

1 Article

2 **Mycoviruses as triggers and targets of RNA silencing**
3 **in white mold fungus *Sclerotinia sclerotiorum***4 **Pauline Mochama¹, Prajakta Jadhav¹, Achal Neupane¹ and Shin-Yi Lee Marzano^{1,2,*}**5 ¹ Department of Biology and Microbiology, South Dakota State University, Brookings, SD USA6 ² Department of Horticulture, Agronomy, and Plant Sciences, South Dakota State University,
7 Brookings, SD USA

8 * Correspondence: shinyi.marzano@sdstate.edu; Tel.: +01-605-688-5469

9

10 **Abstract:** This study aimed to demonstrate the existence of antiviral RNA silencing mechanisms in
11 *Sclerotinia sclerotiorum* by probing wild-type and RNA-silencing-deficient strains of the fungus with
12 an RNA virus and a circular DNA virus. Key silencing-related genes, specifically dicers, were
13 disrupted in order to dissect the RNA silencing pathway and provide useful information on fungal
14 control. Dicers *Dcl-1*, *Dcl-2*, and both *Dcl-1/Dcl-2*- genes were displaced by selective marker(s).
15 Disruption mutants were then compared for changes in phenotype, virulence, susceptibility to viral
16 infection, and small RNA accumulation compared to the wild-type strain. Disruption of *Dcl-1* or
17 *Dcl-2* resulted in no changes in phenotype compared to wild-type *S. sclerotiorum*; however, the
18 double dicer mutant strain exhibited slower growth. To examine the effect of viral infection on
19 strains containing null-mutations of *Dcl-1*, *Dcl-2* or both genes, mutants were transfected with full-
20 length RNA transcripts of a hypovirus SsHV2L and copies of a single-stranded DNA mycovirus-
21 SsHADV-1 as a synthetic virus. Results indicate that the $\Delta Dcl-1/Dcl-2$ double mutant which was
22 slow growing without virus infection exhibited much more severe debilitation following virus
23 infection. Altered colony morphology including: reduced pigmentation, significantly slower
24 growth, and delayed sclerotial formation. Additionally, there is an absence of virus-derived small
25 RNAs in the virus-infected $\Delta Dcl-1/Dcl-2$ mutant compared to the virus-infected wild-type strain
26 which displays a high percentage of virus-derived small RNA. The findings of these studies suggest
27 that if both dicers are silenced, invasive nucleic acids which include mycoviruses ubiquitous in
28 nature- can greatly debilitate the virulence of fungal plant pathogens.

29 **Keywords:** RNA silencing; gemycircularvirus; mycovirus; antiviral; dicer

30

31 **1. Introduction**

32 RNA-directed gene silencing down-regulates gene expression at the transcriptional and post-
33 transcriptional level. RNA silencing or RNA interference is a mechanism involving the recognition
34 of dsRNA by an RNase III domain containing Dicer enzyme which processes the dsRNA into small
35 RNA (sRNA) duplexes of 18-30 nt in length. These sRNA duplexes are separated into two strands
36 with one of the strands being loaded onto Argonaute proteins to target complementary nucleic acids
37 in a sequence-specific manner.

38 There are two main biological functions of RNA silencing: the first is endogenous gene
39 regulation in development, stress response, and suppression of transposons and repetitive elements
40 to maintain genome integrity. The second role is to confer defense against invasive nucleic acids
41 including viruses [1-3]. Endogenous gene regulation through RNA silencing has been confirmed in
42 plants and animals but is still debatable for fungi because RNA-silencing gene disruption mutants
43 often do not suffer lethal effects as in plants or animals. However, it is when these mutants are
44 challenged with viruses that the antiviral role of RNA silencing genes becomes evident [4, 5].
45 Therefore, the most noticeable role of RNA silencing in fungi has been identified as an adaptive

46 defense function [5, 6]. Although the canonical RNA silencing pathway is deeply conserved, the
47 presence of RNA silencing genes is less uniform in Kingdom Fungi. For instance, *Saccharomyces*
48 *cerevisiae* has lost all the RNA silencing genes required to internalize a dsRNA mycovirus, L-A: a killer
49 virus that produces a toxin which kills uninfected neighbor cells and leaves the infected cells immune
50 to the toxin (reviewed in [7]). Within the same genera, one fungal species may be predicted to encode
51 RNA silencing genes but another species may not (eg. *Ustilago hordei* vs. *U. maydis*) [8]. It could be
52 circumstantial that endogenous gene regulation in fungi does not involve RNA silencing
53 mechanisms, but this could partially be due to the existence of unidentified domains producing
54 miRNAs that carry out this function.

55 The cellular components of RNA silencing have been elucidated in the model fungus *Neurospora*
56 *crassa*. Two dicer orthologs were identified as *Dcl1* and *Dcl2* and shown to play a redundant role in
57 transgene silencing [6]. However, efforts to demonstrate a role for RNA silencing in antiviral defense
58 are lacking due to the absence of a mycovirus experimental system for this fungus. Although it has
59 been determined that *Dcl2* is responsible for antiviral RNA silencing in the ascomycete, *Cryphonectria*
60 *parasitica* [5], and *Dcl1* has been found to play the antiviral defense role in another ascomycete
61 *Colletotrichum higginsianum* [4], there are currently no reports of evolutionarily conserved dicer
62 homolog specific targets in fungi. Furthermore, no canonical PAZ (Piwi-Argonaute-Zwille) domain
63 has been found in these fungal dicers which is atypical for Class III enzymes that are considered to
64 be RNA silencing initiators in model organisms such as *Drosophila* (reviewed in [9]). Clearly more
65 studies are needed to dissect the roles of RNA silencing in fungi.

66 *Sclerotinia sclerotiorum* is phylogenetically related to *N. crassa* and *C. parasitica* under phylum
67 *Ascomycota* but in a different class, and its genome has been sequenced and annotated [10]. DNA
68 transformation of *S. sclerotiorum* is straightforward. Moreover, *S. sclerotiorum* has been shown to
69 support the replication of members of more than ten virus families including uniquely, a single
70 stranded (ss)DNA virus, Sclerotinia sclerotiorum hypovirulence-associated DNA virus (SsHADV-1).
71 This virus belongs to a new family, *Genomoviridae*, and has been associated with several infections
72 caused by unknown agents (reviewed in [11]). Previously, a reverse genetics system was developed
73 for a member of the *Hypoviridae* virus family, Sclerotinia sclerotiorum hypovirus 2 – lactuca (SsHV2-
74 L) [12]. This diversity in mycoviruses that infect *S. sclerotiorum* allows for an examination of the effect
75 of RNA silencing on viruses with a range of replication strategies in the same host. Antiviral RNA
76 silencing protects an organism against virus infection, however, an outstanding question remains
77 whether the core features against RNA and DNA viruses differ in fungi. In addition, a recent study
78 demonstrated that by simultaneously silencing *Dcl-1* and *Dcl-2* genes in *Botrytis cinerea*, a close
79 relative of *S. sclerotiorum*, the virulence of *B. cinerea* is greatly hampered due to the reduction in small
80 RNA mediated cross-kingdom RNAi [13]. The two fungal dicer genes are redundant in generating
81 pathogen small RNA effectors that hijack plant immunity [14]. As *Sclerotinia sclerotiorum* is closely
82 related to *B. cinerea* [10], it is intriguing whether corresponding dicer gene(s) have the same effects on
83 *S. sclerotiorum* virulence, small RNA processing, and antiviral defense. We now report the use of the
84 *S. sclerotiorum* experimental system to investigate the role of antiviral RNA silencing in fungi.

