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Abstract: This paper serves a survey and empirical evaluation of the state-of-the-art in activity1

recognition methods using accelerometers. We examine research that has focused on the selection2

of activities, the features that are extracted from the accelerometer data, the segmentation of the3

time-series data, the locations of accelerometers, the selection and configuration trade-offs, the4

test/retest reliability, and the generalisation performance. Furthermore, we study these questions5

from an experimental platform and show, somewhat surprisingly, that many disparate experimental6

configurations yield comparable predictive performance on testing data. Our understanding of these7

results is that the experimental setup directly and indirectly defines a pathway for context to be8

delivered to the classifier, and that, in some settings, certain configurations are more optimal than9

alternatives. We conclude by identifying how the main results of this work can be used in practice,10

specifically in experimental configurations in challenging experimental conditions.11

Keywords: activities of daily living; activity recognition; accelerometers; machine learning; sensors12

1. Introduction13

In this paper we are concerned with accelerometer-based Activity Recognition (AR). Firstly we14

need to clarify the difference between activity tracking and activity recognition: whereas the former15

is only concerned with estimating general levels of activity (e.g. estimating calorie consumption or16

monitoring (non-)sedentary behaviour [1]), the latter is attempting to discern the actual activities17

occurring. It is the latter of these which will be examined here. Tri-axial accelerometers provide a18

low-power and high-fidelity measurement of force along the x, y, and z directions, and thus provide19

a view into the movement of the person wearing the device. Although there is significant potential20

for accurately predicting activities of daily living with accelerometers, many open problems exist21

due to the sheer volume of reasonable configurations available. For example, accelerometers may be22

configured with specific sampling rates, sample resolution and accelerometer range, features can be23

extracted from windows of any size, and the selection of the ultimate data analysis and classification24

pipeline is also non-trivial. All configurations can have an impact on the predictive performance of an25

AR classifier, and so these parameters must be chosen with care.26

This study is mostly focused specifically on body-worn accelerometers, although there has been27

recent interest in using mobile phone accelerometers for activity recognition [2–5]. AR can benefit28

from other on-body sensors, including gyroscopes (that measure angular rotation) and magnetometer29

sensors (that measure orientation with respect to the magnetic poles). Since these sensors typically30

consume several orders of magnitude more power than accelerometers, we do not consider these here.31

Note also that although outside the scope of this study, there is recent research in the area of Activities of32
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Daily Living (ADL) recognition using other types of sensor, such as Red/Green/Blue-Depth (RGB-D)33

sensors [6] or other environmental sensors [7], or the fusion thereof [8].34

In this paper we address some of the open questions in the accelerometer-based AR, and35

particularly focus both on a comprehensive summary of the field and also an extensive experimental36

evaluation of possible configurations. Therefore, the rest of the paper is structured as follows: We37

summarise the recent research from the field and identify some open questions in Section 2. In38

Section 4 we address some of the open questions from Section 2 and present our main results with39

the classification models, feature representations and configurations that were described in Section 3.40

Finally, in Section 5 we conclude our main results.41

2. Summary of Research Directions and Open Questions42

It is natural to consider the use of accelerometers for activity recognition, since it is clear that43

certain activities will have clear movement patterns for different parts of the body, whilst the sensors44

are relatively low-cost, low-power, and have wide user acceptance [9]. However there are certain45

distinct issues that need to be addressed:46

• What activities are we interested in? (Section 2.1)47

• Are structured models (that model the sequential nature of the data) required for classification?48

(Section 2.2)49

• What are the relevant features in the accelerometer data that are useful for prediction?50

(Section 2.3)51

• How is the time series segmented? (Section 2.4)52

• What are the optimal locations of accelerometers for the recognition of various activities?53

(Section 2.5)54

• What are the trade-offs when selecting and configuring the accelerometers (e.g. sampling rate)?55

(Section 2.6)56

• How robust are the predictions within an individual, and across individuals and sensor57

placements? (Section 2.7)58

These issues are shared with many other settings where Machine Learning (ML) is applied59

to Digital Signal Processing (DSP), and as such this is a fairly mature research area [10]. More60

details regarding the specific questions we will be answering are given in Section 3. We note61

that whilst research has often focused on which ML algorithm performs best for the given dataset,62

we will assume instead here that virtually any state-of-the-art ML algorithm (e.g. kernel Support63

Vector Machines (SVMs) [11], Decision Trees [12], Bayesian classifiers [13]) can be made to perform64

equivalently given the appropriate feature set. Therefore, we employ simpler algorithms in order to65

increase our understanding of the problem.66

It should be noted that vastly different accuracies are reported depending on the activity examined67

(e.g. a range of ≈ 41% to ≈ 97% in a study by [14]) and one should be aware that accelerometers68

may not be appropriate for some activities. Further to this, the positioning of sensors also plays69

an important role, and it is likely that this will be a limiting factor for many applications, since70

the positioning of sensors is often largely driven by user acceptance rather than optimality of ADL71

recognition performance [9]. It is worth mentioning here, however, that in some settings, such as in72

the scenario described in the Sensor Platform for HEalthcare in Residential Environment (SPHERE)73

project [15–17], we may not limited to the use of accelerometers alone, and other sensor modalities may74

be more appropriate for the activities that are hard to classify using (e.g. wrist-worn) accelerometers.75

2.1. Activities76

The first work to investigate performance of recognition algorithms with multiple, wire-free77

accelerometers on a large set (20) of activities using datasets annotated by the subjects themselves was78

by [14]. Another study by [18] examined eight activities: the first six from [14], as well as climbing79
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Table 1. Activities found ADL studies using accelerometers.

1. Walking
2. Ascending stairs
3. Descending stairs
4. Sitting
5. Standing
6. Lying down
7. Working at computer
8. Walking and talking
9. Standing and talking

10. Sleeping
11. Eating
12. Personal care
13. Studying
14. Household work
15. Socialising
16. Sports
17. Hobbies
18. Mass media
19. Travelling
20. Cycling
21. Pushing shopping cart
22. Driving car
23. Brushing teeth

24. Kneeling
25. Running
26. Sitting drinking coffee
27. Eating breakfast
28. Eating lunch
29. Eating dinner
30. Sitting talking on phone
31. Using toilet
32. Walking carrying object
33. Washing dishes
34. Picking up canteen food
35. Lying using computer
36. Wiping whiteboard
37. Talking at whiteboard
38. Making fire for barbecue
39. Fanning barbecue
40. Washing hands
41. Setting the table
42. Watching TV
43. Making coffee
44. Attending presentation
45. Standing eating
46. Standing drinking coffee

47. Queuing in line
48. Dusting
49. Ironing
50. Vacuuming
51. Brooming
52. Making the bed
53. Mopping
54. Window cleaning
55. Watering plant
56. Setting table
57. Stretching
58. Scrubbing
59. Folding laundry
60. Riding elevator
61. Strength-training
62. Riding escalator
63. Sit-ups
64. Walking left
65. Walking right
66. Jumping
67. Nordic walking
68. Playing soccer
69. Rope jumping

down stairs, and sit-ups. Table 1 shows the activities that we have identified in the literature while80

completing this review. Note that some in some sense encompass others (e.g. “eating lunch” is a subset81

of “eating”).82

Since each study defines a different set of activities, and indeed how certain activities are defined,83

it makes it somewhat difficult to compare the absolute classification results between studies and hence84

evaluate the different methodologies taken by researchers. In a given context, one might be interested85

in for example ADL for health-related purposes (c.f. the SPHERE project [15]), which would provide a86

specific driver for which activities are selected.87

2.2. Structured vs. Unstructured Models88

When performing classification on sequential data, it is common to ignore the sequential nature89

of the data and instead treat the data as if it were “independently and identically distributed” (iid),90

and subsequently use a standard ML algorithm that is designed for iid data. Intuitively, we might91

imagine that the strength of the temporal dependence in the sequence will determine how effective92

this approximation is, and this will in turn depend on how the data is pre-processed (i.e. is raw93

data presented to the classifier, or are features instead computed from the time series?). It has been94

shown [19] that under certain conditions structured models (e.g. Hidden Markov Models (HMMs)95

