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12 Abstract:
13 To date, several independent methods and algorithms exist exploiting constraint-based
14 stoichiometric models to find metabolic engineering strategies that optimize microbial production
15  performance. Optimization procedures based on metaheuristics facilitate a straightforward adaption
16  and expansion of engineering objectives as well as fitness functions, while being particularly suited
17 for solving problems of high complexity. With the increasing interest in multi-scale models and a
18  need for solving advanced engineering problems, we strive to advance genetic algorithms, which
19  stand out due to their intuitive optimization principles and proven usefulness in this field of research.
20 A drawback of genetic algorithms is that premature convergence to sub-optimal solutions easily
21  occurs if the optimization parameters are not adapted to the specific problem. Here, we conducted
22 comprehensive parameter sensitivity analyses to study their impact on finding optimal strain
23 designs. We further demonstrate the capability of genetic algorithms to simultaneously handle (i)
24 multiple, non-linear engineering objectives, (ii) the identification of gene target-sets according to
25  logical gene-protein-reaction associations, (iii) minimization of the number of network perturbations,
26 and (iv) the insertion of non-native reactions, while employing genome-scale metabolic models. This
27  framework adds a level of sophistication in terms of strain design robustness, which is exemplarily
28  tested on succinate overproduction in Escherichia coli.
29 Keywords: metabolic strain design; heuristic optimization; constraint-based modeling
30

31 1. Introduction

32 Metabolic Engineering aims to enable the production of pharmaceuticals, fine chemicals, and
33 fuels by microbial cell factories and strives to maximize productivity and profits [1]. In the last 30
34 years, advances in DNA sequencing and systems analytical technologies have led to an immense
35  expansion of integrated knowledge about genetics, biochemical metabolic pathways and their
36  regulation and enabled researches to specifically understand and manipulate microbial
37  metabolism [2].

38 From the sheer metabolic and regulatory network complexity a key problem of metabolic
39  engineering approaches falls into place: How to intervene in those biochemical networks to reach or
40 approach an engineering aim with a reasonable investment of time, money, and materials? The use
41  of computational models of metabolism seek to answer this and related questions by facilitating the
42  integration of biochemical knowledge and OMICS data. Techniques such as flux balance analysis [3],
43  elementary modes analysis [4] or flux variability analysis [5] help to explain metabolic properties and
44 to predict the effect of genetic perturbations on microbial metabolism. By incorporating routines,
45  which systematically search for intervention sets that yield a desired phenotype (e.g., target product
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46  yield), a panoply of variants of these computational methods has emerged [6] to support metabolic
47  engineers to most effectively interpret the information content of metabolic models.

48 The search for an optimal genetic intervention set poses a nested, bilevel optimization problem.
49  The outer problem optimizes an engineering objective by varying the network structure through gene
50  knockouts, knockdowns or overexpressions. The inner problem returns the microbial phenotype for
51  agiven intervention strategy based on a cellular objective, from which the outer objective function is
52 evaluated. By exploiting basic theorems of linear algebra, such bilevel problems are transformed into
53  single-level mixed-integer linear or quadratic programming problems and solved using powerful
54 mathematical programming algorithms [7-11]. The usefulness of these frameworks in aiding
55  metabolic engineering projects has been demonstrated for various microbial strains and target
56  compounds [12-16], but still, practical applications lag behind the vast efforts put into theoretical
57 studies.

58 Solving bilevel optimization problems using exact techniques bears two major drawbacks.
59  Firstly, the necessary mathematical transformations increase the complexity of the problem
60 formulation, thus limiting the tractable number of simultaneous interventions per simulation. More
61  importantly, only linear constraints and objective functions can be used in these frameworks, which
62  may not be appropriate for representing biological objectives [6].

63 The application of metaheuristics as search routines circumvents the complexity and
64  formulation problems of exact solving techniques. Evolutionary or genetic programming is one
65  prominent example among metaheuristic methods, which adopts the principles of biological
66  evolution for finding (near-)optimal solutions to optimization problems. The genetic algorithm (GA)
67  evolves an optimal genetic intervention set for a given metabolic engineering objective by a
68  systematic and repeated selection, crossover and mutation of a population of solutions [17-19]. Such
69  asearch heuristic allows for an efficient integration of any complex prediction method for microbial
70  mutant phenotypes, such as Minimization of Metabolic Adjustment (MOMA) [20], as well as the
71 consideration of sophisticated, non-linear engineering objectives as fitness functions. By applying,
72 e.g., OptGene, theoretical studies [21-23] but also practical implementations of identified genetic
73  intervention strategies [24-27] have proven the benefits of GAs for the identification of
74 overproduction strain designs.

75 In this work, we sought to intensify the knowledge of the behavior and performance
76  capabilities of GAs for metabolic engineering approaches with regard to future considerations of
77  models, constraints and engineering as well as biological objectives of growing complexity. A variety
78  of metaheuristics as optimization algorithms have already been applied for the computation of
79  metabolic engineering strategies [28-31]. We chose to apply GA for microbial strain design purposes
80  because of its intuitive optimization principles and already proven usefulness in this field of research.
81  Due to the nontransferable behaviors of GAs among different optimization problem classes [32], we
82  first explored the dependencies between the optimization parameters of GAs and classical model-
83  based metabolic engineering problems. To this end, we conducted sensitivity analyses for the
84  mutation rate, population size, number of generations, etc. while focusing on the ability to converge
85 to optimal strain design solutions for, e.g., succinate overproduction in Escherichia coli. We
86  particularly examined the importance of the duality between diversification and intensification (also
87  known as exploration and exploitation) of solution candidates for circumventing premature
88  convergence. Secondly, we demonstrated and eventually expanded the GA’s versatility. We included
89  the simultaneous evaluation of multiple cellular objective functions to derive pareto-optimal, robust
90  strain designs. Inspired by the OptStrain framework [8], we additionally implemented a routine to
91  insert novel network edges taken from a preprocessed pool of candidate reactions at runtime.
92  Moreover, a strategy was derived and implemented to simultaneously minimize the number of
93  interventions (e.g., gene deletions) while optimizing for the chosen engineering objective.

