Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 March 2018 d0i:10.20944/preprints201803.0250.v1

Article

NONLINEAR RHEOLOGY AND FRACTURE OF
DISCLINATION NETWORK IN CHOLESTERIC
BLUE PHASE III

Shuji Fujii “**, Yuji Sasaki !, and Hiroshi Orihara !

1 Division of Applied Physics, Hokkaido University; sfujii@eng.hokudai.ac.jp

*  Correspondence: sfujii@eng.hokudai.ac.jp; Tel.: +81-11-706-6640

1 Abstract: Nonlinear rheological properties of chiral crystal cholesteryl oleyl carbonate (COC)
> in blue phase III are investigated under different shear deformations; large amplitude oscillatory
s shear, step shear deformation, and continuous shear flow. Rheology of the liquid crystal is
s significantly affected by structural rearrangement of defects under shear flow. One of the examples
s on the defect-mediated rheology is the blue phase rheology. Blue phase is characterized by three
s dimensional network structure of the disclination lines. It has been numerically studied that the
»  rheological behavior of the blue phase is dominated by destruction and creation of the disclination
s networks. In this study, we find that the nonlinear viscoelasticity of BPIII is characterized by
o the fracture of the disclination networks. Depending on the degree of the fracture, the nonlinear
1o viscoelasticity is divided into two regimes; the weak nonlinear regime where the disclination
1 network locally fractures but still show elastic response, and the strong nonlinear regime where
1z the shear deformation breaks up the networks, which results in a loss of the elasticity. Continuous
1z shear deformation reveals that a series of the fracture process delays with shear rate. The shear rate
1« dependence suggests that force balance between the elastic force acting on the disclination lines and
15 the viscous force determines the fracture behavior.

1 Keywords: Cholesteric Blue Phase III; Nonlinear Viscoelasticity; Disclination Network; Fracture

7 1. Introduction

"

18 Defect-mediated phenomena are widely observed not only in the macroscopic properties such
s as phase behavior and rheology of the liquid crystalline systems but also in microscopic structure
20 formation of colloids such as a nematic-driven particle self-assembly [1-3]. Many features of defects
=z make the liquid crystals attractive for emerging applications such as the material design, optical
22 sensors and manipulations [4]. Though it has been generally acccepted that the defects play a decisive
2 role on the material properties of the liquid crystals, systematic study on the liquid crystal rheology
2« is still required [5,6].

25 Blue phases (BPs) are known as frustrated intermediate phases appearing between cholesteric
26 phase and isotropic phase which can be found in a narrow temperature range [1,7-10]. In the presence
2z of chiral constituents, the director rotates in two directions due to its strong molecular chiralities and
2e forms a double twist cylinder (DTC) structure with a period of ~ 100 nm, which require creating a
20 network of topological —1/2 disclination lines [9]. BPs are classified into three sub-phases, BPI, BPII,
5o and BPIII, depending on their disclination network structures. BPI and BPII are characterized by the
a1 body-centered cubic and simple cubic lattices, respectively [9,11]. Disclination networks in BPI and
sz BPII consisting of an ordered array of the disclination lines are responsible for a rich variety of their
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ss  rheological behaviors [12-14]. In numerical simulations of the blue phase rheology, shear deformation
;s produces an oscillatory shear stress response because of periodic break and reconnection of the elastic
ss  disclination lines in the microscopic scale [15-17]. Furthermore, as a result of the recombination of
ss the disclination networks, the ordered disclination arrangement of BPI and BPII transforms into an
sz amorphous-like network structure. Experimentally, interesting findings are a soft solid-like response
s of BPTand BPII supported by their disclination networks and appearance of a shear-induced structure
3o in BPI[13,14]. The shear-induced phase in the BPI shows a higher elasticity than that in the quiescent
40 state.

a On the contrary to BPI and BPII, BPIII does not have a long range ordering [18-20]. The
2 symmetry of BPIII is the same as that of the isotropic phase, and its structure is characterized by
«s  amorphous-like random network of the disclination lines. Amorphous BPIII undergoes the phase
s transition into ordered blue phase by applying electric field [21]. Similar phase transition phenomena
«s  may take place under shear flow, which will cause rearrangement of the disordered disclination line
s networks. If the shear-enhanced elasticity can be related to the recombination of the disclination
«z networks, it is interesting to elucidate: what mechanism causes the shear-enhanced elasticity, and
s how different is the rheological properties between amorphous network structure (BPIII) and ordered
4 network structure (BPI and BPII). In order to clarify the difference between amorphous and ordered
so phases, rheological characterization of BPIII is required.