[20] or Conditional Random Fields (CRFs) [21]) and unstructured models (e.g. SVMs [11]) can yield96

equivalent predictive performance on sequential tasks, whilst unstructured models are also typically97

much cheaper to compute.98

CRFs have been successfully employed for activity recognition in a smart-home environment [22],99

which although using environmental sensors rather than body-worn sensors would appear to have the100

same temporal characteristics. An approach based on semi-Markov CRFs that allows for overlapping101

activities was introduced by [23], whose results indicated that the proposed approach worked well102

even for complicated (higher-level) activities such eating and driving a car. The average precision and103

recall were both over 85%, higher than were obtained by using HMMs or Topic Models (TMs).104
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The theoretical analysis in [19] related the excess risk incurred by unstructured models to the rate105

of decay of correlations within the sequence. It would therefore be advisable to perform the a-priori106

procedures outlined in [19] to determine whether activity recognition from accelerometer data, using107

the various types of feature construction discussed in Section 2.3, is a setting that requires structured108

models or not.109

2.3. Feature Extraction110

Rather than attempt to classify every single data point (at e.g. 50Hz sampling rate), it makes sense111

to compute features of the data that are based on some kind of temporal window. This reduces the112

computational burden of the classification algorithms, reduces the effects of noise, and reduces the113

temporal dependence of subsequent examples, so that they can be treated as if they were iid. In fact,114

such temporal dependence still exists, but this is mostly ignored in the literature - c.f. the discussion in115

Section 2.2. There is a trade-off here: the longer the window length, the more these positive benefits116

are realised; however if the window length becomes too large, the probability that a given window117

contains more than one activity is increased, the delay before a classification output can be generated118

is increased, and the number of training examples for the classifier will also be reduced.119

In both [14] and [18], feature extraction based on windows with 50% overlap were used: [14] used120

window sizes of 512 samples with 256 samples of overlap at a sampling rate of 76.25Hz, equating to a121

window length of 6.7 seconds; [18] used window sizes of 256 samples with 128 samples of overlap at a122

sampling rate of 50Hz, equating to a window length of 5.12 seconds. Typically features are computed123

in each of the accelerometer directions independently, although in some cases features that combine124

the axes are also used.125

Typical features can be split into two types: time domain features such as the mean, standard126

deviation, and correlation within the window; frequency domain features that are gathered after127

computing a Fast Fourier Transform (FFT) over the window. The frequency domain features include128

entropy, energy, and coherence (correlation in the frequency domain). Using a short window length129

enables near real-time inference of the user’s current activity and ensures the detection can rapidly130

adapt to changes.131

According to [24], mid-sized time windows (from 5 to 7 seconds long) perform best from a range132

of windows from 1 to 15 seconds for wrist-placed accelerometers. The results are slightly different for133

other accelerometer placements, but the trend of mid-size windows performing best holds [24].134

Not all features are equally useful in discriminating activities. Feature selection methods such135

as filter, wrapper, or embedded selection [25] can be applied to reduce the number of features. For136

example, [26] reports on applying Relief-F, a filter-based approach, to select accelerometer features for137

activity recognition. Alternatively, methods such as Principal Component Analysis (PCA) are used to138

map the original features into a lower dimensional subspace with mutually uncorrelated components.139

Reducing the number of features significantly reduces the computational effort of the classification140

process [24].141

A recent study showed on a variety of datasets that extremely simple histogram-like features142

[27] can still achieve good recognition performance. It would be interesting to test these features143

more comprehensively against other feature types mentioned above. The statistical features that144

were extracted were comprehensive, but many the set of features widely adopted by the community145

(e.g. [27]) were omitted.146

Using only simple features has the appealing property that the computational burden is extremely147

low, which brings in the possibility of performing low-power feature extraction on the sensing device148

before transmission. This idea was investigated in depth in [28], where the authors presented a149

comparative performance evaluation study of a large number of features from acceleration data150

computed on embedded hardware platforms. The features were evaluated in the dimensions of cost151

and accuracy, and the paper concluded that simple time domain features computed in fixed-point152

arithmetic have the best cost / accuracy trade-off. The results showed that computing and transmitting153
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a few of these time-domain features instead to sending the full acceleration data allows to reduce154

energy consumption by an order of magnitude, while still achieving acceptable accuracy.155

Recently [29,30] examined the possibility of learning features automatically. Feature learning156

is a well-studied approach for static data (e.g. object recognition in computer vision). In contrast to157

heuristic feature design, where domain specific expert knowledge is exploited to manually design158

features such as described above, the goal is to automatically discover meaningful representations159

of data. This is usually done by optimising an objective function that captures the appropriateness160

of the features, such as by energy minimisation or so-called “deep learning” (see [31] for a review)161

Building on this, [32] developed sparse-coding framework for activity recognition exploits unlabelled162

sample data, whilst learning meaningful sparse feature representations. The authors give results163

on a benchmark dataset showing that their feature learning approach outperforms state-of-the-art164

approaches to analysing ADL, and claim that their approach will generalise well (see Section 2.7 for165

further discussion of this).166

Finally, an interesting approach using Bayesian non-parametric methods was taken by [33], in167

which they employed an Hierarchical Dirichlet Process (HDP) model [34] (a form of TM) to infer168

physical activity levels from the raw accelerometer data, and used the extracted mixture proportions169

as features to perform the multi-label activity classification. They then showed that the correlation170

between inferred physical activity levels to the users’ daily routine was better than when using171

FFT-based features. This is similar in nature to an earlier study by [35], who used an Expectation172

Maximisation (EM)-based clustering algorithm to generate features for their classifier which they used173

to recognise 9 sporting activities, and reported a ≈ 5% improvement over a standard classification174

approach.175

2.4. Segmentation176

Explicit segmentation of the sensor data stream is in itself is a non-trivial problem, and approaches177

can roughly be partitioned into methods that rely on a sliding window [36], and probabilistic methods178

based on HMMs (e.g. [37]). The goal of the segmentation problem is to infer a hidden state at each179

time, as well as the parameters describing the emission distribution associated with each hidden state.180

Typically in the segmentation problem self-transition probabilities among states are assumed to be high,181

such that the system remains in each state for non-negligible time. More robust parameter-learning182

methods involve placing HDP priors over the HMM transition matrix [34].183

Typically the approaches taken to activity recognition based on accelerometer data have taken184

the approach described earlier of [14,18], extracting small windows of consecutive sensor readings185

from the continuous sensor data stream. It has been claimed by [29] that this circumvents the need for186

explicit segmentation. On the basis of the discussion in Section 2.2, we would argue that this is only187

true if the window length is long enough so that the dynamics of the system (i.e. the rate of decay in188

the auto-correlation) are accurately captured, and that rigorous analysis of this is yet to be performed.189

2.5. Positioning of Sensors190

Many positions for the placement of accelerometers have been considered, including: 1) hip (belt);191

2) wrist; 3) upper arm; 4) ankle; 5) thigh; 6) chest/trunk; 7) armpit; 8) trouser pocket; 9) shirt pocket;192

10) necklace.193

The results of [14], which considered locations 1-5 of the above, suggested that multiple194

accelerometers aided in recognition, since conjunctions between acceleration feature values at different195

sites were useful for discriminating many activities. However they also found that with just two biaxial196

accelerometers – thigh and wrist – the recognition performance dropped only slightly.197
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In another study [38], which considered locations 1, 2, 8, 9, and 10 of the above 1, it was found198

that any of the positions were good for detecting walking, standing, sitting and running. Ascending199

and descending the stairs was difficult to distinguish from walking in all positions, since the classifier200

was trained for multiple persons. Their general conclusion was that the wrist performed best overall201

because the feature set was optimised for the wrist position.202

As there are numerous placement locations on the body another questions arises; will activity203

recognition benefit from taking into account data from different on-body locations? In [39] a study204

was performed to determine if a model trained on the combined on-body locations performed better205

than a model that is aware of the location of the sensor. They report that classification models aware of206

the on-body location perform better than location independent models indicating that data collected207

from other on-body locations may not be beneficial if the sensor location is known or fixed (as in the208

case of wrist-worn wearables).209

Again we should stress that the optimal positioning of a sensor will also be driven by user210

acceptance, as well as by the resultant classification accuracy. A meta-analysis of user preferences in211

the design of wearables indicated that they would like to wear the sensor on the wrist, followed in212

descending order by the trunk, belt, ankle and finally the armpit [9].213

2.6. Accelerometer Selection and Configuration214

Digital accelerometers are configurable, allowing their users to tailor the raw data generation215

to the needs of their application. Different configuration options include the number of axes, the216

range of the acceleration, the resolution of the analog-to-digital converter (ADC), and the sampling217

frequency. Looking in to the literature, it appears to be no consensus in the research community on218

what is the best choice for these configuration parameters for given types of activities. For instance,219

in the literature that is reviewed in this paper, summarised in Table 2, we see the use of both biaxial220

and triaxial accelerometers; sensors with a range of acceleration from ±2g to ±16g; and sampling221

frequencies that range from 1 to 100 Hz. In several occasions, these configuration parameters are222

often omitted or provided without justification. Moreover, little interest is shown to the energy223

consumption of the acceleration sensors. Whilst energy consumption is not a challenge when data is224

collected in controlled environments, it constitutes a major challenge when data is collected in natural225

environments, particularly when the duration of the experiment exceeds the battery lifetime of the226

sensor, as it can lead to loss of blocks of raw data [40]. However, low power accelerometers consume227

several orders of magnitude less power than low power gyroscopes. For example, the SPW-2 wearable228

sensor [41] employs the ADXL362 accelerometer and the LSM6DS0 gyroscope; ADXL362 consumes229

approximately 8µW at 50 Hz while LSM6DS0 consumes approximately 2.3mW at 59.5 Hz.230