94 In summary, we intensified the knowledge of the behavior and performance capabilities of GAs
95  for metabolic engineering approaches and, beyond that, integrated previously independent design
96  objectives and methods in one framework. Hence, we promote the use of GAs for sophisticated
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97  metabolic models demanding high computing power [33], as well as the need to solve engineering
98  problems of growing complexities.

99 2. Materials and Methods

100 2.1 A Basic Genetic Algorithm for Metabolic Engineering

101 The GA is arandomized but directed search and optimization method modeled by the principles
102  of natural selection. It iteratively evolves a set or population of solutions (a solution will be referred
103 to as an individual) to an optimization problem, i.e., towards better solutions and to, eventually,
104  converge at optimality. According to Srinivas and Patnaik [34], the key characteristics of a GA are:

105

106 1. A genetic representation of solutions. Here, we employ a binary coding.

107 2. Populations of individuals as evolutionary communities.

108 3. A fitness function for evaluating the goodness of individuals.

109 4. Operators, which generate a new population from an existing one and which can be
110 controlled by parameters that shape the fitness-related or random transformation
111 behavior.

112

113

114 These characteristics have already been shown to be advantageous for in silico metabolic

115  engineering approaches in finding a set of reaction knockouts, which optimizes overproduction
116 [17,19,23]. Therefore, we implemented a GA using the basic structure of the OptGene framework [17]
117 as well as the descriptions of Haupt and Haupt [35] as a starting point. The principle scheme of the
118 GA is sketched in Figure 1 including the selection, mating, mutation, and fitness evaluation operator
119  constituting the core GA, as well as a pre- and post-processing routine. Successive application of each
120  GA operator to a population will be called a generation in the following.
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Figure 1: (a) Scheme of a basic GA. (b) Illustration of the parallelization method.
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123 2.1.1 Population of Binary Individuals

124 In terms of a strain design problem, an individual represents a set of reaction or gene deletions.
125  Following characteristic (1), each target within a set is encoded by a binary number, in the following
126  called a gene, with a uniform bit-length Ny. An individual comprising N, interventions (e.g.,
127  reaction deletions) thus consists of Ng - N, bits. To avoid a biased representation of the target space
128  when distributing Ny targets to 2VB binary values, with N; < 2V, we chose bit-lengths such that
129  each target is represented by 50 or 51 binary values. The number of bits were calculated using
130  Equation 1:

_ log(50:N7)
Ng = Round( 108 () ) (1)

131  Consequently, the maximal difference in the probability of drawing two independent targets is less
132 than 2 %. Using this specific binary representation, a maximal, user-defined number of targets per
133 individual is guaranteed. At the start of the GA, a population of N, individuals, each consisting of
134 K binary numbers of size Ny, is initialized. The initial state of each bit within the population is
135  selected randomly.

136  2.1.2 The Fitness Function

137 The fitness or goodness F of individuals quantifies to which extent metabolic network
138  perturbations facilitate overproduction of a target molecule or, in general, comply with the
139  engineering objective. As an engineering objective, we chose the Biomass-Product Coupled Yield
140  (BPCY), which is calculated by

_vpu
BPCY = , )

vs

141  where u depicts the growth rate, vp and vs are the product formation and substrate uptake rate,
142 respectively. The three parameters in Equation 2 are calculated using the Minimization of Metabolite
143  Balances (MiMBI) method [36], which may be considered as an adaption of the Minimization of
144 Metabolic Adjustment (MOMA) algorithm [20]. The application of MiMBI requires the input of a
145 reference or wild-type flux distribution to derive deletion mutant phenotypes. Since this work solely
146  focused on E. coli, we obtained our reference state from the experimental results of Ishii et al. [37]. For
147  more detailed descriptions we refer to Supplementary L1.

148  2.1.3 Selection, Mating and Crossover

149 As a first step in a generation, the best Ng individuals are selected for mating according to their
150 fitness, whereas all other N, — Ng of the N, individuals in the population are deleted. Ns is
151  calculated by

NS:NP.XI (3)

152  with X being the user-defined selection rate ranging between 0 and 1.

153 The mating pairs for crossover are assembled using a roulette wheel weighting approach by
154  drawing arandom number. Since two offspring are generated by crossover of two mated individuals
155  and the parent individuals are kept, N, — Ng/2 mating pairs are sampled to fill-up the population.
156  Avoidance of two identical mating pairs is set as a criterion for exclusion during sampling. The
157  probability P; with which anindividual i from the poolof Ng selected individuals is chosen to mate
158  is deduced from Equation 4:

*

F;

P =g @)

=
X F

159  with
F =F; — Fg, ()]
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160  where F; is additionally normalized by the fitness Fy of the best discarded individual. However, if
161 one or more selected individuals exhibit zero fitness, a minimal probability P,;, > 0 for each
162  individual i is guaranteed by scaling F; according to Equation 6:

N
Pmin'ZiSFi

—_— (6)
1 — Ppp * Ny

Fr=F,+
163  If not noted otherwise, P,,;,, = 0.1 Nj.
164 Crossover is initialized by a random selection of a crossover point or kinetochore for each mating
165  pair. Kinetochores are restricted to positions in between two neighboring genes. The genes left of the
166  kinetochore of the first parent are merged with those to the right of the kinetochore of the second
167  parent to form the first offspring individual. The second offspring is created complementarily with
168  the remaining parent genes (Figure 1a).

169  2.1.4 Mutation and Elitism

170 The mutation operator randomly changes bits within the population comprising the offspring
171  and parent individuals. The probability with which a 1 is turned into a 0 or vice versa is set by the
172 user-defined mutation rate R. We additionally adapted the concept of elitism and hence, the best
173  parent individual is not mutated. After mutation, a new generation is propagated by calculating the
174  fitness of the novel individuals.

