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Abstract: In this paper, a kind of single-walled carbon nanotube nonlinear model 

is developed, and the strongly nonlinear dynamic characteristics of such carbon 

nanotubes subjected to random magnetic field are studied.  The nonlocal effect of 

microstructure is considered based on the theory of nonlocal elasticity.  The 

natural frequency of the strongly nonlinear dynamic system is obtained by the 

energy function method, the drift coefficient and the diffusion coefficient are 

verified. The stationary probability density function of the system dynamic 

response is given and the fractal boundary of the safe basin is provided.  

Theoretical analysis and numerical simulation show that stochastic resonance 

occurs when varying the random magnetic field intensity.  The boundary of safe 

basin has fractal characteristics and the area of safe basin decreases when the 

intensity of the magnetic field permeability increases. 
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1. Introduction 

With the advancement of the nano-technology, carbon nanotubes (CNTs) have been 

now among the most promising components in nano-electromechanical systems (NEMS).  In 

recent years, CNTs have attracted worldwide attention because of their potential applications 

in many areas of science and engineering such as electronics, chemistry, nano-engineering, 

materials science, thermal and other physical attributions [1-3].  They have been widely used 

in NEMS, for example in nano-biological devices.  In order to obtain a good understanding of 

CNTs and to design new nano-devices, it is very important to build more accurate theoretical 

models and to analyze their properties. 

For these nanostructures at such minute scales, the classical (local) continuum 

mechanics models are deemed to fail because the classical models not only disregard surface 

and size effects, but also assume the stress state at a given point to depend uniquely on the 

strain state at that identical point.  Since the early 1970s, Eringen [4-5] proposed the nonlocal 

elasticity theory on the assumption that the stress at a point in a domain depends not only on 

the classical local stress at that particular point, but also on the spatial integrals that represent 

the weighted averages of the local stress contribution of all other points in the domain.  

Subsequently, much progress on nonlinear problems of nanostructures with the nonlocal 

elasticity theory has been reported [6-25].  The deformation and vibration of nanobeam have 

been studied by Lim [6-7] and Reddy [8], the assessment of nanotube structures has been 

investigated by Kiani K [9].  The studies on buckling of nanotubes have been reported in 

various references [10-13].  In addition, plenty of research results on nanotubes vibration have 

been reported recently [14-25]. 

For the small size of NEMS, not only the nonlocal effect must be considered but also 

the strongly nonlinearity and random factors cannot be ignored.  Recently, several researches 

have been reported on random response of carbon nanotubes [26-31].  The current paper aims 

to provide a kind of method to study the strongly nonlinear dynamical characteristics of CNTs 

subjected to random magnetic field.  Considering the nonlocal effect, the nonlinear dynamic 

model of single-walled carbon nanotubes subjected to random magnetic field is established.  

The natural frequency of the strongly nonlinear dynamic system is obtained by the improved 

energy function method and stochastic dynamical characteristics of the system are analyzed. 
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2. Strongly Nonlinear Model of Single-walled Carbon Nanotubes 

 

Fig. 1. Mechanical model of single-walled carbon nanotubes. 

As shown in Fig. 1, the mechanical model of a single-walled carbon nanotube is 

modeled as a simply supported pipe at both ends.  The length of tube is L , the spring is wk , 

the damper is c , and the longitudinal magnetic field is xH . 

According to Chang [32], the dynamic model of a single-walled carbon nanotube 

subjected to a longitudinal magnetic field can be modelled as follows: 
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where E  is the Young’s modulus, I  is the second moment of area, A  is the cross sectional 

area, 0e  is a constant appropriate to each material, a  is an internal characteristic length, m  is 

the mass, 1c  is the linear damper coefficient, 3c  is the cubic nonlinear damper coefficient, 

 
2

2
, x

w
f x t AH

x






,   is the magnetic field permeability, and  ,w x t  is the displacement 

function of the system. 

There always exist random disturbances in the system.  The longitudinal magnetic field 

xH  in this paper is considered as, more realistically, a stochastic magnetic field, and 

 xH H B t  , H  is the deterministic magnetic field intensity,  B t  is Gauss white noise 
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whose mean is zero and intensity is D2 ( 0D ).  Let    , sin
x

w x t u t
L


 , we can obtain the 

dynamic equation from Eq. (1) by Galerkin’s method as follows 
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where  
2 2 2

01 e a l   . 