85 2. Materials and Methods

86 **Fungal strains and culture conditions.** Cultures of *Sclerotinia sclerotiorum* wild-type strain DK3
87 and *Dicer* mutant strains were grown on potato dextrose agar (Sigma) at 20–22°C. The Δ *Dcl-1* and
88 Δ *Dcl-2* mutant strains were maintained on PDA supplemented with 100 μ g/mL hygromycin B (Alfa
89 Aesar) and the Δ *Dcl-1*/*Dcl-2* strain was maintained on PDA supplemented with 100 μ g/ml
90 hygromycin and 250 μ g/ml Geneticin (G418) [15].

91 **Construction of *Dcl-1*, *Dcl-2* and *Dcl-1/Dcl-2* null alleles.** *Sclerotinia sclerotiorum* *Dicer* genes
92 (Ss1G_13747 and Ss1G_10369, respectively) were predicted based on homology to those identified in
93 *Neurospora crassa* [8]. Deletion of *Dicer* genes was accomplished using the split marker recombination
94 method which requires two DNA constructs for each gene deletion. To generate the Δ *Dcl-1*
95 disruption mutant, an 814bp long upstream region of the gene was amplified using primers F1-DCL1
96 and F2-DCL2 and a 663bp long downstream region of the gene was amplified using primers F3-DCL1

97 and F4-DCL1. F2 and F3 primers include 26-32bp of complementary sequence to the *Aspergillus*
98 *nidulans* trpC promoter and terminator respectively. Plasmid pCSN43 containing the *hygb* gene
99 flanked by the *Aspergillus nidulans* trpC promoter and terminator [16], obtained from Fungal Genetics
100 Stock Center (Manhattan, KS, USA), was used to amplify the marker gene and promoter and
101 terminator sequences. Primers PtrpC-F and HY-R were used to amplify a 1.2kb region of the marker
102 gene including the promoter and primers YG-F and TrpC-R were used to amplify a 1.3kb region of
103 the gene including the terminator. Both amplicons represent roughly two thirds of the marker gene
104 and contain 400bp of overlapping sequence. The F1-F2 amplicon was then fused to the PrtpC-HY
105 amplicon and the F3-F4 amplicon was fused to the YG-TrpC amplicon using the overlap extension
106 PCR protocol described by Fitch et al. [17]. In the final round of PCR, nested primers were used to
107 give the final gene deletion constructs representing 600bp of upstream homologous sequence fused
108 to two- thirds of the *hygb* gene in the first construct and 600bp of downstream sequence fused to two-
109 thirds of the *hygb* gene in the second construct. Disruption of the *Dcl-2* gene was accomplished with
110 constructs generated as described above using a separate set of primers (Supplemental Table 1). Final
111 *Dcl-2* gene deletion constructs included 830bp of sequence homologous to the upstream region of the
112 gene and 1kb of downstream homologous sequence.

113 The $\Delta Dcl-1/Dcl-2$ mutant was generated by knocking out the *Dcl-1* gene in a $\Delta Dcl-2$ mutant
114 without using the split marker method. $\Delta Dcl-2$ protoplasts were transformed with a single gene-
115 deletion DNA cassette generated using overlap extension PCR. (Primers listed in Supplemental Table
116 1). The DNA construct contained 600bp of sequence homologous to the upstream region of the $\Delta Dcl-1$
117 gene and 600bp of downstream homologous sequence fused to the G418 resistance gene under the
118 control of the *Aspergillus nidulans* trpC promoter. Recombination occurred at the homologous arms
119 flanking the resistance gene and the *Dcl-1* gene was subsequently replaced by the G418 gene. G418 is
120 an aminoglycosidic antibiotic similar to hygromycin but with no cross-resistance. The G418 resistance
121 gene was amplified from pSCB-TrpC-G418 [15].

122 **Fungal transformation.** Gene deletion cassettes were transformed into wild-type *S. Sclerotiorum*
123 protoplasts using polyethylene glycol (PEG)-mediated transformation. Protoplasts were prepared as
124 described by Chen et al [18] with a digestion time of 3h at RT using the lysing enzyme from
125 *Trichoderma harzianum* (Sigma). PEG-mediated transformation of gene deletion constructs into fungal
126 protoplasts was performed following the protocol described by Rollins et al. [19] with some
127 modifications [20]. Briefly, following PEG transformation 3mL of liquid regeneration media (RM)
128 was added to protoplasts and the suspension incubated at 28°C with shaking (100rpm, 2-4hrs).
129 Molten RM (45°C) was then added to a final volume of 20mL and the mixture poured into a petri
130 dish. Plates were grown at 28°C for 12h and then overlaid with 5mL molten RM containing
131 hygromycin for single *Dicer* gene mutants and hygromycin and G418 for the double *Dicer* mutant.
132 Final antibiotic concentrations used for fungal selection were 100 μ g/mL for hygromycin and 250
133 μ g/mL for G418. Colonies were transferred to potato dextrose agar (PDA) plates supplemented with
134 the appropriate antibiotic and transferred at least three times.

135 To confirm gene deletions, DNA was extracted from transformants and PCR was conducted
136 using primer pairs- F1 and F4, F1 and HY-R, and YG-F and F4 to amplify the target regions
137 (Supplemental Table 1). PCR amplicons were compared in size to the wild-type gene amplicon.
138 Amplicons of the correct size (indicating successful gene deletion) were sequenced to confirm
139 integration of the marker gene into the correct region. Repeated hyphal tipping and nested PCR were
140 performed to ensure monokaryotic gene deletions in each gene disruption experiment.

141 **Phenotypic characterization of gene deletion mutants.** Growth assays were conducted on at
142 least 3 replicates each of wtDK3, $\Delta Dcl-1$, $\Delta Dcl-2$ and $\Delta Dcl-1/Dcl-2$ cultures. 5-mm PDA discs were
143 taken from the edges of actively growing 2-day old mutant and wild-type cultures and inoculated
144 onto fresh PDA plates. Hyphal diameter was measured 24h, 48h and 72h post inoculation.

