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Abstract:  12 

To date, several independent methods and algorithms exist exploiting constraint-based 13 
stoichiometric models to find metabolic engineering strategies that optimize microbial production 14 
performance. Optimization procedures based on metaheuristics facilitate a straightforward adaption 15 
and expansion of engineering objectives as well as fitness functions, while being particularly suited 16 
for solving problems of high complexity. With the increasing interest in multi-scale models and a 17 
need for solving advanced engineering problems, we strive to advance genetic algorithms, which 18 
stand out due to their intuitive optimization principles and proven usefulness in this field of research. 19 
A drawback of genetic algorithms is that premature convergence to sub-optimal solutions easily 20 
occurs if the optimization parameters are not adapted to the specific problem. Here, we conducted 21 
comprehensive parameter sensitivity analyses to study their impact on finding optimal strain 22 
designs. We further demonstrate the capability of genetic algorithms to simultaneously handle (i) 23 
multiple, non-linear engineering objectives, (ii) the identification of gene target-sets according to 24 
logical gene-protein-reaction associations, (iii) minimization of the number of network perturbations, 25 
and (iv) the insertion of non-native reactions, while employing genome-scale metabolic models. This 26 
framework adds a level of sophistication in terms of strain design robustness, which is exemplarily 27 
tested on succinate overproduction in Escherichia coli. 28 

Keywords:  metabolic strain design; heuristic optimization; constraint-based modeling 29 

 30 

1. Introduction 31 

Metabolic Engineering aims to enable the production of pharmaceuticals, fine chemicals, and 32 
fuels by microbial cell factories and strives to maximize productivity and profits [1]. In the last 30 33 
years, advances in DNA sequencing and systems analytical technologies have led to an immense 34 
expansion of integrated knowledge about genetics, biochemical metabolic pathways and their 35 
regulation and enabled researches to specifically understand and manipulate microbial 36 
metabolism [2]. 37 

From the sheer metabolic and regulatory network complexity a key problem of metabolic 38 
engineering approaches falls into place: How to intervene in those biochemical networks to reach or 39 
approach an engineering aim with a reasonable investment of time, money, and materials? The use 40 
of computational models of metabolism seek to answer this and related questions by facilitating the 41 
integration of biochemical knowledge and OMICS data. Techniques such as flux balance analysis [3], 42 
elementary modes analysis [4] or flux variability analysis [5] help to explain metabolic properties and 43 
to predict the effect of genetic perturbations on microbial metabolism. By incorporating routines, 44 
which systematically search for intervention sets that yield a desired phenotype (e.g., target product 45 
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yield), a panoply of variants of these computational methods has emerged [6] to support metabolic 46 
engineers to most effectively interpret the information content of metabolic models. 47 

The search for an optimal genetic intervention set poses a nested, bilevel optimization problem. 48 
The outer problem optimizes an engineering objective by varying the network structure through gene 49 
knockouts, knockdowns or overexpressions. The inner problem returns the microbial phenotype for 50 
a given intervention strategy based on a cellular objective, from which the outer objective function is 51 
evaluated. By exploiting basic theorems of linear algebra, such bilevel problems are transformed into 52 
single-level mixed-integer linear or quadratic programming problems and solved using powerful 53 
mathematical programming algorithms [7–11]. The usefulness of these frameworks in aiding 54 
metabolic engineering projects has been demonstrated for various microbial strains and target 55 
compounds [12–16], but still, practical applications lag behind the vast efforts put into theoretical 56 
studies. 57 

Solving bilevel optimization problems using exact techniques bears two major drawbacks. 58 
Firstly, the necessary mathematical transformations increase the complexity of the problem 59 
formulation, thus limiting the tractable number of simultaneous interventions per simulation. More 60 
importantly, only linear constraints and objective functions can be used in these frameworks, which 61 
may not be appropriate for representing biological objectives [6]. 62 

The application of metaheuristics as search routines circumvents the complexity and 63 
formulation problems of exact solving techniques. Evolutionary or genetic programming is one 64 
prominent example among metaheuristic methods, which adopts the principles of biological 65 
evolution for finding (near-)optimal solutions to optimization problems. The genetic algorithm (GA) 66 
evolves an optimal genetic intervention set for a given metabolic engineering objective by a 67 
systematic and repeated selection, crossover and mutation of a population of solutions [17–19]. Such 68 
a search heuristic allows for an efficient integration of any complex prediction method for microbial 69 
mutant phenotypes, such as Minimization of Metabolic Adjustment (MOMA) [20], as well as the 70 
consideration of sophisticated, non-linear engineering objectives as fitness functions. By applying, 71 
e.g., OptGene, theoretical studies [21–23] but also practical implementations of identified genetic 72 
intervention strategies [24–27] have proven the benefits of GAs for the identification of 73 
overproduction strain designs. 74 

In this work, we sought to intensify the knowledge of the behavior and performance 75 
capabilities of GAs for metabolic engineering approaches with regard to future considerations of 76 
models, constraints and engineering as well as biological objectives of growing complexity. A variety 77 
of metaheuristics as optimization algorithms have already been applied for the computation of 78 
metabolic engineering strategies [28–31]. We chose to apply GA for microbial strain design purposes 79 
because of its intuitive optimization principles and already proven usefulness in this field of research. 80 
Due to the nontransferable behaviors of GAs among different optimization problem classes [32], we 81 
first explored the dependencies between the optimization parameters of GAs and classical model-82 
based metabolic engineering problems. To this end, we conducted sensitivity analyses for the 83 
mutation rate, population size, number of generations, etc. while focusing on the ability to converge 84 
to optimal strain design solutions for, e.g., succinate overproduction in Escherichia coli. We 85 
particularly examined the importance of the duality between diversification and intensification (also 86 
known as exploration and exploitation) of solution candidates for circumventing premature 87 
convergence. Secondly, we demonstrated and eventually expanded the GA’s versatility. We included 88 
the simultaneous evaluation of multiple cellular objective functions to derive pareto-optimal, robust 89 
strain designs. Inspired by the OptStrain framework [8], we additionally implemented a routine to 90 
insert novel network edges taken from a preprocessed pool of candidate reactions at runtime. 91 
Moreover, a strategy was derived and implemented to simultaneously minimize the number of 92 
interventions (e.g., gene deletions) while optimizing for the chosen engineering objective. 93 

