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16 Abstract: The objective of the paper is to introduce new similarity measure for single valued
17 neutrosophic sets based on logarithm function. We define logarithm similarity measure and their
18 weighted similarity measure for single valued neutrosophic sets. Then we define hybrid logarithm
19 similarity measure and weighted hybrid logarithm similarity measure for single valued
20 neutrosophic sets. We prove the basic properties of the proposed measures. We then define an
21 entropy function using logarithm function to determine unknown attribute weights. We develop a
22 novel multi attribute group decision making strategy for single valued neutrosophic sets based on
23 the weighted hybrid logarithm similarity measure. We address an illustrative example to
24 demonstrate the effectiveness and aptness of the proposed strategies. We conduct a sensitivity
25 analysis of the developed strategy. We also make a comparison between the obtained results from
26 proposed strategies and different existing strategies in the literature.

27 Keywords: single valued neutrosophic set; logarithm similarity measure; logarithm entropy

28 function; ideal solution; multi attribute group decision making
29

30 1.Introduction

31 Smarandache [1] introduced neutrosophic sets (NSs) to pave the way to deal with problems
32  involving uncertainty, indeterminacy and inconsistency. Wang et al. [2] grounded the concept of
33  single valued neutrosophic sets (SVNSs), a subclass of NSs to tackle engineering and scientific
34  problems. SVNSs have been applied to solve various problems in different fields such as medical
35  problems [3-5] decision making problems [6-9], conflict resolution [10], social problems [11]
36  engineering problems [12,13] image processing problems [14-16] and so on.

37 The concept of similarity measure is very significant in studying almost every practical field. In
38 the literature, few studies have addressed similarity measures for SNVSs [17-20]. Peng et al. [21]
39  developed SVNSs based multi attribute decision making (MADM) strategy employing MABAC
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40  (Multi-Attributive Border Approximation area Comparison and similarity measure), TOPSIS
41  (Technique for Order Preference by Similarity to an Ideal Solution) and a new similarity measure.
42 Ye [22] proposed cosine similarity measure based neutrosophic multiple criteria decision
43  making (MADM) strategy. In order to overcome some disadvantages in the definition of cosine
44 similarity measure, Ye [23] proposed ‘improved cosine similarity measures’ based on cosine
45  function. Biswas et al. [24] studied cosine similarity measure based MCDM with trapezoidal fuzzy
46  neutrosophic numbers. Mondal and Pramanik [25] developed tangent similarity measure of NSs and
47  applied it to MADM. Ye and Fu [26] studied medical diagnosis problem using a SVNSs similarity
48  measure based on tangent function. Can and Ozguven [27] studied a MADM problem for adjusting
49  the proportional-integral-derivative (PID) coefficients based on neutrosophic Hamming, Euclidean,
50 set-theoretic, Dice, and Jaccard similarity measures.

o1 Several studies [28-30] have been reported in the literature for multi-attribute group decision
52 making (MAGDM) in neutrosophic environment. Ye [31] studied the similarity measure based on
53  distance function of SVNSs and applied it to MAGDM.

54 Lu and Ye [32] proposed logarithmic similarity measure for interval valued fuzzy set [33] and
55  applied it in fault diagnosis method. In the literature of neutrosophic decision making, logarithm
56  function based similarity measure is yet to appear. To fill the gap, we propose hybrid logarithm
57  similarity measures of SVNSs and establish their basic properties. We also propose a logarithm
58  entropy function to determine unknown attribute weights. We also show an illustrative example of
59  the proposed similarity measures for a MAGDM problem.

60 The structure of the paper is as follows. Section 2 presents basic concepts of NSs, operations on
61 NSs, SVNSs and operations on SVNSs. Section 3 proposes logarithm similarity measures and
62  weighted logarithm similarity measures, hybrid logarithm similarity measure (HLSM), weighted
63  hybrid logarithm similarity measure (WHLSM) in SVNSs environment. Section 4 proposes an
64  entropy measure based on logarithm function to calculate unknown attribute weights and proves
65  basic properties of entropy function. Section 5 presents a MAGDM strategy based novel weighted
66  hybrid logarithm similarity measure. Section 6 presents an illustrative example to demonstrate the
67  applicability and feasibility of the proposed strategies. Section 7 presents a sensitivity analysis for
68  the results of the numerical example. Section 8 conducts a comparative analysis with the other

69  existing strategies. Section 9 summarizes the paper and discusses future scope of research.