Digital accelerometers incorporate an ADC. The resolution of the raw samples depends on the231

configuration of these parameters. The size of each sample is defined by the bit-resolution n of the232

ADC, (n = 8, 12 and 16 bits are typical). The resolution of the measurement also depends on the233

maximum acceleration range of the sensor (R) and is derived by 2|R|/2n. Thus, this configuration234

parameters control a trade-off between being able to sense high acceleration and the resolution of the235

measurements. The sampling frequency, the bit-resolution, along with the number of axes, also control236

the amount of data that is produced. Regardless of whether the raw data is transmitted wirelessly to237

the infrastructure or stored to a local flash memory, energy consumption scales with the amount of238

produced data. Indeed, different configurations of the acceleration sensor can make the battery lifetime239

of the wearable sensor last from few days to few years [41]. Therefore, in cases of long experiments240

where battery lifetime is a concern, accelerometers should not use higher resolution and sampling241

frequency than necessary.242

1 They also considered placement in a bag, although this is no longer “body worn”.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 March 2018                   doi:10.20944/preprints201803.0147.v1

Peer-reviewed version available at Informatics 2018, 5, 27; doi:10.3390/informatics5020027

http://dx.doi.org/10.20944/preprints201803.0147.v1
http://dx.doi.org/10.3390/informatics5020027


7 of 32

In [38], the authors investigate whether the high frequency information in the signal is relevant to243

the classification problem, and if not what level of down-sampling can be applied without affecting244

classification performance. In particular, the sampling frequency of 50 Hz was down-sampled to lower245

frequencies (without a low-pass filter) from 1 to 30 Hz. Accuracy was seen to increase with higher246

sampling rates, stabilising between 15-20 Hz, and only improved marginally above this. However247

it should be noted that this was a biaxial rather than triaxial accelerometer, and that a fairly limited248

subset of features (no spectral features) were used, so it is difficult to draw a solid conclusion from this249

single study. More recent works also demonstrate that simple classification tasks can be effectively250

conducted at very low sampling frequency and resolution, increasing the battery lifetime of wearable251

sensors by more than an order of magnitude [42]. Khan et al. [43] performed a comprehensive study252

on optimising the sampling frequency of accelerometers in the context of human activity recognition.253

Their work concludes that the sampling rates that are used in the literature are up to 57% higher than254

what is needed, leading to the waste of precious resources.255

2.7. Generalisation Performance256

In [18], trained classification algorithms from data collected in four different settings are assessed257

in the following ways:258

1. A single subject over different days, mixed together and cross-validated.259

2. Multiple subjects over different days, mixed together and cross-validated.260

3. A single subject on one day used as training data, and data collected for the same subject on261

another day used as testing data.262

4. One subject for one day used as training data, and data collected on another subject on another263

day used as testing data.264

These aim to target test/retest reliability (for single and multiple subjects), within subjects and between265

subjects generalisation performance respectively. The authors showed that using Fourier features as266

described in Section 2.3 and off-the-shelf classifiers, they were able to achieve near perfect accuracy267

(> 99%) in settings 1 and 2, ≈ 90% accuracy in setting 3, and only ≈ 65% accuracy in setting 4.268

These results were corroborated by those of [14], which showed that although some activities269

are recognised well with subject-independent training data, others appear to require subject-specific270

training data (such as “stretching” and “riding an elevator” - see Section 2.1).271

Another issue is that of laboratory versus naturalistic settings. An early study [44] reported an272

overall accuracy of 95.8% for data collected in a laboratory setting but recognition rates dropped to273

66.7% for data collected in naturalistic settings, which demonstrated that the performance of algorithms274

tested only on laboratory data (or data acquired from the experimenters themselves) may suffer when275

tested on data collected under less-controlled (i.e. naturalistic) circumstances.276

A recent activity recognition challenge [45] introduced a new semi-naturalistic dataset with several277

interesting features. Firstly, the data sequences were annotated by several annotators. Interestingly,278

this demonstrates the presence of annotation ambiguity on activity recognition datasets both in terms279

of the temporal alignment of the labels and the specification of the activities. Indeed, the regions of280

highest ambiguity are those with the highest rates of activity transitions. Since the labels themselves281

are ambiguous, evaluation of performance also becomes ambiguous in this setting. To overcome these282

difficulties, performance evaluation was based on proper measures between probability distributions.283

2.8. Public Data-Sets284

In Table 2 we provide a summary of some of the most commonly cited publicly available data-sets,285

along with their characteristics. Note that we have focused on data-sets for activity recognition based286

on body-worn accelerometers – since accelerometer data is now readily available from smart-homes,287

there may be many more datasets available that do not focus on ADL, such as those focusing on288

lower-level “gestures” or gait analysis. We note that there are vast differences in the quantity of data,289
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the number of subjects, the accelerometer sampling rates and ranges, and the settings of the recordings.290

This makes it especially difficult to compare results from different data-sets.291

3. Materials and Methods292

The previous section outlined several open questions in accelerometer-based activity recognition.293

In this section we discuss the methods that we will use to answer these questions. In particular294

we focus on assessing the effect of sampling rate, feature extraction, window length and sequential295

classification for activity recognition, and the resources, models, experimental protocol are described296

below.297

3.1. Data-sets298

A list of publicly available datasets for AR based on accelerometers is given in Table 2, with details299

regarding the collection of the data, annotations, setting, and hardware. Of these, datasets 1, 11, 12 are300

used in this study, with the following to be noted:301

HAR This was collected by attaching a smart-phone (with accelerometer and gyroscope) in302

a waist-mounted holder, with 30 participants conducting 6 activities in a controlled303

laboratory environment. More details can be found in [4].304

USCHAD This was recorded by 14 subjects (7 male, 7 female) performing 12 activities in a305

controlled laboratory environment (with accelerometers and gyroscopes), with ground306

truth annotation performed by an observer standing nearby. More details can be found307

in [55].308

PAMAP2 This contains data of 18 different physical activities performed by 9 subjects wearing 3309

inertial measurement units (over the wrist on the dominant arm, on the chest, and on the310

dominant side’s ankle) and a heart rate monitor. More details can be found in [56].311

In all the data-sets, sensors were either placed on the waist (W) or lower-arm/wrist (L), and in312

some cases additional sensors were placed on other parts of the body. For the purposes of this study,313

we are limiting our analysis to the W and L placements, since a meta-analysis of user preferences in314

the design of wearables indicated that these were two of the most preferable locations (along with on315

the chest/trunk) [9].316

All of these data-sets are artificial in the sense that they were collected in controlled laboratory317

environments, although varying degrees of effort have been made to make the environment as318

naturalistic as possible. There is clearly a trade-off here between ease of data collection (including319

ground-truth labelling) and the degree of realism that can be achieved. In order to ensure that320

performance is comparable between datasets, we have limited the set of activity labels that we consider321

to activities 1-6 in Table 1.322

3.2. Sensor Calibration323

Some datasets provide acceleration readings that are in raw digital format rather than ones324

calibrated against gravity. Digital codewords can be converted to gravity units with offset (o) and scale325

(s) parameters which specify the 0 g position and the number of bits that represent 1 g respectively326