In summary, we intensified the knowledge of the behavior and performance capabilities of GAs 94 
for metabolic engineering approaches and, beyond that, integrated previously independent design 95 
objectives and methods in one framework. Hence, we promote the use of GAs for sophisticated 96 
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metabolic models demanding high computing power [33], as well as the need to solve engineering 97 
problems of growing complexities. 98 

2. Materials and Methods  99 

2.1 A Basic Genetic Algorithm for Metabolic Engineering 100 

The GA is a randomized but directed search and optimization method modeled by the principles 101 
of natural selection. It iteratively evolves a set or population of solutions (a solution will be referred 102 
to as an individual) to an optimization problem, i.e., towards better solutions and to, eventually, 103 
converge at optimality. According to Srinivas and Patnaik [34], the key characteristics of a GA are: 104 

 105 
1. A genetic representation of solutions. Here, we employ a binary coding. 106 
2. Populations of individuals as evolutionary communities. 107 
3. A fitness function for evaluating the goodness of individuals. 108 
4. Operators, which generate a new population from an existing one and which can be 109 

controlled by parameters that shape the fitness-related or random transformation 110 
behavior. 111 

 112 
 113 
These characteristics have already been shown to be advantageous for in silico metabolic 114 

engineering approaches in finding a set of reaction knockouts, which optimizes overproduction 115 
[17,19,23]. Therefore, we implemented a GA using the basic structure of the OptGene framework [17] 116 
as well as the descriptions of Haupt and Haupt [35] as a starting point. The principle scheme of the 117 
GA is sketched in Figure 1 including the selection, mating, mutation, and fitness evaluation operator 118 
constituting the core GA, as well as a pre- and post-processing routine. Successive application of each 119 
GA operator to a population will be called a generation in the following. 120 
 121 

 122 

 

Figure 1: (a) Scheme of a basic GA. (b) Illustration of the parallelization method. 
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2.1.1 Population of Binary Individuals  123 

In terms of a strain design problem, an individual represents a set of reaction or gene deletions. 124 
Following characteristic (1), each target within a set is encoded by a binary number, in the following 125 
called a gene, with a uniform bit-length 𝑁𝐵 . An individual comprising 𝑁𝐷  interventions (e.g., 126 
reaction deletions) thus consists of 𝑁𝐵 ∙ 𝑁𝐷 bits. To avoid a biased representation of the target space 127 
when distributing 𝑁𝑇 targets to 2𝑁𝐵  binary values, with 𝑁𝑇 < 2𝑁𝐵 , we chose bit-lengths such that 128 
each target is represented by 50 or 51 binary values. The number of bits were calculated using 129 
Equation 1: 130 

𝑁𝐵 = Round (
log(50∙𝑁𝑇)

log(2)
). (1) 

Consequently, the maximal difference in the probability of drawing two independent targets is less 131 
than 2 %. Using this specific binary representation, a maximal, user-defined number of targets per 132 
individual is guaranteed. At the start of the GA, a population of 𝑁𝑃 individuals, each consisting of 133 
𝐾 binary numbers of size 𝑁𝐵 , is initialized. The initial state of each bit within the population is 134 
selected randomly. 135 

2.1.2 The Fitness Function 136 

The fitness or goodness 𝐹  of individuals quantifies to which extent metabolic network 137 
perturbations facilitate overproduction of a target molecule or, in general, comply with the 138 
engineering objective. As an engineering objective, we chose the Biomass-Product Coupled Yield 139 
(BPCY), which is calculated by 140 

𝐵𝑃𝐶𝑌 =
𝑣𝑃∙𝜇

𝑣𝑆
, (2) 

where 𝜇 depicts the growth rate, 𝑣𝑃 and 𝑣𝑆 are the product formation and substrate uptake rate, 141 
respectively. The three parameters in Equation 2 are calculated using the Minimization of Metabolite 142 
Balances (MiMBl) method [36], which may be considered as an adaption of the Minimization of 143 
Metabolic Adjustment (MOMA) algorithm [20]. The application of MiMBl requires the input of a 144 
reference or wild-type flux distribution to derive deletion mutant phenotypes. Since this work solely 145 
focused on E. coli, we obtained our reference state from the experimental results of Ishii et al. [37]. For 146 
more detailed descriptions we refer to Supplementary I.1. 147 

2.1.3 Selection, Mating and Crossover 148 

As a first step in a generation, the best 𝑁𝑆 individuals are selected for mating according to their 149 
fitness, whereas all other 𝑁𝑃 − 𝑁𝑆  of the 𝑁𝑃  individuals in the population are deleted. 𝑁𝑆  is 150 
calculated by 151 

𝑁𝑆 = 𝑁𝑃 ∙ 𝑋, (3) 

with 𝑋 being the user-defined selection rate ranging between 0 and 1. 152 
The mating pairs for crossover are assembled using a roulette wheel weighting approach by 153 

drawing a random number. Since two offspring are generated by crossover of two mated individuals 154 
and the parent individuals are kept, 𝑁𝑃 − 𝑁𝑆 2⁄  mating pairs are sampled to fill-up the population. 155 
Avoidance of two identical mating pairs is set as a criterion for exclusion during sampling. The 156 
probability 𝑃𝑖  with which an individual 𝑖 from the pool of 𝑁𝑆 selected individuals is chosen to mate 157 
is deduced from Equation 4: 158 

𝑃𝑖 =
𝐹𝑖

∗

∑ 𝐹𝑖
∗𝑁𝑆

𝑖

, (4) 

with 159 

𝐹𝑖
∗ = 𝐹𝑖 − 𝐹𝑅, (5) 
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where 𝐹𝑖 is additionally normalized by the fitness 𝐹𝑅 of the best discarded individual. However, if 160 
one or more selected individuals exhibit zero fitness, a minimal probability 𝑃𝑚𝑖𝑛 > 0  for each 161 
individual 𝑖 is guaranteed by scaling 𝐹𝑖 according to Equation 6: 162 

𝐹𝑖
∗ = 𝐹𝑖 +

𝑃𝑚𝑖𝑛 ∙ ∑ 𝐹𝑖
𝑁𝑆
𝑖

1 − 𝑃𝑚𝑖𝑛 ∙ 𝑁𝑆

 (6) 

If not noted otherwise, 𝑃𝑚𝑖𝑛 = 0.1 ∙ 𝑁𝑆. 163 
Crossover is initialized by a random selection of a crossover point or kinetochore for each mating 164 

pair. Kinetochores are restricted to positions in between two neighboring genes. The genes left of the 165 
kinetochore of the first parent are merged with those to the right of the kinetochore of the second 166 
parent to form the first offspring individual. The second offspring is created complementarily with 167 
the remaining parent genes (Figure 1a). 168 