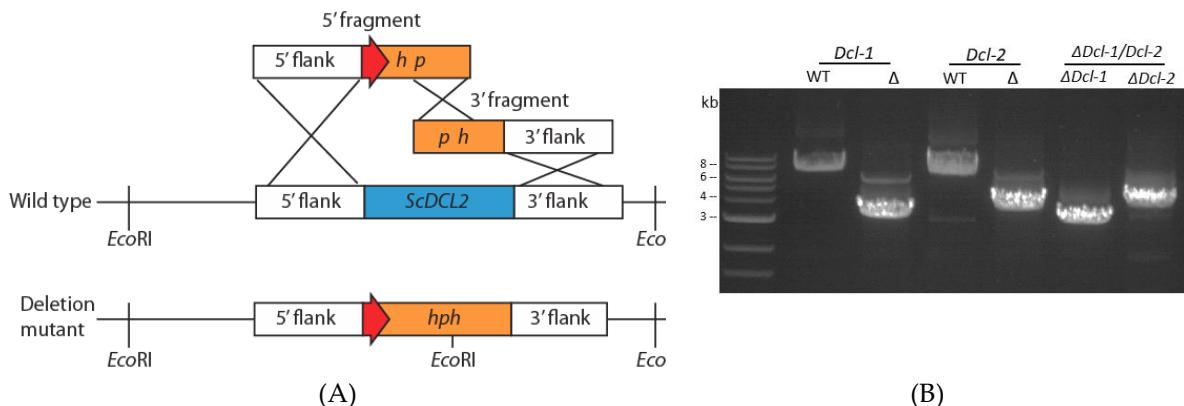
145 **Virulence assay of gene deletion mutants.** Pathogenicity assays were conducted by placing a
146 single 5-mm PDA disc from the edge of an actively growing, 2-day-old culture on the center of a
147 freshly harvested canola leaf or a detached center leaflet (4 to 5 cm long) from the first trifoliate leaf
148 of a soybean or sunflower seedling. At least 3 replicates of the leaves were incubated at 20 \pm 1°C in a

149 growth chamber with a 12h light-12h dark photoperiod. Lesion size was calculated 24h, 48h, and 72h
150 post inoculation by averaging two perpendicular lesion diameters.

151 **Transfection of mutants with in vitro transcripts of SsHV2.** *In vitro* transcripts of SsHV2-L were
152 synthesized and transfected into wtDK3 and *Dicer* mutant protoplasts following a published
153 procedure [12]. After >6 transfers, viral infection was confirmed by extraction of total RNA using
154 RNeasy Mini Kit (Qiagen) followed by reverse transcription using Maxima H Minus Reverse
155 Transcriptase (Thermofisher) and PCR to amplify a 1.1kb region corresponding to the viral genome.
156 PCR amplicons were sequenced to confirm identity with the SsHV2-L genome.

157 **Construction of an infectious clone of SsHADV-1 and transfection of mutants with SsHADV-**

158 1. The 2,166 nt genome of SsHADV-1 was chemically synthesized by GeneArt (ThermoFisher
159 Scientific) in three segments with the ends flanked by overlapping unique restriction enzyme cutting
160 sites, based on GenBank accession NC_013116.1. The 1-mer genome of SsHADV-1 was reconstructed
161 by ligating three fragments containing restriction sites *SpeI*, *ApaI*, *EagI* internal to the viral genome.
162 Using primers 33F and 3R, the viral genome was amplified and cloned into pJET1.2 as a 1 copy (1-
163 mer) clone. A second copy of the genome was amplified by primers SV2F and 3R'-NotI (Supplemental
164 Table 1 with procedure follows). Both the 1-mer clone and the second copy of the genome were
165 digested with *SpeI* and *NotI* and ligated to form a tandem 1.9-mer clone which was then used for
166 transfection (Fig. S2(A)). Detailed procedure is described in Supplemental Data. There was no long
167 concatemers formed because directional cloning with noncomplementary sticky ends was
168 performed. Fungal protoplasts (wtDK3) were transfected by PEG-mediated transformation.
169 Infectivity was confirmed by inverse PCR to amplify a 2,166 bp fragment (Fig. S2(B)), which suggests
170 a recombinant DNA template was formed. Fungal DNA was extracted and served as the template for
171 rolling circle amplification (RCA) (Illustra TempliPhi, GE Health, CA) using random primers and a
172 single cut restriction enzyme digestion, resulted in a 2,166 bp fragment, indicating no concatemer
173 exists after transfection. The RCA product was subjected to Sanger sequencing to confirm the
174 infectivity. Additionally, after >6 serial transfers to fresh PDA plates, the presence of the replicating
175 virus in fungal hyphae was confirmed by PCR amplification using SsHADV-1-specific primers and
176 sequencing. Mutant cultures were infected with SsHADV-1 by extracellular transmission or virus
177 particles from infected wtDK3 growth medium into fungal hyphae. Specifically, plugs were taken
178 from the agar surrounding an SsHADV-1 infected culture of wtDK3 and placed adjacent to plugs
179 taken from the edges of actively growing mutant cultures on fresh PDA plates with corresponding
180 selective antibiotics.

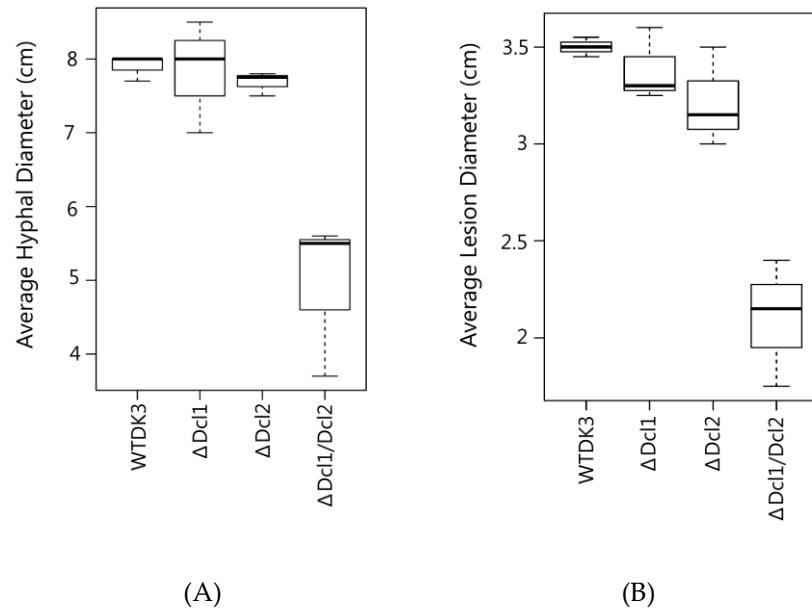

181 **Preparation of small RNA libraries and sequencing analysis.** To understand the roles played
182 by dicer genes in small RNA processing, we sequenced libraries prepared from small RNA extracted
183 from wtDK3 and $\Delta Dcl-1/Dcl-2$ strains infected with SsHADV-1 and SsHV2L as well as virus-free
184 strains. Three replicates of each virus-infected strains were sequenced and two replicates of each
185 virus-free strains. Small RNAs were extracted from 4-day old mycelia using mirVana miRNA
186 Isolation kit (ThermoFisher Scientific) following the manufacturer's protocol. Libraries were
187 prepared using the NEBNext small RNA Library Kit (NEB). The libraries were pooled and sequenced
188 in one lane for 50-nt single-end reads on an Illumina HiSeq4000 at Keck Center, University of Illinois.
189 The sequences have been deposited in NCBI (the accession will be available during review).
190 Demultiplexed reads were removed of the 3' adaptors by Trimmomatic [21]. Loci producing sRNAs
191 were identified by ShortStack [22].