Let q u  and p u , Eq. (2) can be expressed as follows 
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3. Nonlinear Dynamic Characteristics of Single-walled Carbon Nanotubes 

To a weakly nonlinear stochastic differential equation, there are many methods to obtain 

its approximate solution.  However, the cubic nonlinear stiffness of this system here induces 

strongly nonlinear stiffness comparing with linear stiffness.  The strong nonlinearity is also 

caused by large deformation.  In this paper, a new method is developed to solve the dynamic 

response of this strongly nonlinear system. 

Similar to any stochastic average method, the common nonlinear stochastic dynamic 

methods are based on the relationship between the system dynamic response and the system 

Hamiltonian function.  To a weakly nonlinear stochastic system 03

21  qcqcq , its 

Hamiltonian function can be shown as 2

1

2

2

1

2

1
qcpH  , where 1c  is the linear stiffness.  It 

implies that the system Hamiltonian function is only determined by the linear stiffness 

because the nonlinear stiffness is insignificant.  However, to a strongly nonlinear stochastic 

system as that in Eq. (3), its Hamiltonian function can be shown as 

 
4

2

2

1

2

4

1

2

1

2

1
qcqcpH   (4) 

From Eq. (4), it is observed that the nonlinear stiffness coefficient 2c   also affects the 

system Hamiltonian function and hence it is practically difficulty to apply the stochastic 

average method.  Here, the effect of the nonlinear stiffness to the system Hamiltonian function 

is considered as a modification to the system natural frequency.  Then, the system 

Hamiltonian function can be shown as 
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where   2

1 2,k k c c    ,   is the system natural frequency.  Obviously, 
1c  and   is 

affected by both the linear stiffness and nonlinear stiffness.  If the expression of   is 

determined, then the stochastic average method can be applied to solve the system dynamic 

response. 

In this paper, the energy function method is introduced to determine the expression of 

 .  Let   2 4

1 2

1 1

2 4
q c q c q    , we obtain that  21

2
H p q  .  According to the energy 

function method 

      , cosq q H A H b H     (6) 
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The boundary conditions of the energy function can be shown as 

For 0 ,    q A H b H   and 0p  (8) 

For   ,    q A H b H    and 0p  (9) 

Thus, 
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Thus, the system natural frequency is 
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where A  is determined by Eq. (11). 

At this stage it is possible to apply the stochastic average method to solve the system 

dynamic response.  According to the theory of quasi-nonintegrable Hamiltonian system, the 
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Hamiltonian function converges weakly in a probability sense to a one-dimensional Ito 

diffusion process.  The averaged Ito equation about the Hamiltonian function can be shown as 

      dH m H H dB t   (15) 

where  B t  is the standard Wiener process, and  m H  and  H  are the drift and diffusion 

coefficients of Ito stochastic process, which can be obtained through the stochastic averaging 

method.  Then 
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The averaged FPK equation (what is FPK, give a reference) of Eq. (15) is 
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where f  is the stationary probability density (SPD) function of the system response, and 
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where A
~

 is a normalization constant. 

SPD numerical simulation of the system response is shown in Fig. 2, where 11 c , 

3.02 c , 5.0 , 0.13 c  and 6.0e . 
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Fig. 2. Stationary probability density of the system response. (a) 1.0D ; (b) 4.0D ; (c) 

6.0D ; (d) 8.0D . 

From Fig. 2, it is observed that 

1) For small D , the steady-state probability density of 0H   is the maximum which 

implies that the system may be stable at the original point and the system motion is a 

slight vibration near the balance point (0, 0) in a probability sense.  With increasing D , 

a crest occurs in the SPD map, and the system motion is periodic in a probability sense 

which may cause system vibration and reduce the system characteristics. 

2) With further increasing of D , two loops occur in the SPD map.  It impliles that the 

system motion has two possible occurrences, and each of them is periodic.  The system 

response can jump from one periodic motion to another under an external excitation, 

which in turn causes the mutation of vibration amplitude. 
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3) For D  at a high level, a crest and a loop occur in the SPD map.  It implies that the 

system motion has two possible occurrences, one is a small vibration near the balance 

point (0, 0), and the other is a periodic motion.  The system response can jump from the 

small vibration to the periodic motion under an external excitation.  The vibration 

amplitude of the periodic motion is large than that of the small vibration. 

4) In summary, the stochastic magnetic field intensity D  affects significantly the system 

response.  An increase in D  may lead to an increasingly unstable system, and instability 

may by reduced with further increasing of D .  It implies there exists a value D  has the 

maximum influence on the system stability, and it is called the stochastic resonance. 