175  2.1.5 Parallelism

176 To exploit multi-core and multi-threading processor architectures, several independent
177  generation strands are processed in parallel (Figure 1b). Therefore, an initial population is randomly
178  splitinto N, subpopulations of equal size. Each sub-population is passed to a separate thread and
179  undergoes independent evolution following sections 2.1.3 and 2.1.4. After N; generations, the final
180  subpopulations of the generation strands are merged, and the population is randomly divided to the
181 available threads, which we will refer to as a Gene Flow Event (GFE). After N;rz GFEs, the GA is
182  terminated resulting in a final population of N, evolved individuals.

183 2.2 Adaptive Probabilities of Mutation

184 We implemented a strategy to adapt the mutation rate for each individual at runtime following
185  the work of Srinivas and Patnaik [34]. The mutation rate is made dependent on the relative fitness
186  value of an individual as well as the diversity of its population and is calculated by

2 —F;
Xi = 22— Xmax — Xmin) + Xmins (7)

Fmnax—F'

187  with E,,, being the fitness of the best individual within the population and F’, the population’s
188  mean fitness. Equation 7 ensures that X; ranges between a pre-defined minimal and maximal
189  mutation rate X,,;, and X4

190 2.3 Additional Features

191  2.3.1 Gene Deletion Targets

192 To make use of the complex Gene-Protein-Reaction (GPR) associations inherent to many
193  metabolic models, we enabled the possibility of computing gene rather than reaction deletion target-
194  sets. Because any fitness function evaluation employing metabolic models demands the specification
195  of reaction network perturbations, we implemented a routine, which translates simultaneous gene
196  deletions to reaction deletions according to the logic operations given by the GPRs.

197  2.3.2 Multi-objective Optimization

198 To simultaneously optimize multiple engineering objective functions, the fitness function was
199  expanded by the OptKnock [38] and gcOpt [39] methods. Consequently, the fitness function value
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200  accounts for a linear combination of the production rate at maximal growth, the Growth Coupling
201  Strength (GCS) and, as explained in section 2.1.2, the BPCY. Each objective function value is
202  normalized by their maximum to ensure uniform value ranges between 0 and 1. Additional,
203  independent weighting factors can be applied to each objective function but were neglected in this
204 work. However, in contrast to the descriptions of Alter et al. [39], the calculation of the GCS was
205  simplified to reduce the computational burden while guaranteeing a meaningful approximation of
206  the GCS measure (cf. Supplementary 1.2) .

207  2.3.3 Minimization of Perturbations

208 We incorporated a fitness transformation routine to facilitate the minimization of simultaneous,
209  genetic perturbations while evolving overproduction individuals. Particularly, the fitness F; of an
210  individual i (here referred to as the objective fitness), which stems from the evaluation of the cellular
211  objective function, is scaled by the number of unique reaction or gene deletions [; of i according to
212 Equation 8:

ﬁizFi-I'Fi'y'(Imax_Ii): (8)

213  where F; is the scaled fitness and I, denotes the maximal possible number of unique
214 perturbations per individual. To control the trade-off between the reduction of simultaneous genetic
215  interventions and the maximization of target product yield we introduced the fitness-intervention
216  size relation factor y, whereby y > 0. By increasing y, the optimization objective is shifted towards
217  minimal perturbation sizes while the objective fitness becomes subordinated.

218  2.3.4 Non-native Network Edge Insertions

219 Inspired by the OptStrain and SimOptStrain frameworks [8,11], we expanded the basic GA to
220  identify non-native reaction insertions while simultaneously searching for a set of reaction or gene
221  deletions, which, in combination maximize overproduction. We particularly focused on novel
222  network edges and, hence confined the set of possible insertion targets to reactions that act on
223  metabolites inherent to the wildtype model only. Respective candidate reactions were derived and
224 curated by consulting the MetaNetX [40], BiGG [41], eQuilibrator [42], and KEGG [43] database to
225  create a databank model providing a repertoire of possible novel functionalities to the GA (cf.
226  Supplementary 1.3).

227 2.4 Analysis of the Evolution of Populations

228  2.4.1 A Measure of Population Diversity: The Hamming Distance

229 The average Hamming distance between pairs of individuals can be used to quantify the
230  diversity of a population, which aids in investigating the time convergence of GAs [34,44]. The
231 Hamming distance counts the number of differing bits in two individuals, hence, for Np, =
232 NZ—P (Np — 1) possible pairs of individuals a population’s average Hamming distance is calculated by:

N N i1 i2
2 PaZjB|le —B; |
Npg * HDpox '

HD = )

233 with B/* being the jth bit of the first individual of the ith pair in the population. Additionally, HD is
234  normalized by the maximally possible Hamming distance between two individuals. Therefore, we
235  will generally use HD for the normalized, average Hamming distance in this work.

236 2.5 Metabolic Model Preprocessing

237 In this work, the E. coli K-12 MG1655 core [45] as well as the genome-scale reconstruction iJO1366
238  [46] were employed. Preceding any GA optimization, a model compression was conducted by
239  eliminating sink and source reactions, which consume or produce unbalanced metabolites. Therefore,
240  reactions that could not carry any flux were iteratively identified by flux variability analysis and
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241  subsequently deleted. When gene deletion targets are considered, genes being connected by an AND
242  operator in the same GPRs were lumped. For example, genes encoding for sub-units that are found
243  in only one particular enzyme were considered as one gene.

244 Additionally, the deletion target space was reduced to minimize the complexity of the
245  optimization problem. Partly following the protocol of Feist et al. [21], reactions not associated to any
246  genes, such as spontaneous, diffusion and exchange reactions, were not considered as deletion
247  targets. Furthermore, all transport reactions as well as reactions being involved in cell envelope
248  Dbiosynthesis, membrane lipid metabolism, murein biosynthesis, tRNA charging and
249  glycerophospholipid metabolism were removed from the target space.