192 3. Results

193 3.1. Generation of disruption mutants for DCL genes.

194 Dicer-like genes in *S. sclerotiorum* were disrupted using the homologous recombination method
195 for gene displacement (Fig.1A) to generate $\Delta Dcl-1$, $\Delta Dcl-2$ and $\Delta Dcl-1/Dcl-2$ mutants directly from
196 wild-type strain DK3 without using a Δ Ku80 strain. Dicer genes were confirmed to be disrupted by
197 extracting DNA from multiple transformants and performing PCR amplification using F1 and F4
198 primers for initial screening. When the target locus was amplified, wild-type and mutant PCR

199 amplicons differed in size confirming gene deletion (Fig. 1B). PCR screening and Sanger sequencing
 200 of PCR amplicons confirmed integration of the gene-replacement cassettes into the target region and
 201 ruled out ectopic integration of the *hygb* gene. Finally, nested PCR was used to rule out heterokaryotic
 202 mutation in which both the original dicer genes and disrupted genes occur in different nuclei within
 203 fungal hyphae (Supplemental Table 1). This step was necessary because each transformed protoplast
 204 can contain multiple nuclei. Once a monokaryotic mutation was confirmed, further characterization
 205 of colony morphology and pathogenicity was carried out.

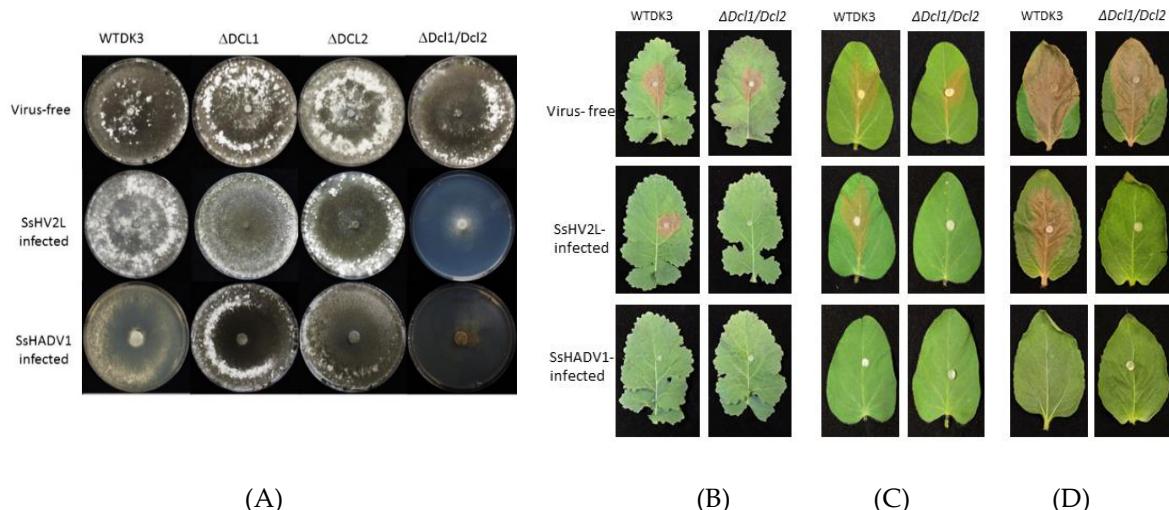

206 **Fig.1** (A) Generation of deletion mutants for dicer genes in *S. sclerotiorum* using the split-marker gene
 207 replacement method and (B) Electrophoresis gel image of PCR amplification to confirm Dicer gene
 208 disruption using F1-F4 primer pairs. As shown, amplicons of wild-type *Dcl-1* and *Dcl-2* genes (7.7kb
 209 and 7kb respectively) and deletion alleles (3.3 and 3.9kb) differ in size. Lanes 5 and 6 show deletion
 210 alleles (3.1 and 3.9kb) in the double Dicer mutant.

211 3.2. Effect of Dicer-like gene disruption on *S. sclerotiorum* phenotype.

212 We compared growth rate and colony morphology in dicer mutants and the wild-type strain,
 213 DK3 (denoted as wtDK3) on PDA. Single mutants of $\Delta Dcl-1$, $\Delta Dcl-2$, or wtDK3 exhibited similar
 214 growth rates, whereas the double $\Delta Dcl-1/Dcl-2$ disruption mutant exhibited significantly slower
 215 growth at 72h as indicated by measurements of hyphal diameter ($p<0.05$) (Fig. 2A). No significant
 216 difference in phenotype was observed in $\Delta Dcl-1$ or $\Delta Dcl-2$ compared to wtDK3, whereas $\Delta Dcl-1/Dcl-2$
 217 mutant showed more hyphal branching and feathery colony morphology.

218 3.3. Effects of Dicer-like gene disruptions on *S. sclerotiorum* pathogenicity.

219 To test the pathogenicity of *S. sclerotiorum* dicer mutants, plugs taken from actively growing
 220 cultures were used to inoculate detached leaves. Lesion size data collected 24 h, 48 h, and 72 h post
 221 inoculation showed that there was no difference in the sizes of lesions produced on canola leaves by
 222 the single mutants $\Delta Dcl-1$ or $\Delta Dcl-2$ compared to wtDK3. However, significantly smaller lesions were
 223 produced by the $\Delta Dcl-1/Dcl-2$ double mutant compared to those produced by wtDK3 ($p<0.05$) (Fig.
 224 2B).

