

1 Type of the Paper (Article, Review, Communication, etc.)

2 Maximum Power Point Tracking for Brushless DC Motor 3 Driven Photovoltaic Pumping System Using Hybrid 4 ANFIS-FLOWER Pollination Optimization Algorithm

5 Neeraj Priyadarshi^{1,*}, Sanjeevikumar Padmanaban², Lucian Mihet-Popa³, Frede Blaabjerg⁴, and
6 Farooque Azam¹

7 ¹ Department of Electrical and Electronics Engineering, Millia Institute of Technology, Purnea, India;
8 neerajrjd@gmail.com, farooque53786@gmail.com

9 ² Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark; san@et.aau.dk

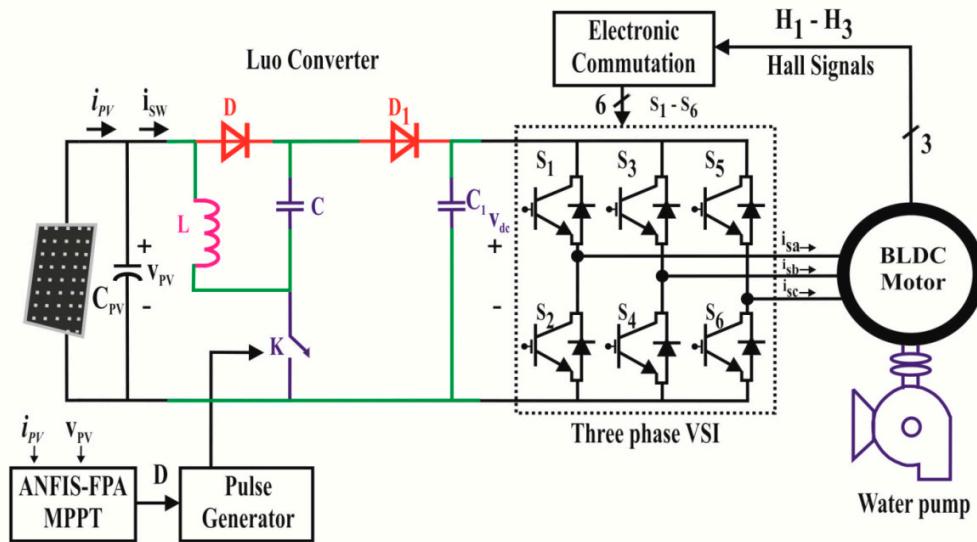
10 ³ Faculty of Engineering, Østfold University College, Kobberslagerstredet 5, 1671 Kråkerøy-Fredrikstad, Norway;
11 lucian.mihet@hiof.no

12 ⁴ Center for Reliable Power Electronics (CORPE), Department of Energy Technology, Aalborg University,
13 Aalborg, Denmark; fbl@et.aau.dk

14 * Correspondence: lucian.mihet@hiof.no; Tel.: +47-922-713-53

15

16 **Abstract:** In this research paper, a hybrid Artificial Neural Network (ANN)-Fuzzy Logic Control (FLC)
17 tuned Flower Pollination Algorithm (FPA) as a Maximum Power Point Tracker (MPPT) is employed to
18 emend root mean square error (RMSE) of photovoltaic (PV) modeling. Moreover, Gaussian membership
19 functions have been considered for fuzzy controller design. This paper interprets Luo converter occupied
20 brushless DC motor (BLDC) directed PV water pump application. Experimental responses certify the
21 effectiveness of the suggested motor-pump system supporting diverse operating states. Luo converter is
22 newly developed dc-dc converter has high power density, better voltage gain transfer and superior
23 output waveform and able to track optimal power from PV modules. For BLDC speed controlling there is
24 no extra circuitry and phase current sensors are enforced for this scheme. The recentness of this attempt is
25 adaptive neuro-fuzzy inference system (ANFIS)-FPA operated BLDC directed PV pump with advanced
26 Luo converter has not been formerly conferred.


27 **Keywords:** ANFIS, artificial neural network, brushless DC motor, FPA, maximum power point tracking,
28 photovoltaic system, root mean square error.

29

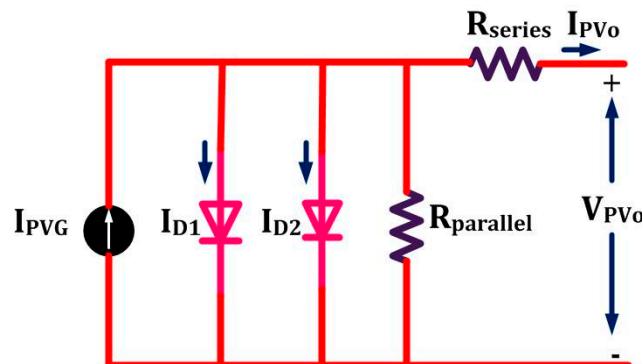
30 1. Introduction

31 As the conventional energy sources are depleting day by day, the demand of renewable energy
32 sources are raising with considered attention [1-3]. Solar energy sources are promising renewable energy
33 sources for developed and developing nations due to free, abundant and environmental friendliness
34 nature. The standalone photovoltaic (PV) systems for water pumping applications are employed for
35 remote areas [4-5]. Because of grid absence in remote places the standalone PV water pumping is installed
36 for agricultural and household applications. Various electric motors have been used to drive the
37 pumping system [6-7]. The DC motor based pumping system requires maintenance because of
38 commutator and brush presence. Therefore, DC motors are not frequently used for PV pumping
39 applications. The single phase induction motors have also been used for driving low inertia torque load.

40

41 Figure 1 BLDC driven Photovoltaic Complete System Formation

42 Due to complex control strategy, the induction motors are not efficient for pumping applications.
 43 Therefore, in this research work Brushless DC (BLDC) motor has been considered as it has simple design
 44 control, low power range and require maintenance free operation compared to AC motors [8].