2.1.4 Mutation and Elitism 169 

The mutation operator randomly changes bits within the population comprising the offspring 170 
and parent individuals. The probability with which a 1 is turned into a 0 or vice versa is set by the 171 
user-defined mutation rate 𝑅. We additionally adapted the concept of elitism and hence, the best 172 
parent individual is not mutated. After mutation, a new generation is propagated by calculating the 173 
fitness of the novel individuals. 174 

2.1.5 Parallelism 175 

To exploit multi-core and multi-threading processor architectures, several independent 176 
generation strands are processed in parallel (Figure 1b). Therefore, an initial population is randomly 177 
split into 𝑁𝐶  subpopulations of equal size. Each sub-population is passed to a separate thread and 178 
undergoes independent evolution following sections 2.1.3 and 2.1.4. After 𝑁𝐺 generations, the final 179 
subpopulations of the generation strands are merged, and the population is randomly divided to the 180 
available threads, which we will refer to as a Gene Flow Event (GFE). After 𝑁𝐺𝐹𝐸  GFEs, the GA is 181 
terminated resulting in a final population of 𝑁𝑃 evolved individuals. 182 

2.2 Adaptive Probabilities of Mutation 183 

We implemented a strategy to adapt the mutation rate for each individual at runtime following 184 
the work of Srinivas and Patnaik [34]. The mutation rate is made dependent on the relative fitness 185 
value of an individual as well as the diversity of its population and is calculated by 186 

𝑋𝑖 =
𝐹𝑚𝑎𝑥−𝐹𝑖

𝐹𝑚𝑎𝑥−𝐹′
(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) + 𝑋𝑚𝑖𝑛 , (7) 

with 𝐹𝑚𝑎𝑥  being the fitness of the best individual within the population and  𝐹′, the population’s 187 
mean fitness. Equation 7 ensures that 𝑋𝑖  ranges between a pre-defined minimal and maximal 188 
mutation rate 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 . 189 

2.3 Additional Features 190 

2.3.1 Gene Deletion Targets 191 

To make use of the complex Gene-Protein-Reaction (GPR) associations inherent to many 192 
metabolic models, we enabled the possibility of computing gene rather than reaction deletion target-193 
sets. Because any fitness function evaluation employing metabolic models demands the specification 194 
of reaction network perturbations, we implemented a routine, which translates simultaneous gene 195 
deletions to reaction deletions according to the logic operations given by the GPRs. 196 

2.3.2 Multi-objective Optimization 197 

To simultaneously optimize multiple engineering objective functions, the fitness function was 198 
expanded by the OptKnock [38] and gcOpt [39] methods. Consequently, the fitness function value 199 
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accounts for a linear combination of the production rate at maximal growth, the Growth Coupling 200 
Strength (GCS) and, as explained in section 2.1.2, the BPCY. Each objective function value is 201 
normalized by their maximum to ensure uniform value ranges between 0 and 1. Additional, 202 
independent weighting factors can be applied to each objective function but were neglected in this 203 
work. However, in contrast to the descriptions of Alter et al. [39], the calculation of the GCS was 204 
simplified to reduce the computational burden while guaranteeing a meaningful approximation of 205 
the GCS measure (cf. Supplementary I.2) . 206 

2.3.3 Minimization of Perturbations 207 

We incorporated a fitness transformation routine to facilitate the minimization of simultaneous, 208 
genetic perturbations while evolving overproduction individuals. Particularly, the fitness 𝐹𝑖 of an 209 
individual 𝑖 (here referred to as the objective fitness), which stems from the evaluation of the cellular 210 
objective function, is scaled by the number of unique reaction or gene deletions 𝐼𝑖  of i according to 211 
Equation 8: 212 

𝐹̂𝑖 = 𝐹𝑖 + 𝐹𝑖 ∙ 𝑦 ∙ (𝐼𝑚𝑎𝑥 − 𝐼𝑖), (8) 

where 𝐹̂𝑖  is the scaled fitness and 𝐼𝑚𝑎𝑥  denotes the maximal possible number of unique 213 
perturbations per individual. To control the trade-off between the reduction of simultaneous genetic 214 
interventions and the maximization of target product yield we introduced the fitness-intervention 215 
size relation factor 𝑦, whereby 𝑦 ≥ 0. By increasing 𝑦, the optimization objective is shifted towards 216 
minimal perturbation sizes while the objective fitness becomes subordinated. 217 

2.3.4 Non-native Network Edge Insertions 218 

Inspired by the OptStrain and SimOptStrain frameworks [8,11], we expanded the basic GA to 219 
identify non-native reaction insertions while simultaneously searching for a set of reaction or gene 220 
deletions, which, in combination maximize overproduction. We particularly focused on novel 221 
network edges and, hence confined the set of possible insertion targets to reactions that act on 222 
metabolites inherent to the wildtype model only. Respective candidate reactions were derived and 223 
curated by consulting the MetaNetX [40], BiGG [41], eQuilibrator [42], and KEGG [43] database to 224 
create a databank model providing a repertoire of possible novel functionalities to the GA (cf. 225 
Supplementary I.3). 226 

2.4 Analysis of the Evolution of Populations 227 

2.4.1 A Measure of Population Diversity: The Hamming Distance 228 

The average Hamming distance between pairs of individuals can be used to quantify the 229 
diversity of a population, which aids in investigating the time convergence of GAs [34,44]. The 230 
Hamming distance counts the number of differing bits in two individuals, hence, for 𝑁𝑃𝑎 =231 
𝑁𝑃

2
(𝑁𝑃 − 1) possible pairs of individuals a population’s average Hamming distance is calculated by: 232 

𝐻𝐷 =
∑ ∑ |𝐵𝑗

𝑖1 − 𝐵𝑗
𝑖2|

𝑁𝐵
𝑗

𝑁𝑃𝑎
𝑖

𝑁𝑃𝑎 ∙ 𝐻𝐷𝑚𝑎𝑥

, (9) 

with 𝐵𝑗
𝑖1 being the jth bit of the first individual of the ith pair in the population. Additionally, HD is 233 

normalized by the maximally possible Hamming distance between two individuals. Therefore, we 234 
will generally use HD for the normalized, average Hamming distance in this work. 235 