70 2. Preliminaries

71 In this section, the concepts of NSs, SVNSs, operations on NSs and SVNSs are outlined.
72 2.1. Neutrosophic Sets (NSs)

73 Assume that X be a universal set of neutrosophic sets [1]. Then the neutrosophic set N can be defined
74 asfollows:

75 N = {<x: Tn(x), IN(x), En(x) > | xe X].

76  Here the functions T, I and F define respectively the membership degree, the indeterminacy degree,
77  and the non-membership degree of the element xe X to the set N. The three functions T, I and F
78  satisfy the following the conditions:

79 T, I, F: X — ]°0,1*[ and -0 < supTn(x) + supIn( x) + supFn(x) < 3*

80  For two neutrosophic sets M= {< x: Twm (x), Im(x), Fu(x) > | x € X} and N={<x, Tn(x), In(x), Fn(x) > | x€

81 X}, the two relations are defined as follows:
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82 e M c N ifand only if Tm(x) < Tn(x), Im(x) > In(x), Fm(x )> Fn(x)
83 e M-=Nif and only if Tm(x) = Tn(x), Im(x) = In(x), Fm(x) = Fn(x).

84  2.2. Single valued neutrosophic sets (SVNSs)

85  Assume that X be a universal set of NNs. A SVNS [2] P in X is formed by a TMF (truth-membership
86  function) Tr(x), IMF (an indeterminacy membership function) Ir(x), and a FMF (falsity membership
87  function) Fr(x). For each point x in X, Tr(x), Ir(x), and Fr(x) € [0, 1].

88 For continuous case, a SVNS P can be expressed as follows:

89 P:J-X<TP(X)-IPf(X)aFP(X)>:X€X,

90 For discrete case, a SVNS P can be expressed as follows:

91 P:zn:<TP(Xi)v|P)Exi)!FP(Xi)>:Xi€X
= :

92  For two SVNSs P= {< x: Tr(x), Ir(x), Fr(x)> | xe X} and Q= {< x: To(x), Io(x), Fo(x)> | xe X}, some

93 definitions are stated below:

9 e PcQ if and only if Tr(x) < To(x), Ir(x) > Io(x), and Fr(x) > Fo(x).

95 e PoQ if and only if Tr(x)> To(x), Ir(x) < Io(x), and Fr(x) < Fo(x).

96 e P=Qifand only if Tr(x) = To(x), Ir(x) = Io(x), and Fr(x) = Fo(x) for any x € X.
97 e Complement of Pi.e. Pe={<x: Fr(x), 1- Ip(x), Tr(x)> | xe X }.

98 3. Similarity measures based on logarithm function of SVNSs

99  In this section, we define two types of logarithm similarity measures and their hybrid and weighted

100  hybrid similarity measures.
101  3.1. Logarithm similarity measures of SVNSs

102  Definition 1. Let A = <x(Ta(xi), Ir(xi), Fr(xi))> and B = <x(Ts(xi), Is(xi), F5(xi))> be any two SVNSs. The

103  logarithm similarity measures between SVNSs A, B are defined as follows:

L(AB) =%élog4(4—(ITA(xi)—TB(xi)|+|IA(xi)—IB(xi)|+|FA(xi)— F,00)]) (1)
104

Lo(AB) = Slog, 2-max [T, 04) =T, 000} L,(x) = 1,66} [Fa k) -y 0)) @)
105

106  Theorem 1. The logarithm similarity measure | (AB), (t = 1, 2) between any two SVNSs A and B

107  satisfy the following properties:

108 PL O<L(AB)<1

109 P2 [,(A B)=1,ifand onlyif A=B

110 P3. Li(A B) =L;(B A)

111 P4 IfCisaSVNSinXand AcBcCthen L((AC)<L(AB) and(AC)<L(B,C);t=1,2.
112  Proof1. From the definition of SVNS, we write,

113 0< Ta(x)+ Ia( x)+ Fa(x) <3 and 0 < Ts(x) + Is(x) + Fa(x) <3

114 = 0< |TA(xi)_TB(xi)|+|IA(xi)_IB(xi)|+|FA(xi)_FB(xi)|§3;
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115 0< manTA (x;)—Tp (xi)|v|1A (x;)—1Ip (xi)|-|FA (x;) — Fp(x; )|) <1

116 = o=<L(AB)<l fort=1,2.

117  Proof 2. For any two SVNSs A and B,
118 A-=B

119 = Tu(x) = Ta(x), Ia(x) = Is(x), Fa(x) = Fa(x)

120 =S Ta(®-Ts(X)|=0,

|A(X)_|B(X)|=0/

121 = 1 (AB)=1 fort=1,2.