 

4. Safe Basin and Reliability 

There are heteroclinic orbits in the system, which can be expressed as follows 

   11

2

2
tanh

2

cc
q t t

c

 
    
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 

 (20) 

   121

2

22
- sech

2 2

cc
p t t

c

 
   

 
 

 (21) 

The heteroclinic orbits of the system are illustrated in Fig. 3. 

 

Fig. 3. System heteroclinic orbits. 

To the stochastic system in Eq. (3), its boundary of safe basin can be determined by the 

stochastic Melnikov integration as follows 

      1 1 12M t p p eq t t dt I z t 



          (22) 
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where p  and q  are the heteroclinic orbits, which are shown in Eqs. (20) and (21).  The term 

I  in Eq. (22) represents the mean of the Melnikov process due to a damping force, 





 dtpI 22 ; and  1z t  denotes the random portion of the Melnikov process due to the 

stochastic noise  t ,    1 1z t epq t t dt



  .  The stochastic Melnikov integration 

 1 0M t   means that the motion system become chaotic, hence we can determine the chaotic 

boundary of the system according to  1 0M t  .  The variation in the safe basin of the system 

Eq. (3), which is subjected to a stochastic excitation, is illustrated in Figs. 4-7. 

 

Fig. 4. Safe basin of the system when e =0.2. 
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Fig. 5. Safe basin of the system when e =0.4. 

 

Fig. 6. Safe basin of the system when e =0.6.  
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Fig. 7. Safe basin of the system when e =0.8. 

 

From Figs. 4-7, it is clear that the area of safe basin decreases significantly with 

increasing parameter e .  The parameter e  is directly related to the magnetic field 

permeability  .  Therefore it can be concluded that the magnetic field permeability plays an 

important role in the system safe basin. 

The safe basin area describes the system reliability qualitatively.  To discuss the system 

reliability quantitatively, the concept of first-passage is introduced to describe the system 

reliability. The background Kolmogorov equations (BK equations) of the reliability function 

and the probability density of the first-passage time can be shown as 

    
2

2

2

1

2

R R R
m H H

t H H


  
 

  
 (23) 

  
 0

0

R t H
P T H t T

t


  


 (24) 

where R  is the reliability function of the system, T  is first-passage time, P  is the probability 

density of the first-passage time.  The initial condition is 

  0 ,0 1R H  , 0H , when 0t  (25) 

The boundary conditions are 

  0 , 0R H t  , when 0H  (26) 
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  
R R

m H
t H

 


 
, when 00 H  (27) 

Numerical simulations of the system reliability function and the probability density of 

the first-passage time are shown in Figs. 8 and 9. 

 

Fig. 8. System reliability. 
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Fig. 9. Probability density of the first-passage time. 

 

From Figs. 8 and 9, it is observed that 

1) The system reliability function  ,R H t  decreases with increasing time, which indicates 

that the probability of the system to stay in the safe basin becomes increasingly smaller, 

and the probability of damage to the system increases.  If the parameter e  is large 

enough, the system reliability will decrease quickly; if the parameter e  is small, the 

system reliability decreases slowly.  Thus, the parameter e  significantly affects the 

system reliability. 

2) The probability density of first-passage time increases with time.  First-passage means 

that the leaving of the system from the safe area, and it causes system instability.  There 

exists a peak in the probability density of the first-passage time that corresponds to the 

time when the system leaves the safe basin. 

 

5. Conclusions 

A strongly nonlinear model for a single-walled carbon nanotube is developed.  The 

strongly nonlinear dynamic characteristics of the single-walled carbon nanotube subjected to 

random magnetic field is investigated in this study. The natural frequency of the strongly 
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nonlinear dynamic system is obtained by the energy function method and the drift and 

diffusion coefficients are verified.   The stationary probability density function of the system 

dynamic response is illustrated and the fractal boundary of the safe basin is provided.  

Theoretical analysis and numerical simulations show that stochastic resonance occurs when 

varying the random magnetic field intensity.  It is concluded that the boundary of safe basin 

has fractal characteristics and the area of safe basin decreases when the intensity of the 

magnetic field permeability increases. A conclusion can be deduced that the magnetic field 

plays an significant role in the system vibration response: the deterministic part of magnetic 

field affects the system safe basin while the stochastic part induces stochastic resonance. 
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