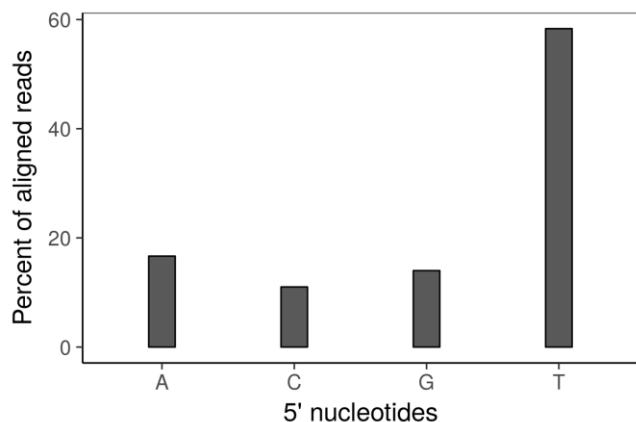
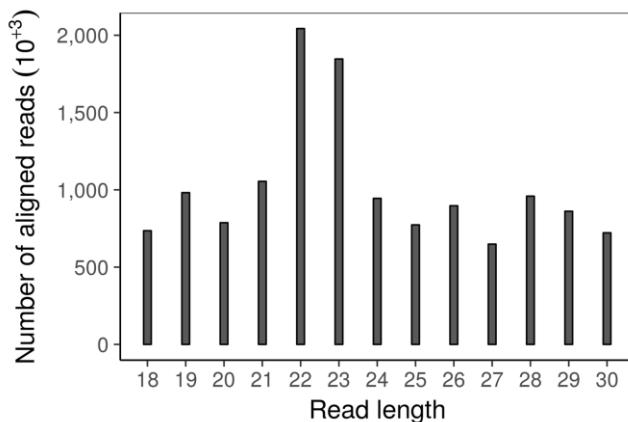

225 **Fig. 2** (A) Average mycelial growth of *S. sclerotiorum* wild type and dicer gene disruption mutants
 226 grown on PDA for 4 days. (B) Lesion diameter measurements 72 hpi comparing wtDK3, $\Delta Dcl1$, $\Delta Dcl2$
 227 and $\Delta Dcl1/Dcl2$ virus-free cultures inoculated on canola leaves.

228 **3.4. Transfection of Dicer gene deletion mutants with SsHV2-L or SsHADV-1 viruses consistently result in**
 229 **severe debilitation in the $\Delta Dcl1/Dcl2$ mutant.**

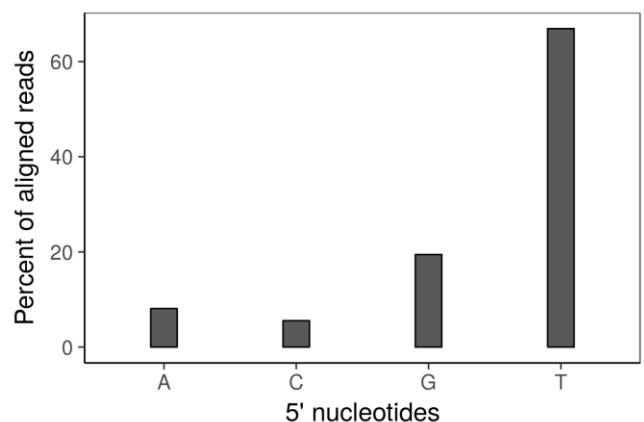
230 To examine the effect of viral infection on strains containing disruption of *Dcl-1*, *Dcl-2* or both
 231 genes, mutants were transfected by hyphal fusion with SsHV2-L or SsHADV-1 infected mycelia.
 232 SsHADV-1 was generated by a synthetic dimer genome approach. As shown in Fig. 3A, the $\Delta Dcl1$
 233 or $\Delta Dcl2$ mutants infected with either mycoviruses, SsHV2-L or SsHADV-1, showed no significant
 234 difference in growth and morphology compared to virus-infected wtDK3. In sharp contrast, the $\Delta Dcl1/Dcl2$
 235 mutant showed severe debilitation following virus infection as evidenced by significantly
 236 slower growth and hypovirulence on three different crop species (Fig. 3B-3D).

237 **3.5 Infectious clone of SsHADV-1 causes severe debilitation and significantly reduced virulence in wtDK3 at**
 238 **lower temperatures**

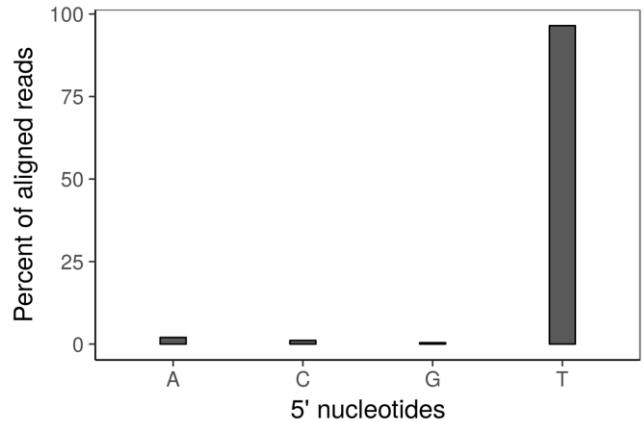
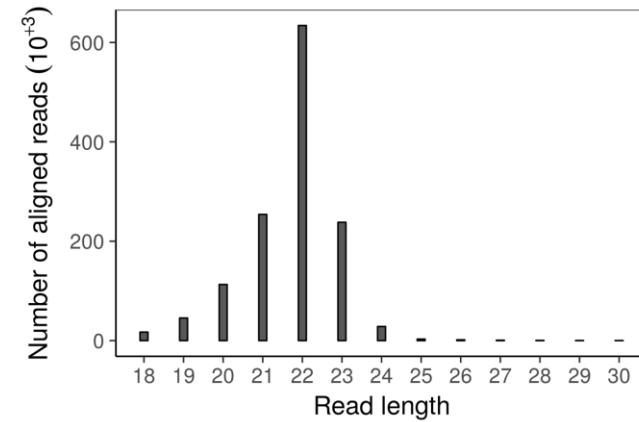
239 The transformed and serial transferred fungal DNA was extracted to determine the infectivity
 240 of the infectious clone. Rolling circle amplification with *Xba*I digestion resulted in a 2.2 kb band. Also,
 241 Inverse PCR amplification of the viral genome and sequencing confirmed that the synthetic virus is
 242 identical to the Chinese strain also found in soil DNA extracts from two locations of South Dakota,
 243 USA (data not shown). Initial viral infection at room temperature (~24 °C) resulted in asymptomatic
 244 infection in wtDK3, however incubation at lower temperatures (20 °C) in a growth chamber resulted
 245 in severe debilitation including slow growth and reduced virulence.