Fa(X) - FB(X)|=O

122 Conversely,
123 for [,(A,B)=1(t=1,2), we have,

124 = [Ta(0-Ts(x)|=0,

|A(X)_|B(X)|:0/

Fa(¥)—-Fg(¥)|=0

125 =>Ta¥)=Te(X), 1A =1(X), FAX)=Fs(X)
126 = A=B.
127  Proof 3. We have,

128 ITA(X)_TB(X)| :ITB(X) _TA(X)|,|| A(¥) =1 B(X)| =|| s(X)—1I A(X)|I|FA(X)_ FB(X)| :|FB(X)_ FA(X)|

129 = 1,(A B) =L;(B,A) fort=1,2.
130  Proof4. For AcBcC, we have,
131 Ta(x) <Ts(x)<Tc(x), La(x) = Is(x) > Ic(x), Fa(x) > Fs(x) > Fc(x) for x € X.

132 = |TA (x)-Ts (x)| < |TA (x)—Tc(x)], IT s(X)—Tc (X)| < |TA(X) -Tc(X)

7

133 [1a00—18()|<[1a()—1c(X)

) =1c (I <[1a()—1c(X);

134 [FaA)-Fs()|<[FA()—Fc (¥

,Fe()—Fc ()| <|Fa(¥)—Fc ().
135 = L(AC)<L(AB) and L(AC)<L(B.C);¢t=1,2.
136 3.2. Weighted logarithm similarity measures of SVNSs

137  Definition 2. Let A =<x(Ta(xi), Ir(xi), Fr(xi))> and B = <x(Ts(xi), Is(xi), F5(xi))> be any two SVNSs. Then
138  the weighted logarithm similarity measures between SVNSs A, B are defined as follows:

LY (A, B)=§wi |094(4_ (|TA (x;)—Tj (xi)| +|IA (x;)—1Ip (xi)| +|FA (x;)—Fp (xi)|)) (3)
139 a

L¥(A, B)=§wl- log, (2—mex T,y (x,) =Ty (e )} JLa () — Iy () [Fa () — By (x:)) )
140 )

141  Here, 0< w,<land 3 ;=1
i=1

142  Theorem 2. The weighted logarithm similarity measures L}'(A,B) (t=1, 2) between SVNSs A and B
143  satisfy the following properties:
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144 P1. 0<L{(A,B)<1

145 P2 [¥(A,B)=1,ifand onlyif A=B

146 P3. L¥(A,B) = L{¥(B, A)

147 P4. IfCisaSVNSin X and ASB<C, then [¥(A,C)<[¥(A,B) and ¥ (A,C) <L¥(B,C);(t=1,2);

148 3 ,=1.
i=1

149  Proof1. From the definition of SVNSs A and B, we write,
150  0< Ta(x) +Ia( x) + Fa(x) <3 and 0 < Ts(x) + Is( x) + Fa(x) <3

151 = 0< manTA(xi)—TB(xi)|a|IA(xi)—IB(xi)|v|FA(xz')—FB(xi)D <1
152 = 0= [T () =T ()| +|La () = I ()| +[Fa (x;) — Fp (x;)| < 3,

153 = 0<LY(AB)<1 fort=1,2 since ¥ z;=1.
=1

154  Proof 2. For any two SVNSs A and B if A = B, then we have,
155 Ta(x) = Ta(x), Ia(x) = Is(x), Fa(x) = Fs(x)

156 = |Ta(®)-Tp(x)|=0,

14(x) = 15(x)| =0, |Fa(x)~Fp(x) =0

157 = [¥(A,B) =1, (t=1,2), since 3 w;=L1.
i1

158  Conversely,

159  For[¥(A,B)=1 (t=1,2), then we have,

160 = |TA (x)-Ts (x)| =0,

IA(x)_IB(x)|:O/ FA(X)—FB(X)|:O
161 = Ta(x)=Tp(x), 1a(x)=15(x), Fa(x)=Fp(x)
162 — A =B, since iw,:l.

i=1
163
Proof 3. For any two SVNSs A and B, we have,

7 7

164 |TA(x)_TB(x)|=|TB(x)_TA(x) IA(x)—IB(x)|=|IB(X)—IA(x) FA(x)_FB(x)|=|FB(x)_FA(x)|

165 = [(AB)=1}(B,A) fort=1,2.
166  Proof 4. For AcBcC, we have,
167  Ta(x)<Ts(x) <Tc(x), Ia(x) > Is(x) > Ic(x), Fa(x) > Fs(x) >Fc(x) for xe X.

168 = |TA() - T <[Ta () ~Tc @), [T5(x) = Tc ()] £|TA() - T ()];

169  [14(0)-Ip(@)|<[1a()—Ic(x)

N1B() —1c ()] <14 () ~1c ()] ;

170 [Pa(®) ~Fp()| £|Fa(x) ~ Fc ()], [F(x) — Fe ()| <[Fa(x) — Fe ().

