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Abstract: The high hydrophobicity of fullerenes and the resulting formation of aggregates in
aqueous solutions hamper the possibility of their exploitation in many technological applications.
Noncovalent bioconjugation of fullerenes with proteins is an emerging approach for their dispersion
in aqueous media. Contrary to covalent functionalization, bioconjugation preserves the
physicochemical properties of the carbon nanostructure. The unique photophysical and
photochemical properties of fullerenes are then fully accessible for applications in nanomedicine,
sensoristic, biocatalysis and materials science fields. And yet, proteins are not universal carriers.
Their stability depends on the biological conditions for which they have evolved.

Here we present two model systems based on pepsin and trypsin. These proteins have opposite net
charge at physiological pH. They recognize and disperse Ceo in water. UV-Vis spectroscopy, zeta-
potential and atomic force microscopy analysis demonstrates that the hybrids are well dispersed
and stable in a wide range of pH’s and ionic strengths. A previously validated modelling approach
identifies the protein binding pocket involved in the interaction with Ce. Computational
predictions, combined with experimental investigations, provide powerful tools to design tailor-
made Ceo@proteins bioconjugates for specific applications.

Keywords: fullerenes; nanohybrids; nanobiotechnology; bioconjugation; chemical stability

1. Introduction

Cso, the most representative member of the fullerenes family, has steadily attracted interest for
its possible use in various fields, including nanomedicine [1-7]. A plethora of fullerene-based
compounds have been synthesized with different targets. They display a range of biological activities
that are potentially useful in anticancer therapy, antimicrobial therapy, enzyme inhibition, controlled
drug delivery, and contrast or radioactivity-based diagnostic imaging [8-13,7]. Noteworthy is the
possibility of their use in photodynamic and photothermal therapies [8,14,15]. The photophysical and
electrochemical properties of Ceo depend on their dispersion and a strict control of their
disaggregation is truly necessary for nanotechnological applications [16,17]. To date two main
approaches have been followed to tackle fullerene insolubility in water:
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42 i) the covalent approach is the more used method to prevent fullerene aggregation. The benefits
43 obtained by functionalization are often offset by reduced photophysical performances [18];

44 ii) the noncovalent approach requires the use of supramolecular hosts that are amphipathic molecules
45  able to interact with a single fullerene and to screen it from the aqueous environment. A variety of
46  hosts is capable of interacting with fullerenes. They include surfactants, synthetic polymers,
47  biopolymers, cyclodextrin [19], to name a few. In all cases, they stabilize small clusters of fullerenes
48  [20]. In recent years, also proteins have become used as dispersing agents of fullerenes[21-24], CNTs
49  [25-29] and graphene [30]. Proteins are naturally amphiphilic. This feature may avoid complicated
50  synthetic procedures or the use of organic solvents. Most proteins are also pH responsive, which is
51  an advantage for some manipulations [26]. Steric hindrance and electrostatic repulsion are the key
52 factors determining the stability of the dispersion of carbon nanomaterials-protein complexes in
53 aqueous solutions [31].

54 From the biological point of view, encapsulation of fullerenes by proteins may control and possibly
55  decrease the cytotoxicity. Well-dispersed CNTs are less toxic than their agglomerates [32]. Protein
56  binding can also alter the cellular pathways of interaction with carbon nanomaterials. Ultimately,
57  coating of carbon nanomaterials with proteins can confer them a new biological identity [33].

58  We recently proposed the use of lysozyme to disperse with a 1:1 stoichiometry Ceo in water [22]. The
59 hybrid is well-defined and the fullerene binds selectively in the protein-substrate binding pocket. The
60  protein-based supramolecular adduct preserves the photophysical properties of Ceo and allows the
61  exploitation of Cs as a photosensitizer for photodynamic treatments [34].