2.5 Metabolic Model Preprocessing 236 

In this work, the E. coli K-12 MG1655 core [45] as well as the genome-scale reconstruction iJO1366 237 
[46] were employed. Preceding any GA optimization, a model compression was conducted by 238 
eliminating sink and source reactions, which consume or produce unbalanced metabolites. Therefore, 239 
reactions that could not carry any flux were iteratively identified by flux variability analysis and 240 
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subsequently deleted. When gene deletion targets are considered, genes being connected by an AND 241 
operator in the same GPRs were lumped. For example, genes encoding for sub-units that are found 242 
in only one particular enzyme were considered as one gene. 243 

Additionally, the deletion target space was reduced to minimize the complexity of the 244 
optimization problem. Partly following the protocol of Feist et al. [21], reactions not associated to any 245 
genes, such as spontaneous, diffusion and exchange reactions, were not considered as deletion 246 
targets. Furthermore, all transport reactions as well as reactions being involved in cell envelope 247 
biosynthesis, membrane lipid metabolism, murein biosynthesis, tRNA charging and 248 
glycerophospholipid metabolism were removed from the target space. 249 

2.6 General Conduct for the Application of the Genetic Algorithm 250 

All simulations employing the E. coli core and the genome-scale iJO1366 model were replicated 251 
five and three times, respectively. All data shown is an average of the replicates and given errors 252 
denote the correspondent standard deviation. The GA was implemented in Matlab 2016b (The 253 
Mathworks, Inc., Natick, MA, USA) and is freely available on GitHub 254 
(https://github.com/Spherotob/GAMO_public). All computations and the evaluation of the results 255 
were conducted on a Windows 7 machine with 16 GB of RAM and an AMD FX-8350 Eight-Core (à 256 
4.00 GHz) processor. 257 

3. Results 258 

3.1 GA Parameter Sensitivity Analysis 259 

The performance of GAs on arbitrary optimization problems is strongly dependent on the GA 260 
parameters and a sound setting is generally hard to predict. It is thus advisable to conduct a thorough 261 
parameter sensitivity analysis for a specific problem class to derive the most advantageous parameter 262 
ranges. Therefore, we performed a parameter sensitivity analysis for a basic GA (cf. Section 2.1) on 263 
strain design problems using the E. coli core metabolic reconstruction. For an overview of the used 264 
GA parameters for each conducted simulation in this work and the obtained best intervention 265 
strategies we refer to the Supplementary File 4 and 5. 266 

3.1.1 Mutation Rate 267 

The arbitrary mutation of individuals is a central operator of GAs driving the exploration of the 268 
solution space for globally optimal solutions. At low mutation rates, the search of GAs is narrowed 269 
to the local surroundings of a population’s individuals, which is likely to lead to premature 270 
convergence. On the contrary, too high mutation rates diminish the fitness intensification in the local 271 
area of a population and thus convert GAs into random search methods, which results in low 272 
convergence speeds. This is illustrated by the maximal fitness and the Hamming distance trends 273 
when optimizing for succinate biomass-product coupled yield (BPCY) using a basic GA at different 274 
mutation rates (Figure 2). Evolution of individuals stopped at a relatively low, suboptimal fitness 275 
value after approximately 40 generations for low mutation rates up to 0.001 due to a vanishing 276 
population diversity. Contrarily, at elevated mutation rates above 0.3, the convergence to optimal 277 
fitness values was slow and the diversity remained at high levels without exhibiting any indications 278 
of intensification. A mutation rate of 0.05 exhibited an advantageous compromise between 279 
exploration and intensification of the target space and thus led to the highest convergence rates. As 280 
shown in Figure 3, fast convergence correlated with low numbers of fitness function evaluations 281 
needed to reach maximal fitness and, thus, to low computational costs. Mutation rates below 0.01 282 
exhibited the lowest computational costs but impeded finding the optimal solution with a fitness of 283 
0.46 𝑚𝑜𝑙 𝑚𝑜𝑙−1 ℎ−1. If not stated otherwise, we used a mutation rate of 0.05 in all further simulations 284 
to reasonably limit the number of fitness function evaluations during GA runs while avoiding a 285 
radical drop in population diversity and thus premature convergence. 286 
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Fixing the mutation rate during GA runs was previously shown to be superior to variable, adaptive 287 
mutation probabilities [34]. However, in contrast to the findings of Srinivas & Patnaik [34], in our 288 
simulations, adaptive probabilities generally led to a decrease in convergence speed using ethanol 289 
BPCY as engineering objective (Supplementary Figure S1). For five, seven, and ten maximal reaction 290 
deletions, we applied different ranges between the minimally and maximally allowable mutation 291 
rate, each centering around a mutation rate of 0.05. Intensification of solutions was more and more 292 
hampered for increasing range widths, most notable by means of static Hamming distance 293 
progressions at high levels (Supplementary Figure S1). Hence, the promising concept of adaptive 294 

mutation probabilities might be dismissed for strain design applications. 295 

 

Figure 2: Maximal fitness (a) and hamming distance (b) across the populations of every thread in 

each generation using mutation rates between 0 and 0.7. Deletion of maximally five reactions were 

allowed while using succinate BPCY as the engineering objective. Hamming distance progressions 

for mutation rates 0.5 and 0.7 overlap each other.  

 

Figure 3. Number of fitness function evaluations until maximal final fitness was reached. Box plots 

represent five replicate GA runs applying the respective mutation rate. Succinate BPCY was used as 

the engineering objective. 
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 296 

3.1.2 Selection rate and Population Size 297 

The selection rate and population size determine how many of the fittest individuals are being 298 
selected to the mating pool for breeding new and eventually superior offspring individuals. 299 
Therefore, both parameters jointly influence the local search behavior of GAs in the vicinity of a 300 
population induced by the crossover operator. To assess this influence in terms of convergence 301 
characteristics and computational cost minimization, we performed GA runs with varying selection 302 
rates and population sizes using succinate BPCY as the engineering objective and limiting the 303 
intervention size to seven reaction deletions. For each tested selection rate – population size pair, the 304 
progression of the maximal fitness is shown in Error! Reference source not found.4.  305 

GA runs employing high selection rates of 0.75 exhibited the slowest convergence towards the 306 

maximal observed fitness of 0.48 𝑚𝑜𝑙 𝑚𝑜𝑙−1 ℎ−1 , irrespective of the chosen population size. No 307 
significant difference in the convergence behavior was observed between the lower selection rates of 308 

 

 

Figure 4: Maximal fitness progressions of GA runs using selection rates of (a) 0.15, (b) 0.3, (c) 0.5 and 

(d) 0.75. The color codes denote different population sizes ranging between 10 and 50. Generation 

numbers are plotted on a logarithmic scale. Deletion of maximally seven reactions were allowed. 