51 In this study, we explore the nonlinear rheology of the BPIIl from the view point of the
s2 rearrangement of the amorphous disclination networks. We use cholesteryl oleyl carbonate (COC),
ss which forms the BPIII within a narrow temperature range between chiral nematic and isotropic
s« phases. This paper is organized as follows. Following section provides experimental results on
ss linear and nonlinear viscoelastic behavior. First we prove that COC forms the BPIII in between
se isotropic and chiral nematic phases. Then, we show nonlinear viscoelastic behavior of the BPIII
sz under three different shear deformations; oscillatory shear, step shear, and continuous shear
ss deformations. Nonlinear shear modulus obtained under large amplitude oscillatory shear suggests
so that the nonlinear viscoelastic behavior can be classified into two regimes; a weak nonlinear regime
so where BPIII has a slight elastic resistance even under large oscillation, and a strong nonlinear regime
e where the BPIII loses the elasticity. Nonlinear relaxation modulus after the step shear strain clarifies
ez that the distribution of the relaxation time broadens with the increase of the step strain amplitude.
es These findings are attributed to the fracture of the disclination networks responsible for the BPIII
s« rheology. Stress growth behavior provides a series of transient process on the orientation and the
es fracture of the disclination networks. These experimental results on nonlinear viscoelasticity of the
es disclination networks are summarized in section 3. Section 4 describes the materials and experimental
ez methods used in this study.

es 2. Results and Discussion

6o 2.1. Phase Behavior

70 Cholesteryl octyl carbonate (COC) is known to have BPIII between chiral nematic and isotropic
n  phase. Here we confirm the existence of BPIII and identify the transition temperature in COC.
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Figure 1. Temperature dependence of the viscosity at 4 = 1 s~!. Different symbols correspond
to the viscosity measured during cooling and heating process. Temperature was swept at T = 0.1
°C/min. Arrows indicate the phase transition temperatures. Polarized microscope images at different
temperatures are also shown. Scale bar indicates 100 pm.
72 Figure 1 shows the temperature dependence of the viscosity at 7 = 1s~!. Shear viscosity obtained

zs  during cooling and heating process are shown. During cooling process, the viscosity increases at T =
za 35.9 °C and shows a peak at 34.8 °C. On the other hand, during heating process, the viscosity steeply
7 increases at T = 34.8 °C and shows the peak at 35.1 °C. After the increase, the viscosity decreases
7 and coincides with that during the cooling process. Similar viscosity curve for COC was presented
7z by some papers [22,23]. The steep increase in the viscosity during cooling and heating process is
s attributed to the BPIII formation.

70 Polarized microscope images at different temperatures show dark blue images, which are a
s typical texture of BPIIl. On the contrary to BPI and BPII, BPIII shows no platelet texture which is
a1 a typical for BPI and BPII with ordered alignment of DTCs. As temperature decreases the image
e2 becomes gradually bright. When the temperature is lowered below T = 34.8 °C, oily streaks which
s are a typical defect line for the cholesteric phase appears. These results suggest that COC forms the
sa BPIIlin the temperature range of 34.8 °C < T < 35.9 °C. In the following, all of experiments are carried
es outatT=235.1°C.

es 2.2. Linear Rheology

o7 Here we show that BPIII is an elastic phase and its viscoelasticity resembles the soft solid-like
s materials. We first perform the dynamic shear moduli measurement in the linear range (g = 0.03). In
s addition to that, we show the strain amplitude dependence of the dynamic moduli as a fundamental
%o property of the nonlinear viscoelasticity.
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Figure 2. (a) Dynamic shear moduli as a function of the angular frequency w measured at T = 35.1 °C.
The strain amplitude of the oscillatory shear is g = 0.03 which corresponds to the linear viscoelasticity
region. (b) Dynamic shear moduli as a function of the strain amplitude 7. The angular frequency is
w =10s~1. Symbols are the same as those in panel (a).