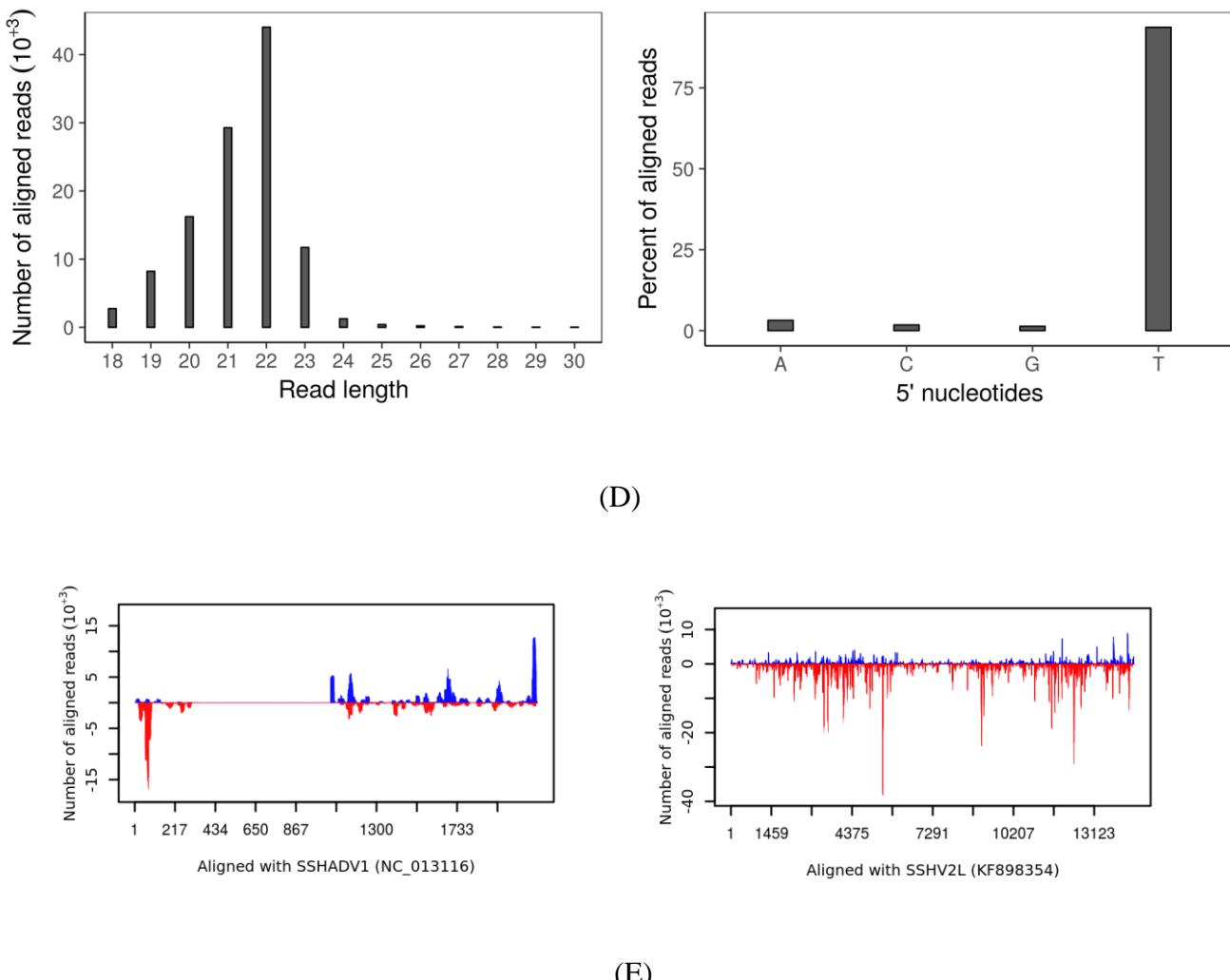


246 **Fig. 3** (A) Colony morphology of virus-free and virus- infected gene deletion mutants. (Top row)
247 Virus-free wtDK3, $\Delta Dcl1$, $\Delta Dcl2$ and $\Delta Dcl1/Dcl2$. (Middle row) wild-type and mutant strains
248 infected with hypovirus SsHV2-L. (Bottom row) wild-type and mutant strains infected with SsHADV-
249 1. Cultures were grown for 7days on PDA at room temperature. (B) Virulence assays on detached
250 canola leaves, (C) detached soybean leaves and (D) detached sunflower leaves. Plugs were taken from
251 the edge of actively growing wtDK3, $\Delta Dcl1$ (not shown), $\Delta Dcl2$ (not shown) and $\Delta Dcl1/Dcl2$
252 cultures and inoculated onto detached leaves stored at $20\pm1^\circ\text{C}$. Lesion size was measured 36h post-
253 inoculation.

254 **3.6. Double dicer disruption mutant had reduced 21-24 nt sRNA accumulation.**


255 To examine whether sRNA accumulation is affected by disrupting both dicers, sRNA sequences
256 were profiled by size distribution and 5' terminal nucleotide in the virus-free $\Delta Dcl1/Dcl2$ mutant and
257 wild-type strain. Although the 5' terminal nucleotide remained uracil-biased, the size distribution of
258 small RNAs was drastically changed in the double dicer mutant compared to the wild-type strain
259 (Fig 4A and 4B). Specifically, there was a reduction in the 21-24 nt sRNA fraction in the double mutant
260 compared to the wild-type strain. Notably, similar to *B. cinerea*, sRNA production in *S. sclerotiorum* is
261 not completely eliminated even after both dicers are disrupted.

262 **3.7. SsHADV-1 and SsHV2-L are both processed by dicer(s)**



263 Sequence analysis of the small RNAs produced by either SsHADV-1 or SsHV2-L infected wtDK3
264 and double dicer mutants showed major differences. In each barcoded library, 5 to 10 million of reads
265 passed the QC. In average, 14.4% of the total small RNA reads from the SsHV2L- infected wild-type
266 strain were derived from SsHV2L, whereas 2.26% of the total small RNA reads in the SsHADV-1
267 infected wild-type strain were derived from SsHADV-1. 22-nt sRNAs were the most abundant for
268 both virus-infected wild-type strains (Fig. 4C and D) with a preference (>90%) for uracil at the 5'
269 position. 77.89% of SsHV2-L derived sRNA aligned to the negative strand, and 22.01% to the positive
270 strand (Fig. 4E). SsHADV-1 derived sRNA reads were aligned non-uniformly from both strands (Fig.
271 4F) with strand biases for the negative strand in the first 350 nt of the coat protein encoding gene, and
272 for the positive strand between 1000 nt – 2200 nt for the replicase protein encoding gene, but overall
273 51.6% of the reads aligned to the published positive strand sequence and 48.3% to the negative strand.
274


(A)

(B)

(C)

275 **Fig. 4** Small RNA (A) Size distribution (left) and frequency of 5' terminal nucleotides (right) of small
 276 RNAs in wtDK3. (B) Size distribution (left) and frequency of 5' terminal nucleotides (right) of small
 277 RNAs in $\Delta dcl1/dcl2$ disruption mutant. (C) Size distribution (left) and frequency of 5' terminal
 278 nucleotides (right) of small RNAs aligned to SsHV2-L genome. (D) Size distribution (left) and
 279 frequency of 5' terminal nucleotides (right) of small RNAs aligned to SsHDV-1 genome. (E)
 280 Distribution of small RNA reads that aligned to the SsHV2-L genome in plus and minus strands (left).
 281 Distribution of small RNA reads that aligned to the SsHADV-1 genome in plus and minus strands
 282 (right). Bars above zero indicate alignment to the positive strand, and bars below zero indicate
 283 alignment to the negative strand.