Succinate BPCY was used as the engineering objective. 
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0.15, 0.3, and 0.5. For specific selection rates, an increase of the population size up to 30 generally led 309 
to a faster convergence. However, significant differences became apparent in the computing time 310 
necessary to reach maximal fitness values (Figure 5). With increasing selection rates, more fitness 311 
function evaluations were required to reach the GA run specific maximal fitness. For a selection rate 312 
of 0.75, this maximal fitness did not coincide with the global maximum for any tested population size. 313 
When applying lower selection rates, non-global optima were only exhibited at a low population size 314 
of 10. Thus, a certain number of novel offspring individuals being generated at any generation had 315 
to be exceeded to provide a sufficient combinatoric for the crossover operator to effectively contribute 316 
to finding better individuals. Population sizes above 30 did not seem to significantly alter the 317 
computational cost to reach the global maximal fitness but led to increased overall computing times 318 
and costs for a fixed number of generations (Supplementary Figure S2). Hence, for the following GA 319 
runs we chose a rather low population size of 20 at a selection rate of 0.25 to assure fast convergence 320 
characteristics while minimizing the computational burden. 321 

 322 

Figure 5. Number of fitness function evaluations until maximal final fitness was reached for GA runs 323 
applying population sizes between 10 and 50. Bars are clustered according to the employed selection 324 
rate (colored number). Error bars show the standard deviation among five replicates for each 325 
population size – selection rate pair. Asterisks denote parameter pairs with which the globally 326 
maximal fitness of 0.48 𝑚𝑜𝑙 𝑚𝑜𝑙−1 ℎ−1  was not reached in every replicate GA run after 900 327 
generations. Succinate BPCY was used as the engineering objective. Intervention set size was seven. 328 

3.1.3 Parallelization: Numbers of Generations, Gene-Flow Events and Threads 329 

With the parallel implementation of the GA, populations are evenly split into sub-populations, 330 
which are assigned to multiple separate processing units or workers and evolved independently from 331 
each other (Section 2.1.5). After a specified number of generations, the latest sub-populations are 332 
pooled and eventually randomly allocated again to the workers to repeat the process. Such Gene-333 
Flow Events (GFEs) allow for an additional mechanism to diversify populations and promote 334 
evolution towards globally optimal solutions [35]. 335 

Generally, parallelization of generation sequences and fitness function evaluations is applied to 336 
cut computation time, particularly when dealing with costly fitness functions [35]. GA runs using one 337 
to seven threads and searching for seven reaction deletions while applying succinate BPCY as the 338 
engineering objective showed similarly decreasing generation numbers and computation times 339 
necessary to reach the maximal fitness with increasing number of threads (Figure 6). This raises the 340 
question, how the distribution between the number of successive generations per strand and the  341 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 March 2018                   doi:10.20944/preprints201803.0220.v1

Peer-reviewed version available at Metabolites 2018, 8, 33; doi:10.3390/metabo8020033

http://dx.doi.org/10.20944/preprints201803.0220.v1
http://dx.doi.org/10.3390/metabo8020033


 11 of 24 

 

number of GFEs influence the GA’s performance. We tested the influence of GFEs on the 342 
performance of the GA by varying the generation size between two GFEs and the number of GFEs 343 
itself while keeping the total number of generations constant. Surprisingly, the progressions of 344 
maximal fitness at each generation suggest that changing the distribution between generation size 345 
and number of GFEs has no significant effect on the convergence behavior (Supplementary 346 
Figure S3). According to  347 
the Hamming distance on the other hand, population diversities diminished more slowly when less 348 
GFEs were conducted in favor of higher generation sizes (Figure 7). 349 

However, the absolute computation time for the overall 900 generations is gradually reduced 350 
when decreasing the number of GFEs (Figure 8). This is mainly due to savings in overhead 351 

 

Figure 6. Number of generations (squares) and computation time (triangles) until maximal fitness 

was reached. Deletion of maximally seven reactions were allowed. Succinate BPCY was used as the 

engineering objective. Error bars denote the standard deviation of five replicate GA runs using one, 

three, five and seven parallel threads. 

 

Figure 7. Hamming distance progressions for GA runs applying 5 to 180 GFEs while keeping the 

total generation number at 900. Deletion of maximally seven reactions were allowed. Succinate 

BPCY was used as the engineering objective. Error bars denote the standard deviation of five 

replicate GA runs. 
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computations spent on merging or splitting populations, initialization of parallel loops and 352 
distribution of data to different workers. To minimize absolute computation times and ensure 353 
appropriate population diversities throughout GA runs, we chose a generation size of 60 for the 354 
following simulations. The total number of generations was thus controlled by the number of GFEs. 355 

3.2 Target Product Varieties and Minimal Intervention Set Sizes 356 

We used the basic GA and the optimized GA parameter set to determine strain designs for the 357 
overproduction of succinate, ethanol, lactate, and glutamate allowing maximum reaction or gene 358 
deletions between three and nine (Figure 9). Independent of the target product, the fitness for gene 359 
deletion target-sets generally converged to lower values compared with reaction target-set solutions 360 
of the same size. In all cases, the approach of the convergence region for the maximal fitness coincided 361 
with the convergence of the Hamming distance, hence the population diversity (cf. Supplementary 362 
Figures S4 and S5). 363 

Interestingly, the final fitness for five, seven, and nine reaction or gene deletions was the same 364 
or in the near range for all products. Hence, individuals representing a high, fixed intervention set 365 
size likely included one or more deletions, which did not contribute to the engineering objective. This 366 
is explained by our formulation of an individual (cf. Section 2.1.1), which allowed for multiple 367 
occurrences of the same target, further enforced by scaling the fitness with the number of unique 368 
targets within an individual (cf. Section 2.3.3). Accordingly, computed solutions needed to be 369 
postprocessed to extract the unique targets and actual number of deletions. 370 

We exemplarily applied the intervention set minimization approach to ethanol overproduction 371 
using different instances of the fitness-intervention size relation factor 𝑦. By increasing 𝑦 we were 372 
able to gradually concentrate on solutions with lower numbers of unique reaction deletions 373 
(Figure 10a). However, minimization of intervention sizes came at the expense of lowered objective 374 
fitness values and thus of lower ethanol overproduction capabilities (Figure 1010b). For example, 375 

applying a 𝑦 of 0.04 promoted quadruple deletion individuals as optimal solutions, whereas a lower 376 
𝑦  of 0.025 favored individuals with six unique reaction deletions. According to the Hamming 377 
distance and maximal fitness progressions (Supplementary Figure S6), convergence speed decreased 378 
with increasing fitness-intervention size relation factor, hence indicating that enforcement of the 379 
elimination of non-contributing deletion targets elevated the problem complexity.  380 