01 Figure 2(a) shows the linear dynamic shear moduli as a function of the angular frequency
o2 w measured under small amplitude oscillatory shear (yp = 0.03) at T = 35.1 °C. Strain amplitude
os dependence of the dynamic shear moduli at w = 10 s~! is also shown in Figure 2(b). The storage
oa shear modulus G’ shows a plateau modulus Gy = 54 Pa and is larger than the loss shear modulus
s« G” in a wide range of w. Another feature is an increase in G at low w, indicating an existence of
ss a certain relaxation mode below w = 0.1 s~1. However, we could not detect the terminal relaxation
oz time within the experimental window of the frequency. Similar viscoelastic properties, the existence
s of the plateau modulus and slow relaxation, have been reported for soft solid-like materials such as
s concentrated emulsion, silica suspensions and biopolymer network systems [24-26]. Soft solid-like
10 behavior has been similarly reported for BPI [13,14].

101 Reminiscent behavior of the soft solid-like materials is also seen in the strain amplitude
102 dependence of the shear moduli [24-29]. At low 7g, the shear moduli are independent of 7y,
10 indicating the linear viscoelasticity. As the 7y is increased, however, the loss modulus G’ shows
10a  a strain hardening above 7y = 0.2 followed by a strain thinning, while the storage modulus G’
15 shows a strain thinning behavior. Hyun et al. and Sim et al. qualitatively explained the strain
106 amplitude dependence of the dynamic moduli using a network model composed of segments and
w7 junctions [30,31]. In the network model, a segment can be regarded as a macromolecular chain or
e @ microstructure connecting junctions. Junctions are nodes where intermolecular interactions are
10 localized such as a crosslinking point. The network model qualitatively predicts that the strain
1o hardening of G” is derived from the dynamic balance between the destruction and creation of the
a: network junctions. In the case of the BPIII, the disclination line and their connection at nodal
12 points play a role of the segment and junction in the network model. Under the oscillatory shear
us deformation, disclination network of the BPIII will be repeatedly broken and created, depending on
us  their destruction and creation rates as Henrich ef al. numerically presented for BPI [17]. Although the
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us  structural cause of the strain hardening behavior of G” depends on the type of the soft matter and
us their microstructure, the strain amplitude dependence of the dynamic moduli is closely related to the
ur structural rearrangement as qualitatively predicted by the network model. Raghavan et al. reported
ue that the strain hardening behavior of the flocculated suspensions of a fumed silica occurs when a
us destruction of the network linkage and resultant change in the flock size appear [32]. Parthasarathy
120 et al. also explained the strain hardening of an electrorheological fluid in terms of a flow-induced
121 microstructural rearrangement [33]. They suggested that the hardening of G” is originated from a
122 viscous dissipation due to slight rearrangement of unstable cluster. Increase in the strain amplitude
123 causes large scale rearrangement which results in the visco-plastic behavior, i.e., decrease of G”.

124 In analogy with these qualitative explanations for the overshoot of G”, nonlinear viscoelasticity
12 of the BPIII in Figure 2(b) also arises from the flow-induced structural rearrangement through the
126 fracture of the disclination networks. The overshoot of G” in the BPIII will be related to the increase
127 of the viscous dissipation produced by the breakage of the disclination networks.

12 2.3. Nonlinear Dynamic Behavior

120 As the strain hardening behavior of G" suggests, nonlinear viscoelasticity of the BPIII will be
130 mediated by the rearrangement of the disclination networks. In this section, we will present nonlinear
11 Vviscoelastic behavior under large amplitude oscillatory shear (LAOS) and classify them into two
1:2  regimes; weak and strong nonlinear regime, respectively. Here, we evaluate the nonlinearity only
133 with the complex shear modulus G* instead of G’ and G”, because the phase lag 6 cannot be defined
134  in the nonlinear regime.
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Figure 3. (a) Complex shear modulus G* as a function of the angular frequency w measured at T =
35.1 °C. G* obtained at various strain amplitude in the range 0.02 < v < 2.0 are compared in the same
panel. (b) Nonlinear shear modulus G¢ at w = 0.1 5! is plotted as a function of the strain amplitude
7Yo. Solid curve is the best fit to the equation, G} =~ G%(79)/1 + (Evo)? with & = 0.2.

135 Figure 3(a) shows angular frequency dependence of the complex shear modulus G* measured
13s  under LAOS at T = 35.1 °C. For small strain amplitudes, 79 < 0.1, G* is insensitive to the strain
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13z amplitude ¢ and approximately collapses onto the same curve. Viscoelasticity is therefore in the
13s  linear regime at low <y, as we see in Figure 2(b). Beyond the strain amplitude vy = 0.2, G* in low w
130 region decreases with . In spite of occurrence of the nonlinearity, G* has a second plateau modulus
1o at around w =~ 0.1 s7}, suggesting that some elastic feature remains even under LAOS. This second
11 plateau modulus at low w might be a reminiscent of the elastic structure of the BPIII in the quiescent
12 state. Further increase in 7y decreases the second plateau modulus, and eventually above y( = 2, the
13 second plateau modulus disappears, indicating the loss of the elastic structure.

