAOS at T = 35.1 ◦C. For small strain amplitudes, γ0 ≤ 0.1, G∗ is insensitive to the strain136
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amplitude γ0 and approximately collapses onto the same curve. Viscoelasticity is therefore in the137

linear regime at low γ0, as we see in Figure 2(b). Beyond the strain amplitude γ0 = 0.2, G∗ in low ω138

region decreases with γ0. In spite of occurrence of the nonlinearity, G∗ has a second plateau modulus139

at around ω ≃ 0.1 s−1, suggesting that some elastic feature remains even under LAOS. This second140

plateau modulus at low ω might be a reminiscent of the elastic structure of the BPIII in the quiescent141

state. Further increase in γ0 decreases the second plateau modulus, and eventually above γ0 = 2, the142

second plateau modulus disappears, indicating the loss of the elastic structure.143

G∗ at ω = 0.1 s−1 is utilized as a nonlinear shear modulus G∗
e under LAOS. In the γ0 dependence144

of G∗
e (Figure 3(b)), G∗

e remains independent of γ0 at γ0 ≤ 0.1 but decreases at γ0 ≥ 0.2. In the145

comparison with the shear moduli shown in Figure 2(b), the nonlinear behavior appears at almost146

the same strain amplitude.147

Based on above results, nonlinear viscoelasticity of the BPIII can be thus classified into two148

regimes; one is a weak nonlinear regime in the strain amplitude range of 0.2 ≤ γ0 ≤ 1 where some149

elastic structure still remains even under LAOS, and the other is a strong nonlinear regime at γ0 ≥ 2150

where the elastic structure is broken up. The threshold strain amplitude γth between the weak and151

strong nonlinear regions is γth ≃ 2.0, and the plateau modulus at the threshold strain amplitude is152

approximately G∗ ≃ 3 Pa. Following a simple argument for the isotropic materials such as entangled153

polymers [5], it can be shown that the shear modulus scales like G ≃ kBT/l3, where l is a characteristic154

length scale of disclination networks. Using G∗ ≃ 3 Pa at ω ≃ 0.1 s−1, this leads to an estimate of155

l ≃ 110 nm. Under the oscillatory shear, it is expected that the disclination network breaks up and156

reconnects between nearest neighbors. Therefore, this characteristic length l ≃ 110 nm might be157

considered as an average mesh size of the disclination networks that can be reconnected under the158

oscillatory shear. In other words, the disclination networks destructed under the oscillatory shear can159

partly recombine in the weak nonlinear regime, while it is difficult to keep the network structure in160

the strong nonlinear regime. A softening of the BPIII under LAOS suggests that the fracture of the161

disclination network leads the nonlinearity.162

2.4. Nonlinear Relaxation Modulus163

In this section, we summarize experimental results on the step shear experiments, which provide164

insights into a stress relaxation mechanism of the BPIII. We show that the increase of the step strain165

amplitude changes the stress relaxation behavior. We consider the origin of the nonlinearity from the166

view point of the fracture of the disclination networks.167
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Figure 4. (a) Nonlinear relaxation modulus G(γ0, t) at T = 35.1 ◦C. Relaxation moduli obtained at
various step strains in the range 0.01 ≤ γ ≤ 2.0 are shown. Solid lines are the best fit to the stretched
exponential function, G0exp(-(t/τ)β). (b) Value of the relaxation modulus at t = 1 s is plotted as a
function of γ0. (c) and (d) Relaxation time τ and value of the stretched exponent β obtained from the
best fit to the stretched exponential function.

A series of the relaxation moduli measured under various step strains in the range 0.02 ≤ γ ≤
2.0 are shown in Figure 4(a). Solid curves are the best fit to stretched exponential function;

G(γ0, t) = G0exp(−(t/τ)β), (1)

with a pre-factor G0, relaxation time τ and exponent β. Relaxation moduli at low strains γ0 ≤168

0.1 are well fitted with the stretched exponential function as shown in Figure 4(a). However, the169

stretched exponential function is not applicable to the data at large strain γ0 > 0.1. As γ0 increases, the170

functional form of the relaxation modulus deviates from the exponential-like function and gradually171

changes to the power law-like decay in which a characteristic time is not defined. At γ0 = 2.0, the172

relaxation modulus exhibits the power law decay. The power law decay is generally indicative of the173

poly-dispersity of the relaxation time. It should be noticed that nonlinear shear modulus G∗ at γ0174