62

63 In this work, we evaluate the stability of Ceo@protein complexes in biologically relevant conditions.
64  Two proteins characterized by opposite net charges in physiological conditions were used as model
65  systems and the role of the electrostatic contribution to the stability of their adducts with Ceo is
66  identified. Applications of docking protocols and MMPBSA calculations [35,36] further provide
67  accurate description of the Ceo binding pocket involved in the interaction between protein and Co.

68

69 2. Materials and Methods

70 Trypsin from porcine pancreas (Cat. no. T0303), pepsin from porcine gastric mucosa (Cat. no.
71 P7012), fullerene Ceo (Cat. no. 483036) were purchased from Sigma Aldrich. They were used without
72 further purifications. Phosphate buffered saline solutions were prepared dissolving the tablets
73 purchased from Sigma Aldrich (Cat. no. P4417) in milliQ water.

74

75 2.1 Ceo@Protein Synthesis

76 The Ceo@protein hybrids were prepared mixing an excess of fullerene powder with a 0.3 mM
77 solution of each protein (5 mL), with a 2:1 stoichiometry. NaOH and HCI 1M were used to adjust pH
78  of the protein solutions. The heterogeneous mixtures were then sonicated in a vial for 120 minutes
79  using a probe tip ultrasonicator (Hielscher Ultrasonic Processor UP200St, equipped with a sonotrode
80  $26d7, used at 40% of the maximum amplitude). During the process, the sample was refrigerated
81  with an ice bath. The dark brown turbid mixture obtained after the sonication was centrifuged at 10
82  kRCF. The resulting supernatant was then collected and characterized.

83

84 2.2 Ceo@Protein Characterization

85 UV-Vis absorption spectra were recorded at 25 °C by means of Agilent Cary 60 UV-Vis
86  Spectrophotometer. Surface charge analysis of the hybrids were estimated measuring the zeta-
87  potential at 25 °C by means of Malvern Nano ZS.

88 AFM experiments were performed at the SPM@ISMN microscopy facility in Bologna. AFM
89  analysis (Digital Instruments, Multimode VIII equipped with a Nanoscope V) operated in ScanAsyst
90 mode were performed to evaluate the quality of the monodispersion of the bioconjugates. The
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91  samples were prepared by drop casting 10 UL of Ceo@protein solution onto a freshly cleaved mica
92 substrate for 10 minutes then rinsed with milliQ water and dried under nitrogen flux/stream.

93 2.3 Computational protocol

94 Generation of the poses. Docking models were obtained using the PatchDock algorithm [37].

95  PatchDock takes as input two molecules and computes three-dimensional transformations of one of

96  the molecules with respect to the other with the aim of maximizing surface shape complementarity,

97  while minimizing the number of steric clashes.

98 Scoring of the poses. Accurate rescoring of the complexes is then carried out using FireDock

99  program [38]. This method simultaneously targets the problem of flexibility and scoring of solutions
100 produced by fast rigid-body docking algorithms. Sidechain flexibility is modeled by rotamers and
101  Monte Carlo minimization [39]. Following the rearrangement of the side-chains, the relative position
102 of the docking partners is refined by Monte Carlo minimization of the binding score function. Free
103 energy of solvation/desolvation in the binding process is taken into account by a solvation model that
104 uses estimated effective atomic contact energies (ACE) [40]. All the candidates are ranked by a
105  binding score [40]. This score includes, in addition to atomic contact energy used to estimate the
106  desolvation energies [40], van der Waals interactions, partial electrostatics, explicit hydrogen and
107  disulfide bonds contribution. In addition, three components to the total binding score are added: Exr
108 for the calculation of the m—r interactions, Ecation—r for the calculation of the cation—m interactions and
109 Eaiph for the calculation of hydrophobic interactions.
110 Minimizing the pose. The best poses for every selected protein were full minimized by AMBER
111 12 [41]. The {f12SB force field [41] was used to model the proteins, while the fullerene atoms were
112 modeled as uncharged Lennard—Jones particles by using the CA atom type (sp2 aromatic carbon
113 parameter), also from the AMBER force field. The minimization was carried out with sander, using
114  the GB (Generalized Born) model [42] for the solvation and no cut-off for van der Waals and
115  electrostatic was used.
116 MM-GBSA analysis. In order to identify the residues responsible for the binding of the proteins
117 to Ceo, we carried out a decomposition analysis of the optimized structure according to the MM-GBSA
118  scheme [35,36]. The per-residue decomposition analysis provides the contribution of the individual