144 G* atw =0.1 5! is utilized as a nonlinear shear modulus G} under LAOS. In the v dependence
s of G} (Figure 3(b)), GI remains independent of 7y at 9 < 0.1 but decreases at 79 > 0.2. In the
1es comparison with the shear moduli shown in Figure 2(b), the nonlinear behavior appears at almost
17 the same strain amplitude.

148 Based on above results, nonlinear viscoelasticity of the BPIII can be thus classified into two
140 Tregimes; one is a weak nonlinear regime in the strain amplitude range of 0.2 < 7y < 1 where some
10 elastic structure still remains even under LAOS, and the other is a strong nonlinear regime at ¢ > 2
151 where the elastic structure is broken up. The threshold strain amplitude 7y, between the weak and
152 strong nonlinear regions is vy, =~ 2.0, and the plateau modulus at the threshold strain amplitude is
153 approximately G* ~~ 3 Pa. Following a simple argument for the isotropic materials such as entangled
s polymers [5], it can be shown that the shear modulus scales like G ~ kT /I3, where [ is a characteristic
155 length scale of disclination networks. Using G* ~ 3 Pa at w =~ 0.1 s~!, this leads to an estimate of
1 | o~ 110 nm. Under the oscillatory shear, it is expected that the disclination network breaks up and
157 reconnects between nearest neighbors. Therefore, this characteristic length / ~ 110 nm might be
158 considered as an average mesh size of the disclination networks that can be reconnected under the
1ss  oscillatory shear. In other words, the disclination networks destructed under the oscillatory shear can
160 partly recombine in the weak nonlinear regime, while it is difficult to keep the network structure in
161 the strong nonlinear regime. A softening of the BPIII under LAOS suggests that the fracture of the
12 disclination network leads the nonlinearity.

163 2.4. Nonlinear Relaxation Modulus

164 In this section, we summarize experimental results on the step shear experiments, which provide
165 insights into a stress relaxation mechanism of the BPIII. We show that the increase of the step strain
1es amplitude changes the stress relaxation behavior. We consider the origin of the nonlinearity from the
1z view point of the fracture of the disclination networks.
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Figure 4. (a) Nonlinear relaxation modulus G(v,t) at T = 35.1 °C. Relaxation moduli obtained at
various step strains in the range 0.01 < o < 2.0 are shown. Solid lines are the best fit to the stretched
exponential function, Goexp(-(t/T)P). (b) Value of the relaxation modulus at t = 1 s is plotted as a
function of yg. (c) and (d) Relaxation time T and value of the stretched exponent § obtained from the
best fit to the stretched exponential function.

A series of the relaxation moduli measured under various step strains in the range 0.02 < ¢ <
2.0 are shown in Figure 4(a). Solid curves are the best fit to stretched exponential function;

G(70,t) = Goexp(—(t/1)P), )

1 with a pre-factor Gy, relaxation time 7 and exponent B. Relaxation moduli at low strains 7y <
10 0.1 are well fitted with the stretched exponential function as shown in Figure 4(a). However, the
170 stretched exponential function is not applicable to the data at large strain 7 > 0.1. As 7y increases, the
i1 functional form of the relaxation modulus deviates from the exponential-like function and gradually
12 changes to the power law-like decay in which a characteristic time is not defined. At vy = 2.0, the
173 relaxation modulus exhibits the power law decay. The power law decay is generally indicative of the
17a  poly-dispersity of the relaxation time. It should be noticed that nonlinear shear modulus G* at g
15 = 2.0 has no plateau modulus in the whole frequency region (Figure 3(a)). Absence of the elastic
1we components under LAOS at g = 2.0 is attributed to the fractured disclination networks. Power
1z law decay therefore indicates that the disclination networks are fractured into many domains with
we  different sizes.