45 Distinct DC-DC converters were contend for optimizing PV module generated power with soft
 46 starting and controlling motor pump system [9-11]. The contemporary PV system has unsubstantial
 47 converse competency. Therefore, Maximum Power Point Trackers (MPPT) is the indispensable
 48 constituents required for optimal power tracking from PV modules. In contrast with different employed
 49 power converters, modern Luo converter has been considered for this research approach as it delivers
 50 better power/ density ratio with economical implementation [20]. Numerous MPPT methods have been
 51 occupied viz. Perturb and Observe (P&O), Increment Conductance (INC), Fraction Short/Open circuit etc.
 52 [12-14]. Under steady state operating conditions particular algorithms provide high outturn. But these
 53 algorithms are found lacking under adverse weather conditions with slow convergence velocity and
 54 unable to achieve global power point (GPP) for partial shading situations with high power oscillations
 55 around this point. Recently different intelligent techniques viz. Fuzzy Logic Control (FLC), Artificial
 56 Neural Network (ANN) has been employed for PV tracking [15]. However, because of complex fuzzy
 57 inference rules and individual sensor requirements, meta-heuristic algorithms have been employed
 58 nowadays. Genetic algorithm and artificial Immune system are meta-heuristic algorithms used for non-
 59 linear stochastic problem solution. However, the implementation of selection, mutation and crossover
 60 process is complex with reduced convergence computational period. Currently, Bio-inspired and swarm
 61 optimization have been derived as MPPT techniques. The particle swarm optimization is an evolutionary
 62 methodology based on nature of swarm is able to reduce oscillations around GMPP [16-18]. Nevertheless,
 63 variance of this algorithm is capitulated when randomness is miniaturized. Surrogating to swarm
 64 techniques, currently bio-inspired algorithms viz. Firefly Algorithms (FA), Artificial Bee Colony (ABC),
 65 Cuckoo Search etc. have been considered as bio-inspired MPPT and has advantage of high convergence
 66 speed, less transient with fast tracked performance. However, the implementation complexities with
 67 tuning of parameters are the major hindrance of this finding. Included work, a novel flower pollination
 68 algorithm is contemplated and associated with hybrid ANFIS MPPT algorithm. The hybrid ANFIS-
 69 Flower Pollination Algorithm (FPA) [19] has simple implementation, high convergence speed with tune
 70 parameters and easier code compilation are the major merits. The recentness of this research work is

71 BLDC drive PV pumping employed Luo converter [20] with hybrid ANFIS-FPA have not been conferred
72 and examined using dSPACE (DS1104) platform under changing weather conditions.

73 2. Complete System Formation

74 Fig 1 illustrates the Luo converter employed BLDC driven PV pumping for remote location. A hybrid
75 ANFIS-FPA MPPT controller is operated to produce required pulse for power switched of Luo converter.
76 This converter delivers better power/ density ratio with economical implementation with interface
77 between inverter power circuit and solar system. Moreover, electronic commutation methodology
78 controls voltage source inverter (VSI) employed BLDC motor in which winding current is adjusted with
79 the help of decoder in proper sequence.

80 2.1 PV Generator

81

82 Figure 2 Two diode PV cell model

83 In this research work a two diode PV cell model is considered (Figure 2) because of simple and
84 accurate model compared to single diode PV cell. By means of photoelectric effect, the conversion of solar
85 to electricity takes place and output power can be enhanced by connecting numerous solar cells in shunt
86 or series as per requirement. Both diodes employed to represent polarization occurrence with current
87 source exhibiting sun insolation followed by power loss delivered by resistances (series/shunt) used. The
88 prognosis of overall system is calculated on the basis of accurate equivalent modeling. The output of PV
89 current is expressed mathematically as:

$$90 I_{PV0} = I_{PVG} - I_{RSC}(I' + 2) - \left(\frac{V_{PV0} + I_{PV0} * R_{series}}{R_{parallel}} \right) \quad (1)$$

91 Where,

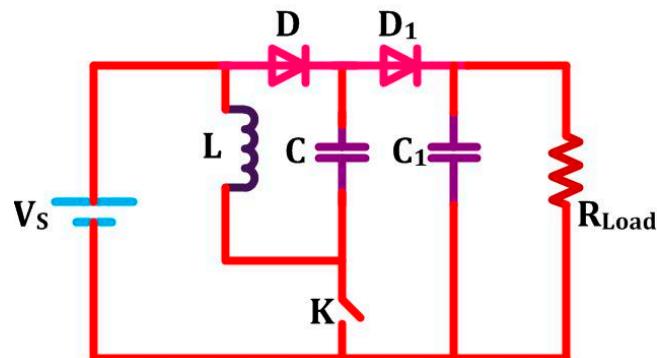
$$92 I' = \exp \left(\frac{V_{PV0} + I_{PV0} * R_{series}}{V_{Thermal}} \right) + \exp \left(\frac{V_{PV0} + I_{PV0} * R_{series}}{A * V_{Thermal}} \right) \quad (2)$$

93 I_{PVG} = Photo Current

94 I_{RSC} = Diode reverse saturation current

95 I_{PV0} = Output PV current

96 V_{PV0} = PV output voltage


97 R_{series} = Resistance in series

98 $V_{\text{Thermal}} = \text{PV module thermal voltage}$

99 $A = \text{Ideality constant of diode}$

100 **2.2 Luo Converter**

101 Renewable technology comprises dc-dc topologies for yield of energy harvest with admissible
 102 proficiency. With respect to other dc-dc converters, modern Luo topology depicted in Fig 3 delivers
 103 reasonable cost, better power/ density ratio and enhanced transformation efficiency. It comprises least
 104 ripple content with geometric output voltage and surpasses the parasitic element action. The auxiliary
 105 benefit of this topology is switched components are taken ground as a reference. In addition to that the
 106 input inductor smoothes the ripple present to input source. Employed capacitors get charged to stated
 107 value to accomplish high voltage leveled.

108

109 Figure 3 Power Circuit Luo converter

110 Transfer gain voltage is evaluated as:

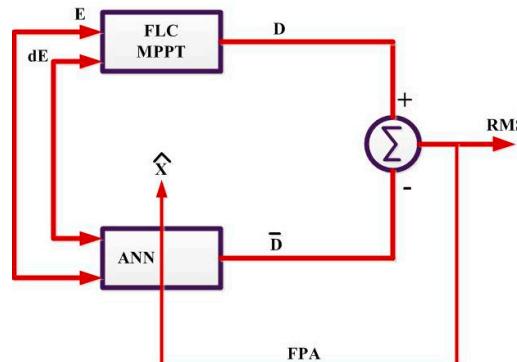
$$111 \frac{V_0}{V_s} = \frac{2 - d_{\text{duty}}}{1 - d_{\text{duty}}} \quad (3)$$

112 Relation between inductor ripple current and duty cycle is expressed as:

$$113 \Delta I_{L_{\text{Ripple}}} = \frac{V_s * d_{\text{duty}}}{f_{\text{Pulse}}} * L \quad (4)$$