7

171 = [¥(AC)<L[¥(A,B) and [*(A,C)<L¥(B,C) since Y uw=1,t=1,2.
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172 3.3. Hybrid logarithm similarity measures of SVNSs

173  Definition 3. Let A = <x(Ta(xi), Ir(xi), Fr(xi))> and B = <x(Ts(xi), Is(xi), F5(xi))> be any two SVNSs. The
174  hybrid logarithm similarity measure between SVNSs A, B is defined as follows:

175
. x{ilog4(4—(|n () = T )] +[La () = T )] +|Fa ()~ F (xl-)|))}
Lug (AB)== % (5)
+(1—x){§l log,,(2—max (T, (x;) =T (x| 14 () = T ) [Fa () — (xi)|))}
176

177 Here, 0<A<1.
178  Theorem 3. The hybrid logarithm similarity measure [z, (A, B) between any two SVNSs A and B

179  satisfy the following properties:
180  PL 0<L,,(AB)<l

181 P2. Liy(A,B)=1, if and only if A= B

182 P3. LHyb (A, B) = LHyb (B: A)
183 P4. If CisaSVNSin X and AcBcC then
184 LHyb (A, C) < LHyb (A, B) and LHyb (A, C) SLHyb (B,C) .

185  Proof1. From the definition of SVNS, we write,
186  0< Ta(x)+ Ia( x)+ Fa(x) <3 and 0 < Ts(x) + Is(x) + Fa(x) <3

187 = 0< maX(ITA(xi)_TB(xi)|!|IA (x;)—1g (xi)|1|FA(xi)_FB (xi)|) <1
188 = 0< |TA(xi)_TB(xi)|+|IA(xi)_IB(xi)|+|PA(xi)_FB(xi)|S3;

189 = 0<L,,(AB) <L

190  Proof2. For any two SVNSs A and B,
191  for A=B, we have,
192 = Tu(x) = Ta(x), Ia(x) = In(x), Fa(x) = Fa(x)

193 = |Ta(®)-Tp()|=0,

14() ~ 1) =0, |Fa() - Fs(@)| =0

194 = LHyb(A1 B) =1.

195  Conversely,

196 for Ly, (A, B) =1, we have,

197 |Ta(x)-Tp()|=0,

14(x) = 15(x)| =0, |Fa(x)~Fp(x)|=0

198 = Ta(x)=Tp(x), 1a(x)=1Ip(x), Fa(x)=Fp(x)
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199 - A=B.
200

Proof 3. For any two SVNSs A and B, we have,

201 |TA(x) —TB(X)| = |TB(x) —Ta()|,|[a(x) —IB(x)| = |IB(x) —1a(x)],|Fa(x) _FB(x)| = |FB(x) —FA(X)|

202 = Lpy(AB) =Luy(B,A).

203  Proof4. For Ac BcC, we have,
204 Ta(x) <Ts(x)=<Tc(x), Ia(x) = Is(x) = Ic(x), Fa(x) = Fa(x) = Fc(x) for x € X.

7

205 = |TA()-Ts()|<[Ta(®) ~Tc @), |T5 ()~ Tc(®)|<|Ta ()~ Tc (%)

7

206 |14(x)-Ip()|<[1a(x)—Ic(x)

1) —1c ()] <14 () ~Ic ()] ;

7

207 |Fa(x)— Fp(0) <|Fa(x) ~ Fe(¥)],|[Fp(x) — Fe ()| <[Fa(x) — Fe ().

208 = Ly (AC) <Ly (A B) and Ly (A,C) <Ly (B,C).

209  3.4. Hybrid weighted logarithm similarity measures of SVNSs

210  Definition 4. Let A = <x(Ta(xi), Ir(xi), Fr(xi))> and B = <x(Ts(xi), Is(xi), Fs(xi))> be any two SVNSs. The
211  weighted hybrid logarithm similarity measure between SVNSs A and B is defined as follows:

{$ 0108, 4T, )~ Ty ) 4~ 1o o) 1 () Fy )
LwHyb(A'B)= -

) (6)
@2 S0,tog, (2 max (T, o)~ Ty el . )~ 1y e ) F e )}

212
213  Here, 0<A <1,

214  Theorem 4. The weighted hybrid logarithm similarity measure Lumys(A B) between any two

215  SVNSs A and B satisfy the following properties:
216 PL 0SLyy,(AB)<1

217 P2 Lymp(A,B)=1,if and only if A=B
218 P3. Lupyy(AB) = Lup(B A)

219 P4 IfCisaSVNSin X and ACBcC, then Ly (A,C) <Lomys(A B) and Luys(A,C) < Loy (B,C) .

220  Proof 1. From the definition of SVNS, we write,
221  0< Ta(x)+ Ia( x)+ Fa(x) <3 and 0 < Ts(x) + Is(x) + Fa(x) <3

222 = 0< maX(ITA(xi) _TB(xi)|!|IA(xi) _IB(xi)|v|FA(xi) _FB(xi)D <1

223 = 0< |TA(xi) _TB(xi)| +|IA(xi) _IB(xi)| +|FA(xi) —FB(xi)|$3;
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224 = 0<L,p, (A B)<l.