179 Figure 4(b), (c) and (d) show values of the relaxation modulus at t = 1 s, the fitted results for
10 the relaxation time 7T and the stretched exponent B, respectively. Similarly to the strain amplitude
11 dependence of G} (Figure 3(b)), the relaxation modulus at t = 1 s is constant at low < but decreases
1.2 above g = 0.2, which is the same as the threshold strain amplitude in LAOS. On the contrary, the
1e3  relaxation time T decreases with g even in the linear viscoelastic regime before the nonlinearity
18 appears above g = 0.2. Stretched exponent 5, a measure of the relaxation time distribution, also
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1s  decreases with v, reflecting a broadening of the relaxation time. These results indicate that the step
1es  stain induces structural realignment even in the linear viscoelastic regime.
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Figure 5. (a) Relaxation modulus reduced by damping function G(7, t)h(7y) ! obtained in the range
of the step strain, 0.02 < g < 0.1. Arrow indicates a characteristic time 1 beyond which nonlinear
relaxation moduli is factorized into separate strain and time-dependent functions, i.e., the time-strain
separability holds. (b) Nonlinear relaxation modulus reduced by damping function G (o, t)h(70) "
obtained in large step strain, 0.1 < ¢ < 2. (¢) Damping function 4 (). Solid line is the best fit to the
equation, () = 1/14 ¢y§ with { =330 and a = 3.

187 Figure 5(a) and (b) show the relaxation modulus reduced by a damping function k(7). The
1ss  damping function is defined as h(yg) = G(70,t)/G(t). Here, G(t) is a linear relaxation modulus. At
10 lower step strains ¢ < 0.1, the relaxation curves at long time region after time 7, ~ 630 s collapse
10 to a single curve, independent of the applied step strain as shown in Figure 5(a). Superposition
11 Of the relaxation modulus curves by a vertical shift indicates that time-strain separability holds in
102 a relaxation process after i [5]. Before 7, on the other hand, the time-strain separability is not
103 satisfied. According to the vertical shift of the relaxation modulus in the time domain of ¢ > T, the
1a  damping function h(7p) is introduced as a shift factor. On the contrary to the relaxation moduli at
105 lower step strains, the relaxation moduli under large step strain are not collapsed to the single curve
106 even after the reduction with h(7y) (Figure 5(b)). As mentioned before, the functional form of the
17 relaxation modulus changes from the stretched exponential to the power law decay with g because
108 Of the fracture of the disclination networks. The variation of the functional form with 7 violates the
100 time-strain separability over a broad time range.

200 The corresponding damping function h(vyg) is shown in Figure 5(c). BPIII shows a linear
201 response up to o = 0.03, since h(7yp) is constant. In the step strain range of 0.03 < v < 0.3, h("y0)
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202 decreases even though this step strain range belongs to the linear viscoelastic regime as shown in
203 Figure 4(b). Formation of the master curve after 7y indicates that the disclination networks are not
20 yet fractured in this strain region but significantly deformed. We should mention that the damping
20s function obtained in Figure 5(c) is imperfect because of the violation of the time-strain separability at
206 large strain.

207 Step shear deformation orients the disclination networks, resulting in a finite stress from the
20e  resistance of line tension of the disclinations. At small enough strain amplitude where it is assumed
200 that the disclination networks undergo an affine deformation and are not expected to breakup, it
210 will retain a finite amount of stress. The stress relaxes when the disclination networks return to
2 its equilibrium state on the relaxation time scale ~ 7. Thus the macroscopic stress in the linear
212 viscoelastic regime is originated from the orientation of the disclination networks. Decrease of T and
2s N(7y) suggests that the deformation of the disclination networks is non-affine. In entangled polymer
zns  systems, T is a measure of the local chain contraction. Time-strain separability, the formation of
x5 single master curve after 7y, is confirmed to hold even for a high step strain above o = 10 [36]. It
26 should be noticed that the violation of the time-strain separability over the whole time range does not
21z occur in the entangled polymer system. The violation is unique phenomenon in the BPIIL T in the
= BPIII might also be considered as a characteristic time for the contraction of the oriented disclination
210 networks. Steep decrease of /() above 7y = 0.3 indicates the softening of the BPIII, this is, the
220 fracture. As presented in previous section, the weak nonlinearity induced by local fracture of the
=z disclination networks initiates at ¢ > 0.2.

222 These experimental findings under large step strain; the broadening of the relaxation time
222 produced by break up of the structure, the variation of the functional form of the relaxation modulus,
22 and the violation of the time-strain separability, are plausibly accounted for by the fracture of the
225 disclination networks.