114 Capacitors ($C=C_1$) values are determined mathematically as:

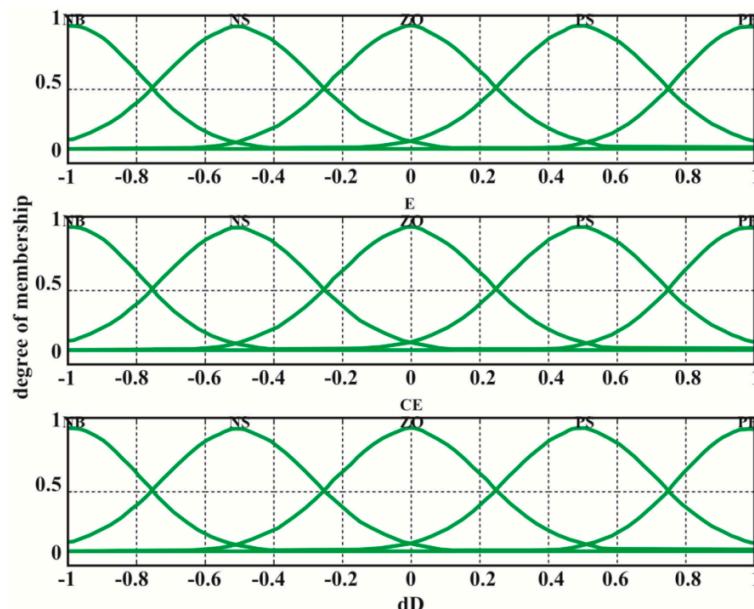
$$115 C = C_1 = \frac{(1 - d_{\text{duty}}) * V_0}{f_{\text{Pulse}} * R_{\text{Load}} * \Delta V_0} \quad (5)$$


116 Where, d_{duty} = Duty ratio

117 f_{Pulse} = Frequency of Switched pulse

118 **2.3 A Hybrid Proposed FLC-ANN tuned FPA MPPT**

119 In this proposed scheme, hybrid ANFIS-FPA MPPT algorithm is realized for maximizing PV outturn
 120 and accurate motion control with PV-pump interface. The FLC data is trained by ANN which finally
 121 optimized by FPA method lead to minimum RMSE of FLC and ANN. It comprises the dominance of FLC
 122 and ANN both. The threshold and weight of NN models are optimized by FPA algorithm to produce


123 minimum RMSE. Figure 4 depicts the complete structure of hybrid learning in which learning data has
 124 been achieved from FLC architecture.

125

126 Figure 4 complete structure of hybrid ANFIS-FPA

127 The FLC architecture comprises fuzzification, Inference Rule base and defuzzification as elemental
 128 constituents. Real variables are converted to linguistic parameters using fuzzification. The requisite
 129 output introduced by Mamdani fuzzy inference rule deployed by max-min composition. With the help of
 130 centroid method, the defuzzification process converts the linguistic parameters to real values. Employed
 131 membership values are illustrated by Fig 5.

132

133 Figure 5 Employed membership values

134 The ANN objective function is expressed mathematically as:

135
$$\text{RMSE} = \left[\frac{1}{P} \sum_{i=1}^P (Y_F - Y_N)^2 \right]^{1/2} \quad (6)$$

136 Where,

137 P = Total Sample

138 Y_F = Fuzzy output

139 Y_N = Neural Network output

140 FPA method of MPPT is predicted by reproduction of flower of transferring pollen. This convection is
 141 possible through biotic/cross and abiotic/self pollination. In cross pollination the pollens are translated
 142 between two unlike flowers. On the other hand abiotic pollination takes place between distant species. It
 143 is noted that in flower pollination 90% possibility of cross pollination and only 10% possibility of self
 144 pollination happen which is limited in the probability range $R \in [1, 0]$. The complete process is based on
 145 following rules:

146 **Rule I:** The biotic pollination use levy flight for transferring pollens and called global pollination in which
 147 i^{th} pollen solution vector is expressed mathematically as:

$$148 \quad X_i^{T+1} = X_i^T + L_f * (X_i^T - G_{best}) \quad (7)$$

149 Where,

150 X_i^T = Vector representing solution

151 T = No. of iteration

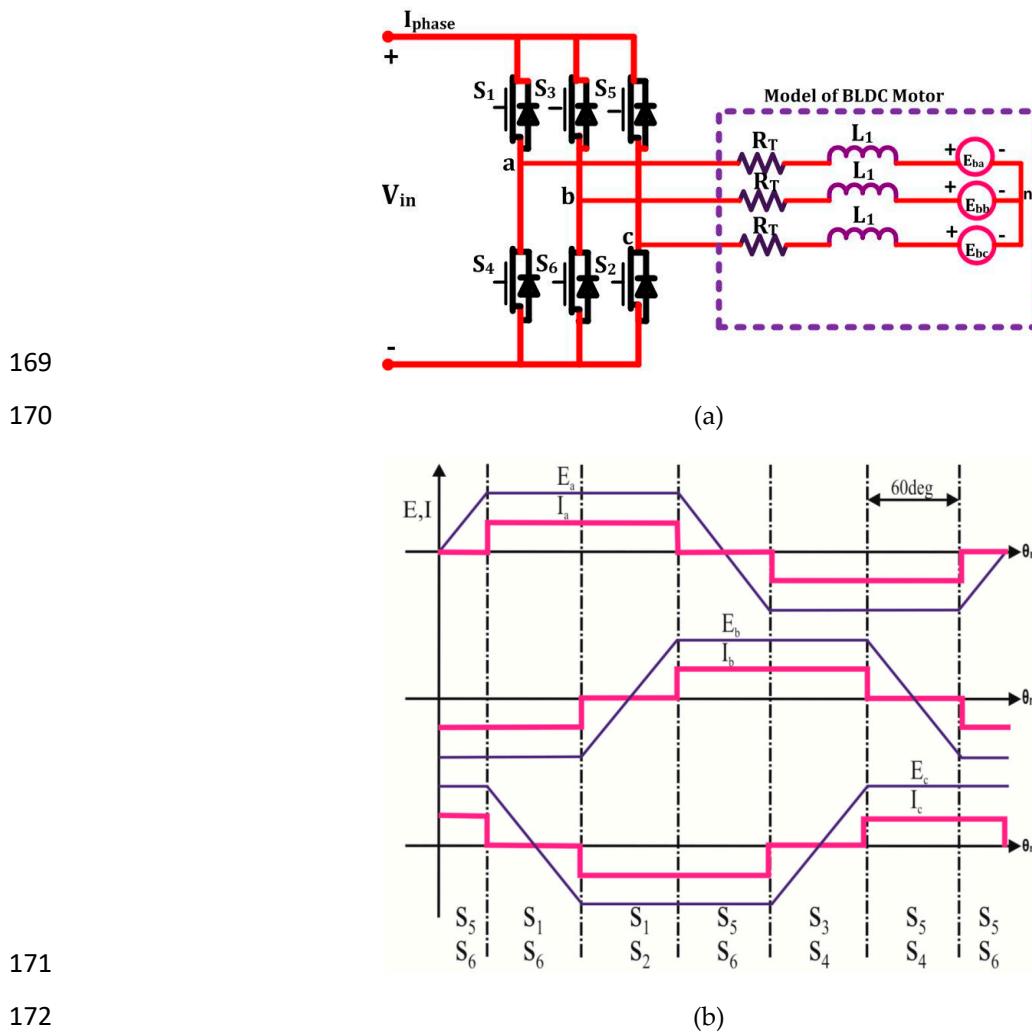
152 L_f = Levy flight factor

153 G_{best} = Global best solution

154 **Rule II:** Self pollination is termed as local pollination and characterized mathematically as:

$$155 \quad X_i^{T+1} = X_i^T + P_f * (X_m^T - X_n^T) \quad (8)$$

156 X_m^T and X_n^T = two unlike pollen in the species


157 P_f = Switched probability

158 **Rule III:** The performance of flower is assumed identical to the probability of reproduction that
 159 equivalent with resemblance of two concerned flowers.