[57]. For an accelerometer with a sensitivity of ±Rg with b-bits of precision, one might expect o = 2b−1
327

and s = 2b−1

R (i.e. accelerations are evenly distributed over the range of codewords). However, these328

are insufficient estimates in general, due to variance in the manufacturing process, sensitivity towards329

environmental conditions and other confounding factors [57]. Therefore, we propose to learn these330

offset and scale parameters by first noting that the norm of the accelerations at rest must equal 1 g. We331

define the offset and scale vectors as o = (ox, oy, oz)> and s = (sx, sy, sz)> respectively. With these a332

tri-axial digital codeword, d = (dx, dy, dz)>, is converted to acceleration with the following operation333

a = (d− o)� s, where � is the element-wise division operator. The norm of this vector, ‖a‖2, is a334

scalar which will equal 1g at rest.335
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Given a dataset of N digital codewords, {di}N
i=1, we define a squared error loss as336

L =
1
2

N

∑
i=1

(
1− ‖ai‖2

2

)2
(1)

where ‖ai‖2
2 denotes the squared 2-norm of the i-th instance.The gradient of the loss with respect to337

the offset and scale vectors can be shown to be338

OoL = −2
N

∑
i=1

(1− ‖ai‖2
2)(di − o)� s2 (2)

OsL = −2
N

∑
i=1

(1− ‖ai‖2
2)(di − o)2 � s3 (3)

and these may trivially be incorporated with with any state-of-the-art optimisation algorithms to find339

the optimal o and s.340

We select only the subset of instances for which the accelerometer is at rest to ensure that gravity341

is the only factor contributing to recorded acceleration. For example, data within a window will be342

selected if the maximum variance of the three axis within this window is below a low threshold. Many343

datasets consist of multiple participants and we calibrated digital codewords on a per-participant basis344

as it was not clear whether the same accelerometer was consistently used.345

3.3. Features346

In this sub-section we will describe the types of features that will be used in our experimental347

comparison.348

3.3.1. Engineered Features349

The purpose of feature extraction is to present a learning algorithm with informative350

representations of the data so that induction can be performed effectively. Firstly, the raw acceleration351

was separated into ‘body’ and ‘gravity’ streams with the use of low- and high-pass filters. From these352

two streams the acceleration and jerk (derivative of body acceleration) on each axis were presented to353

the feature extraction algorithm. Statistical measures were extracted (for a full list see [4]) from the354

time, frequency and information theoretic domains.355

A large number of features were extracted here (321 in total), but, as we incorporate sparse356

regularisation, the least informative features will be eliminated, performing feature selection. Often357

practitioners will incorporate domain knowledge to specify appropriate features a priori, but we prefer358

to investigate those that were deemed most informative by the learning procedure.359

Another set of features that we consider in this work are the Empirical Cumulative Distribution360

Function (ECDF) features that were introduced in [27]. These features are computed from the empirical361

cumulative distribution of all axes. A practitioner specifies the percentiles of interest (e.g. k values362

between 0 and 100), and these values are interpolated from the ECDF. This produces k features per363

axis, and excellent performance is reported by the authors.364

3.3.2. Sparse Coding and Dictionary Learning365

Dictionary Learning, also known as Sparse Coding [58] is a class of unsupervised methods for
learning sets of over-complete bases to represent data in a parsimonious manner. The aim of sparse
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coding is to find a set of vectors di, known as a dictionary, such that we can represent an input vector
x ∈ Rn as a linear combination of these vectors:

x =
k

∑
i=1

zidi s.t. k� n. (4)

While there exist efficient techniques to learn a complete set of vectors (i.e. a basis) such as Principal366

Components Analysis (PCA)[59], an over-completeness can achieve a more stable, robust, and compact367

decomposition than using a basis [60]. However, with an over-complete basis, the coefficients zi are no368

longer uniquely determined by the input vector x. Therefore, in sparse coding, we introduce additional369

sparsity constraints to resolve the degeneracy introduced by over-completeness.370

Sparsity is defined as having few non-zero components zi or many that are close to zero. The
sparse coding cost function on a set of m input vectors arranged in the columns of the matrix X ∈ Rn×m

as

min
Z,D
‖X−DZ‖2

F + λ
n

∑
i=1

Ω(zi)

s.t. ‖di‖2 ≤ C, ∀i = 1, . . . , k. (5)

where D ∈ Rn×k is the set of basis vectors (dictionary), Z ∈ Rk×n is the set of coefficients for each371

example, and Ω(.) is a sparsity inducing regularisation function, and the scaling constant λ determines372

the relative importance of good reconstructions and sparsity. The most direct measure of sparsity is373

the L0 quasi-norm Ω(zi) = 1(|zi| > 0), but it is non-differentiable and difficult to optimise in general.374

A common choice for the sparsity cost Ω(.) is the L1 penalty Ω(zi) = ∑n
i=1 |zi| (see [61] for a review).375

Since it is also possible to make the sparsity penalty arbitrarily small by scaling down zi and scaling di376

up by some large constant, ‖d‖2 is constrained to be less than some constant C.377

Since the optimisation problem is not jointly convex in Z and D, sparse coding consists of378

performing two separate optimisations: (1) over coefficients zi for each training example xi with D379

fixed; and (2) over basis vectors D across the whole training set with Z fixed. Using an L1 sparsity380

penalty, sub-problem (1) reduces to solving an L1 regularised least squares problem which is convex381

in zi which can be solved using standard convex optimisation software such as CVX [62]. With a382

differentiable Ω(·) such as the log penalty, conjugate gradient methods can also be used. Sub-problem383

(2) reduces to a least squares problem with quadratic constraints which is convex in d, for which again384

there are standard methods available. Other approaches to solving this problem include Bayesian385

methods wherein the joint uncertainty over the dictionary elements and reconstruction coefficients is386

captured [63].387

Since the data is decomposed as a linear superposition of the dictionary elements, classifiers388

can use the reconstruction coefficients, Z, directly as features [63]. Since sparsity is imposed on the389

representation of the data, only a few bases will be ‘active’ for any given instance.390

3.3.3. Fixed Dictionaries391

It is worth noting that of course the sparse coding problem is a simpler optimisation problem if392

the dictionary is fixed rather than learnt. In this case, one can use dictionaries that are based on basis393

functions from a specific class, such as the Fourier basis or wavelet bases. Here we briefly introduce394

the Fourier basis and Gabor wavelet basis as described in [10].395

Fourier analysis represents any finite continuous energy function f (t) as a sum of sinusoidal
waves exp(iωt),

f (t) =
1

2π

∫ ∞

−∞
f̂ (ω) exp(iωt)dω. (6)
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Table 3. Example of the dyadic sampling scheme for a signal of length 128 and ∆ = 2.

j 2j 2− j N2−j q k
2 4 1/2 64 0:128 0:8
3 8 1/4 32 0:64 0:16
4 16 1/8 16 0:32 0:32
5 32 1/16 8 0:16 0:64
6 64 1/32 4 0:8 0:128

The more regular the function f (t) is, the faster the decay of the amplitude | f̂ (ω)| as ω increases. If
f (t) is defined only over an interval, e.g. [0, 1], the Fourier transform becomes a decomposition into
an orthonormal basis: {exp(i2πmt)}m∈Z of L2[0, 1]. If the signal is uniformly regular, then the Fourier
transform can represent the signal using very few nonzero coefficients. Hence this class of signal is
said to be sparse in the Fourier basis. The wavelet basis was introduced by Haar [64] as an alternative
way of decomposing signals into a set of coefficients on a basis. The Haar wavelet basis defines a
sparse representation of piecewise regular signals, and has therefore received much attention from the
image processing community. An orthonormal basis on L2 can be formed by dilating and translating
these atoms as follows, {

Ψj,n(t) =
1√
2j

ψ

(
t− 2jn

2j

)}
j,n∈Z2

(7)

The definition of a time-frequency dictionary Ψ = {ψγ}γ∈Γ is that it is composed of waveforms
of unit norm (‖ψγ‖2 = 1) which have a narrow spread in time (u) and frequency (σ2). Choice of the
dictionary Ψ should, if possible, be based on knowledge of properties of the signal. One of the most
common choices for a general class of real-world signals is the Gabor dictionary, as it can represent
a wide range of smooth signals. Gabor time-frequency atoms are scaled, translated and modulated
Gaussian functions g(t) [65]. Without loss of generality, discrete real Gabor atoms will be considered,
which are given by

gγ,φ(t) =
1
Z
· g
(

t− u
s

)
· cos(ξt + φ) (8)

where Z is a normalisation factor (to ensure that for each atom
∥∥gγ,φ

∥∥ = 1), γn = (sn, un, ξn) denotes396

the series of parameters of the functions of the dictionary, and g(t) = exp−πt2
is the Gaussian window.397