= 2.0 has no plateau modulus in the whole frequency region (Figure 3(a)). Absence of the elastic175

components under LAOS at γ0 = 2.0 is attributed to the fractured disclination networks. Power176

law decay therefore indicates that the disclination networks are fractured into many domains with177

different sizes.178

Figure 4(b), (c) and (d) show values of the relaxation modulus at t = 1 s, the fitted results for179

the relaxation time τ and the stretched exponent β, respectively. Similarly to the strain amplitude180

dependence of G∗
e (Figure 3(b)), the relaxation modulus at t = 1 s is constant at low γ0 but decreases181

above γ0 = 0.2, which is the same as the threshold strain amplitude in LAOS. On the contrary, the182

relaxation time τ decreases with γ0 even in the linear viscoelastic regime before the nonlinearity183

appears above γ0 = 0.2. Stretched exponent β, a measure of the relaxation time distribution, also184
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decreases with γ0, reflecting a broadening of the relaxation time. These results indicate that the step185

stain induces structural realignment even in the linear viscoelastic regime.186
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Figure 5. (a) Relaxation modulus reduced by damping function G(γ0, t)h(γ0)
−1 obtained in the range

of the step strain, 0.02 ≤ γ0 ≤ 0.1. Arrow indicates a characteristic time τk beyond which nonlinear
relaxation moduli is factorized into separate strain and time-dependent functions, i.e., the time-strain
separability holds. (b) Nonlinear relaxation modulus reduced by damping function G(γ0, t)h(γ0)

−1

obtained in large step strain, 0.1 < γ0 ≤ 2. (c) Damping function h(γ0). Solid line is the best fit to the
equation, h(γ0) = 1/1 + ξγa

0 with ξ = 330 and a = 3.

Figure 5(a) and (b) show the relaxation modulus reduced by a damping function h(γ0). The187

damping function is defined as h(γ0) = G(γ0, t)/G(t). Here, G(t) is a linear relaxation modulus. At188

lower step strains γ0 ≤ 0.1, the relaxation curves at long time region after time τk ≃ 630 s collapse189

to a single curve, independent of the applied step strain as shown in Figure 5(a). Superposition190

of the relaxation modulus curves by a vertical shift indicates that time-strain separability holds in191

a relaxation process after τk [5]. Before τk, on the other hand, the time-strain separability is not192

satisfied. According to the vertical shift of the relaxation modulus in the time domain of t > τk, the193

damping function h(γ0) is introduced as a shift factor. On the contrary to the relaxation moduli at194

lower step strains, the relaxation moduli under large step strain are not collapsed to the single curve195

even after the reduction with h(γ0) (Figure 5(b)). As mentioned before, the functional form of the196

relaxation modulus changes from the stretched exponential to the power law decay with γ0 because197

of the fracture of the disclination networks. The variation of the functional form with γ0 violates the198

time-strain separability over a broad time range.199

The corresponding damping function h(γ0) is shown in Figure 5(c). BPIII shows a linear200

response up to γ0 = 0.03, since h(γ0) is constant. In the step strain range of 0.03 < γ0 < 0.3, h(γ0)201
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decreases even though this step strain range belongs to the linear viscoelastic regime as shown in202

Figure 4(b). Formation of the master curve after τk indicates that the disclination networks are not203

yet fractured in this strain region but significantly deformed. We should mention that the damping204

function obtained in Figure 5(c) is imperfect because of the violation of the time-strain separability at205

large strain.206

Step shear deformation orients the disclination networks, resulting in a finite stress from the207

resistance of line tension of the disclinations. At small enough strain amplitude where it is assumed208

that the disclination networks undergo an affine deformation and are not expected to breakup, it209

will retain a finite amount of stress. The stress relaxes when the disclination networks return to210

its equilibrium state on the relaxation time scale ∼ τ. Thus the macroscopic stress in the linear211

viscoelastic regime is originated from the orientation of the disclination networks. Decrease of τ and212

h(γ0) suggests that the deformation of the disclination networks is non-affine. In entangled polymer213

systems, τk is a measure of the local chain contraction. Time-strain separability, the formation of214

single master curve after τk, is confirmed to hold even for a high step strain above γ0 = 10 [36]. It215

should be noticed that the violation of the time-strain separability over the whole time range does not216

occur in the entangled polymer system. The violation is unique phenomenon in the BPIII. τk in the217