160 **Rule IV:** The pollination is interchanged within global to local depends on switching probability lies at
 161 interval between 0 and 1.

162 2.4 Electronic BLDC Commutator and VSI switching

163 Commutation in Permanent Magnet DC Motor (PMDC) is obtained by commutator and brushes.
 164 Nevertheless, hall sensors are important component employed in BLDC motor which senses the position
 165 of rotor as a commutation wave. Coils and permanent magnet are employed as a stator and rotor
 166 respectively in which stator's magnetic field rotates rotor. Armature of BLDC motor consists of permanent
 167 magnet as a substitute of coil which does not require brushes. Figure 6 demonstrates BLDC driven
 168 structure with induced EMF and reference current.

169

170

(a)

171

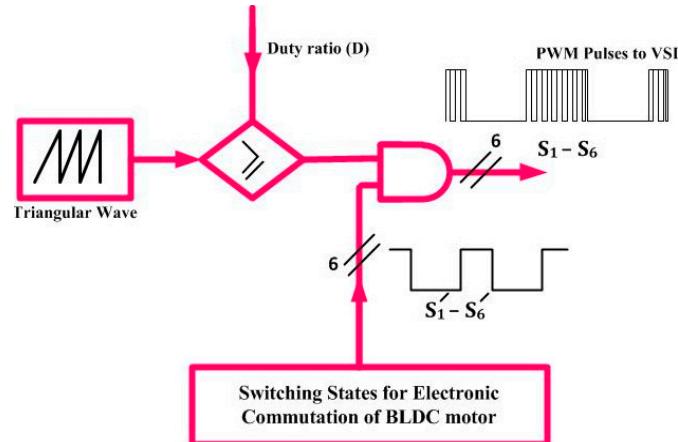
172

(b)

173 Figure 6 BLDC driven structure with induced EMF and reference current

174 The BLDC motor is analysed mathematically as:

$$175 \begin{bmatrix} V_{ap} \\ V_{bp} \\ V_{cp} \end{bmatrix} = \begin{bmatrix} R_T & 0 & 0 \\ 0 & R_T & 0 \\ 0 & 0 & R_T \end{bmatrix} \begin{bmatrix} I_{ap} \\ I_{bp} \\ I_{cp} \end{bmatrix} + \begin{bmatrix} L_1 - M_1 & 0 & 0 \\ 0 & L_1 - M_1 & 0 \\ 0 & 0 & L_1 - M_1 \end{bmatrix} \frac{d}{dx} \begin{bmatrix} I_{ap} \\ I_{bp} \\ I_{cp} \end{bmatrix} + \begin{bmatrix} E_{ba} \\ E_{bb} \\ E_{bc} \end{bmatrix} \quad (9)$$


176 Developed electromagnetic torque by BLDC motor can be expressed mathematically as:

$$177 T_{EM} = \frac{E_{ba} * I_{ap} + E_{bb} * I_{bp} + E_{bc} * I_{cp}}{\omega_{rotor}} \quad (10)$$

178 Where,

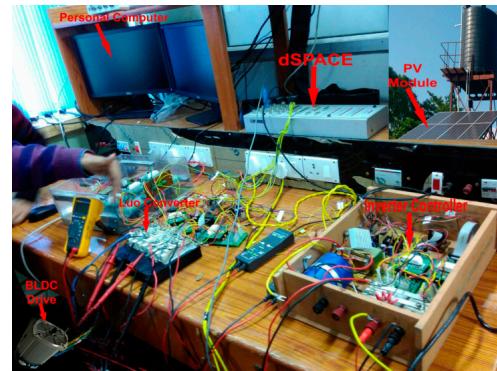
179 V_{ap}, V_{bp}, V_{cp}= Phase voltage of a 3-Phase BLDC motor180 I_{ap}, I_{bp}, I_{cp}= Phase Currents181 E_{ba}, E_{bb}, E_{bc}= Phase Back EMF of BLDC motor

182 L_1 = Each Phase self-inductance
 183 M_1 = Two phase's mutual inductance
 184 T_{EM} = Developed Electromagnetic torque of BLDC motor
 185 ω_{Rotor} = Rotor Speed

186
 187 Figure 7 gating signal for 3-phase VSI

188 Electronic commutation process is used to control the VSI employed BLDC motor in which winding
 189 current is adjusted with the help of decoder in proper sequence. In this method, symmetrical DC currents
 190 are situated to the phase voltage at 120° . Based on the motor alignment, the hall sensors produces signals
 191 of 60° phase difference. The gating signal for 3-phase VSI is generated by transforming hall signals using
 192 decoder is illustrated by Fig 7. The pulse width modulated pulses are generated by comparing triangular
 193 signal with duty cycle produced through MPPT. Table 1 portrays Hall signals and Switching states of
 194 BLDC used with Electronic commutation.

195 Table 1 Hall signals and Switching states


Angle	Hall Signals			Switching States					
	H_1	H_2	H_3	s'_1	s'_2	s'_3	s'_4	s'_5	s'_6
$0 - \pi/3$	1	0	1	0	1	1	0	0	0
$\pi/3 - 2\pi/3$	0	0	1	0	1	0	0	1	0
$2\pi/3 - \pi$	0	1	1	0	0	0	1	1	0
$\pi - 4\pi/3$	0	1	0	1	0	0	1	0	0
$4\pi/3 - 5\pi/3$	1	1	0	1	0	0	0	0	1
$5\pi/3 - 2\pi$	1	0	0	0	0	1	0	0	1

196
 197 The high frequencies PWM pulses and six fundamental signals are operated with AND gate, which
 198 produces 6 gating pulses for VSI inverter. As the atmospheric conditions changes, the duty cycle is also
 199 regulated using MPPT methods which controls the VSI and finally the BLDC motor is adjusted
 200 accordingly.