A sampling pattern is dyadic if the daughter wavelets are generated by dilating the mother
wavelet as in Equation 7 by 2j and translating it by k2j, i.e. s = 2j, u = k2j. Dyadic sampling is optimal
because the space variable is sampled at the Nyquist rate for any given frequency. The dictionary is
then defined as,

Ψj,∆ =
{

ψn = gγ,φ(t)
}

0≤q<∆N2−j ,0≤k<∆2j , (9)

where gγ,φ(t) is the discrete Gabor atom as defined in Equation (8). An example of this sampling398

scheme is given in Table 3 for a signal of length 128 and dilation factor ∆ = 2.399

3.3.4. Convolutional Sparse Coding400

The canonical approach to sparse coding intrinsically assumes independence between401

observations during learning. For many natural signals however, sparse coding is applied to “patches”402

of the signal, which violates this assumption (e.g. since data will generally not be aligned in phase).403

Convolutional Sparse Coding (CSC) explicitly models local interactions through the convolution404

operator [66], however the resulting optimisation problem is considerably more complex than405

traditional sparse coding. Fast CSC (FCSC) was introduced by [66], who used an optimisation approach406
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that exploits the separability of convolution bands across the frequency spectrum which resulted in an407

efficient dictionary learning algorithm. It was initially designed for two dimensional image patches,408

where the convolutions are therefore within the 2-dimensional space of the image, but the approach409

can be readily applied to lower or higher dimensional problems.410

The objective for convolutional sparse coding is

arg min
d,z

1
2

∥∥∥∥∥x−
K

∑
k=1

dk ? zk

∥∥∥∥∥
2

2

+ β
K

∑
k=1
‖zk‖1

s.t. ‖dk‖2
2 ≤ 1 ∀k = 1, . . . , K, (10)

where dk ∈ RM is the k-th filter, zk ∈ RD is the corresponding sparse feature map, and x ∈ RD−M+1 is411

an image.412

Recently, there have been attempts to use shift-invariant sparse coding to learn features for413

activity recognition [67]. In this work the authors used a shift invariant form of Non-negative Matrix414

Factorisation (NMF) [68], which is closely related to CSC, except that the signals are required to be415

non-negative. For NMF to work it was necessary to double the signal dimensions with negative copies,416

and then for classification the approach was to sum the activations over the temporal dimension of the417

frame, yielding the summed activations for each feature as a feature vector that is passed to the classifier418

(note that coefficients are non-negative). In this case, the algorithm was applied to raw (normalised)419

signals, which is of course dependent on the placement and orientation of the accelerometer.420

A related approach was taken by [69], using a sparse-coding framework for human activity421

recognition. In this case the authors used a clustering approach to group together sparse codes, rather422

than full CSC. In this case, only the magnitude of the accelerometer readings was used, which worked423

well for the range of activities they were analysing. The authors make the point that an advantage of424

sparse-coding type approaches is the ability to leverage unlabelled data to improve representation425

power.426

3.3.5. Classification using Sparse Codes427

For all of the sparse coding techniques above, the coefficients that are learnt on each signal become428

the features for the classification algorithm, as proposed by [32]. We note that there has been some429

work in unifying dictionary learning and classification in a single optimisation framework [70], which430

has the potential to learn bases that are simultaneously useful for reconstruction and classification, we431

will leave this as a possible avenue for future work.432

In theory, dictionaries learnt from the data as in Section 3.3.2 should be more tailored to the signals433

present within the data, and hence should be able to represent (and hence reconstruct) the signals with434

fewer active components. In addition, smaller dictionaries should be sufficient. Of course there is435

nothing in Equation (5) that enforces discriminative power in the coefficients. In our experiments we436

will consider only learnt dictionaries since the fixed dictionaries performance was very poor and are437

more expensive, and the performance of CSC was unstable.438

3.4. Classification Models439

We consider three classifiers in this work: Random Forest (RF), Logistic Regression (LR), and440

Multi-layer Perceptron (MLP). Although our datasets are sequential, we sill simplify our notation in441

this section and assume the data are iid.442

3.4.1. Notation443

Each observation is a sequence of length Nm and each position of the sequence is a D-vector,444

i.e. xm ∈ RNm×D. Given a target label space, Y = {1, 2, ..., Y}, consisting of Y values, every sequence445

has an associated target vector, ym ∈ YNm . A dataset then consists of M observation-target pairs,446
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D = {(xm, ym)
M
m=1}. For the m-th observation, its n-th position is selected with xm,n (‘tokens’) and the447

corresponding label for this position (‘tags’) is identified by ym,n.448

Concretely, taking activity recognition as an example, xm represents the data sequence of length449

Nm, whereas xm,n represents the n-th window of the sequence with the associated tag ym,n.450

3.4.2. Random Forest451

The RF algorithm is a popular and effective method for classification and regression problems.452

At a high level, a RF can be viewed as an ensemble of decision trees. The original formulation of453

a RF [71] implements each of the trees as a Classification or Regression Tree (CART) [72] and uses454

the Gini impurity measure as the splitting criteria. The Gini impurity measures the probability of an455

incorrect classification given the class distribution. Thus there is a direct relationship between the456

(im)purity of the split and the probability of an incorrect classification making it an effective splitting457

criterion. The subset of features each split has available to choose from is randomly selected (typically458 √
n, where n is the number of features) in a process referred to as ‘feature bagging’. Given a large459

number of trees in the RF this leads to correlation between any dominating features across the many460

trees in the forest. The data available to each tree is a bootstrap sample (with replacement) which helps461

avoid overfitting. In order to produce a prediction, each input is passed through all trees and their462

predictions aggregated, with the final prediction chosen through a majority vote.463

3.4.3. Logistic Regression464

LR is a discriminative probabilistic model. In general, given a weight vector w ∈ RD×K, LR465

models the probability distribution as466

p(y | x) =
exp{zy}

∑K
k=1 exp zk

(11)

where z = w · x ∈ RK. The parameters of this model (w) are optimised to minimise the negative log467

likelihood of the labels given the data. Many optimisation techniques can be used here, including468

Stochastic Gradient Descent (SGD), Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)469

algorithms etc. We use L-BFGS in our work. Regularisation is performed on the weight matrix.470

3.4.4. Multi-layer Perceptron471

Neural Networks (NNs) are a very popular non-linear classification technique that are based on472

cascading several nonlinear functions. These techniques are described in great detail in, e.g. , [73], and473

here we will discuss the selected architecture of the network.474

The architecture of the network (i.e. the number of layers, and number of hidden units per475

layer) can be selected to trade off computational complexity and feature accuracy. On highly476

resource-constrained devices, for example, the practitioner may target networks with little capacity.477

All experiments in this paper involve one hidden layer with 100 hidden units.478

Hence, with activation functions σl , the output of a two-layer NN is compactly written:479

f (X) = σ2 (σ1 (Xw1 + b1)w2 + b2) (12)

where σ1 is the activation function of the first layer (rectified unit) and σ2 is the activation function of480

the output layer (softmax). The network is optimised by maximum likelihood, and regularisation is481

imposed on the weights, w1 and w2, but not the biases.482
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Figure 1. In this figure we show how marginal inference is performed over node yn with CRF models,
where we have related the theoretical foundations of CRFs described in this section to a graphical
representation of a short sequence. Note, the CRF is an undirected graphical model, and the arrows
shown in this image indicate the direction of the passed messages when performing inference on yn.