284 **4. Discussion**

285 We previously compared the three hypovirus strains of SsHV2 and detected inter- and intra-
 286 specific recombination near the 5' end of the genome where a putative virus silencing suppressor is
 287 predicted to be located, suggesting the existence of RNA silencing in the host fungus [12]. Here, we
 288 have determined that a double dicer disruption mutant, but not single dicer disruption mutants, has
 289 slower hyphal growth than the wild type. This can be partially explained by the significant shift in
 290 sRNA accumulation observed in the double mutant since small RNAs generated by dicers may play
 291 important roles in gene regulation and other biological functions (reviewed in [23]). A similar change
 292 in phenotype was also observed in another member of *Sclerotiniaceae*, *Botrytis cinerea*, [13] that
 293 resulted in slower growth and reduced pathogenicity when both dicer genes are disrupted. Further,
 294 we demonstrate that the double dicer disruption mutant is highly debilitated upon virus infection.
 295 Redundancy in dicer antiviral function has not been reported in fungal species; only a redundancy

296 in dicer function in transgene-induced gene silencing has been found in *Neurospora crassa* so far [6].
297 Dicer redundancy in antiviral RNA silencing of *S. sclerotiorum* could be validated by small RNA
298 sequence analysis in virus-infected single dicer knockout mutants to demonstrate that the small RNA
299 accumulations are identical to the wild-type strain due to the presence of an intact dicer gene in each
300 mutant. This further investigation is outside the scope of this study, however. Once validated, then
301 dicer redundancy would appear to have evolved in a specific lineage of ascomycetes as a conserved
302 anti-invasive nucleic acid mechanism because it is not the case for *Cryphonectria parasitica* [5] nor
303 *Colletotrichum higginsianum* [4].

304 In this study, we demonstrate that a ss(+)RNA virus and notably, a ssDNA virus are not only
305 the triggers but also the targets of RNA silencing based on virus-derived small RNA production in
306 the wild-type strain that is not observed in the double dicer disruption mutant. This provides solid
307 evidence that *S. sclerotiorum* can degrade both a ss(+)RNA virus and a ssDNA virus by either Dcl-1
308 or Dcl-2 enzymes. Further studies will involve introducing mutations in either DNA or RNA viral
309 genomes and constructing disruption mutants of RNA-Dependent-RNA-Polymerase (RDR) proteins.
310 The latter will confirm the involvement of host RDR proteins in the production of dsRNA using RNA
311 transcripts from both DNA and RNA viruses. These RDR-produced dsRNA act as templates to
312 trigger the RNA silencing pathway which effectively targets the invasive nucleic acid. A hypothesis
313 that awaits to be tested is whether the production of dsRNAs from viral RNA transcripts of the
314 ssDNA virus presumably by fungal RDR proteins, sequesters the viral transcripts and hinders
315 translation of viral proteins.

316 Only one of the three small RNA libraries from SsHADV-1 infected wtDK3 cultures had a well
317 accumulated small RNA profile. Acute/initial SsHADV-1-infection is marked by severe debilitation,
318 with sectoring growth and an absence of virus-derived small RNA production. This is followed by a
319 strong host immune reaction resulting in the silencing of viral nucleic acids and the remission of acute
320 symptoms. Virus-derived small RNAs become detectable in this latter stage. The two samples with
321 no virus-derived small RNAs detected were possibly obtained from debilitated, sectoring hyphae
322 that had not progressed to symptom remission. Plant geminivirus, Pepper gold mosaic virus, is also
323 associated with a recovery phenotype in plant hosts accompanied by decreased viral DNA and RNA
324 titers which correspond with the presence of virus-derived small RNAs [24]. Hotspots were observed
325 in virus-derived small RNAs from this virus with a 700 bp gap similar to the small RNAs profiled for
326 tomato yellow leaf yellow curl china virus [25]. Opposite strand biases were also observed between
327 the two clusters, possibly due to the fact that the direction of transcription for the two genes is
328 opposite.

329 A somewhat surprising finding is that upon the deletion of both dicer genes (without virus
330 infection), sRNAs are still being produced. A similar observation was made in *Botrytis cinerea*
331 following deletion of both its dicer genes [13]. By conserved domain search, we found a putative
332 RNaseL (Ire1p) gene (GenBank Ss1G_04823), also an RNA endonuclease III that is similar to a yeast
333 protein, that might be responsible for the remaining small RNA processing. This protein could be
334 involved in fungal RNA splicing [26].

335 Mycoviruses belonging to the families *Hypoviridae* and *Genomoviridae* are widespread, especially
336 the later having been reported to associate with eukaryotes including vertebrates and invertebrates,
337 in addition to fungi. *Genomoviridae* is considered part of an emerging group of infectious agents
338 {Halary, 2016 #149}. The host of the sole representative of the Family *Genomoviridae* so far, i.e.
339 SsHADV-1, is *S. sclerotiorum*. The results presented here suggest the therapeutic potential of dicer
340 proteins, and the importance of other RNA silencing genes that interact with viral nucleic acids to
341 produce dsRNA triggers of RNA silencing. An understanding of how and when the RNA silencing
342 pathway is triggered to target this group of DNA viruses will provide insights into the arms race of
343 virus-host co-evolution. The importance stems from that this group of circular ssDNA viruses have
344 polyphyletic origin [27] and can replicate in distant hosts [28].

345

346

347 **Supplementary Materials:** The following are available online, Figure S1: title, Table S1: Primers used in this
348 study. Table S2: Primers and expected sizes of nested PCR reactions performed to confirm monokaryotic deletion
349 of dicer genes with the corresponding gel image in Figure S1. Figure S1: Electrophoresis gel image to confirm
350 monokaryotic deletion of dicer genes by nested PCR. Lanes as indicated in table S1. Lane 1~12 from right to left
351 on the upper half of the agarose gel image. Lane 13~18 from right to left on the lower half of the agarose gel
352 image. Ladders are shown on the farthest right and left lanes with corresponding size labelled. Figure S2: Inverse
353 PCR product amplified using SsHADV-1-specific primers to confirm the infectivity of the infectious clone from
354 a >6 times transferred culture. A 2.2 kb band was amplified and confirmed by Sanger sequencing. The product
355 shows the dimer clone has recombined circular template of SsHADV-1 genome and demonstrates the infectivity
356 of the infectious clone assembled from synthetic DNA. Left Lane: 1kb ladder. Right Lane: 2.2 kb amplicon.

357 **Acknowledgments:** This study was supported in part by National Sclerotinia Initiative Grant
358 SA1800330 (to S.L.M.) and SDSU startup from USDA Hatch fundSD00H606-16 project number with
359 Accession Number 1009451. The authors also thank Dr. Leslie L. Domier of USDA/ARS for edits on
360 the manuscript.