BPIII might also be considered as a characteristic time for the contraction of the oriented disclination218

networks. Steep decrease of h(γ0) above γ0 = 0.3 indicates the softening of the BPIII, this is, the219

fracture. As presented in previous section, the weak nonlinearity induced by local fracture of the220

disclination networks initiates at γ0 ≥ 0.2.221

These experimental findings under large step strain; the broadening of the relaxation time222

produced by break up of the structure, the variation of the functional form of the relaxation modulus,223

and the violation of the time-strain separability, are plausibly accounted for by the fracture of the224

disclination networks.225

2.5. Stress Growth Behavior226

Transient response under step strain deformation shows linear and nonlinear response227

depending on the step strain amplitude. Not only the step shear deformation but also a continuous228

accumulation of the shear strain induces the structural deformation and break up. In particular, the229

orientation and fracture of the disclination networks continuously appears during the accumulation230

of the shear strain. In this section, we present the stress growth behavior under a constant shear rate231

and explore the fracture behavior.232
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Shear rates are γ̇ = 1, 0.1, 0.01, and 0.001 s−1 from left to right. The dotted lines corresponds to σ(t) =
G0γ̇t, where the shear modulus is G0 = 54 Pa. The dashed lines indicate the linear viscoelastic stress
response predicted by BKZ equation (eq. 3). The solid lines are K-BKZ equation (eq. 2). Stress reaches
its maximum σm at a time tm as shown by an arrow. (b) Normalized shear stress σ/σm as a function
of normalized strain γ/γm.

Stress growth experiments are performed by applying a constant shear rate at time t = 0. Figure233

6(a) shows representative stress growth behavior at γ̇ = 0.001, 0.01, 0.1 and 1 s−1. In the transient234

behavior at the lowest shear rate γ̇ = 0.001 s−1, σ(t) increases linearly with time toward a steady235

state. As the shear rate is increased, the stress growth behavior is characterized by a stress overshoot236

with a maximum value σm at t = tm. It is known that such stress overshoot often occurs when the237

imposed shear rate exceeds over a terminal relaxation time [5]. It should be noted that the stress238

overshoot is observed when the applied shear rate exceeds over the reciprocal of τk, 1/τk ≃ 0.0016239

s−1. As mentioned in previous section, τk would correspond to the contraction time of the oriented240

disclination lines. If so, the separability time τk in the BPIII can be a criterion for the appearance of241

the stress overshoot. Beyond the shear rate faster than 1/τk, the disclination networks in the BPIII242

will undergo excessive orientation before it adapts to the shear flow. The appearance of the stress243

overshoot at γ̇0 > 1/τk supports that τk is a characteristic time for the orientation relaxation of the244

disclination networks.245

As shown by dotted lines, the initial linear growth behavior at γ̇ = 0.001, 0.01 and 0.1 s−1 is given
by σ(t) = G0γ̇t, where G0 is the plateau modulus ( = 54 Pa) shown in Figure 2. However, at γ̇ = 1 s−1,
the initial stress growth obviously deviates from the linear viscoelasticity behavior σ(t) = G0γ̇t. We
explain the viscoelastic stress response using a K-BKZ formulation [37,38]:

σ(t) =
∫ t

−∞
G(t − t′)h(γ)γ̇(t′)dt′. (2)
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In the linear viscoleasticity regime where h(γ) = 1, the stress can be found analytically as

σ(t) =
∫ t

−∞
G(t − t′)γ̇(t′)dt′, (3)

where the relaxation modulus with the stretched exponential functional form (eq. 1) is substituted246

into equation 3. Equation 3 (dashed lines) well describes the experimental data at γ̇ = 1 s−1 without247

any fitting parameters. Therefore the BPIII initially undergoes a purely elastic deformation. We248

also try to describe the whole viscoelastic stress response including nonlinear behavior using K-BKZ249

equation (eq. 2). Here, substituting the damping function h(γ0) fitted to the experimental data in250

Figure 5(c) into equation 2 and integrating numerically, we obtain the solid lines in Figure 6(a). Stress251

response at γ̇ = 0.001 s−1 is well described by K-BKZ equation, and the steady state value of the stress252

is also consistent with the experimental data. At γ̇ = 0.01 s−1, K-BKZ equation coincides with the253

experimental data only in the elastic deformation region. K-BKZ equation deviates from σ(t) before254

the stress overshoot. As the shear rate is further increased, disagreement of K-BKZ equation with255

the stress growth curves becomes larger. Failure of the prediction is attributed to the variation of the256

functional form of the relaxation modulus, which drastically changes with the step strain (Figures257