119  amino acids to the binding.
120

121 3. Results and discussions

122 The ability of Ceo to interact with proteins is a recent subject of investigation. Collectively, van
123 der Waals, hydrophobic and electrostatic interactions must cooperate to establish energetically
124 favorable interactions between a protein and a fullerene in order to allow the formation of a stable
125 complex [43]. Geometrical complementarity also plays a primary role to maximize the effect of the
126  stabilizing contributes [44]. Crucial for the understanding of protein-fullerene interactions is the
127 identification of the fullerene-binding site together with the possible subsequent proteins structural
128  modification [45]. It should also be further assessed if the interaction occurs between a single fullerene
129  with a single protein or if fullerenes clusters are surrounded by a number of proteins.

130

131 Pepsin (pI = 2.2 - 3) [46] and trypsin (pI = 10.2 - 10.8) [47] are proteins characterized by very
132 different values of isoelectric point, which makes one negatively and the other positively charged in
133 physiological conditions. Sonication of Cso with each protein was performed in acidic (pH 2), neutral,
134 and basic pH (pH 12) of unbuffered aqueous solutions. Pepsin was able to disperse fullerene in water
135  only at basic pH, where the protein is negatively charged, while trypsin showed the best
136  performances at acidic pH.

137 The two batches of hybrids were synthetized under optimized conditions. After sonication and
138 centrifugation, the supernatants were collected and characterized. UV-Vis spectra of the solutions
139 (Figure 1) show the diagnostic absorption bands of Cs at 341 nm and the overlap of Ces and protein
140  absorption bands between 260-290 nm. Based on the extinction coefficients of both components of the
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141  adducts [48], the absorption spectra suggest a 1:1 stoichiometry between Ce and trypsin, while 1:2
142 stoichiometry can be estimated for the Cs0 and pepsin complex. UV-Vis spectra also suggest that the
143 presence of particle aggregates, observed prior to centrifugation, was completely removed since
144 scattering is not exhibited.
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146
147 Figure 1. UV-visible spectra of (a) Ceo@trypsin (black line) and trypsin (red line); (b) Cso@pepsin (black line)
148 and pepsin (red line).
149
150

151  3.1. Ceo@pepsin — Coo@trypsin, an atomistic view

152
153 Figure 2. Two perspectives of Ceo@pepsin (a, b) and Ce@trypsin (¢, d). In red, the catalytic residues of the
154 two proteins.

155  Surface complementarity between the proteins and the Cso surface appears. The results of the docking
156  protocol explain the stoichometry observed by the UV-visible spectra. Pepsin is characterized by a
157  dimeric interface region. In this region, two fullerene binding pockets are identifiable and are able to
158  bind two Ce cages (figure 2a and 2b). The binding between Ceo and pepsin is not surprising, since
159  pepsinis an aspartic protease and structurally strongly correlates to HIV protease: fullerenes are well
160 known inhibitors of HIV-1 protease [49-52]. In pepsin, as in the HIV protease, fullerenes block the
161 large active site groove [49-52]. Ceo is also a known serine protease inhibitor [53], and in fact Ceo binds
162 in the trypsin active site: a single, well defined binding pocket is identified by the docking protocol
163 in this region (figure 2c and 2d). For the two Cso@protein hybrids tested here, MM-GBSA analysis of
164  the structures in their optimized geometries provides a quantitative description of the Ceo binding
165  pocket and identifies the more effectively interacting residues. Table 1 shows the 10 largest
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166  interactions between the residues of the proteins and Ce. The three most interacting residue for
167  binding pocket are represented in Figure 3a-c.