250 2.6 General Conduct for the Application of the Genetic Algorithm

251 All simulations employing the E. coli core and the genome-scale iJO1366 model were replicated
252  five and three times, respectively. All data shown is an average of the replicates and given errors
253  denote the correspondent standard deviation. The GA was implemented in Matlab 2016b (The
254  Mathworks, Inc, Natick, MA, USA) and is freely available on GitHub
255  (https://github.com/Spherotob/GAMO_public). All computations and the evaluation of the results
256  were conducted on a Windows 7 machine with 16 GB of RAM and an AMD FX-8350 Eight-Core (a
257  4.00 GHz) processor.

258 3. Results

259 3.1 GA Parameter Sensitivity Analysis

260 The performance of GAs on arbitrary optimization problems is strongly dependent on the GA
261  parameters and a sound setting is generally hard to predict. It is thus advisable to conduct a thorough
262  parameter sensitivity analysis for a specific problem class to derive the most advantageous parameter
263  ranges. Therefore, we performed a parameter sensitivity analysis for a basic GA (cf. Section 2.1) on
264  strain design problems using the E. coli core metabolic reconstruction. For an overview of the used
265  GA parameters for each conducted simulation in this work and the obtained best intervention
266  strategies we refer to the Supplementary File 4 and 5.

267  3.1.1 Mutation Rate

268 The arbitrary mutation of individuals is a central operator of GAs driving the exploration of the
269  solution space for globally optimal solutions. At low mutation rates, the search of GAs is narrowed
270  to the local surroundings of a population’s individuals, which is likely to lead to premature
271  convergence. On the contrary, too high mutation rates diminish the fitness intensification in the local
272  area of a population and thus convert GAs into random search methods, which results in low
273  convergence speeds. This is illustrated by the maximal fitness and the Hamming distance trends
274  when optimizing for succinate biomass-product coupled yield (BPCY) using a basic GA at different
275  mutation rates (Figure 2). Evolution of individuals stopped at a relatively low, suboptimal fitness
276  value after approximately 40 generations for low mutation rates up to 0.001 due to a vanishing
277  population diversity. Contrarily, at elevated mutation rates above 0.3, the convergence to optimal
278  fitness values was slow and the diversity remained at high levels without exhibiting any indications
279  of intensification. A mutation rate of 0.05 exhibited an advantageous compromise between
280  exploration and intensification of the target space and thus led to the highest convergence rates. As
281  shown in Figure 3, fast convergence correlated with low numbers of fitness function evaluations
282 needed to reach maximal fitness and, thus, to low computational costs. Mutation rates below 0.01
283  exhibited the lowest computational costs but impeded finding the optimal solution with a fitness of
284  0.46 mol mol~' h=1. If not stated otherwise, we used a mutation rate of 0.05 in all further simulations
285  to reasonably limit the number of fitness function evaluations during GA runs while avoiding a
286  radical drop in population diversity and thus premature convergence.
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Figure 2: Maximal fitness (a) and hamming distance (b) across the populations of every thread in
each generation using mutation rates between 0 and 0.7. Deletion of maximally five reactions were
allowed while using succinate BPCY as the engineering objective. Hamming distance progressions
for mutation rates 0.5 and 0.7 overlap each other.

287  Fixing the mutation rate during GA runs was previously shown to be superior to variable, adaptive
288  mutation probabilities [34]. However, in contrast to the findings of Srinivas & Patnaik [34], in our
289  simulations, adaptive probabilities generally led to a decrease in convergence speed using ethanol
290  BPCY as engineering objective (Supplementary Figure S1). For five, seven, and ten maximal reaction
291  deletions, we applied different ranges between the minimally and maximally allowable mutation
292  rate, each centering around a mutation rate of 0.05. Intensification of solutions was more and more
293  hampered for increasing range widths, most notable by means of static Hamming distance
294  progressions at high levels (Supplementary Figure S1). Hence, the promising concept of adaptive
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Figure 3. Number of fitness function evaluations until maximal final fitness was reached. Box plots
represent five replicate GA runs applying the respective mutation rate. Succinate BPCY was used as
the engineering objective.
295  mutation probabilities might be dismissed for strain design applications.
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3.1.2 Selection rate and Population Size

The selection rate and population size determine how many of the fittest individuals are being
selected to the mating pool for breeding new and eventually superior offspring individuals.
Therefore, both parameters jointly influence the local search behavior of GAs in the vicinity of a
population induced by the crossover operator. To assess this influence in terms of convergence
characteristics and computational cost minimization, we performed GA runs with varying selection
rates and population sizes using succinate BPCY as the engineering objective and limiting the
intervention size to seven reaction deletions. For each tested selection rate — population size pair, the
progression of the maximal fitness is shown in Error! Reference source not found.4.

GA runs employing high selection rates of 0.75 exhibited the slowest convergence towards the
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Figure 4: Maximal fitness progressions of GA runs using selection rates of (a) 0.15, (b) 0.3, (c) 0.5 and
(d) 0.75. The color codes denote different population sizes ranging between 10 and 50. Generation
numbers are plotted on a logarithmic scale. Deletion of maximally seven reactions were allowed.
Succinate BPCY was used as the engineering objective.

maximal observed fitness of 0.48 molmol™* h™!, irrespective of the chosen population size. No
significant difference in the convergence behavior was observed between the lower selection rates of
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309  0.15,0.3, and 0.5. For specific selection rates, an increase of the population size up to 30 generally led
310  to a faster convergence. However, significant differences became apparent in the computing time
311  necessary to reach maximal fitness values (Figure 5). With increasing selection rates, more fitness
312  function evaluations were required to reach the GA run specific maximal fitness. For a selection rate
313  of0.75, this maximal fitness did not coincide with the global maximum for any tested population size.
314  When applying lower selection rates, non-global optima were only exhibited at a low population size
315  of 10. Thus, a certain number of novel offspring individuals being generated at any generation had
316  tobe exceeded to provide a sufficient combinatoric for the crossover operator to effectively contribute
317  to finding better individuals. Population sizes above 30 did not seem to significantly alter the
318  computational cost to reach the global maximal fitness but led to increased overall computing times
319  and costs for a fixed number of generations (Supplementary Figure S2). Hence, for the following GA
320  runs we chose a rather low population size of 20 at a selection rate of 0.25 to assure fast convergence
321  characteristics while minimizing the computational burden.
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323 Figure 5. Number of fitness function evaluations until maximal final fitness was reached for GA runs
324 applying population sizes between 10 and 50. Bars are clustered according to the employed selection
325 rate (colored number). Error bars show the standard deviation among five replicates for each
326 population size — selection rate pair. Asterisks denote parameter pairs with which the globally
327 maximal fitness of 0.48 molmol™* h™' was not reached in every replicate GA run after 900
328 generations. Succinate BPCY was used as the engineering objective. Intervention set size was seven.