3.3 Multi-Objective Fitness Function Optimization 381 

To focus on the robustness of strain designs, we combined laboratory evolution-based objectives, 382 
namely gcOpt and OptKnock, as well as BPCY as a non-laboratory evolution objective, in one fitness  383 

 

Figure 8. Absolute computation time of 900 generations for several pairs of GFEs and generation 

sizes. Deletion of maximally seven reactions were allowed. Succinate BPCY was used as the 

engineering objective. Error bars denote the standard deviation of five replicate GA runs. 
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 384 

 

Figure 9. Maximal fitness progression of GA runs optimizing overproduction of succinate (a,e), 

ethanol (b,f), lactate (c,g) and glutamate (d,h) applying three, five, seven and nine maximal 

reaction (a-d) or gene (e-h) deletions. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 March 2018                   doi:10.20944/preprints201803.0220.v1

Peer-reviewed version available at Metabolites 2018, 8, 33; doi:10.3390/metabo8020033

http://dx.doi.org/10.20944/preprints201803.0220.v1
http://dx.doi.org/10.3390/metabo8020033


 14 of 24 

 

 

Figure 10. Progressions of the intervention size of the fittest individual throughout the GA runs 

are shown in (a). Dots illustrate the mean intervention size over a population at a specific 

generation. The lines represent the corresponding linear interpolations. Subfigure (b) shows the 

final objective fitness for GA runs using different instances of 𝑦. 

 385 
function and identified reaction deletion strategies for the maximization of succinate, ethanol, lactate 386 
and glutamate production. A “perfect” solution would therefore guarantee a high minimal yield at 387 
any growth state while predicting an optimal compromise between growth and target synthesis rates 388 
for the deletion mutant. 389 

Figure 11 shows the yield spaces of GA-optimized reaction deletion mutants with succinate, 390 
ethanol, lactate and glutamate as target products while employing the multi-objective fitness function 391 
approach and maximal intervention set sizes between three and nine. Yields and growth rates for 392 
each mutant predicted by MiMBl are additionally illustrated. Particularly for succinate, ethanol, and 393 
glutamate, solutions were identified for which both a strong product-growth coupling and a favorable 394 
compromise between yield and growth were predicted. The latter also holds for lactate as a target, 395 
but production robustness, in terms of a guaranteed yield at any growth state, was comparably low. 396 

Among the investigated target products, convergence characteristics of the population diversity 397 
were comparable for the same maximal allowable intervention set size (cf. Supplementary Figure S7). 398 
Moreover, they also matched the characteristics of simulations for which only the target product 399 
BPCY was used as the engineering objective. 400 

3.4 Heterologous Reaction Insertion 401 

Besides the mere intersection of metabolic networks, simultaneous addition of non-native 402 
functionalities has been shown to further improve overproduction capabilities [11]. Using a curated 403 
databank model for the E. coli core model including novel heterologous reactions (cf. Supplementary 404 
File 2), we tested the GA’s capability to identify advantageous combinations of reaction deletions and 405 
additions for the overproduction of succinate, glutamate, lactate and ethanol. However, we refrained 406 
from introducing whole new pathways and metabolites to the wildtype organism and limited 407 
network extensions to insertions of novel network edges to, in context of this work, focus on the mere 408 
feasibility of integrating heterologous reaction insertions into a genetic algorithm. 409 

For all four target products, the GA was able to further improve the BPCY by adding between 410 
one and four novel reactions compared to corresponding quintuple deletion mutants (Figure 2). In  411 
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the case of succinate, replacement of the NAD+-dependent glyceraldehyde-3-phosphate 412 
dehydrogenase with its NADP+-dependent, phosphorylating counterpart (EC 1.2.1.13) and addition  413 
of an ATP-dependent citrate lyase (EC 2.3.3.8) frequently occurred in the best individuals. 414 
Simultaneously, formation of acetate and ethanol were inhibited as well as the malic enzyme knocked  415 
out, altogether enforcing metabolic flux through the glyoxylate shunt and the reductive branch of the 416 
TCA cycle towards succinate. For the glycolytic product ethanol, switching from the NAD+-417 
dependent to the NADP+-dependent alcohol dehydrogenase (EC 1.1.1.2) and glyceraldehyde-3-418 
phosphate dehydrogenase (phosphorylating) as well as simultaneously deleting the NAD+ 419 
transhydrogenase led to the most promising strategies. Congruently, NADH/NADPH metabolism 420 
was the preferred target for glutamate overproduction, which was spurred by the addition of the 421 
NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.9) as well as the knockout 422 
of NAD+ transhydrogenase. The identified strain designs also suggested to increase flux through the 423 
TCA cycle by heterologously expressing the citrate oxaloacetate-lyase (EC 4.1.3.6) to recycle acetate  424 

 

Figure 11. Yield spaces of wildtype as well as mutant E. coli strains optimized for the 

overproduction of succinate (a), ethanol (b), lactate (c) and glutamate (d) using a combination of 

BPCY, growth-coupling and production rate at maximal growth rate as the engineering objective. 

All mutant yield spaces are based on the substrate uptake rate predicted by MiMBl. Triangles and 

attached numbers illustrate the phenotype prediction calculated by MiMBl and the fitness value 

for a strain design with a given number of reaction deletions, respectively. 
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to citrate. Interestingly, insertion of the latter in combination with expression of the non-native 425 
NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase and the deletion of various 426 
NADH/NAD+-dependent reactions also improved lactate overproduction. 427 

3.5 Increasing the Complexity and Predictive Power by Employing Genome-Scale Models 428 

Genome-scale network reconstructions represent dense information sources of the current 429 
knowledge about microbial metabolic functionalities. In combination with constraint-based 430 
modeling approaches they can aid in thoroughly predicting the behavior of microbes and their 431 
response to genetic perturbations [6]. The sheer size and complexity of genome-scale models (GEM), 432 
however, drastically increase the computational burden for in silico strain design methods and 433 
eventually render their application infeasible. GAs on the other hand are particularly suited for 434 
handling costly fitness functions and are able to provide at least near-optimal solutions for large-scale 435 
optimization problems [34,35]. 436 

We applied the basic GA framework to identify quintuple gene and reaction deletion strategies 437 
that maximize succinate production using the E. coli GEM iJO1366. Similar to the E. coli core model 438 
(cf. Section 3.2), fitness converged slower and the final maximal fitness was lower when searching for 439 
gene rather than reaction targets (Figure 13). In contrast, the maximally observed succinate BPCYs 440 

 

Figure 12. Fitness of the best individual after 1800 generations. BPCY of succinate (a), ethanol (b), 

lactate (c) and glutamate (d) was used as the engineering objective while applying five reaction 

deletions as well as one to four novel reaction insertions. The grey bars illustrate the fitness of the 

best individual after 900 generations without considering any reaction additions (cf. Figure ). 