361 **Author Contributions:** PKM and SLM conceived and designed the experiments; PKM and PKJ performed the
362 experiments; AN analyzed the small RNA data; PKM and SLM wrote the paper.

363 **Conflicts of Interest:** The authors declare no conflict of interest.

364 **References**

- 365 1. Baulcombe, D., *RNA silencing*. Trends Biochem. Sci., 2005. **30**(6): p. 290-293.
- 366 2. Waterhouse, P.M., M.B. Wang, and T. Lough, *Gene silencing as an adaptive defence*
367 *against viruses*. Nature, 2001. **411**(6839): p. 834-842.
- 368 3. Baulcombe, D., *RNA silencing in plants*. Nature, 2004. **431**(7006): p. 356-363.
- 369 4. Campo, S., K.B. Gilbert, and J.C. Carrington, *Small RNA-based antiviral defense in*
370 *the phytopathogenic fungus Colletotrichum higginsianum*. PLoS pathogens, 2016.
371 **12**(6): p. e1005640.
- 372 5. Segers, G.C., et al., *Evidence that RNA silencing functions as an antiviral defense*
373 *mechanism in fungi*. Proceedings of the National Academy of Sciences, 2007.
374 **104**(31): p. 12902-12906.
- 375 6. Catalanotto, C., et al., *Redundancy of the two dicer genes in transgene-induced*
376 *posttranscriptional gene silencing in Neurospora crassa*. Molecular and cellular
377 biology, 2004. **24**(6): p. 2536-2545.
- 378 7. Becker, B. and M.J. Schmitt, *Yeast Killer Toxin K28: Biology and Unique Strategy*
379 *of Host Cell Intoxication and Killing*. Toxins, 2017. **9**(10): p. 333.
- 380 8. Laurie, J.D., et al., *Genome comparison of barley and maize smut fungi reveals*
381 *targeted loss of RNA silencing components and species-specific presence of*
382 *transposable elements*. The Plant Cell, 2012. **24**(5): p. 1733-1745.
- 383 9. Filipowicz, W., *RNAi: the nuts and bolts of the RISC machine*. Cell, 2005. **122**(1): p.
384 17-20.
- 385 10. Amselem, J., et al., *Genomic analysis of the necrotrophic fungal pathogens*
386 *Sclerotinia sclerotiorum and Botrytis cinerea*. PLoS genetics, 2011. **7**(8): p.
387 e1002230.
- 388 11. Krupovic, M., et al., *Genomoviridae: a new family of widespread single-stranded*
389 *DNA viruses*. Archives of Virology, 2016. **161**(9): p. 2633-2643.
- 390 12. Marzano, S.-Y.L., et al., *Transfection of Sclerotinia sclerotiorum with in vitro*
391 *transcripts of a naturally occurring interspecific recombinant of Sclerotinia*

392 *sclerotiorum hypovirus 2 significantly reduces virulence of the fungus*. *Journal of*
393 *virology*, 2015. **89**(9): p. 5060-5071.

394 13. Wang, M., et al., *Bidirectional cross-kingdom RNAi and fungal uptake of external*
395 *RNAs confer plant protection*. *Nature plants*, 2016. **2**: p. 16151.

396 14. Weiberg, A., et al., *Fungal small RNAs suppress plant immunity by hijacking host*
397 *RNA interference pathways*. *Science*, 2013. **342**(6154): p. 118-123.

398 15. Chang, H.-X., et al., *Identification of multiple phytotoxins produced by Fusarium*
399 *virguliforme including a phytotoxic effector (FvNIS1) associated with sudden death*
400 *syndrome foliar symptoms*. *Molecular Plant-Microbe Interactions*, 2016. **29**(2): p. 96-
401 108.

402 16. Staben, C., et al., *Use of a bacterial hygromycin B resistance gene as a dominant*
403 *selectable marker in Neurospora crassa transformation*. *Fungal Genetics Reports*,
404 1989. **36**(1): p. 79.

405 17. Nelson, M.D. and D.H. Fitch, *Overlap extension PCR: an efficient method for*
406 *transgene construction*, in *Molecular Methods for Evolutionary Genetics*. 2012,
407 Springer. p. 459-470.

408 18. Ge, C.Y., et al., *A Protoplast Transformation System for Gene Deletion and*
409 *Complementation in Sclerotinia sclerotiorum*. *Journal of Phytopathology*, 2013.
410 **161**(11-12): p. 800-806.

411 19. Rollins, J.A., *Sclerotinia sclerotiorum pac1 Gene Is Required for Sclerotial*
412 *Development and Virulence*. *Sclerotinia sclerotiorum pac1 Gene Is Required for*
413 *Sclerotial Development and Virulence*, 2003. **16**(9): p. 785-795.

414 20. Chung, K.-R. and M.-H. Lee, *Split-Marker-Mediated Transformation and Targeted*
415 *Gene Disruption in Filamentous Fungi*, in *Genetic Transformation Systems in Fungi*,
416 *Volume 2*. 2015, Springer. p. 175-180.

417 21. Bolger, A.M., M. Lohse, and B. Usadel, *Trimmomatic: a flexible trimmer for Illumina*
418 *sequence data*. *Bioinformatics*, 2014. **30**(15): p. 2114-2120.

419 22. Axtell, M.J., *ShortStack: comprehensive annotation and quantification of small RNA*
420 *genes*. *Rna*, 2013. **19**(6): p. 740-751.

421 23. Kurzynska-Kokorniak, A., et al., *The many faces of Dicer: the complexity of the*
422 *mechanisms regulating Dicer gene expression and enzyme activities*. *Nucleic acids*
423 *research*, 2015. **43**(9): p. 4365-4380.

424 24. Carrillo-Tripp, J., E. Lozoya-Gloria, and R.F. Rivera-Bustamante, *Symptom*
425 *remission and specific resistance of pepper plants after infection by Pepper golden*
426 *mosaic virus*. *Phytopathology*, 2007. **97**(1): p. 51-59.

427 25. Yang, X., et al., *Characterization of small interfering RNAs derived from the*
428 *geminivirus/betasatellite complex using deep sequencing*. *PLoS One*, 2011. **6**(2): p.
429 e16928.

430 26. Dong, B., et al., *Basis for regulated RNA cleavage by functional analysis of RNase L*
431 *and Ire1p*. *Rna*, 2001. **7**(3): p. 361-373.

432 27. Krupovic, M., *Networks of evolutionary interactions underlying the polyphyletic*
433 *origin of ssDNA viruses*. *Current opinion in virology*, 2013. **3**(5): p. 578-586.

434 28. Liu, S., et al., *Fungal DNA virus infects a mycophagous insect and utilizes it as a*
435 *transmission vector.* Proc Natl Acad Sci U S A, 2016.