329  3.1.3 Parallelization: Numbers of Generations, Gene-Flow Events and Threads

330 With the parallel implementation of the GA, populations are evenly split into sub-populations,
331  which are assigned to multiple separate processing units or workers and evolved independently from
332  each other (Section 2.1.5). After a specified number of generations, the latest sub-populations are
333  pooled and eventually randomly allocated again to the workers to repeat the process. Such Gene-
334  Flow Events (GFEs) allow for an additional mechanism to diversify populations and promote
335  evolution towards globally optimal solutions [35].

336 Generally, parallelization of generation sequences and fitness function evaluations is applied to
337  cutcomputation time, particularly when dealing with costly fitness functions [35]. GA runs using one
338  to seven threads and searching for seven reaction deletions while applying succinate BPCY as the
339  engineering objective showed similarly decreasing generation numbers and computation times
340  necessary to reach the maximal fitness with increasing number of threads (Figure 6). This raises the
341  question, how the distribution between the number of successive generations per strand and the
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Figure 6. Number of generations (squares) and computation time (triangles) until maximal fitness
was reached. Deletion of maximally seven reactions were allowed. Succinate BPCY was used as the
engineering objective. Error bars denote the standard deviation of five replicate GA runs using one,
three, five and seven parallel threads.

342 number of GFEs influence the GA’s performance. We tested the influence of GFEs on the
343  performance of the GA by varying the generation size between two GFEs and the number of GFEs
344 itself while keeping the total number of generations constant. Surprisingly, the progressions of
345  maximal fitness at each generation suggest that changing the distribution between generation size
346  and number of GFEs has no significant effect on the convergence behavior (Supplementary
347  Figure S3). According to

348  the Hamming distance on the other hand, population diversities diminished more slowly when less
349  GFEs were conducted in favor of higher generation sizes (Figure 7).

350 However, the absolute computation time for the overall 900 generations is gradually reduced
351  when decreasing the number of GFEs (Figure 8). This is mainly due to savings in overhead
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Figure 7. Hamming distance progressions for GA runs applying 5 to 180 GFEs while keeping the
total generation number at 900. Deletion of maximally seven reactions were allowed. Succinate
BPCY was used as the engineering objective. Error bars denote the standard deviation of five
replicate GA runs.
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Figure 8. Absolute computation time of 900 generations for several pairs of GFEs and generation
sizes. Deletion of maximally seven reactions were allowed. Succinate BPCY was used as the
engineering objective. Error bars denote the standard deviation of five replicate GA runs.

352  computations spent on merging or splitting populations, initialization of parallel loops and
353  distribution of data to different workers. To minimize absolute computation times and ensure
354  appropriate population diversities throughout GA runs, we chose a generation size of 60 for the
355  following simulations. The total number of generations was thus controlled by the number of GFEs.

356 3.2 Target Product Varieties and Minimal Intervention Set Sizes

357 We used the basic GA and the optimized GA parameter set to determine strain designs for the
358  overproduction of succinate, ethanol, lactate, and glutamate allowing maximum reaction or gene
359  deletions between three and nine (Figure 9). Independent of the target product, the fitness for gene
360  deletion target-sets generally converged to lower values compared with reaction target-set solutions
361  of the same size. In all cases, the approach of the convergence region for the maximal fitness coincided
362  with the convergence of the Hamming distance, hence the population diversity (cf. Supplementary
363  Figures S4 and S5).

364 Interestingly, the final fitness for five, seven, and nine reaction or gene deletions was the same
365  orin the near range for all products. Hence, individuals representing a high, fixed intervention set
366  size likely included one or more deletions, which did not contribute to the engineering objective. This
367  is explained by our formulation of an individual (cf. Section 2.1.1), which allowed for multiple
368  occurrences of the same target, further enforced by scaling the fitness with the number of unique
369  targets within an individual (cf. Section 2.3.3). Accordingly, computed solutions needed to be
370  postprocessed to extract the unique targets and actual number of deletions.

371 We exemplarily applied the intervention set minimization approach to ethanol overproduction
372  using different instances of the fitness-intervention size relation factor y. By increasing y we were
373  able to gradually concentrate on solutions with lower numbers of unique reaction deletions
374  (Figure 10a). However, minimization of intervention sizes came at the expense of lowered objective
375  fitness values and thus of lower ethanol overproduction capabilities (Figure 1010b). For example,
376  applying a y of 0.04 promoted quadruple deletion individuals as optimal solutions, whereas a lower
377 y of 0.025 favored individuals with six unique reaction deletions. According to the Hamming
378  distance and maximal fitness progressions (Supplementary Figure S6), convergence speed decreased
379  with increasing fitness-intervention size relation factor, hence indicating that enforcement of the
380  elimination of non-contributing deletion targets elevated the problem complexity.

381 3.3 Multi-Objective Fitness Function Optimization

382 To focus on the robustness of strain designs, we combined laboratory evolution-based objectives,
383  namely gcOpt and OptKnock, as well as BPCY as a non-laboratory evolution objective, in one fitness
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Figure 9. Maximal fitness progression of GA runs optimizing overproduction of succinate (a,e),

ethanol (b,f), lactate (¢,g) and glutamate (d,h) applying three, five, seven and nine maximal

reaction (a-d) or gene (e-h) deletions.
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final objective fitness for GA runs using different instances of y.