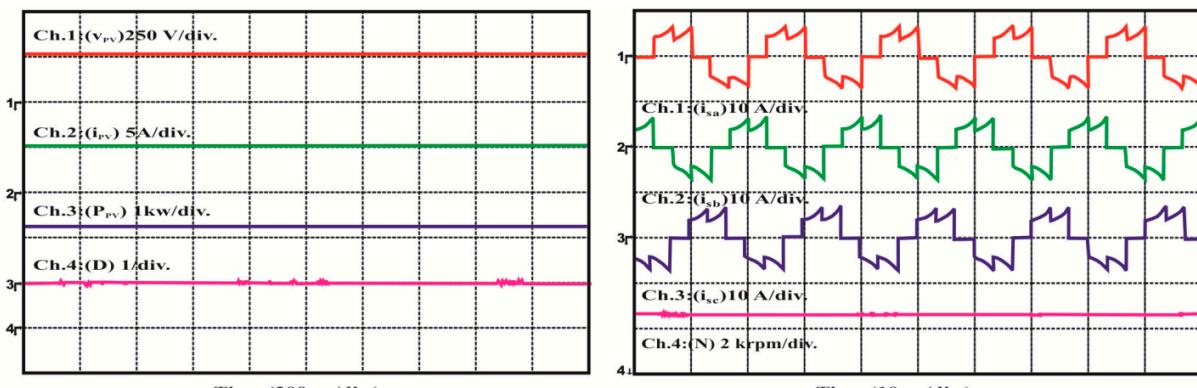
201 **3. Experimental Results**

202

203

204

Figure 8 BLDC driven Luo converter employed PV pumping hardware developed


205 Performance justification of BLDC driven PV pumping employed Luo converter has been done through
 206 dSPACE controller. For purpose of MPPT operation, LA-55/LV-25 as current/voltage sensors is employed
 207 during practical implementation. Fig 8 portrays the BLDC driven Luo converter employed PV pumping
 208 hardware developed in the laboratory. With the help of A/D converter, analog pulses are transformed to
 209 digital and fed to dSPACE interface. Electronic commutation/Controlling BLDC has been executed by
 210 obtained hall pulses from input/output terminal and then generated pulses are outturned to inverter.

211

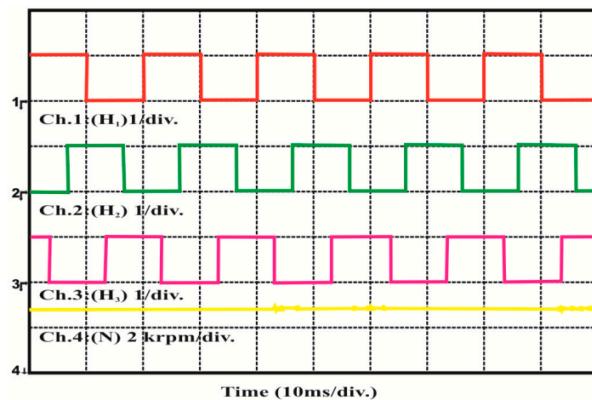
3.1 Steady State Performance

212 The experimental behaviors of PV module and motor pumping system have been tested under steady
 213 state condition of irradiance level 1000W/m^2 . The proposed MPPT design technique is working effectively
 214 and tracks optimal power from PV module with unity duty cycle at 1000W/m^2 solar insolation level
 215 depicted in Fig 9. The corresponding BLDC motor and torque (1500 rpm) has been demonstrated in Fig 9
 216 (d) presents the obtained hall sensor pulses with motor torque. The performance of BLDC motor-
 217 pumping system has been evaluated with 300W/m^2 solar irradiance. The motor torque is experimentally
 218 obtained which is sufficient to operate PV water pumping. Based on duty cycle generation using MPPT
 219 algorithm, the corresponding hall signals have been generated to trigger six switches of inverter.

220

221

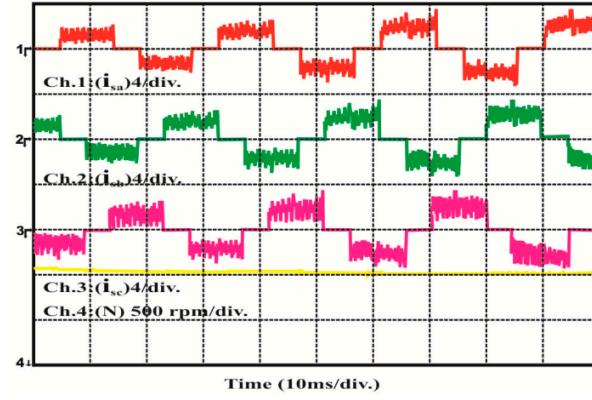
222


(a)

(b)

223

224

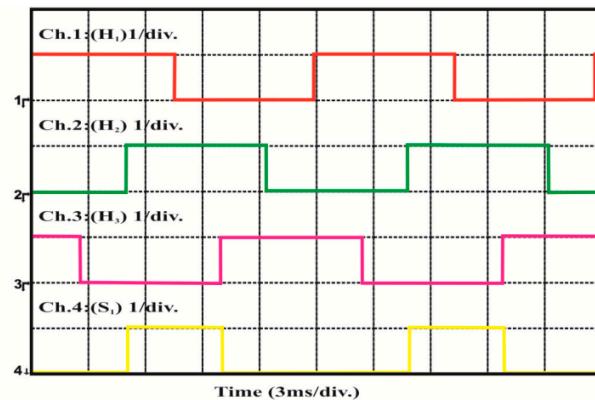

(c)

225

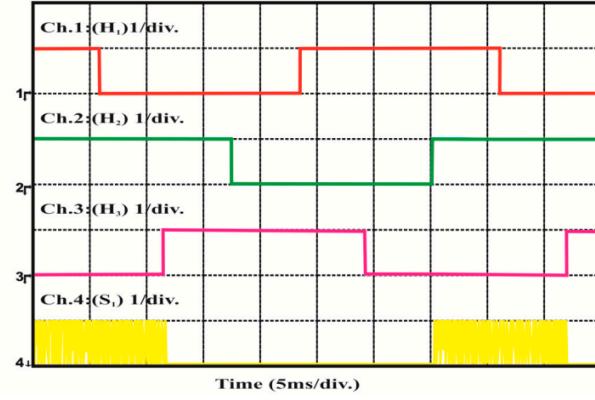
226

(e)