225  Proof2. For any two SVNSs A and B,
226  for A=B, we have,
227 = Ta(x) = To(x), Ia(x) = Is(x), Fa(x) = Fs(x)

228 = |T4(x)-Tp(x)=0,

IA(X)_IB(x)| =0, FA(X)—FB(X)| =0

229 = Lump(AB)=1.

230  Conversely,

231  for Loty (A, B) =1, we have,

232 |TA(x) _TB(x)| = 0/ |IA(x) —IB(X)| = 0, |FA(x) _FB(x)| =0

233 = Ta®) =Tp(), Ia(x)=1Ip(x), Fa(x)=Fp(x)
234 = A=B.
235

Proof 3. For any two SVNSs A and B, we have,

236 |TA(x) —TB(X)| = |T3(x) —Ta(®)|,|[a(x) —IB(x)| = |IB(X) —1a(x)], |Fa(x) _FB(x)| = |FB(x) —FA(X)|

237 = LwHyb(A! B) :LwHyb(BlA) :

238  Proof4. For Ac BcC, we have,
239 Ta(x) < Ts(x) < Tc(x), Ia(x) = Is(x) = Ic(x), Fa(x) > Fa(x) > Fc(x) for x € X.

240 = |TA() T <|Ta(®) ~Tc @), |T5(x) ~ Te ()| <|Ta () - Tc (%)

241 |1a@) - I3@)|<[1a(x) —Ic(x)

N1B() =1 ()] <14 () ~Ic ()] ;

242 |Fa(x) - Fp(x)| <|Fa(x) - Fc(x)

Fp(x) = Fe(x)| <[Fa(x) - Fe(®)].

7

243 = LwHyb(A!C) SLwHyb (A1 B) and LwHyh (A!C) SLwHyb (B! C) .

244 4. Logarithm entropy function

245 Entropy strategy [34] is an important contribution for determining indeterminate information.
246  Zhang et al. [35] introduced the fuzzy entropy. Vlachos and Sergiadis [36] proposed entropy
247  function for intuitionistic fuzzy sets. Majumder and Samanta [37] developed some entropy measures
248  for SVNSs. When attribute weights are completely unknown to decision makers, the entropy
249  measure is used to calculate attribute weights. In this paper, we develop an entropy strategy based

250  onlogarithm function for determining unknown attribute weights.
251  Definition 5. The logarithm entropy function of a SVNS P=(T§,1§,Ff) (i=1,2,.., m;j=1,2, .., n)is

252  defined as follows:
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E].(P)=1—%%[(1"5+F§)|092(2_415-(15)C)] @
253 ‘
_ 1-E®) ®)
[ A ——
254 " n-SLE(P)

255 Here, iw]: 1

=

256  Theorem 5. The logarithm entropy function E (P satisfies the following properties:

258 P2. E,(P)=1,if (Tj.Ij Fyj)= (05,05,05).
259 P3. E;(P)2E;(Q), if Tj+Ff<T§+FF, 1{]’..(15)6213.(15)“.
260 P4. En;(P)= En;(P°) .

261 Proof 1. Tl]:l’Fl]:Iz]:O
1x 1

262 = E;(P)=1-=x[1+0)log,(2)}=1- = =0
ni=1 n

263 Proof2. (T;,I; Fj)= (05, 05,05).

264 - E,(P)= 1—%i[(o.5+0.5)|ogz(2—1)]:1—0:1
i=1

265  Proof3. TS+ F,<T9+FY; 1{;.(15)“215]2.(13)“

266 = $lrr+ pelog, -7ty s £rg + rbog, (241519
267 ~ E(P)>E;(Q)

268  Proof 4. Since <T,»j i Fl-]»>C= <1—“,-]- A-1Ti, Tij> ,we have E;(P)=E;(P°) .

269  Note 1: We propose logarithm entropy function to calculate unknown weights of each attribute.

270  When uncertainty increases, criterion weight decreases.

271  5.MAGDM strategy based on weighted logarithm similarity measure for SVNSs

272 Assume that (P1, P2, ..., Pm) be the alternatives, (C1, Cz, ..., Cn) be the criteria of each alternative,
273  and {Dy, Dy, ..., Di} be the decision makers. Decision makers provide the rating of alternatives based
274  on the predefined attribute. Each decision maker constructs a neutrosophic decision matrix
275  associated with the alternatives based on each attribute shown in Equation (9). Using the following
276  steps, we present the MAGDM strategy based on weighted hybrid logarithm similarity measure (see
277  Figure 1).
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278  Step 1: Determine the relation between alternatives and attribute

279 At first, each decision maker prepares decision matrix. The relation between alternatives Pi (i = 1,
280 2, .., m)and the attribute G (j =1, 2, ..., n) corresponding to each decision maker is presented in the
281  Equation (9).