3.4.5. CRF483

All models so far have made iid assumptions about the datapoints. Since activity recognition is by484

definition a sequential problem, we investigate the benefits of modelling the sequential nature of the485

data with CRFs.486

Conditional Random Fields (CRFs) [21,74] constitute a structured classification model of the487

distribution of ym conditional on xm. The most common form of CRF is the linear-chain CRF which488

are applied to sequential data, e.g. natural language, but more general CRFs can be learnt on trees and489

indeed arbitrary structures. In general the probability distribution over the n-th node is influenced by490

the neighbouring nodes with graphical models, and this influence is propagated over the structure491

using algorithms based on message passing [75]. In this section, we introduce the CRF, but refer the492

reader to other texts (e.g. [19,21,74]) for more detail.493

The general equation for estimating the probability of a sequence is given by:494

PCRF(ym|xm) =
1

ZCRF

Nm

∏
n=1

exp{λ>f(ym,n−1, ym,n, xm, n)} (13)

where Nm denotes the length of the m-th instance and n iterates over the sequence. The model requires495

specification of feature functions that are (often binary) functions of the current and previous labels,496

and (optionally) the sequence xm.497

We will use the vectors αn, βn, γn, ψn and matrices Ψn during inference in CRFs. Subscripts are498

used to denote the position along the sequence, e.g. αn is a vector that pertains to the n-th position of499

the sequence, and parentheses are used to specify an element in the vectors, e.g. the y-th value of the500

n-th alpha vector is given by αn(y). Matrices are indexed by two positions, and the (i, j)-th element of501

Ψn is specified by Ψn(i, j).502

In order to reduce the time complexity of inference, we describe a dynamic programming routine503

based on belief propagation here. We first calculate localised ‘beliefs’ about the target distributions,504

and these are called potentials. The accumulation of local potentials at node n is termed the ‘node505

potential’. This |Y|-vector where the y-th position is defined as ψn(y) = exp{∑J
j=1 λjfj(∅, y, x, n)},506

where fj is the j-th feature function. Similarly, the accumulation of local potentials at the n-th edge is507

termed the ‘edge potential’. This is a matrix of size |Y| × |Y| where the (u, v)-th element is given by508

Ψn(u, v) = exp{∑J
j=1 λjfj(u, v, x, n)}. Node potentials are depicted as the edges between observation509

and targets in Figure 1, while in the same figure, edge potentials are depicted by edges between pairs510

of target nodes.511

Given these potentials, we can apply the forward and backward algorithm on the CRFs chain. By512

defining the intermediate variables γn−1 = αn−1 �ψn−1, and δn+1 = βn+1 �ψn (where � denotes513

the element-wise product between vectors) the forward and backward vectors are recursively defined514

as:515
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αn = Ψ>n−1γn−1 (14)

βn = Ψnδn+1 (15)

with the base cases α1 = 1 and βN = 1. The un-normalised probability of the n-th position in the516

sequence can be calculated with517

P̂(Yn) = αn �ψn � βn. (16)

Finally, in order to convert this to a probability distribution, values from (16) must be normalised518

by computing the ‘partition function’. This is a real number, and may be calculated at any position519

n with ZCRF = ∑y′∈Y P̂(Yn = y′). The partition function is a universal normaliser on the sequence,520

and its value will be the same when computed at any position in the sequence. With this, we can now521

calculate the probability distribution on the n-th position522

P(Yn) =
P̂(Yn)
ZCRF

. (17)

In this work, we incorporate the methodology of [76] for our analysis of CRFs where unigram523

potentials of the CRF derive from the class-membership probability estimates of a base classifier.524

Intuitively, this technique will introduce significant contextual information to the CRF (since the525

decision boundary will not necessarily be linear) but additionally the model can propagate the localised526

beliefs along the whole sequence. Empirically, this approach has been reported to not lose predictive527

power but learning also converges at a significantly higher rate. This approach has not been used in528

activity recognition work previously, to the best of the author’s knowledge.529

Another technique that is popular in the activity recognition field for adding sequential530

dependence in classifiers involves using the predicted probabilities of the previous time step as531

additional features for the current time window. We do not consider this since the CRF described here532

offers a more principled approach for propagating belief and uncertainty.533

3.5. Experiments534

As explained in the previous section, three datasets are considered in our experiments: HAR,535

USCHAD, and PAMAP2. The primary contributions of this work derive from studying the classification536

performance of the LR, RF, and MLP classifiers over several different window length and sampling537

rate configurations.538

Our analysis first resamples the data to {5, 10, 20, 30, 40, 50} Hz. We illustrate the effect of539

resampling the data in Figure 2. In this figure we observe that the lower sampling rates tend to540

‘lose’ the high-frequency aspects of the accelerometer, as expected. Particularly, we highlight the almost541

total loss of peaks between 6 and 8 second period with the 5 Hz sampling frquency in Figure 2 on542

the x-channel. However, between 4 and 6 seconds, the integrity of the ‘peaks’ appears to be high,543

indicating inconsistent data representations at the different sampling rates. Window lengths of length544

1.5, 3.0, 4.5, and 6.0 seconds are considered for feature extraction. Three classes of feature are extracted:545

statistical [4], dictionary [63] and ECDF [27] features are extracted. We selected these three since they546

represent a diverse set of features that are both pre-specified and learnt from data.547

For every experimet described here, we perform cross validation for hyper parameter selection.548

We employ 5-fold corss validation on all classifiers over set of parameters:549

RF: Ensemble size: {10, 20, 40, 80, 160}; Max depth of tree: {2, 4, 6, 8, 10}.550

LR: L2 regulariser: {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}551
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Figure 2. The raw data (top) at 50 Hz, and resampled data at 40, 30, 20, 10, and 5 Hz. Notice that
the high-frequency aspects of the accelerometer data are removed with lower sampling frequencies.
Samples are marked with × symbols. The x, y and z axes are depicted in blue, orange and green
respectively.
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Figure 3. Error of estimated calibration parameters. Values at zero indicates perfect estimation.
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Figure 4. Calibrated accelerometer readings (upper) that were derived from raw (uncalibrated)
accelerometer values (lower). The intervals shaded in red were used to perform calibration.

MLP: L2 regulariser: {10−2, 10−1.5, 10−1, 10−0.5, 100, 10.5, 101, 101.5, 102} Empirically we found552

values outside of this range performed very poorly, so we concentrated our search space553

over a smaller interval than with LR.554

Finally, we consider the effect of incorporating structure into the classification procedure using555

the methods described by [76].556

4. Results and Discussion557

4.1. Validation of Calibration558

In Figure 3 we show the difference between the true and estimated offset and scale parameters559

for a synthetically generated dataset as function of the number of learning iterations. Convergence560

was determined when the norm of the gradient fell below an arbitrary small threshold (10−7), and we561

can see that the estimated parameters have converged to their true values within approximately 400562

iterations and that even after one iteration the estimated values were in a good approximation region.563

Convergence errors cannot be shown for the real datasets as the true parameters are not available.564

However, visual inspection of the norm of the accelerations show that good approximations are made565

(Figure 4 (top)), but that when using the parameters from one recording on another, the norm is offset566

from the 1 g position, see Figure 4 (bottom).567

4.2. Analysis of configurations568

Our analysis covers the following contexts: three datasets (HAR, USCHAD, PAMAP2), six classifiers569

(LR, MLP, RF; and these three classifiers chained together with CRFs), three classes of feature570

representation (statistical, dictionary-learnt, and ECDF), six sampling rates (5, 10, 20, 30, 40, and571

50 Hz), four window lengths (1.5, 3.0, 4.5, and 6 seconds). In total, this produces approximately 1 300572

results to discuss. We will structure our analysis of these results by first presenting the analysis for one573

particular dataset (HAR). We will then discuss inter- and intra-dataset analyses.574
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Figure 5. Visualisation of the classification performance on the HAR dataset for stat features (left),
dict features (middle) and ecdf features (right) over varying window lengths (rows) and sampling
rates (columns). Darker red colours indicate better performance.

4.3. LR performance on HAR575

Figure 5 shows the classification performance of LR on the HAR dataset. This figure illusatrates576

predictive accuracy over all sampling rates (rows), window lengths (columns), and features (stat577

features shown on left, dict features in middle, and ecdf features on the right). The colour of the578

subplot illustrates classification performance (0% is shown in blue, and 100% accuracy is shown in579

dark red). Since we will use this style of figure throughout this discussion, we adopt the following580

convention: f = 5 will indicate the column relating to a sampling rate of 5 Hz, w = 1.5 will relate to581

the row associated with a window length of 1.5 seconds, and w = 3, f = 10 corresponds to the element582

associated with a window length of 3 seconds and a sampling rate of 10 Hz.583

With the stat features (left column in Figure 5), we observe relatively consistent performance over584

all configurations. The performance at w = 1.5, f = 5 is the lowest of all configurations investigated by585

approximately 0.1. Intuitively, this performance gap makes sense: with such a low sampling rate many586

of the characteristics of the signal are no longer present (c.f. Figure 2), and this is further compounded587

by the short window. As the window length and sampling rate grow, we can observe a general trend588

of improving classification performance (with the maximal performance at ≈ 0.94). Interestingly,589

our results show that this performance can be achieved with the following configurations relatively590

low-valued w = 3, f = 20 and w = 4.5, f = 10. This is perhaps somewhat surprising since the data is591

significantly under-sampled here.592

The dict features produce test performance that is, overall, significantly worse than the stat593

features, with maximal performance of ≈ 0.88. We can also observe the general trend of improved594

results with increasing window length and sampling rate that we observed with the stat features. It is595

surprising that the dict features are not as performant as the stat or ecdf features, particularly since596

these features arise from an intuitive basis. We hypothesise that since these features are learnt from597

data itself, and since we used a well-known heuristic of specifying the regularisation at 1.2√
m that this598

heuristic is not optimal for this configuration. Additionally, the bases employed are not optimised for599

discrimination between classes. However, with 6 classes of approximately equal counts, a random600

classifier would achieve accuracy of ≈ 0.166, indicating that these features are representing the data601

and labels well.602

Finally, the figure on the right hand side of Figure 5 shows the classification performance of the603

ecdf features on the HAR dataset. Here, we observe classification performance that is very similar to604

that obtained by the stat features. This is a satisfactory result since the ecdf features are very simple605

and fast to extract from the raw data. This figure also demonstrates that classification performance606

increases with context (i.e. longer window lengths and higher sampling rates), and once again the607

performance seems to ‘saturate’ beyond w = 3, f = 20.608
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(a) LR-CRF classification performance over the three feature categories considered.
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(b) Difference between LR-CRF and LR classification performance. Red indicates LR-CRF outperforms the basic LR
model.