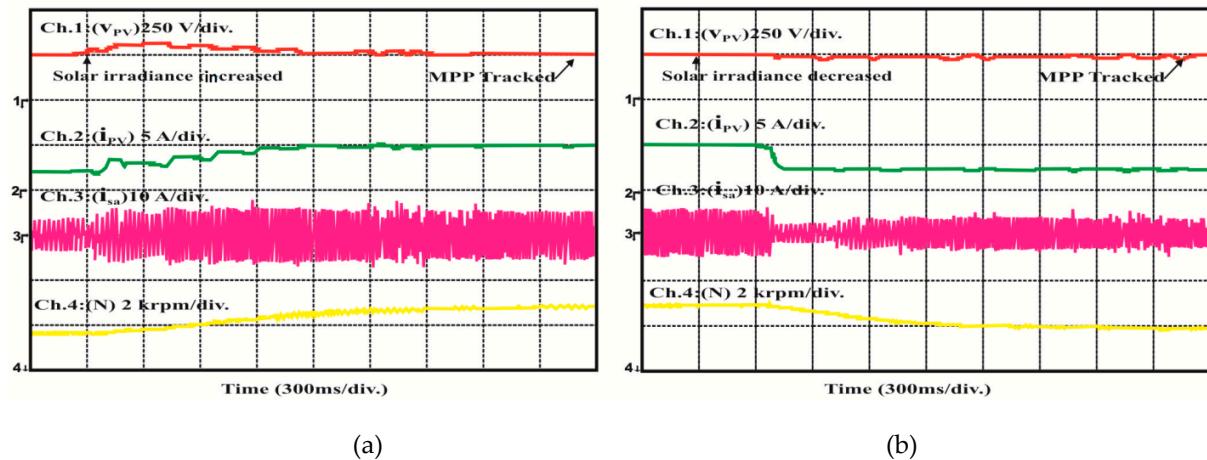
227


228

229


Figure 9 BLDC driven Luo converter employed PV pumping (a) PVG at 1000 W/m² (b) BLDC performance at 1000 W/m² (c) generated hall sensor pulses at 1000 W/m² (d) switched and hall pulses at 1000 W/m² (e) BLDC performance at 300 W/m² (f) switched and hall pulses at 300 W/m²

230 3.2 Dynamic Behavior of PV system


231 The effective practice of recommended PV pumping system was proved under varying sun insolation
 232 level. In this experiment, solar irradiance level is varied from 300W/m²to 1000W/m². According to
 233 variation in sun irradiance level , corresponding changes in PV current, DC link voltage , BLDC stator
 234 current and motor torque have been verified (Fig 10) and PV pumping is running without any
 235 interruption. The duty cycle for BLDC-PV pump control is generated with variation in sun insolation
 236 accordingly and outstanding motion control has been comprehended.

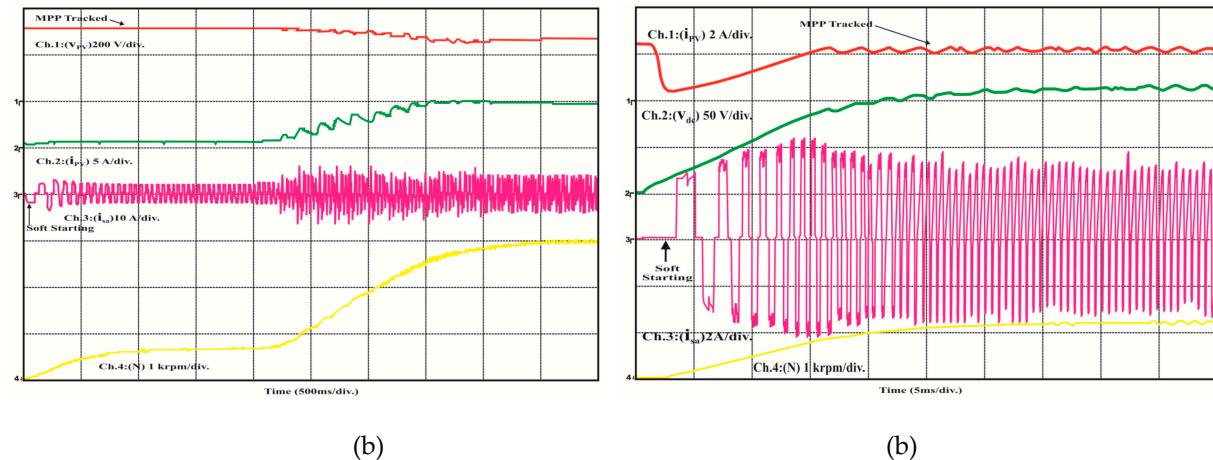
(d)

(f)

237

238

(a)


(b)

239 Figure 10 BLDC driven Luo converter (a) increased solar irradiance (b) decreased solar irradiance

240 **3.3 Behavior at Starting**

241 Practical results found in Fig 11 interpret the safe starting of BLDC motor under irradiance level
 242 1000W/m² and 300W/m². Initially the duty cycle is kept 0.5 to run the motor. The sufficient motor speed is
 243 obtained by controlling the starting current which runs the motor-pump system successfully. Fig
 244 11portrays the successful action of BLDC-PV pump at start by limiting starting current which reveals the
 245 progression with safe and soft started.

246

247

248

(b)

(b)

249 Figure 11 BLDC driven Luo converter employed PV pumping under soft starting (a) 1000 W/m² (b) 400
250 W/m²

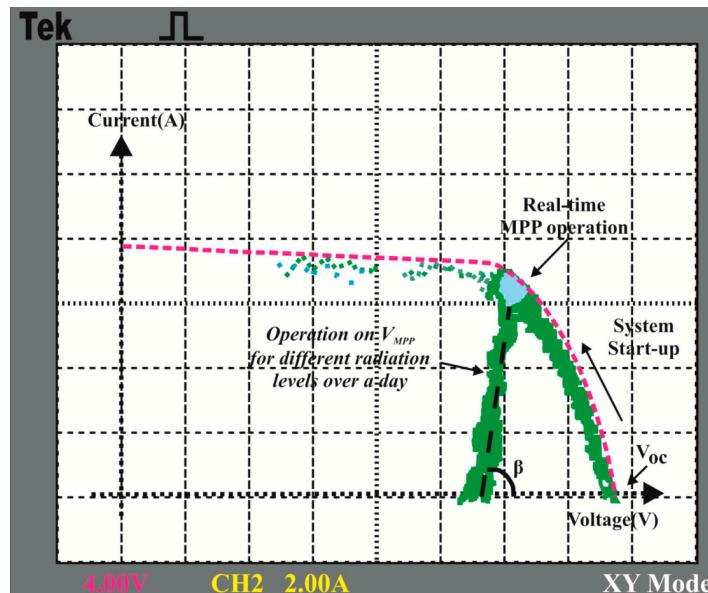
251

Table 2 Laboratory adopted BLDC specification

S.N	Parameters	Value
1.	Resistance of stator	4.16Ω
2.	Inductance value of stator	2.2 mH
3.	Speed rating	1500rpm
4.	Number of Pole pair	2