 

Figure 13. Fitness progressions of GA runs optimizing succinate overproduction in the E. coli 

iJO1366 model applying gene (red line) and reaction (blue line) deletions. Standard deviation 

among three replicate GA runs are illustrated as error bands. 
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decreased by 33% for reaction targets and 42% for gene targets, pointing to a potentially misleading 441 
oversimplification of the metabolic repertoire in the E. coli core model for predicting exact mutant 442 
phenotypes. 443 

To exploit the full potential of the advanced GA, succinate overproducing strain designs were 444 
identified applying a multiple objective fitness function while minimizing the intervention set size 445 
using a y of 0.1. Figure 14 shows the yield spaces and predicted yields for four strain designs 446 
comprising different numbers of gene deletions and reaction insertions (cf. Supplementary File 3 for 447 
the non-native network edges of iJO1366). All strategies with five gene deletions shared a predicted 448 
BPCY of 0.2 𝑚𝑜𝑙 𝑚𝑜𝑙−1 ℎ−1  compared to 0.3 𝑚𝑜𝑙 𝑚𝑜𝑙−1 ℎ−1  of the octuple deletion and double 449 
insertion mutant. Both the octuple deletion and the quintuple deletion-only strain design exhibited a 450 
slightly holistic growth-coupling, i.e., biomass yields above zero for all accessible growth states [39]. 451 
In contrast, the first showed a significant extension of the yield space up to a maximal growth rate of 452 
1.7 ℎ−1, due to the additional insertion of the quinate dehydrogenase (EC 1.1.1.282) to the shikimate 453 
pathway. This is the result of an elevated NADPH synthesis rate, which was similarly observed in 454 
other, sub-optimal strain designs where, e.g., the NADP+-dependent glyceraldehyde-3-phosphate 455 
dehydrogenase (EC 1.2.1.13) was inserted. However, insertion of novel functionalities did not 456 
significantly improve succinate overproduction as compared to the deletion-only strain designs and 457 
in case of the quintuple deletion mutants even showed lowered fitness values (Supplementary Figure 458 
S8a). Presumably, novel network edges are not of critical concern for optimizing succinate production  459 

in E. coli. Identification of significantly better strain design solutions at elevated generation 460 
numbers is also unlikely, since the population diversities reached plateau regions indicating 461 
approaching fitness convergence (Supplementary Figure S8b). Only for the octuple deletion and 462 
double insertion case, a drop in the Hamming Distance approximately from generation 1600 onward 463 
suggested incomplete convergence. 464 

Interestingly, the final best strain designs always contained less perturbations as was maximally 465 
possible, which is illustrated by the higher final fitness values compared to the objective fitness values 466 
(Supplementary Figure S8a). For example, the search for overproduction mutants with five gene 467 
deletions and one reaction insertion led to a triple instead of a quintuple deletion strain design being 468 
a good compromise between the number of perturbations and objective fitness. Due to the 469 

 

Figure 14. Yield spaces of wildtype as well as mutant E. coli strains optimized for the 

overproduction of succinate using a combination of BPCY, GCS and production rate at maximal 

growth rate as the engineering objective. The legend shows the maximal allowable numbers of 

gene deletions (KO) and reaction insertions (Ins). All mutant yield spaces are based on the substrate 

uptake rate predicted by MiMBl. Triangles and attached numbers illustrate the phenotype 

prediction calculated by MiMBl and the corresponding BPCY, respectively. Note that yield spaces 

of the 5KO and 8KO mutant overlap each other. 
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minimization of intervention size approach, the reduced intervention set size was favored at the 470 
expense of a narrowed yield space in contrast to the full intervention potential. 471 

One main overproduction principle, however, was the enforcement of flux through the 472 
glyoxylate shunt by deleting the fumarase genes ΔfumA, ΔfumB, and ΔfumC. Moreover, an increase 473 
of the anaplerotic phosphoenolpyruvate carboxylase reaction by a knockout of the NAD+-dependent 474 
malate dehydrogenase (Δmdh) or pyruvate kinase (ΔpykA, ΔpykF) occurred frequently, presumably 475 
due to the elevated recapture of carbon dioxide. For the complete strategies we refer to the 476 
Supplementary.  477 

4. Discussion 478 

By simultaneously incorporating previously published as well as novel engineering approaches 479 
into a basic GA framework, we could demonstrate the versatility and broad applicability of GAs for 480 
solving strain design problems. Addition of novel reactions and functionalities, consideration of gene 481 
as well as reaction deletions, application of multiple optimization objectives, and minimization of 482 
necessary network perturbations proved to be simultaneously manageable by the GA. Such an 483 
integrative approach allows for an increased level of robustness in terms of overproduction stability 484 
and efficiency of mutant strain designs as well as the consideration of practicability of necessary 485 
genetic interventions. 486 

Of course, the capabilities to predict mutant phenotypes necessary to evaluate a solution’s fitness 487 
is still mainly dictated by the chosen computational prediction methods, the completeness and 488 
quality of the utilized model as well as the integrated data of the wildtype strain. Nevertheless, in the 489 
light of ongoing refinements of purely stoichiometric models to enhance their predictive power by 490 
introducing novel, kinetics-related protein or enzyme expression constraints [47,48] or whole gene 491 
expression systems [33], GAs were shown to be able to handle the accompanied increase in model 492 
and prediction method complexity in this work. 493 