5(a) and (b)).258

The corresponding normalized stress responses σ(t)/σm are shown as a function of the259

normalized strain γ/γm in Figure 6(b). σ(t) collapse onto a single master curve only in the elastic260

deformation regime. As mentioned previously, BPIII undergoes purely elastic deformation in the261

initial linear growth. Deviation of each curve at tm is thus associated with the rearrangement and262

fracture of the disclination networks.263

This stress overshoot phenomenon is resembles the yield behavior of soft glassy materials such264

as emulsions, microgels, and colloidal suspensions [24,27,29]. The soft glassy materials show the soft265

solid-like property at rest, and they turn into a liquid-like above the yield stress. In these materials,266

the stress overshoot is a sign of the yield stress. The soft glassy materials are characterized by jammed267

state of microstructures which are in structurally disordered arrangement. In the case of the BPIII, the268

disclination networks first show the elastic response in the initial linear growth of the stress. As269

the shear strain is accumulated, the disclination network undergoes the orientation. Eventually the270

oriented network will break up at the stress maximum and reach to the steady state by flowing.271
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Figure 7. (a) The peak shear stress σm as a function of the strain γm at the overshoot point. The slope
corresponds to the modulus at the yield point, Gy ≃ 42 Pa. (b) Critical stress as a function of applied
shear rate. (c) Critical shear strain as a function of applied shear rate. Solid lines show the power law
relations.

Figure 7 shows that σm is a linear function of the strain γm = γ̇0tm at the maximum. The slope272

corresponding to the effective modulus, σm = Gyγm, is estimated to be Gy ≃ 42 Pa, which is softer273

than its initial state in the linear viscoelasticity regime, G0 = 54 Pa. The elastic modulus at the yield274

point Gy is regarded as a limit value beyond which the disclination networks bearing an external275

shear deformation begin to break. Figure 7(b) and (c) show a failure criterion of σm and γm as a276

function of the applied shear rate. The stress at the yield point σm increases as a weak power law,277

σm = 19.6 γ̇0.198
0 . Strain γm also shows a power law increase as γm = 0.513 γ̇0.158

0 . Power law relation278

suggests that the fracture of the disclination networks delays with γ̇0.279

Similar scaling behavior of σm and γm with γ̇0 has been reported for some colloidal particle280

systems [24,27,28,34]. Observed power law exponent varies from system to system. One of the281

models describing the failure of brittle material such as elastomer and glasses is a fiber-bundle model282

(FBM) [35]. Physical origin of the fracture in this model is the accumulation of local failure events.283

Failure events proceeds with two steps; the first process is immediate breaking which occurs when284

the stress exceeds the mechanical strength of the fibers, and the second one is a delayed fracture285

dominated by the rate of damage accumulation. Scaling behavior of σm and γm with γ̇0 is presumably286

explained by assuming the power law dependence of the rate of damage accumulation on the stress.287

Upon deformation, each disclination network first suffers an orientation. A strained disclination288

segment would resist the deformation with the form of a recovery force. The recovery force289

originates from the elastic resistance of the disclination lines against deformation and increases with290

accumulated strain. In this simple view of the disclination-mediated rheology, the elastic linear291

growth of the stress in Figure 6 reflects the resistance of all disclination segments arisen in response292

to the shear deformation. However, this simple picture does not explain the shear rate dependences293

of σm and γm because the viscoelastic effect is not considered. Deformation of the blue phases is294

achieved simultaneously by rearrangement of the disclination lines and by realigning the double295
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twist cylinders, which are a viscoelastic matrix with organized structure. Under the continuous296

deformation, therefore, the viscous force exerted on the disclination lines is produced in the matrix.297

In other words, the orientation of the disclination lines is supported by the viscous force. In contrast298

to the recovery force which increases with the orientation of the disclinations, the viscous force decays299

down as the matrix realigns along the shear flow. A retardation due to the viscous relaxation would300

lead to the delay effect on the stress overshoot.301

If the delayed fracture due to the viscous relaxation is the origin of the power law dependence,302

creep compliance measurements will provide more detailed fracture behavior. The creep compliance303

measurement is possible with the use of the stress-controlled rheometer. The delayed fracture304

behavior with the use of the creep compliance measurement will be the next topic in order to elucidate305

the nonlinear viscoelasticity of the BPIII.306

3. Conclusions307

We studied the nonlinear viscoelasticity of the blue phase III by applying different type of shear308

deformations; large amplitude oscillatory shear, step shear strain, and continuous shear deformation.309