168 Table 1. Interaction energies (kcal mol-) of the top 10 residues interacting with Ceo.
169
. Phe 111 =-5.7 Leu 112 =-3.1 Thr218 =-3.0 Ser219=-29 Thr12=-2.8
Ceo@Pepsin-
Binding pocket 1 Glu13=-2.8 Phe 117 = -2.6 lle 30 = -2.5 Tyr75=-25 Thr77 =-22
Ceo@Pepsin- Val 291 =-4.9 Thr74 =-4.3 Pro 292 =-3.7 Tyr75=-3.4 Gly 76 =-2.7
Binding pocket2 1ot 289 = -1.4 Thr 293 = -1.3 Tyr 189 = -1.2 Asp 290 = -1.0 Leu 298 = -0.6
His 57 =-4.9 Phe 41 =-4.2 GIn 192 =-3.5 Cys 58 =-3.4 Cys42=-27
Ceo@Trypsin
Gly 193 =-1.8 Ser 195 =-1.7 Asp 194 =-0.8 Tyr 151 =-0.6 Leu99=-0.4
170
171
172 Figure 3. Top 3 residues interacting with Ceo in the (a) pepsin binding pocket 1, (b) pepsin binding pocket
173 2; (c) Top 3 residues interacting with the Ceo in the trypsin binding pocket; (d) Interaction in the trypsin
174 binding pocket between Ceo and a disulfide bridge (Cys42-Cys58).

175  From Table 1 and Figure 3 it appears that proteins are able to interact with Ceo via:

176 i) n—m stacking interactions that are established between aromatic residues (phenylalanine, tyrosine,
177  histidine) and Ceosurface [25,54];

178 ii) Hydrophobic interactions (leucine, isoleucine, methionine, proline, glycine) that are established in
179  water between aliphatic residues and Ceo surface [25];

180  iii) Surfactant-like interactions where amphiphilic residues (threonine, serine, aspartate) behave
181  similarly to surfactants and solvate Ceo. The hydrophobic aliphatic chains of these residues interact
182  with Cs surface, whereas the hydrophilic groups point out toward water [25,55,56].

183 In the case of trypsin, of interest is the interaction between a disulfide bridge (Cys42-Cys58) and Cso
184  (Figure 3d). This kind of interaction was recently highlight by Hirano and coworkers for carbon
185  nanotubes [57,58].

186  3.2. AFM analysis of Ceo@protein hybrids

187 UV-Vis spectra and molecular modelling exhibit the expected stoichiometry between Ceo and
188  proteins. They do not give information about the possible aggregation of the adducts. Atomic force
189  microscopy is a direct technique to evaluate the size distribution of particles.
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190 In Figure 4a, the Coo@trypsin hybrids are monomoleculary dispersed when deposited on a
191  negatively charged mica surface. Ceo@trypsin is positively charged, hence an electrostatic interaction
192 takes place with the surface. The profile analysis (Figure 4b) of both Ce@trypsin and the trypsin
193 reference (obtained in the same conditions) shows an average height of ~1.5 nm, which is slightly
194 lower than the expected value. This behavior is a consequence of the strong electrostatic interaction,
195  which squashes the proteins over the surface in order to maximize the attractive electrostatic contacts.
196  Conversely, negatively charged pepsin hybrid (Figure 4c) shows an average height, which is slightly
197  higher than the average size of the protein.