5. Constants(Voltage & torque)

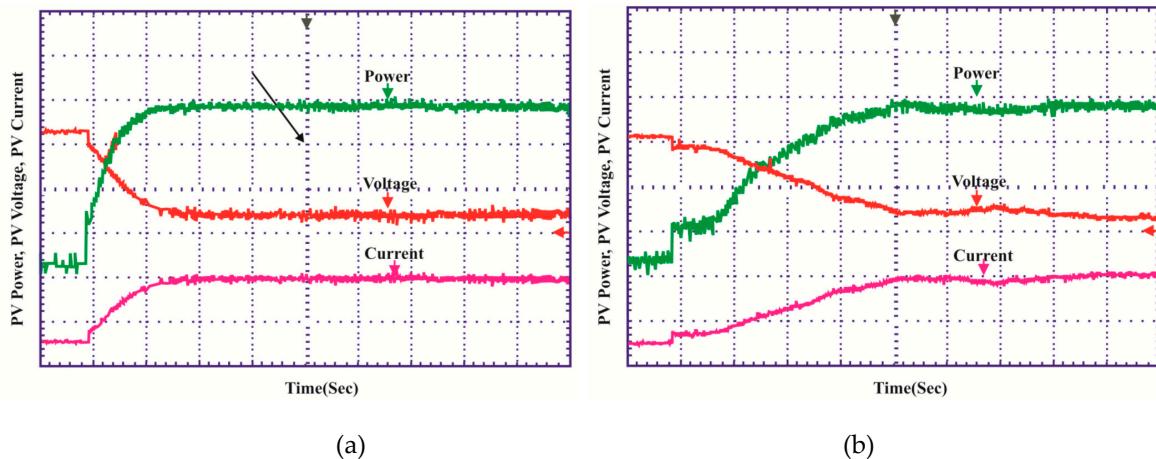
86V_{LL}/KRPM & 0.85 Nm/Ampere


252

253 Table 2 portrays laboratory adopted BLDC specification for motion control PV pump. Fig 12 interprets the
 254 existent global nature of PV system under divergent sun radiation which is demonstrated by dark line.
 255 The operation begins with $V_{OPEN\ Ckt}$ state and reaches to global power point with variable solar irradiance.
 256 With application of hybrid ANFIS-FPA MPPT, steady GMP is attained over a complete day.

257 The performance of MPPT controllers are tested with stepped irradiance input. Under these situations,
 258 ANFIS-FPA has high tracked PV power with proportionately lesser GMP time. Practical results
 259 demonstrate that ANFIS-FPA algorithm contributes rapid and insignificant swinging differentiated with
 260 FPA MPPT illustrated by Fig 13 (a) and (b).

261 Fig 14 demonstrates the behavior of numerous MPPT control under standard test conditions. A hybrid
 262 ANFIS-FPA algorithm has global power point trajectory with utmost PV tracked power and has zero
 263 oscillation throughout equated with different controllers. The PV tracked trajectories are also examined
 264 under fluctuating weather situations (Fig 15). Practical results reveal that ANFIS-FPA optimized MPPT
 265 provides optimal tuning with high performance index.

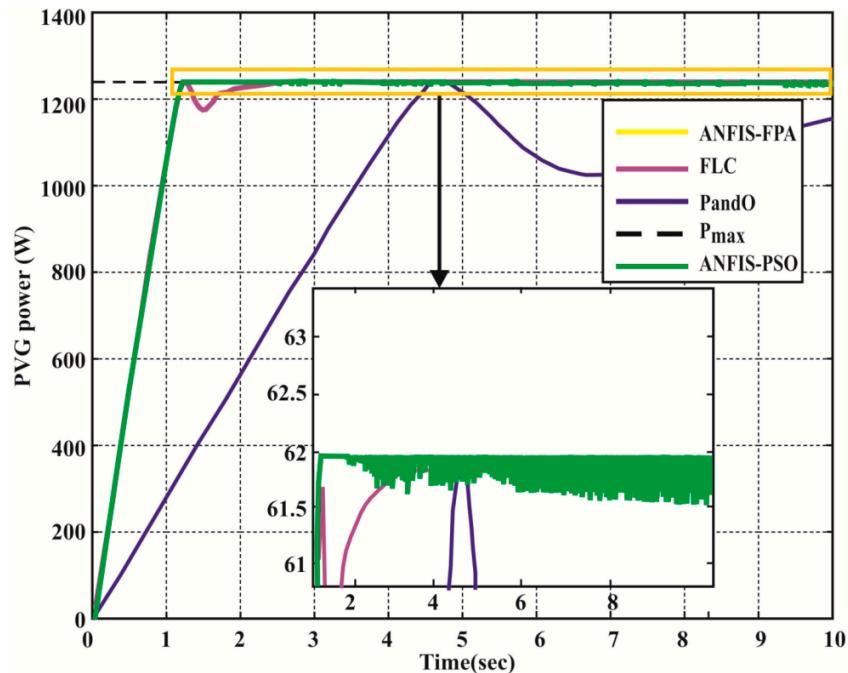

266

267

268

Figure 12 Existence global nature of PV system under divergent sun radiation

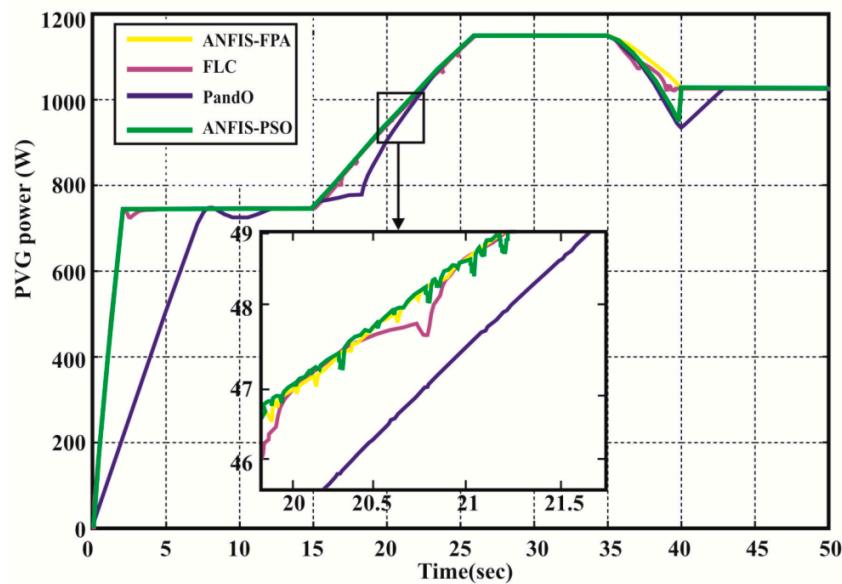
269


270

(a)

(b)

271


Figure 13 Behavior of MPPT under stepped irradiance (a) Hybrid ANFIS-FPA (b) FPA

272

273

Fig 14 Behavior of numerous MPPT control under standard test conditions

274

275 Figure 15 PV tracked trajectories examined under fluctuating weather situations

276 **4 Conclusion**

277 The Luo converter based BLDC driven PV pumping with ANFIS-FPA MPPT has been demonstrated
 278 under varying weather conditions using dSPACE platform. The Luo converter has been proposed for
 279 desired GMP functions. The PV fed BLDC motor drive pumping system operates effectively under steady,
 280 dynamic state and soft starting operating conditions which validated through experimentally obtained
 281 responses. The enforcement of ANFIS-FPA MPPT controller has been equated with general P&O and
 282 ANFIS-PSO method which gives high tracking efficiency, fast design and rapid convergence time under
 283 varying solar irradiance level.