Combining all the experimental results, we identify different viscoelastic regimes which are closely310

related to the rearrangement and fracture of the disclination networks. The experimental findings are311

summarized.312

In the small strains, the shear modulus G∗ is independent of the strain amplitude (Figures 3),313

and the stress linearly increases with strain (Figure 6). These purely elastic behavior prove the linear314

viscoelasticity of the BPIII. However, the strain dependence of the relaxation time and its distribution315

(Figure 4) suggest that the disclination networks undergoes non-affine deformation without breaking316

the disclination networks. The linear viscoelasticity of the BPIII is thus characterized by the elastic317

and non-affine deformation without breaking the disclination networks.318

Following the linear response, the nonlinear regime initiates as shown in Figure 3. The frequency319

dependence of complex modulus G∗ measured under LAOS (Figure 3) clarifies that the nonlinear320

behavior is classified into two regimes; one is the weak regime in the range 0.2 ≤ γ0 ≤ 1 and the321

other is the strong nonlinear regime above γ ≥ 2. The weak nonlinear regime is characterized by the322

existence of the second plateau modulus at low ω. In this regime, the disclination networks are locally323

fractured but still keep the connectivity. Because of the local connectivity of the disclination networks,324

the elastic response is weakly observed as the second plateau modulus. Local fracture of the networks325

is also presumed by poly-dispersity of the relaxation time in the relaxation modulus (Figure 4). The326

weak nonlinear regime is therefore characterized by the fragmentation of the disclination networks.327

Further increase of the strain amplitude leads the strong nonlinear response, where the elastic328

response disappears. On the contrary to the weak nonlinear regime, the shear modulus shows no329

second plateau. Under such a large amplitude oscillation, the disclination networks fractures into330

many fragments, which results in the loss of the elasticity of the BPIII.331

Transient behavior under continuous shear deformation reveals that the yield point depends332

on the shear rate. Shear rate dependence of the disclination network would be a result of the333

delay effect due to the viscous force, which will be investigated in detail by performing the creep334

compliance measurement. Future work will deal with the creep compliance measurement by using335

the stress-controlled rheometer. Waveform analysis under LAOS provides the elastic stress and336

viscous stress separately. It would be interesting to investigate the nonlinear behavior of the elastic337

and viscous stresses separately and discuss their role on the nonlinearity. Measurement of differential338

modulus defined as K′ = δσ/δγ will make it possible. Finally, we still need investigations in order339

to distinguish the rheological behavior between ordered and amorphous disclination networks. In340

particular, rheological measurements in a microscopic scale will provide detailed information on the341

viscoelasticity of the disclination lines.342

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 March 2018                   doi:10.20944/preprints201803.0250.v1

Peer-reviewed version available at Fluids 2018, 3, 34; doi:10.3390/fluids3020034

http://dx.doi.org/10.20944/preprints201803.0250.v1
http://dx.doi.org/10.3390/fluids3020034


14 of 16

4. Materials and Methods343

4.1. Material344

Cholesteryl oleyl carbonate (COC) in solid form was obtained from Sigma-Aldrich. We used345

COC without further purification.346

4.2. Methods347

Viscoelastic measurements were performed using an ARES-G2 strain-controlled rheometer TA348

Instrument Co., Ltd. with a cone - plate geometry (diameter = 50 mm, cone angle = 0.04 rad).349

Sample solution was always loaded on the plate at T = 37 ◦C corresponding to the isotropic phase.350

After loading sample, temperature was set to the measurement condition by cooling the system. In351

viscosity measurements, shear rates ranging from γ̇ = 1000 - 1 s−1 were applied and the viscosity was352

measured. The subsequent shear rate sweep proceeded from high to low shear rate. Thus the samples353

are always pre-sheared. Each shear rate was applied for 600 s, and the viscosity was averaged over354

120 s at every fixed shear rate. Dynamic viscoelasticity was measured in the angular frequency regime355

ranging from ω = 500 - 0.1 rad s−1.356

Microscope observation at quiescent state was performed using cross-polarized mode with an357

Olympus BX51 microscope with a 10x objective. Temperature was controlled by using Linkam hot358

stage 10021. Microscopy images were obtained by CMOS camera, HAS-L1, Ditect Ltd Co. Because359

of different light source in microscope observations, typical platelet texture of the blue phase shows360

different color depending on the light source.361

In rheological and microscopic measurements, no surface treatment was performed.362
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