198 These results mainly originate from the combination of different forces: i) the pepsin tendency
199 to self-associate; ii) the electrostatic repulsion between the pepsin and the surface, which reduces the
200  number of interactions, as confirmed also by the small number of the particles deposited on the mica
201  which repels the adduct. The AFM analysis demonstrates the absence of Coo@proteins aggregates, or
202 nCe clusters dispersed by the proteins.

e) f)

height / nm
height / nm
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204 Figure 4. AFM images of (a) Ceo@trypsin; (b) trypsin; (c¢) Ceo@pepsin; (d) pepsin. Profile analysis of the
205 height of (e) Ceo@trypsin; (f) trypsin; (g) Ceo@pepsin; (h) pepsin. Scale bar (a,b) 100 nm; (¢,d) 1 um. The lines
206 in the AFM provide the numbering of the AFM profiles: profile 1 in black, profile 2 in red, profile 3 in blue
207 and profile 4 in green.

208

209  3.3. Stability of the complex in aqueous media

210 Compared to the chemical functionalization of the fullerenes, one of the advantages from the
211 use of host-guest system is the possibility to tune the stability of the complex in aqueous media. The
212 tuning can be achieved by acting only on the host system, that is the protein. Evaluating the behavior
213 of Ceo@proteins at different pH'’s and physiological conditions, it was found that the stability of the
214 hybrid in aqueous media was completely governed by the protein. To understand if proteins pH
215  sensitivity was retained, acid-basic titration was performed. Zeta potential and UV-Vis spectra were
216  obtained. The correlation between zeta potential and pH gives information about the behavior of the
217  complex for possible future in vivo experiments, since pH varies in different compartments of the
218  organisms. Moreover, the greater the range of pH stability the wider the conditions for subsequent
219  manipulation of the adduct. pH dependent zeta potential trends of Ceoo@trypsin and Cso@pepsin are
220  shown in Figure 5.
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222 Figure 5. Zeta potential of Ceo@trypsin (in red) and Ceo@pepsin (in blue) hybrids as a function of the
223 pH in aqueous solution. Standard deviations are shown in the error bars.
224 The isoelectric points (IEP) of both adducts resulted slightly shifted to values of pH’s closer to

225  neutrality with respect to IEP of the pristine proteins. This phenomenon can be attributed to a
226  reduced accessibility to pH sensitive groups upon fullerene complexation. A further effect is related
227  to the local change of the environment polarity, which could slightly perturb the pKa of few charged
228  residues. For pH values closer to the IEP, the electrostatic repulsion between the proteins/adducts
229  becomes minimal. The stability of possible aggregates is governed only by steric hindrance.

230 For Ce@pepsin complexes at pH values close to IEP (2.7 and 4.5), aggregation phenomena
231  indeed occurred after few minutes. Coo@trypsin complexes did not aggregate also for pH values close
232 to the IEP. The maximum stability for individual Cso@pepsin complexes was obtained in neutral and
233 basic conditions. Absorption spectra performed on the same samples did not show changes of shape
234  and intensity (Figure 6) between the different samples. In both the cases, the complex resulted stable
235  for (at least) one week.
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236
237 Figure 6. UV-Vis absorption spectra of (a) Ceo@trypsin and (b) Ceo@pepsin in water (black lines) and PBS
238 (red lines). Black dots represent the absorbance of fullerene diagnostic band (341 nm) of the hybrids at
239 different pH values (top axis).
240
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241 Comparison of the absorption spectra of Cso@trypsin (Figure 6a) and Ceo@pepsin (Figure 6b) in
242 water and PBS shows that the hybrids are stable also in physiologically relevant conditions
243 (represented by PBS). This is an important difference with other Cso adducts, for instance fullerenes
244 dispersed by cyclodextrins rapidly precipitates when NaCl is added [59].

245 These results suggest that fine-tuning of the net charge of the complex is possible and therefore
246  itshould also be possible to take advantage of the nature of each protein to create optimal Ceo-protein
2477 systems as a function of the pH. Tuning the net charge of the protein used to host the Cso molecule it
248  is possible to governs its interactions with cellular and bacterial surface, controlling Ceo toxicity [60—

249 63].
250
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