284 **Author Contributions:** All authors contributed equally for the decimation of the research article in current form.

285 **Conflicts of Interest:** The authors declare no conflict of interest.

286

287 **References**

- 288 [1] Jedari M, fathi S H. A New Approach for Photovoltaic Arrays Modeling and Maximum Power Point
 289 Estimation in Real Operating Conditions. *IEEE Trans. on Ind. Electron.* 2017; 64(12): 9334 – 9343.
- 290 [2] Aamri F EL, Maker H, Sera D, Spataru S, Guerrero J M, Mouhsen A. A Direct Maximum Power Point
 291 Tracking Method for Single-Phase Grid Connected PV Inverters. *IEEE Trans. on Power Electron.*
 292 2017; (99): 1-10.
- 293 [3] Tiwari S K, Singh B, Goel P K. Design and Control of Autonomous Wind-Solar System with DFIG
 294 Feeding 3-Phase 4-Wire Loads. *IEEE Trans. on Ind. Appl.* 2017; (99): 1-8.
- 295 [4] Kumar R, Singh B. BLDC Motor Driven Solar PV Array Fed Water Pumping System Employing Zeta
 296 Converter. *IEEE Trans. on Ind. Appl.* 2016; 52(3): 2315 – 2322.
- 297 [5] Montorfano M, Sbarbaro D, Mor'an L. Economic and technical evaluation of solar assisted water
 298 pump stations for mining applications: A case of study. *IEEE Trans. on Ind. Appl.* 2016; 52(5): 4454 –
 299 4459.

300 [6] Alghuwainem S M. Speed Control of a PV Powered DC Motor Driving a Self- Excited 3-Phase
301 Induction Generator for Maximum Utilization Efficiency. *IEEE Trans. on Energy Conversion*. 1996;
302 11(4): 768-773.

303 [7] Jain S, T K A, Karampuri R, Somasekhar V T. A Single-Stage Photo Voltaic System for a Dual-
304 Inverter fed Open-End Winding Induction Motor Drive for Pumping Applications. *IEEE Trans. on*
305 *Power Electron*. 2015; 30(9): 4809 - 4818.

306 [8] Sashidhar S, Fernandes B G. A Novel Ferrite SMDS Spoke-Type BLDC Motor for PV Bore-Well
307 Submersible Water Pumps. *IEEE Trans. on Power Electron*. 2017; 64(1): 104-114.

308 [9] Killi M, Samanta S. An Adaptive Voltage Sensor Based MPPT for Photovoltaic Systems with SEPIC
309 Converter including Steady State and Drift Analysis. *IEEE Trans. on Power Electron*. 2017; 64(1): 104-
310 114.2015; 62(12): 7609 - 7619.

311 [10] Priyadarshi N, Kumar V, Yadav K, Vardia M. An Experimental Study on Zeta buck-boost converter
312 for Application in PV system. Hand book of distributed generation. DOI10.1007/978-3-319-51343-
313 0_13.

314 [11] Priyadarshi N, Anand A, Sharma A K, Azam F, Singh V K, Sinha R K. An Experimental
315 Implementation and Testing of GA based Maximum Power Point Tracking for PV System under
316 Varying Ambient Conditions Using dSPACE DS 1104 Controller. *Int. Journal of Renewable Energy*
317 *Research*, 2017; 7(1): 255-265.

318 [12] Kumar N, Hussain I, Singh B, Panigrahi B K. Framework of Maximum Power Extraction from Solar
319 PV Panel using Self Predictive Perturb and Observe Algorithm. *IEEE Trans. on Sustainable Energy*.
320 2017; (99): 1-9.

321 [13] Elgendi M A, Zahawi B, Atkinson D J. Assessment of the Incremental Conductance Maximum
322 Power Point Tracking Algorithm. *IEEE Trans. on Sustainable Energy*. 2013; 4(1): 108-117.

323 [14] Zamora A C, Vazquez G, Sosa J M, Rodriguez P R M, Juarez M A. Efficiency Based Comparative
324 Analysis of Selected Classical MPPT Methods. *IEEE Int. Autumn Meeting on Power, Electronics and*
325 *Computing*. 2017; 1-6.

326 [15] Abu-Rub H, Iqbal A, Ahmed SK M, Peng F Z, Li Y, Baoming G. Quasi-Z-Source Inverter-Based
327 Photovoltaic Generation System With Maximum Power Tracking Control Using ANFIS. *IEEE Trans.*
328 *on Sustainable Energy*. 2013; 4(1): 11-20.

329 [16] Priyadarshi N, Sharma A K, Azam F. A Hybrid Firefly-Asymmetrical Fuzzy Logic Controller based
330 MPPT for PV-Wind-Fuel Grid Integration. *Int. Journal of Renewable Energy Research*. 2017; 7(4):
331 1546-1560.

332 [17] Sundareswaran K, Sankar P, Nayak P S R, Simon S P, Palani S. Enhanced Energy Output From a PV
333 System Under Partial Shaded Conditions Through Artificial Bee Colony. *IEEE Trans. on Sustainable*
334 *Energy* 2015; 6(1): 198-209.

335 [18] Kalaam R N, Muyeen S M , Al-Durra A, Hasanien H N, Al-Wahedi K. Optimisation of controller
336 parameters for grid tied photovoltaic system at faulty network using artificial neural network-based
337 cuckoo search algorithm. *IET Renewable Power Gen*. 2017; 11(12): 1517-1526.

338 [19] Ram J P, Rajasekar N. A novel Flower Pollination based Global Maximum Power Point method for
339 Solar Maximum Power Point Tracking. *IEEE Trans. on Power Electron*. 2017; 32(11): 8486 – 8499.

340 [20] Pansare C, Sharma S K, Jain C, Saxena R. Analysis of a Modified Positive Output Luo Converter and
341 its application to Solar PV system. *IEEE Ind. Appl*. 2017; 1-6.