282
C, C, C,
R (thro 1hr, BRy) (Thy iy k) - (Thr. i, ki) o
' Py | (TS 157, F5y) (T%. 1%, F%s) - (T%r. 187, EDy)
P, \(T0t, 1%, F2%) (TDs, 155, FRs) - (Thi, 104, Foi)

283
284
285 Here, <Tl’-]3-f , L-?r , F,?T> (i=1,2, .., m;j=1,2, .., n)is the single valued neutrosophic rating value of
286  the alternative Pi with respect to the criterion Cj corresponding to the decision maker D:.
287  Step 2: Determine the central decision matrix
288 We form a new decision matrix, called central decision matrix to combine all the decision

289  maker’s opinions into a group opinion. Central decision matrix minimizes the biasness which is
290  imposed by different decision makers and hence credibility to the final decision increases. The

291  central decision matrix is presented in Equation (10).

292
DIP|C]=
C C, C,
1 1 1 1 1 1 1 1
Py <r i Tht zt LIt t:lFlle> <r T = t:lIlDZt'7 ::1F1%t> <r ngﬁ aIhh= r:1F3’>
r t r t r Dy r r 1D 1 r D r t r t r Dy (10)
P, _Zt:lTZl'_thlIZI’?zt:1F21 ;thszzf'_Zt=112517zt=11:zi ;ztleZn’;Zt:1[2n'7zt:lF2n
N 1 1 1 1.
Py, < aToh > Zt 11miv;zf=11:5i> <; Y e Zt alph = Z: 1F25> <7 ::17"5:'7, fa Ik = Z: 1Fm¢z>
293

294 Step 3: Determine the ideal solution

295  The evaluation of attributes can be categorized into benefit criterion and cost attributes. An ideal
296  alternative can be determined by using a maximum operator for the benefit attributes and a
297  minimum operator for the cost attributes for determining the best value of each attribute among all
298  the alternatives. An ideal alternative [38] is presented as follows:

299 P*={(Cr* C*, ..., Cu).
300  where the benefit attribute is
C*Jf:<miaXTCj(Pi)ymiin|Cj(Pi),miinFCj(Pi)> (11)

301
302  and the cost attribute is

(Pi)

C*j=<miinch max | AL maxFg (P')> (12)

303

304  Step 4: Determine the attribute weights
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305  Using Equation (8), determine the weights of the attribute.

306  Step5: Determine the weighted similarity measures

307  Using Equation (6), calculate the weighted similarity measures for each alternative.
308  Step 6: Ranking the priority

309  All the alternatives are preference ranked based on the decreasing order of calculated measure
310  values. The highest value reflects the best alternative.
311  Step 7:End.

Set the alternatives, Construct the
Start —> attributes and decision matrices for
decision makers each decision maker

v

Determmg t.he Determine the Determine the
central decision ——> . . . .
. attribute weights ideal solution
matrix
\7
Determine the Rapk .the s End
measure values priority
312
313 Figure 1 A flow chart of the proposed MAGDM strategy

314  Note 2: In Figure 1, we represent the steps of hybrid logarithm similarity measure strategy for
315  SVNSs.

316 6. Anillustrative example

317 Suppose that a state government wants to construct an eco-tourism park for the development
318  of state tourism and especially for mental refreshment of children. After initial screening, five
319  potential spots namely, spot-1 (P1), spot-2 (P2), spot-3 (Ps), spot-4 (P1), spot-5 (Ps) remain for further
320 selection. A team of four decision makers, namely, D1, D2, D3, and Ds has been constructed for

321  selecting the most suitable spot with respect to the following attributes.

322 e Ecology (C1),

323 e Costs (C2),

324 o Technical facility (Cs),

325 e Transport (Cs),

326 e  Risk factors (Cs)

327 The steps of decision making strategy to select the best potential spot to construct an

328  eco-tourism park based on the proposed strategy are stated below:
329  6.1. Steps of MAGDM strategy

330 Step1: Determine the relation between alternatives and attributes

331 The relation between alternatives Pi, P2 and Ps and the attribute set {Ci, C2, Cs, Cs4, Cs}
332  corresponding to the set of decision makers {D1, D2, Ds} are presented in Equations (13), (14), (15)
333  and (16).
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335