Figure 6. Classification performance obtained by LR-CRF on the HAR dataset.

4.4. LR-CRF performance on HAR609

Figure 6 shows the classification performance that is obtained when modelling the sequences with610

CRFs and with LR probability estimates as the node potentials. We will identify this pairing succinctly611

as ‘LR-CRF’, with corresponding parings with RF and MLP denoted as RF-CRF and MLP-CRF612

respectively. In Figure 6(a) the absolute performance is shown. By comparing the performance613

shown on this figure with that shown on Figure 5 (note the colour scale is shared between these two614

figures) we can see that in general there is an improvement on classification performance over most615

of the configurations. Indeed, introducing the CRF has lifted the minimal classification performance616

by ≈ 9% to over 90%. The difference between the LR-CRF and the basic LR models are depicted in617

Figure 6(b). In this figure, the red hues indicate that the LR-CRF model was more performant than the618

basic LR model, blue colours indicate superior performance by the basic LR model, and white colours619

specify that both classifiers perform comparably.620

This figure shows that in nearly all configurations investigated modelling the structure of the data621

improves classification performance. Interestingly, the impact of CRFs on classification accuracy is622

most dramatic at low sampling rates and small window lengths. For example, for each of the three623

feature sets considered, the largest increase of performance is obtained at w = 1.5, f = 5 with increases624

to performance of ≈ 7− 11%. This is an intuitive result since these are the settings with least context,625

and CRFs provide a mechanism for transfering context through chains. The incorporation of structured626

classifiers is known to positively impact classification performance in settings such as these [19].627

4.5. Overall impact of CRFs on predictive performance628

We summarise the improvement in classification performance in the box plots shown in Figure 7,629

and we can see here that the highest average improvement is obtained by the dict features where over630

70% of configurations receive over 5% improvement in accuracy.631

In the Figure 8 below we visualise the effect over all configurations. Results on HAR are shown632

on the top row, Results on PAMAP2 in the middle row, and USCHAD on the bottom row. The first633
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Figure 7. Improvement in classification accuracy obtained by incorporating structure on the
classification task with CRFs
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Figure 8. Box plots over changes to performance in accuracy when using CRF models to capture
sequential dynamics. Results on HAR are shown on the top row, Results on PAMAP2 in the middle
row, and USCHAD on the bottom row. The first column presents the results of LR-CRFs, the middle
column on MLP-CRFs and the final column on RF-CRFs.
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Figure 9. Mean aggregated change in performance when aggregated over datasets (Figure 9(a)) and
features (Figure 9(b)).

column presents the results of LR-CRFs, the middle column on MLP-CRFs and the final column on634

RF-CRFs.635

In general with the HAR and PAMAP2 datasets we observe improvements to performance on all636

features and all classifiers. The most pronounced average improvement is observed with RF on the637

PAMAP2 dataset with a median improvement of approximately 0.18, with a minimal improvement of638

0.1.639

Interestingly, the USCHAD, on average, does not benefit from the application of CRFs on the640

task, particularly with the RF classifier from which we report a large negative change in accuracy. It is641

difficult to explain this aspect of our results. We hypothesise that since the USCHAD dataset is small642

that our models are overfitting to the data, despite our extensive cross validation on hyperparameters.643

This is, perhaps, one weakness of using probability estimates as features in the CRF namely that the644

indicative bias of the CRF is strongly influenced by the beliefs of an independent classifier rather than645

being derived solely from the raw features themselves. However, one of the advantages of the model646

is that it permits us to trivially learn non-linear sequence models in a principled manner. We must also647

recognise the general advantages of using a sequential model on this data, however, as indicated in648

Figure 8.649

Finally, we illustrate another visualisation of the contributions of the CRFs in Figure 9. Here we650

perform aggregation over datasets (Figure 9(a)) and features (Figure 9(b)). In effect these figures are651

the ‘marginal’ distributions over the datasets and features in Figures 11 to 13.652

Figure 9(a) shows that incorporating a CRF on the datasets for the HAR and PAMAP2 datasets653

results in a net improvement in classification performance over all window and sampling rate654

configurations, with more moderate improvements shown on the USCHAD dataset overall. In general,655

the dict features make the largest contributions to this figure. There is also a general tendency for656

more improvement on the configurations with less context, which is a natural effect of propagating657

localised beliefs through the CRF structure. As reported earlier, the USCHAD dataset reports negligible658

improvements on average (with approximately 2% improvement on average). In Figure 9(b), we can659

see that the dict features benefit most from the introduction of sequential context.660
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4.6. Comparison between datasets and classifiers661

In the appendix we present the complete set of results obtained for this work that we omit from662

the main text owing to their size. Figure 11 shows the full set of results of the HAR dataset, Figure 12663

shows the full results for the PAMAP2 dataset, and Figure 13 shows the full results for the USCHAD664

dataset. In all caseses the first subfigure corresponds to the results obtained from LR, the middle665

subfigure derives from MLP classifiers, and the final subfigure presents the results obtained from a RF.666

On average, we can see that the HAR dataset receives the highest overall performance, particularly667

with the stat and ecdf features where the performance is often over 0.9. Since the performance of668

this dataset is consistently high, we speculate that the dataset may present less of a challenge from a669

classification perspective than the other two datasets that we consider. Several aspects will contribute670

to this. Firstly, in this dataset the activities were recorded in a very controlled laboratory environment,671

and the manner in which some of the activities were recorded is far from natural (e.g. people will rarely672

walk a staircase for a period of minutes). Hence, while this dataset provides a powerful resource for673

the analysis of common activities, it is difficult to know how models learnt on this data will generalise674

in naturalistic settings.675

Other datasets (e.g. the SPHERE challenge [45] and Opportunity [54]) capture data and annotations676

in less controlled settings, but do not yet capture the aspects of activity required to be considered677

naturalistic. However, the SPHERE project is endeavouring to capture and release these datasets678

[15,16]. One of the challenges that will need to be addressed in this setting is that of acquiring labelled679

data, since the cohort that contribute to the data collection campaigns occur in the homes of the680

participants. However, un- and semi-supervised techniques [77,78] and others involving active and681

transfer learning [79–81] can be utilised in these settings.682

Both PAMAP2 and USCHAD appear to be much more challenging to classify. For one thing, the683

average classification performance is much less than HAR, and often there is significantly more variation684

across configuration contexts, particularly with RFs. Interestingly, with these datasets, it seems that685

the highest performance is often obtained with the longest window lengths (i.e. w = 6.0). Although686

this is the longest window that we considered, we did not include longer windows (e.g. w = 7.5 or687

w = 9.0) in our analysis since we believed that in many real settings, some activities will not last for688

longer than this (e.g. walking between rooms in a home environment).689

A unifying result that is common to most experimental results is that the features with the least690

context (i.e. w = 1.5, f = 5) tend to achieve the lowest predictive accuracy on the test set. Often, this691

trait can be compensated for by increasing the window length, but with the USCHAD dataset (Figure 13)692

it is possible to see that with stat and ecdf features, only small improvements are achieved by693

increasing the window length for f = 5. In all of the settings of low context, significant improvements694

are made by introducing a model over the sequence.695

4.7. Analysis of errors696

In general, the misclassifications achieved by the classifiers are ‘reasonable.’ As a concrete example,697

with the HAR dataset we show the contingency tables on the test set over the six activities (walking,698

walking upstairs, walking downstairs, sitting, standing, lying). The contingency tables from LR and699