385

386 function and identified reaction deletion strategies for the maximization of succinate, ethanol, lactate
387  and glutamate production. A “perfect” solution would therefore guarantee a high minimal yield at
388  any growth state while predicting an optimal compromise between growth and target synthesis rates
389  for the deletion mutant.

390 Figure 11 shows the yield spaces of GA-optimized reaction deletion mutants with succinate,
391  ethanol, lactate and glutamate as target products while employing the multi-objective fitness function
392  approach and maximal intervention set sizes between three and nine. Yields and growth rates for
393  each mutant predicted by MiMBI are additionally illustrated. Particularly for succinate, ethanol, and
394  glutamate, solutions were identified for which both a strong product-growth coupling and a favorable
395  compromise between yield and growth were predicted. The latter also holds for lactate as a target,
396  but production robustness, in terms of a guaranteed yield at any growth state, was comparably low.
397 Among the investigated target products, convergence characteristics of the population diversity
398  were comparable for the same maximal allowable intervention set size (cf. Supplementary Figure S7).
399  Moreover, they also matched the characteristics of simulations for which only the target product
400  BPCY was used as the engineering objective.

401 3.4 Heterologous Reaction Insertion

402 Besides the mere intersection of metabolic networks, simultaneous addition of non-native
403  functionalities has been shown to further improve overproduction capabilities [11]. Using a curated
404  databank model for the E. coli core model including novel heterologous reactions (cf. Supplementary
405  File2), we tested the GA’s capability to identify advantageous combinations of reaction deletions and
406 additions for the overproduction of succinate, glutamate, lactate and ethanol. However, we refrained
407  from introducing whole new pathways and metabolites to the wildtype organism and limited
408  network extensions to insertions of novel network edges to, in context of this work, focus on the mere
409 feasibility of integrating heterologous reaction insertions into a genetic algorithm.

410 For all four target products, the GA was able to further improve the BPCY by adding between
411  one and four novel reactions compared to corresponding quintuple deletion mutants (Figure 2). In
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Figure 11. Yield spaces of wildtype as well as mutant E.coli strains optimized for the
overproduction of succinate (a), ethanol (b), lactate (c) and glutamate (d) using a combination of
BPCY, growth-coupling and production rate at maximal growth rate as the engineering objective.
All mutant yield spaces are based on the substrate uptake rate predicted by MiMBI. Triangles and
attached numbers illustrate the phenotype prediction calculated by MiMBI and the fitness value
for a strain design with a given number of reaction deletions, respectively.

412  the case of succinate, replacement of the NAD+dependent glyceraldehyde-3-phosphate
413  dehydrogenase with its NADP*-dependent, phosphorylating counterpart (EC 1.2.1.13) and addition
414 of an ATP-dependent citrate lyase (EC2.3.3.8) frequently occurred in the best individuals.
415  Simultaneously, formation of acetate and ethanol were inhibited as well as the malic enzyme knocked
416  out, altogether enforcing metabolic flux through the glyoxylate shunt and the reductive branch of the
417  TCA cycle towards succinate. For the glycolytic product ethanol, switching from the NAD*
418  dependent to the NADP+dependent alcohol dehydrogenase (EC 1.1.1.2) and glyceraldehyde-3-
419  phosphate dehydrogenase (phosphorylating) as well as simultaneously deleting the NAD+
420  transhydrogenase led to the most promising strategies. Congruently, NADH/NADPH metabolism
421  was the preferred target for glutamate overproduction, which was spurred by the addition of the
422  NADP+dependent glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.9) as well as the knockout
423  of NAD* transhydrogenase. The identified strain designs also suggested to increase flux through the
424 TCA cycle by heterologously expressing the citrate oxaloacetate-lyase (EC 4.1.3.6) to recycle acetate
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Figure 12. Fitness of the best individual after 1800 generations. BPCY of succinate (a), ethanol (b),
lactate (c) and glutamate (d) was used as the engineering objective while applying five reaction
deletions as well as one to four novel reaction insertions. The grey bars illustrate the fitness of the
best individual after 900 generations without considering any reaction additions (cf. Figure ).

425  to citrate. Interestingly, insertion of the latter in combination with expression of the non-native
426  NADP+dependent glyceraldehyde-3-phosphate dehydrogenase and the deletion of various
427  NADH/NAD*dependent reactions also improved lactate overproduction.

428 3.5 Increasing the Complexity and Predictive Power by Employing Genome-Scale Models

429 Genome-scale network reconstructions represent dense information sources of the current
430  knowledge about microbial metabolic functionalities. In combination with constraint-based
431  modeling approaches they can aid in thoroughly predicting the behavior of microbes and their
432  response to genetic perturbations [6]. The sheer size and complexity of genome-scale models (GEM),
433  however, drastically increase the computational burden for in silico strain design methods and
434  eventually render their application infeasible. GAs on the other hand are particularly suited for
435  handling costly fitness functions and are able to provide at least near-optimal solutions for large-scale
436  optimization problems [34,35].

437 We applied the basic GA framework to identify quintuple gene and reaction deletion strategies
438  that maximize succinate production using the E. coli GEM iJO1366. Similar to the E. coli core model
439  (cf. Section 3.2), fitness converged slower and the final maximal fitness was lower when searching for
440  gene rather than reaction targets (Figure 13). In contrast, the maximally observed succinate BPCYs
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Figure 13. Fitness progressions of GA runs optimizing succinate overproduction in the E. coli
iJO1366 model applying gene (red line) and reaction (blue line) deletions. Standard deviation
among three replicate GA runs are illustrated as error bands.
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441  decreased by 33% for reaction targets and 42% for gene targets, pointing to a potentially misleading
442  oversimplification of the metabolic repertoire in the E. coli core model for predicting exact mutant
443  phenotypes.