Moreover, solving of optimization problems using GAs supersede the need for cumbersome 494 
mathematical reformulations. This is in contrast to bilevel programming problems, which have to be 495 
transformed into single level problems by, e.g., exploiting the strong duality theorem [49]. Due to the 496 
relatively straight forward implementation of GAs, biological and engineering objectives can be 497 
readily adapted to specific questions, applications, and requirements. For example, metabolic 498 
engineering projects strive to reach the best possible microbial productivities with minimal 499 
laboratory effort, meaning a minimal number of genetic interventions. We addressed this 500 
optimization (sub-)problem by simply adding a fitness transformation routine, which scales the 501 
fitness of a solution by its intervention size. This enables the user to adjust the relation between the 502 
benefit of saving genetic interventions and the sacrifice of potential overproduction capabilities to 503 
eventually accelerate simulation and experimental iterations. 504 

The performance of the GA is in any case strongly dependent on the balance between a broad 505 
diversity in the genetic pool of consecutive populations and the focusing to the most fit solutions or 506 
individuals. An exaggerated concentration on the local search characteristic of the GA, e.g., by 507 
applying small mutation rates, led to premature convergence to non-optimal solutions, which became 508 
apparent by a drastic drop in the population diversity. On the other hand, constantly high diversities 509 
indicated strong exploration of the solution space but were accompanied by slow convergence rates 510 
and a high computational effort necessary to identify optimal solutions. GA parameters were thus 511 
identified by a parameter analysis to blend both exploration as well as intensification characteristics 512 
and guarantee good optimization performances for any strain design problem. Thus, we reduced the 513 
chance for premature convergence and simultaneously minimized the computing time. Above all, 514 
the favorable convergence characteristics were not affected when we applied more complex 515 
engineering objectives, such as a multi-objective fitness function. 516 

Avoiding premature convergence is particularly important if, in future developments, 517 
convergence may be detected at runtime to terminate the GA and output the optimal solution 518 
instantaneously. A stagnation of the population diversity, which is quantified by the Hamming 519 
distance of a population, can potentially serve as a convergence criterion. However, if a population 520 
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converged to a global or a local optimum can hardly be decided and thus, premature convergence 521 
needs to be circumvented in the first place. Therefore, slight promotion of the GA’s exploration 522 
characteristics by careful parameter adaptions can be advantageous.  523 

From a biological point of view, more in-depth considerations about the practicability and 524 
robustness of potential strain designs were made possible implementing additional features for the 525 
GA to set a trade-off between the number of genetic interventions and maximal fitness values or to 526 
add non-native reactions. 527 

In a previous study we claimed that strong growth-coupling is effectively generated by the 528 
perturbation of cofactor balancing and ATP in particular [39], which, however, may be too 529 
metabolically destructive. Congruently to those findings, strain designs identified in this work, which 530 
strongly coupled succinate, ethanol or glutamate production to growth, incorporated, among others, 531 
the knockout of the ATP synthase, thus shifted the ATP supply to the substrate phosphorylation level. 532 
Simultaneously, high BPCYs were predicted for these strain designs strengthening the applicability 533 
of such ATP restricting engineering approaches to gain robust overproduction strains. 534 

The addition of novel metabolic reactions taken from a model databank generally targeted the 535 
cofactor and particularly the NADH/NADPH metabolism, besides the inhibition of byproduct 536 
formation. A common strategy was to replace NAD+-dependent reactions with their NADP+-537 
dependent counterparts, while simultaneously deleting the NADH dehydrogenase, NAD+ 538 
transhydrogenase or other NADH-dependent reactions, as was also previously suggested for 539 
succinate overproduction by Kim et al. [11] based on their findings employing SimOptStrain. 540 
However, by exploiting the E. coli iJO1366 GEM and the full capacity of the GA’s features, we 541 
identified a rather different strain design compared to other theoretical or experimental studies. 542 
Whereas it has been frequently suggested to directly suppress byproduct formation, e.g., by knocking 543 
out ackA, ldhA or pfl [50], the GA framework applying an E. coli GEM predicted a redirection of the 544 
TCA cycle flux towards the glyoxylate shunt to be most beneficial for succinate production. 545 
Moreover, and in line with results from the core metabolic model, reduction of NADH generation in 546 
favor of NADPH appeared to be a key design principle. This was pronounced by the suggestion to 547 
include the non-native NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase or quinate 548 
dehydrogenase, which significantly improved theoretical maximal growth. Since these novel design 549 
suggestions resulted from the simultaneous application of various engineering objectives, a 550 
comprehensive metabolic model, and the consideration of actual gene-protein dependencies as well 551 
as detailed wildtype metabolic flux data, it offers the most reliable basis for experimental transfer. 552 

In summary, we could demonstrate that simultaneous application of multiple, complex 553 
engineering objectives to genome-scale metabolic models for strain design purposes is indeed feasible 554 
using GAs. Moreover, GAs offer the potential to integrate even more complex objectives and methods 555 
and their performance may be tuned according to highlighted characteristics and parameter 556 
sensitivities.  557 
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Symbols 558 

 559 

Symbol Explanation 

B  A bit in the binary representation of an individual 

𝐹̂  Intervention size-scaled fitness 

𝐹  Objective fitness  

𝐹𝑅  Fitness of the best discarded individual 

𝜇  Specific growth rate 

𝑁𝐵  Number of bits per individual 

𝑁𝐷  Number of interventions per individual 

𝑁𝐺  Number of subsequent generations 

𝑁𝐺𝐹𝐸   Number of subsequent gene flow events 

𝑁𝑃  Population size 

𝑁𝑃𝑎  Number of possible pairs of individuals 

𝑁𝑆  Number of selected individuals 

𝑁𝑇  Number of target reactions 

𝑅  Mutation rate 

𝑣𝑃  Production rate 

𝑣𝑆  Substrate uptake rate 

𝑋  Selection rate 

𝑦  Fitness-intervention size relation factor 

 560 

Supplementary Materials: The following are available online at www.mdpi.com/link. The Genetic Algorithm 561 
for Metabolic Engineering (GAMO) framework developed and used in this work is freely available on GitHub 562 
(https://github.com/Spherotob/GAMO_public, DOI:10.5281/zenodo.1208048).   563 

Supplementary File 1: Section I.1: Determination of reference flux distributions. Section I.2: A simplified 564 
calculation of the growth-coupling strength. Section I.3: A databank model including novel network edges. 565 
Figure S1: Maximal fitness and Hamming distance progressions applying an adaptive mutation probability 566 
approach for a basic genetic algorithm. Figure S2: Total number of fitness function evaluations after 900 567 
generations using a basic genetic algorithm and applying different selection rates and population sizes. 568 
Figure S3: Maximal fitness progressions applying different numbers of Gene-Flow-Events at constant numbers 569 
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