LR+CRF are shown in Figures 10(a) and 10(b) respectively. In these figures the rows indicate the700

ground truth and the columns the predictions, i.e. element (i, j) indicates that label i is predicted as j.701

The contingency table of a perfect classifier will have only zero-valued off-diagonal components.702

We can broadly categorise these activities as ‘moving’ (consisting of walking, walking upstairs703

and walking downstairs) and ‘sedentary’ (sitting, standing and lying). Both contingency tables704

considered demonstrate a strong ability to separate between the activity categories, but we can see that705

incorporating the CRF has corrected some of the errors that occurred when using the iid classification706

model.707

Distinguishing between the stationary activities is determined to be a harder classification task708

in our evaluation (particularly between sitting and standing). It is interesting to see that in the iid709
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(b) Contingency table for LR+CRF

Figure 10. Contingency tables of activities recognised on the HAR dataset with LR (Figure 10(a)) and
LR+CRF (Figure 10(b)) with a window length of 3 seconds, and a sampling rate of 20 Hz. Rows indiate
the ground truth and columns indicate predictions.

setting, lying can be confused as walking upstairs and walking downstairs since little is in common710

between these two activities. We believe this to be because when walking up and down stairs the711

accelerometer will be horizontal on the banister, which is a similar pose that would occur when lying712

down. However, we can also observe that by introducing the CRF to the problem that these errors713

have been corrected, based on the incorporation of neighbouring context.714

5. Conclusions715

In this paper we have examined state-of-the-art methods in activity recognition methods using716

accelerometers. Using three publicly available data-sets, we have attempted to answer some open717

questions in the literature: Should we be using structured models, or is it sufficient to consider the718

data as if it were iid? Are the approaches taken so far genuinely robust across different contexts across719

a wide variety of activities that summarise activities of daily living? What are the most appropriate720

features and how robust are these across activities? What is the minimum sampling rate required to721

get good classification performance?722

Our results provide evidence for answering many of the questions posed at the beginning of723

this paper. First, we have noted that incorporating lower sampling frequencies does not worsen724

classification performance. That low sampling frequencies do not deteriorate classification is of725

particular interest for machine learning and sensor researchers. We also conclude that the use of longer726

feature windows for feature extraction can help the classification, as such configurations may capture a727

greater proportion of the temporal context of the activities. This context can alternatively be captured728

by introducing structured models, and we showed examples where structured models are preferable729

to unstructured models.730

One of the principal contributions of this work is that, somewhat surprisingly, that many disparate731

experimental configurations yield comparable predictive performance on testing data. We understand732

these results arising from the experimental setup directly and indirectly defining a pathway for733

context to be delivered to the classifier, and that, in some settings, certain configurations are more734

optimal than alternatives Interestingly, our experiments show that regardless of how context arrives735

to a classifier (whether via high sampling rate, wide feature windows or by modelling sequences)736
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competitive performance can be achieved. In particular we summarise our analysis with the following737

observations:738

• Context can be delivered to classification models by increasing the sampling rate, selecting wide739

feature windows for feature extraction, modelling the temporal dependence between features.740

• Classification performance tends to improve when these configurations are independently741

‘increased’ (i.e. more context introduced).742

• There tends to be a performance plateau for any given dataset (i.e. maximal performance) and743

our results indicate this can be achieved on several device, feature and classifier configurations.744

With these observations in mind, our recommendations are that practitioners that use low745

sampling rates (e.g. in Internet of Things (IoT) settings) utilise sequential classifiers in prediction.746

On less constrained data acquisition contexts, however, there is more freedom for the practitioner747

to specify their pipeline. However, given the consistency of our empirical evaluation we would still748

recommend incorporating sequential information on the task in general.749

Additionally, we conclude that since most accelerometer-based activity recognition datasets have750

been collected in controlled lab environments it is difficult to estimate performance of these methods751

in the wild. Therefore there is a pressing need for naturalistic datasets, but several challenges are752

impeding the collection and release of naturalistic activity recognition datasets.753

Future work will include deeper analysis into the definition and explicit specification of the754

most important features for activity recognition, particularly in natural settings. This will include755

the incorporation of fully Bayesian models in where both the means and variances of the posterior756

distribution will be informative towards this goal, e.g. Gaussian Process models using Automatic757

Relevance Determination (ARD) [82]. The introduction of such methods will reduce the risk of758

overfitting, but Bayesian models can naturally be adapted to hierarchical models which can naturally759

lead to transfer learning frameworks [83]. All future experiments will be validated against these760

datasets and others.761
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Appendix945

The complete set of results are provided in Figure 11, Figure 12, and Figure 13.946

5 10 20 30 40 50
fs

1.
5

3.
0

4.
5

6.
0

w
in

_l
en

0.85 0.91 0.93 0.93 0.92 0.93

0.89 0.93 0.94 0.94 0.93 0.93

0.91 0.94 0.94 0.94 0.94 0.93

0.92 0.94 0.94 0.94 0.94 0.94

LR with "stat" features on HAR

5 10 20 30 40 50
fs

1.
5

3.
0

4.
5

6.
0

w
in

_l
en

0.81 0.85 0.84 0.84 0.84 0.85

0.84 0.86 0.86 0.86 0.86 0.86

0.83 0.86 0.87 0.85 0.87 0.86

0.85 0.88 0.88 0.87 0.87 0.86

LR with "dict" features on HAR

5 10 20 30 40 50
fs

1.
5

3.
0

4.
5

6.
0

w
in

_l
en

0.85 0.9 0.93 0.93 0.93 0.93

0.88 0.92 0.93 0.94 0.94 0.93

0.9 0.91 0.94 0.94 0.94 0.94

0.9 0.92 0.94 0.94 0.94 0.94

LR with "ecdf" features on HAR

(a) LR

5 10 20 30 40 50
fs

1.
5

3.
0

4.
5

6.
0

w
in

_l
en

0.85 0.86 0.91 0.93 0.92 0.93

0.89 0.93 0.89 0.93 0.92 0.9

0.9 0.94 0.92 0.92 0.92 0.92

0.9 0.93 0.94 0.9 0.93 0.93

MLP with "stat" features on HAR

5 10 20 30 40 50
fs

1.
5

3.
0

4.
5

6.
0

w
in

_l
en

0.78 0.83 0.83 0.86 0.84 0.85

0.81 0.84 0.85 0.86 0.85 0.85

0.8 0.83 0.86 0.84 0.83 0.8

0.82 0.86 0.87 0.82 0.81 0.71

MLP with "dict" features on HAR

5 10 20 30 40 50
fs

1.
5

3.
0

4.
5

6.
0

w
in

_l
en

0.83 0.89 0.93 0.93 0.93 0.93

0.86 0.91 0.93 0.94 0.94 0.95

0.87 0.93 0.95 0.95 0.94 0.95

0.88 0.92 0.95 0.95 0.96 0.95

MLP with "ecdf" features on HAR

(b) MLP

5 10 20 30 40 50
fs

1.
5

3.
0

4.
5

6.
0

w
in

_l
en

0.78 0.88 0.9 0.9 0.91 0.91

0.83 0.9 0.91 0.91 0.92 0.92

0.85 0.91 0.92 0.92 0.92 0.92

0.89 0.91 0.92 0.91 0.92 0.92

RF with "stat" features on HAR

5 10 20 30 40 50
fs

1.
5

3.
0

4.
5

6.
0

w
in

_l
en

0.7 0.69 0.75 0.76 0.72 0.76

0.68 0.73 0.75 0.74 0.74 0.78

0.68 0.71 0.76 0.78 0.79 0.79

0.68 0.68 0.74 0.77 0.82 0.79

RF with "dict" features on HAR

5 10 20 30 40 50
fs

1.
5

3.
0

4.
5

6.
0

w
in

_l
en

0.76 0.79 0.84 0.85 0.86 0.87

0.78 0.81 0.86 0.87 0.88 0.88

0.79 0.82 0.88 0.89 0.89 0.89

0.79 0.84 0.89 0.9 0.9 0.9

RF with "ecdf" features on HAR

(c) RF

Figure 11. Classification performance on the HAR dataset with all iid feature configurations
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Figure 12. Classification performance on the PAMAP2 dataset with all iid feature configurations
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Figure 13. Classification performance on the USCHAD dataset with all iid feature configurations
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