444 To exploit the full potential of the advanced GA, succinate overproducing strain designs were
445  identified applying a multiple objective fitness function while minimizing the intervention set size
446  using a y of 0.1. Figure 14 shows the yield spaces and predicted yields for four strain designs
447  comprising different numbers of gene deletions and reaction insertions (cf. Supplementary File 3 for
448  the non-native network edges of {JO1366). All strategies with five gene deletions shared a predicted
449  BPCY of 0.2molmol ™ h™* compared to 0.3 molmol™ h™* of the octuple deletion and double
450  insertion mutant. Both the octuple deletion and the quintuple deletion-only strain design exhibited a
451  slightly holistic growth-coupling, i.e., biomass yields above zero for all accessible growth states [39].
452  In contrast, the first showed a significant extension of the yield space up to a maximal growth rate of
453 1.7 k7%, due to the additional insertion of the quinate dehydrogenase (EC 1.1.1.282) to the shikimate
454  pathway. This is the result of an elevated NADPH synthesis rate, which was similarly observed in
455  other, sub-optimal strain designs where, e.g., the NADP*dependent glyceraldehyde-3-phosphate
456  dehydrogenase (EC 1.2.1.13) was inserted. However, insertion of novel functionalities did not
457  significantly improve succinate overproduction as compared to the deletion-only strain designs and
458  in case of the quintuple deletion mutants even showed lowered fitness values (Supplementary Figure
459  S8a). Presumably, novel network edges are not of critical concern for optimizing succinate production
460 in E. coli. Identification of significantly better strain design solutions at elevated generation
461  numbers is also unlikely, since the population diversities reached plateau regions indicating
462  approaching fitness convergence (Supplementary Figure S8b). Only for the octuple deletion and
463  double insertion case, a drop in the Hamming Distance approximately from generation 1600 onward
464  suggested incomplete convergence.

465 Interestingly, the final best strain designs always contained less perturbations as was maximally
466  possible, which isillustrated by the higher final fitness values compared to the objective fitness values
467  (Supplementary Figure S8a). For example, the search for overproduction mutants with five gene
468  deletions and one reaction insertion led to a triple instead of a quintuple deletion strain design being
469 a good compromise between the number of perturbations and objective fitness. Due to the
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Figure 14. Yield spaces of wildtype as well as mutant E.coli strains optimized for the
overproduction of succinate using a combination of BPCY, GCS and production rate at maximal
growth rate as the engineering objective. The legend shows the maximal allowable numbers of
gene deletions (KO) and reaction insertions (Ins). All mutant yield spaces are based on the substrate
uptake rate predicted by MiMBI. Triangles and attached numbers illustrate the phenotype
prediction calculated by MiMBI and the corresponding BPCY, respectively. Note that yield spaces
of the 5KO and 8KO mutant overlap each other.
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470  minimization of intervention size approach, the reduced intervention set size was favored at the
471  expense of a narrowed yield space in contrast to the full intervention potential.

472 One main overproduction principle, however, was the enforcement of flux through the
473  glyoxylate shunt by deleting the fumarase genes AfumA, AfumB, and AfumC. Moreover, an increase
474  of the anaplerotic phosphoenolpyruvate carboxylase reaction by a knockout of the NAD+*-dependent
475  malate dehydrogenase (Amdh) or pyruvate kinase (ApykA, ApykF) occurred frequently, presumably
476  due to the elevated recapture of carbon dioxide. For the complete strategies we refer to the
477  Supplementary.

478 4. Discussion

479 By simultaneously incorporating previously published as well as novel engineering approaches
480  into a basic GA framework, we could demonstrate the versatility and broad applicability of GAs for
481  solving strain design problems. Addition of novel reactions and functionalities, consideration of gene
482  as well as reaction deletions, application of multiple optimization objectives, and minimization of
483  necessary network perturbations proved to be simultaneously manageable by the GA. Such an
484  integrative approach allows for an increased level of robustness in terms of overproduction stability
485  and efficiency of mutant strain designs as well as the consideration of practicability of necessary
486  genetic interventions.

487 Of course, the capabilities to predict mutant phenotypes necessary to evaluate a solution’s fitness
488 s still mainly dictated by the chosen computational prediction methods, the completeness and
489  quality of the utilized model as well as the integrated data of the wildtype strain. Nevertheless, in the
490  light of ongoing refinements of purely stoichiometric models to enhance their predictive power by
491  introducing novel, kinetics-related protein or enzyme expression constraints [47,48] or whole gene
492  expression systems [33], GAs were shown to be able to handle the accompanied increase in model
493  and prediction method complexity in this work.

494 Moreover, solving of optimization problems using GAs supersede the need for cumbersome
495  mathematical reformulations. This is in contrast to bilevel programming problems, which have to be
496  transformed into single level problems by, e.g., exploiting the strong duality theorem [49]. Due to the
497  relatively straight forward implementation of GAs, biological and engineering objectives can be
498  readily adapted to specific questions, applications, and requirements. For example, metabolic
499  engineering projects strive to reach the best possible microbial productivities with minimal
500 Ilaboratory effort, meaning a minimal number of genetic interventions. We addressed this
501  optimization (sub-)problem by simply adding a fitness transformation routine, which scales the
502 fitness of a solution by its intervention size. This enables the user to adjust the relation between the
503  benefit of saving genetic interventions and the sacrifice of potential overproduction capabilities to
504  eventually accelerate simulation and experimental iterations.

505 The performance of the GA is in any case strongly dependent on the balance between a broad
506  diversity in the genetic pool of consecutive populations and the focusing to the most fit solutions or
507  individuals. An exaggerated concentration on the local search characteristic of the GA, e.g., by
508  applying small mutation rates, led to premature convergence to non-optimal solutions, which became
509  apparent by a drastic drop in the population diversity. On the other hand, constantly high diversities
510  indicated strong exploration of the solution space but were accompanied by slow convergence rates
511  and a high computational effort necessary to identify optimal solutions. GA parameters were thus
512 identified by a parameter analysis to blend both exploration as well as intensification characteristics
513  and guarantee good optimization performances for any strain design problem. Thus, we reduced the
514  chance for premature convergence and simultaneously minimized the computing time. Above all,
515  the favorable convergence characteristics were not affected when we applied more complex
516  engineering objectives, such as a multi-objective fitness function.