226  2.5. Stress Growth Behavior

227 Transient response under step strain deformation shows linear and nonlinear response
222 depending on the step strain amplitude. Not only the step shear deformation but also a continuous
220 accumulation of the shear strain induces the structural deformation and break up. In particular, the
230 orientation and fracture of the disclination networks continuously appears during the accumulation
21 Of the shear strain. In this section, we present the stress growth behavior under a constant shear rate
222 and explore the fracture behavior.
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Figure 6. (a) Stress growth behavior as a function of time for several shear rates applied at ¢t = 0.
Shear rates are ¥ =1, 0.1, 0.01, and 0.001 s~1 from left to right. The dotted lines corresponds to o (t) =
Goyt, where the shear modulus is Gy = 54 Pa. The dashed lines indicate the linear viscoelastic stress
response predicted by BKZ equation (eq. 3). The solid lines are K-BKZ equation (eq. 2). Stress reaches
its maximum oy, at a time ¢y, as shown by an arrow. (b) Normalized shear stress o/om as a function
of normalized strain 7y /ym.

233 Stress growth experiments are performed by applying a constant shear rate at time ¢ = 0. Figure
23 6(a) shows representative stress growth behavior at 4 = 0.001, 0.01, 0.1 and 1 s!. In the transient
235 behavior at the lowest shear rate 4 = 0.001 s~!, ¢(t) increases linearly with time toward a steady
236 state. As the shear rate is increased, the stress growth behavior is characterized by a stress overshoot
237 with a maximum value oy, at t = t,. It is known that such stress overshoot often occurs when the
23 imposed shear rate exceeds over a terminal relaxation time [5]. It should be noted that the stress
230 overshoot is observed when the applied shear rate exceeds over the reciprocal of 7, 1/7 ~ 0.0016
20 51, As mentioned in previous section, T, would correspond to the contraction time of the oriented
2a1  disclination lines. If so, the separability time 7y in the BPIII can be a criterion for the appearance of
2a2  the stress overshoot. Beyond the shear rate faster than 1/7, the disclination networks in the BPIII
2a3 will undergo excessive orientation before it adapts to the shear flow. The appearance of the stress
2ae  overshoot at j¢ > 1/7 supports that 7 is a characteristic time for the orientation relaxation of the
25 disclination networks.

As shown by dotted lines, the initial linear growth behavior at 7 = 0.001, 0.01 and 0.1 s ! is given
by o(t) = Gojt, where Gy is the plateau modulus ( = 54 Pa) shown in Figure 2. However, at y =1s71,
the initial stress growth obviously deviates from the linear viscoelasticity behavior o (t) = Goyt. We
explain the viscoelastic stress response using a K-BKZ formulation [37,38]:

o) = [ Gl iyt @
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In the linear viscoleasticity regime where 1i(vy) = 1, the stress can be found analytically as

o(t) = /_:oc(t— Yy (t)at, 3)

245 Where the relaxation modulus with the stretched exponential functional form (eq. 1) is substituted
20z into equation 3. Equation 3 (dashed lines) well describes the experimental data at 7 = 1 s~ ! without
2es  any fitting parameters. Therefore the BPIII initially undergoes a purely elastic deformation. We
200 also try to describe the whole viscoelastic stress response including nonlinear behavior using K-BKZ
20 equation (eq. 2). Here, substituting the damping function h(7yg) fitted to the experimental data in
=1 Figure 5(c) into equation 2 and integrating numerically, we obtain the solid lines in Figure 6(a). Stress
252 response at = 0.001 s~ ! is well described by K-BKZ equation, and the steady state value of the stress
23 is also consistent with the experimental data. At ¢ = 0.01 s~ K-BKZ equation coincides with the
s experimental data only in the elastic deformation region. K-BKZ equation deviates from o(t) before
25 the stress overshoot. As the shear rate is further increased, disagreement of K-BKZ equation with
=6 the stress growth curves becomes larger. Failure of the prediction is attributed to the variation of the
27 functional form of the relaxation modulus, which drastically changes with the step strain (Figures
2ss 5(a) and (b)).

250 The corresponding normalized stress responses o (t)/om are shown as a function of the
20 normalized strain 7/ym in Figure 6(b). o () collapse onto a single master curve only in the elastic
201 deformation regime. As mentioned previously, BPIII undergoes purely elastic deformation in the
262 initial linear growth. Deviation of each curve at ty, is thus associated with the rearrangement and
263 fracture of the disclination networks.