336

337
338
339
340
341

342

343
344

345
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G C2 Cs Ca Cs
p1|(0.7,04,04) (0.7,0.4,0.3) (0.8,0.1,0.1) (0.7,0.2,01) (0.6,0.50.5)
p,| (0.4,0.3,0.6) (05,0.2,0.5) (0.6,0.2,0.2) (0.7,0.3,0.3) (0.4,0.3,0.4)
DPIC) = 1104,02,03) (0801,03) (0504,04) (050202) (07,0302) (13)
P4 (0.5,0.3,0.2) (0.7,0.1,0.2) (0.7,0.3,0.1) (0.6,0.30.2) (0.50.1,0.2)
ps((0.6,0.2,05) (0.6,0.4,0.4) (0.6,0.2,02) (0.50.305) (0.6,05,0.5)
C (@) Cs Cs Cs
py| (05,02,03) (0.7,04,04) (0.8,02,0.2) (050.2,02) (0.50.5,0.4)
P,/ (05,04,04) (05,02,04) (050303) (0.80.303) (0.4,0.1,0.4)
D.[P|C]= (14)
ps| (0.4,02,05) (0.8,0.2,02) (05,0.3,03) (0.7,0.2,0.2) (0.7,0.4,0.2)
P4 (0.6,0.6,0.2) (0.5,03,0.1) (0.3,04,0.2) (0.503,04) (050.5,0.2)
ps((0.4,06,05) (0.8,0.3,0.3) (0.4,04,04) (0.6,03,01) (0.6,0.1,0.1)
G C2 Cs on Cs
p1[(0.7,04,03) (0.8,0.2,0.1) (0.6,0.303) (0.7,0.2,05) (0.5,0.6,0.5)
p,| (0.6,0.2,0.3) (0.5,0.1,0.3) (0.7,0.4,0.4) (0.5,0.3,0.4) (0.3,0.4,0.4)
de“ﬂ=[g<Q60203><QﬁQ402><Q50&0$ (0.7,04,0.2) (0.5,0.6,0.4) (15)
p4| (0.7,03,04) (0.7,0.,03) (0.6,0.3,0.3) (0.50.1,0.2) (0.50.3,0.2)
ps((0.6,0.2,0.2) (05,0.3,0.3) (0504,05) (04,0203) (0.6030.4)
C C Cs Cs Cs
p,| (050.2,0.2) (06,0.2,04) (0.6,0.2,0.2) (050.204) (0.4,0.4,0.2
P, (0.5,0.3,0.3) (05,03,0.4) (0.6,03,03) (0.4,0.30.2) (0.504,0.4
DalPICl= o (0.6,0.2,0.1) (0.6,0.1,0.1) (0.5,0.2,0.2) (0.5,0.4,0.2) (0.5,0.3,0.4 (16)
P4l (0.6,0.4,04) (05,0.3,0.2) (0.4,0.2,0.2) (0.4,0.1,0.4) (0.50.30.2
Ps((04,02,04) (0502,02) (050.20.1) (0.504,03) (060302

Step 2: Determine the central decision matrix

Using Equation (10), we construct the central decision matrix for all decision makers shown in

Equation (17).

C1
0.6,0.3,0.3
0.5,0.3,0.4

Py

J
N

P3
P4
Ps

0.6,0.4,0.3

g
DI[P|C]= <
{
(0.6,0.3,0.4

Step 3: Determine the ideal solution

0.7,0.3,0.3
0.5,0.2,0.4
0.7,0.2,0.2
0.6,0.2,0.2
0.6,0.3,0.3

)
)
05,0.2,03) (
)
) |

C2

0.7,0.2,0.2
0.6,0.3,0.3
0.5,0.3,0.3
0.5,0.3,0.2
0.5,0.3,0.3

)
)
) |
)
) |

Cs

0.6,0.2,0.3
0.6,0.3,0.3
0.6,0.3,0.2
0.5,0.2,0.3
0.5,0.3,0.3

) |
)
)
)
)

Ca

) |
)
)
)
)

Cs

05,0.5,0.4)
0.4,0.3,0.4)
0.6,0.4,0.3)
05,0.3,0.2)
0.6,0.3,0.3)

17)

Here, Cs and C: denote benefit attributes and Ci, C2 and Cs denote cost attributes. Using Equations

(11) and (12), the ideal solutions are calculated as follows:

P*={(05,0.3,0.4),(0.5,0.3,0.4),(0.7,0.2,0.2),(0.6,0.2,0.2),(0.4,0.5,0.5) }.
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348

349
350
351

352
353

354

355

356
357
358

359

360

361
362

363
364

Step 4: Determine the attribute weights

Using Equation (8), we calculate the criteria weights as follows:
[w1, w2, ws, wa, ws] =[0.2092, 0.1592, 0.2665, 0.2378, 0.1273]

Step 5: Determine the weighted hybrid logarithm similarity measures
Using Equation (6), we calculate similarity values for alternatives shown in Table 1.
Step 6: Ranking the alternatives

Ranking order of alternatives is prepared as the descending order of similarity values. Highest

value indicates the best alternative. Ranking results are shown in Table 1 for different values of i.