517 Avoiding premature convergence is particularly important if, in future developments,
518  convergence may be detected at runtime to terminate the GA and output the optimal solution
519  instantaneously. A stagnation of the population diversity, which is quantified by the Hamming
520  distance of a population, can potentially serve as a convergence criterion. However, if a population
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521  converged to a global or a local optimum can hardly be decided and thus, premature convergence
522  needs to be circumvented in the first place. Therefore, slight promotion of the GA’s exploration
523  characteristics by careful parameter adaptions can be advantageous.

524 From a biological point of view, more in-depth considerations about the practicability and
525  robustness of potential strain designs were made possible implementing additional features for the
526  GA to set a trade-off between the number of genetic interventions and maximal fitness values or to
527  add non-native reactions.

528 In a previous study we claimed that strong growth-coupling is effectively generated by the
529  perturbation of cofactor balancing and ATP in particular [39], which, however, may be too
530  metabolically destructive. Congruently to those findings, strain designs identified in this work, which
531  strongly coupled succinate, ethanol or glutamate production to growth, incorporated, among others,
532 theknockout of the ATP synthase, thus shifted the ATP supply to the substrate phosphorylation level.
533 Simultaneously, high BPCYs were predicted for these strain designs strengthening the applicability
534 of such ATP restricting engineering approaches to gain robust overproduction strains.

535 The addition of novel metabolic reactions taken from a model databank generally targeted the
536  cofactor and particularly the NADH/NADPH metabolism, besides the inhibition of byproduct
537  formation. A common strategy was to replace NAD*dependent reactions with their NADP+-
538  dependent counterparts, while simultaneously deleting the NADH dehydrogenase, NAD*
539  transhydrogenase or other NADH-dependent reactions, as was also previously suggested for
540  succinate overproduction by Kim et al. [11] based on their findings employing SimOptStrain.
541  However, by exploiting the E. coli JO1366 GEM and the full capacity of the GA’s features, we
542  identified a rather different strain design compared to other theoretical or experimental studies.
543  Whereas it has been frequently suggested to directly suppress byproduct formation, e.g., by knocking
544 out ackA, IdhA or pfl [50], the GA framework applying an E. coli GEM predicted a redirection of the
545  TCA cycle flux towards the glyoxylate shunt to be most beneficial for succinate production.
546 Moreover, and in line with results from the core metabolic model, reduction of NADH generation in
947  favor of NADPH appeared to be a key design principle. This was pronounced by the suggestion to
548  include the non-native NADP+*-dependent glyceraldehyde-3-phosphate dehydrogenase or quinate
549  dehydrogenase, which significantly improved theoretical maximal growth. Since these novel design
550  suggestions resulted from the simultaneous application of various engineering objectives, a
951  comprehensive metabolic model, and the consideration of actual gene-protein dependencies as well
552  asdetailed wildtype metabolic flux data, it offers the most reliable basis for experimental transfer.
553 In summary, we could demonstrate that simultaneous application of multiple, complex
554 engineering objectives to genome-scale metabolic models for strain design purposes is indeed feasible
555  using GAs. Moreover, GAs offer the potential to integrate even more complex objectives and methods
556  and their performance may be tuned according to highlighted characteristics and parameter
957  sensitivities.
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559
Symbol Explanation
B A bit in the binary representation of an individual
F Intervention size-scaled fitness
F Objective fitness
Fr Fitness of the best discarded individual
u Specific growth rate
Ng Number of bits per individual
Np Number of interventions per individual
Ng Number of subsequent generations
N¢rg Number of subsequent gene flow events
Np Population size
Npq Number of possible pairs of individuals
Ng Number of selected individuals
Ny Number of target reactions
R Mutation rate
Up Production rate
Vs Substrate uptake rate
X Selection rate
y Fitness-intervention size relation factor
560

561 Supplementary Materials: The following are available online at www.mdpi.com/link. The Genetic Algorithm
562 for Metabolic Engineering (GAMO) framework developed and used in this work is freely available on GitHub
563 (https://github.com/Spherotob/GAMO_public, DOI:10.5281/zenod0.1208048).

564 Supplementary File 1: Section I.1: Determination of reference flux distributions. Section I.2: A simplified
565 calculation of the growth-coupling strength. Section 1.3: A databank model including novel network edges.
566 Figure S1: Maximal fitness and Hamming distance progressions applying an adaptive mutation probability
567 approach for a basic genetic algorithm. Figure S2: Total number of fitness function evaluations after 900

568 generations using a basic genetic algorithm and applying different selection rates and population sizes.
569 Figure S3: Maximal fitness progressions applying different numbers of Gene-Flow-Events at constant numbers
570 of total generations. Figure S4: Maximal fitness and Hamming distance progressions using a basic genetic
571 algorithm and the E. coli core model to identify reaction deletions for succinate, ethanol, lactate, and glutamate
572 overproduction. Figure S5: Maximal fitness and Hamming distance progressions using a basic genetic algorithm
573 and the E.coli core model to identify gene deletions for succinate, ethanol, lactate, and glutamate
574 overproduction. Figure S6: Maximal fitness and Hamming distance progressions of genetic algorithm runs using
575 a minimization of intervention set size approach. Figure S7: Hamming distance progressions for genetic
576 algorithm runs using multiple objective functions simultaneously. Figure S8: Maximal fitness and Hamming
577 distance progressions for genetic algorithm runs using the E. coli genome-scale model {JO1366. Table SI:
578 Minimally and maximally expected as well as standard intracellular concentrations of gaseous metabolites.

579 Supplementary File 2: Non-native network edges for the E. coli iAF1260 core model identified following the
580 descriptions in the Supplementary text.

581 Supplementary File 3: Non-native network edges for the E. coli ifO1366 genome-scale model identified following
582 the descriptions in the Supplementary text.

583 Supplementary File 4: Genetic algorithm parameter sets used in each conducted simulation in this work.
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584 Supplementary File 5: Collection of all relevant, identified strain designs.
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