264 This stress overshoot phenomenon is resembles the yield behavior of soft glassy materials such
2es as emulsions, microgels, and colloidal suspensions [24,27,29]. The soft glassy materials show the soft
266 solid-like property at rest, and they turn into a liquid-like above the yield stress. In these materials,
207 the stress overshoot is a sign of the yield stress. The soft glassy materials are characterized by jammed
2ee  state of microstructures which are in structurally disordered arrangement. In the case of the BPIII, the
260 disclination networks first show the elastic response in the initial linear growth of the stress. As
20 the shear strain is accumulated, the disclination network undergoes the orientation. Eventually the
2 oriented network will break up at the stress maximum and reach to the steady state by flowing.
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Figure 7. (a) The peak shear stress o, as a function of the strain ym, at the overshoot point. The slope
corresponds to the modulus at the yield point, Gy ~ 42 Pa. (b) Critical stress as a function of applied
shear rate. (c) Critical shear strain as a function of applied shear rate. Solid lines show the power law
relations.

272 Figure 7 shows that oy, is a linear function of the strain ym, = Jotm at the maximum. The slope
273 corresponding to the effective modulus, om = Gyym, is estimated to be Gy ~ 42 Pa, which is softer
z7a  than its initial state in the linear viscoelasticity regime, Gy = 54 Pa. The elastic modulus at the yield
275 point Gy is regarded as a limit value beyond which the disclination networks bearing an external
276 shear deformation begin to break. Figure 7(b) and (c) show a failure criterion of o and ym as a
27 function of the applied shear rate. The stress at the yield point oy, increases as a weak power law,
278 O = 19.6 '5/8'198. Strain <y also shows a power law increase as yy = 0.513 '78'158. Power law relation
270 suggests that the fracture of the disclination networks delays with .

280 Similar scaling behavior of oy and ym with ¢ has been reported for some colloidal particle
ze1 Systems [24,27,28,34]. Observed power law exponent varies from system to system. One of the
22 models describing the failure of brittle material such as elastomer and glasses is a fiber-bundle model
203 (FBM) [35]. Physical origin of the fracture in this model is the accumulation of local failure events.
2es Failure events proceeds with two steps; the first process is immediate breaking which occurs when
205 the stress exceeds the mechanical strength of the fibers, and the second one is a delayed fracture
2 dominated by the rate of damage accumulation. Scaling behavior of o, and ym with g is presumably
2ez  explained by assuming the power law dependence of the rate of damage accumulation on the stress.
208 Upon deformation, each disclination network first suffers an orientation. A strained disclination
200 segment would resist the deformation with the form of a recovery force. The recovery force
200 oOriginates from the elastic resistance of the disclination lines against deformation and increases with
201 accumulated strain. In this simple view of the disclination-mediated rheology, the elastic linear
202 growth of the stress in Figure 6 reflects the resistance of all disclination segments arisen in response
203 to the shear deformation. However, this simple picture does not explain the shear rate dependences
20s  Of 0y and ym because the viscoelastic effect is not considered. Deformation of the blue phases is
205 achieved simultaneously by rearrangement of the disclination lines and by realigning the double
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206 twist cylinders, which are a viscoelastic matrix with organized structure. Under the continuous
207 deformation, therefore, the viscous force exerted on the disclination lines is produced in the matrix.
206 In other words, the orientation of the disclination lines is supported by the viscous force. In contrast
200 to the recovery force which increases with the orientation of the disclinations, the viscous force decays
s0 down as the matrix realigns along the shear flow. A retardation due to the viscous relaxation would
;1 lead to the delay effect on the stress overshoot.

302 If the delayed fracture due to the viscous relaxation is the origin of the power law dependence,
03 Ccreep compliance measurements will provide more detailed fracture behavior. The creep compliance
s« measurement is possible with the use of the stress-controlled rheometer. The delayed fracture
s0s  behavior with the use of the creep compliance measurement will be the next topic in order to elucidate
s0s the nonlinear viscoelasticity of the BPIII.

s0z 3. Conclusions

308 We studied the nonlinear viscoelasticity of the blue phase IIl by applying different type of shear
300 deformations; large amplitude oscillatory shear, step shear strain, and continuous shear deformation.
a0 Combining all the experimental results, we identify different viscoelastic regimes which are closely
su related to the rearrangement and fracture of the disclination networks. The experimental findings are
;12 summarized.