Step 7. End.

7. Sensitivity analysis

In this section, we discuss the variation of ranking results for different values of & . From the
results shown in Tables 1, we observe that the proposed strategy provides the same ranking order

for different values of » . However, the ranking order for different values of A changes.

Table 1 Ranking order for different values of A .

Similarity measures (1) Measure values Ranking order
LwHyh (P*yp1):09599 1 LwHyb (P*x PZ) = 09210 !
Loty (P*, Py) 0.1 Loty (P*,P3)=0.8889 ; Loy (P*,p,)=0.8899 ; Pi> P2> Ps> Pa> P3

Luny (P*, P5)=0.8998
Luotiyy (P*,P)=0.9623; L1, (P*,P,)=0.9258 ;

Laotiys (P, P) 025  Lutp(P*,P)=0.8%9; [pn(P*,P)=0.891;  Pis Prs Ps» Pus Ps
Lumy (P*,P5)=0.9043
Loty (P*,P)=0.9671; L, (P*,P,)=0.9355;

Lty (P*, P) 040  Luro(P*,P)=0.9069; Lps(P*,Ps)=0.9073;  Pis Prs Ps» Pas Ps
Luotiys (P*,P5)=0.9133
Leotys (P*,P)=0.9707 5 Lo (P*, P2)=0.9428 ;

Leotys (P*, P) 055 Lt (P*,P3)=0.9158; L, (P*,P)=0.9221; Py P, Pss Pis P
Loty (P*, P5)=0.9241
Loty (P*,P)=0.9743; L1, (P*, P,)=0.9501;

Lt (P, Pi) 0.70  Lurys(P*,P5)=0.9248; Lupyy(P*,P))=0.9257; Py Py Ps> Pa> Ps
Luny (P*, P5)=0.9268
Loty (P*,P)=0.9791; L1y, (P*, P,)=0.9598 ;

Lot (P.P) 0.90  Lutsn (P*,P5)=0.9368; Loy, (P*,P4)=0.9379; P1> P2~ P5> Pa> Ps3
Lumys (P*,P5)=0.9398

8. Comparative analysis

In this section, we solve the problem with different existing strategies [23, 25, 26, 38]. Outcomes

are furnished in the Table 2 and Figure 2.
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Table 2 Ranking order for different existing strategies

Similarity measures Measure values of Pi, P2, Ps3, P4, and Ps Ranking order
Mondal and Pramanik [25] 0.8922, 0.8549, 0.7921, 0.8137, 0.8001 P1> P> Py Ps>~ P3
Ye [23] 0.8401, 0.8239, 0.7436, 0.8007, 0.7792 P1> P2> Pa- Ps5> Ps3
Biswas et al. [38] (»=0.55) 0.9659, 0.9511, 0.9089, 0.9111, 0.9201 P1> P2> P53~ Pa> Ps3
Ye and Fu [26] 0.9761, 0.9158, 0.7321, 0.7756, 0.8417 P1> P2> P53~ Pa> Ps3
Proposed strategy (»=0.55) 0.9707, 0.9428, 0.9158, 0.9221, 0.9241 P1> P2> P5> Pa> Ps3
1.2
1
0.8 -
m spot-1
0.6 1 m spot-2
0.4 - spot-3
0.2 spot-4
0. = spot-5
Mondal and Ye [23] Biswasetal. YeandFu Proposed
Pramanik [25] [38] [26] strategy

Figure 2 Ranking order of different strategies

9. Conclusions

The conclusions of the paper are concisely presented as follows:

We have proposed hybrid logarithm similarity measure and weighted hybrid logarithm
similarity measure for dealing uncertainty in decision making situation.

We have defined the logarithm entropy function to determine unknown attribute weights.

We have developed a new MAGDM strategy based on the proposed weighted hybrid
logarithm similarity measure strategy.

We have presented a numerical example to illustrate the proposed strategy.

We have conducted a sensitivity analysis

We have presented comparative analyses between the obtained results from the proposed
strategies and different existing strategies in the literature.

The proposed weighted hybrid logarithm similarity measure strategy can be applied to solve
MADM and MAGDM problems in fault diagnosis [12], logistics center selection [39], Weaver
selection [40], teacher selection [41], brick selection [42], renewable energy selection [43], etc.
Future research can be continued to investigate the proposed similarity measures in
neutrosophic hybrid environment for tackling uncertainty, inconsistency and indeterminacy in

decision making situation.

Author Contributions: K. Mondal and S. Pramanik conceived and designed the experiments; K. Mondal, and
S. Pramanik performed the experiments; B. C. Giri, J. Ye and F. Smarandache analyzed the data; and K.
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