313 In the small strains, the shear modulus G* is independent of the strain amplitude (Figures 3),
s and the stress linearly increases with strain (Figure 6). These purely elastic behavior prove the linear
a5 viscoelasticity of the BPIII. However, the strain dependence of the relaxation time and its distribution
aie  (Figure 4) suggest that the disclination networks undergoes non-affine deformation without breaking
a7 the disclination networks. The linear viscoelasticity of the BPIII is thus characterized by the elastic
s and non-affine deformation without breaking the disclination networks.

319 Following the linear response, the nonlinear regime initiates as shown in Figure 3. The frequency
s20  dependence of complex modulus G* measured under LAOS (Figure 3) clarifies that the nonlinear
sz behavior is classified into two regimes; one is the weak regime in the range 0.2 < 7y < 1 and the
sz other is the strong nonlinear regime above v > 2. The weak nonlinear regime is characterized by the
;23 existence of the second plateau modulus at low w. In this regime, the disclination networks are locally
224 fractured but still keep the connectivity. Because of the local connectivity of the disclination networks,
225 the elastic response is weakly observed as the second plateau modulus. Local fracture of the networks
226 is also presumed by poly-dispersity of the relaxation time in the relaxation modulus (Figure 4). The
;27 weak nonlinear regime is therefore characterized by the fragmentation of the disclination networks.
s2¢  Further increase of the strain amplitude leads the strong nonlinear response, where the elastic
s20 response disappears. On the contrary to the weak nonlinear regime, the shear modulus shows no
30 second plateau. Under such a large amplitude oscillation, the disclination networks fractures into
s many fragments, which results in the loss of the elasticity of the BPIIIL.

332 Transient behavior under continuous shear deformation reveals that the yield point depends
333 on the shear rate. Shear rate dependence of the disclination network would be a result of the
a3s  delay effect due to the viscous force, which will be investigated in detail by performing the creep
;s compliance measurement. Future work will deal with the creep compliance measurement by using
336 the stress-controlled rheometer. Waveform analysis under LAOS provides the elastic stress and
337 viscous stress separately. It would be interesting to investigate the nonlinear behavior of the elastic
:3s  and viscous stresses separately and discuss their role on the nonlinearity. Measurement of differential
33 modulus defined as K’ = §o /5 will make it possible. Finally, we still need investigations in order
;a0 to distinguish the rheological behavior between ordered and amorphous disclination networks. In
;a1 particular, rheological measurements in a microscopic scale will provide detailed information on the
sz viscoelasticity of the disclination lines.


http://dx.doi.org/10.20944/preprints201803.0250.v1
http://dx.doi.org/10.3390/fluids3020034

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 March 2018 d0i:10.20944/preprints201803.0250.v1

14 of 16
33 4. Materials and Methods
saa 4.1, Material
345 Cholesteryl oleyl carbonate (COC) in solid form was obtained from Sigma-Aldrich. We used
sas  COC without further purification.
sar 4.2, Methods
343 Viscoelastic measurements were performed using an ARES-G2 strain-controlled rheometer TA

a0 Instrument Co., Ltd. with a cone - plate geometry (diameter = 50 mm, cone angle = 0.04 rad).
0 Sample solution was always loaded on the plate at T = 37 °C corresponding to the isotropic phase.
s After loading sample, temperature was set to the measurement condition by cooling the system. In
ss2  viscosity measurements, shear rates ranging from = 1000 - 1 s~ were applied and the viscosity was
s measured. The subsequent shear rate sweep proceeded from high to low shear rate. Thus the samples
ss¢  are always pre-sheared. Each shear rate was applied for 600 s, and the viscosity was averaged over
s 120 s at every fixed shear rate. Dynamic viscoelasticity was measured in the angular frequency regime
sse ranging from w =500 - 0.1 rad s~ 1.

357 Microscope observation at quiescent state was performed using cross-polarized mode with an
sss  Olympus BX51 microscope with a 10x objective. Temperature was controlled by using Linkam hot
30 stage 10021. Microscopy images were obtained by CMOS camera, HAS-L1, Ditect Ltd Co. Because
se0  Of different light source in microscope observations, typical platelet texture of the blue phase shows
se1  different color depending on the light source.

362 In rheological and microscopic measurements, no surface treatment was performed.

ses  Author Contributions: S.F. conceived and designed the experiments; S.F. performed the experiments; S.F.
sea analyzed the data; Y.S. and H.O. contributed data analysis and discussion; S.F. wrote the paper.
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