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1 Abstract: This paper serves a survey and empirical evaluation of the state-of-the-art in activity
= recognition methods using accelerometers. We examine research that has focused on the selection
s of activities, the features that are extracted from the accelerometer data, the segmentation of the
« time-series data, the locations of accelerometers, the selection and configuration trade-offs, the
s test/retest reliability, and the generalisation performance. Furthermore, we study these questions
s  from an experimental platform and show, somewhat surprisingly, that many disparate experimental
»  configurations yield comparable predictive performance on testing data. Our understanding of these
s  results is that the experimental setup directly and indirectly defines a pathway for context to be
s delivered to the classifier, and that, in some settings, certain configurations are more optimal than
1o alternatives. We conclude by identifying how the main results of this work can be used in practice,
1 specifically in experimental configurations in challenging experimental conditions.

1= Keywords: activities of daily living; activity recognition; accelerometers; machine learning; sensors

s 1. Introduction

"

4 In this paper we are concerned with accelerometer-based Activity Recognition (AR). Firstly we
s need to clarify the difference between activity tracking and activity recognition: whereas the former
1s is only concerned with estimating general levels of activity (e.g. estimating calorie consumption or
17 monitoring (non-)sedentary behaviour [1]), the latter is attempting to discern the actual activities
s occurring. It is the latter of these which will be examined here. Tri-axial accelerometers provide a
1o low-power and high-fidelity measurement of force along the x, y, and z directions, and thus provide
20 a view into the movement of the person wearing the device. Although there is significant potential
a1 for accurately predicting activities of daily living with accelerometers, many open problems exist
22 due to the sheer volume of reasonable configurations available. For example, accelerometers may be
= configured with specific sampling rates, sample resolution and accelerometer range, features can be
2 extracted from windows of any size, and the selection of the ultimate data analysis and classification
25 pipeline is also non-trivial. All configurations can have an impact on the predictive performance of an
26 AR classifier, and so these parameters must be chosen with care.

27 This study is mostly focused specifically on body-worn accelerometers, although there has been
2s  recent interest in using mobile phone accelerometers for activity recognition [2-5]. AR can benefit
20 from other on-body sensors, including gyroscopes (that measure angular rotation) and magnetometer
3o sensors (that measure orientation with respect to the magnetic poles). Since these sensors typically
a1 consume several orders of magnitude more power than accelerometers, we do not consider these here.
sz Note also that although outside the scope of this study, there is recent research in the area of Activities of

=
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ss  Daily Living (ADL) recognition using other types of sensor, such as Red/Green/Blue-Depth (RGB-D)
3a  sensors [6] or other environmental sensors [7], or the fusion thereof [8].

35 In this paper we address some of the open questions in the accelerometer-based AR, and
ss particularly focus both on a comprehensive summary of the field and also an extensive experimental
sz evaluation of possible configurations. Therefore, the rest of the paper is structured as follows: We
s summarise the recent research from the field and identify some open questions in Section 2. In
3o Section 4 we address some of the open questions from Section 2 and present our main results with
a0 the classification models, feature representations and configurations that were described in Section 3.
a1 Finally, in Section 5 we conclude our main results.

«2 2. Summary of Research Directions and Open Questions

a3 It is natural to consider the use of accelerometers for activity recognition, since it is clear that
s certain activities will have clear movement patterns for different parts of the body, whilst the sensors
« are relatively low-cost, low-power, and have wide user acceptance [9]. However there are certain
s distinct issues that need to be addressed:

a7 e What activities are we interested in? (Section 2.1)

a8 o Are structured models (that model the sequential nature of the data) required for classification?
40 (Section 2.2)

50 e What are the relevant features in the accelerometer data that are useful for prediction?
51 (Section 2.3)

52 o How is the time series segmented? (Section 2.4)

53 e What are the optimal locations of accelerometers for the recognition of various activities?
54 (Section 25)

55 o What are the trade-offs when selecting and configuring the accelerometers (e.g. sampling rate)?
56 (Section 2.6)

57 e How robust are the predictions within an individual, and across individuals and sensor
58 placements? (Section 2.7)

50 These issues are shared with many other settings where Machine Learning (ML) is applied

e to Digital Signal Processing (DSP), and as such this is a fairly mature research area [10]. More
a1 details regarding the specific questions we will be answering are given in Section 3. We note
sz that whilst research has often focused on which ML algorithm performs best for the given dataset,
es  we will assume instead here that virtually any state-of-the-art ML algorithm (e.g. kernel Support
es Vector Machines (SVMs) [11], Decision Trees [12], Bayesian classifiers [13]) can be made to perform
es equivalently given the appropriate feature set. Therefore, we employ simpler algorithms in order to
s increase our understanding of the problem.

o7 It should be noted that vastly different accuracies are reported depending on the activity examined
es (e.g. a range of ~ 41% to =~ 97% in a study by [14]) and one should be aware that accelerometers
e may not be appropriate for some activities. Further to this, the positioning of sensors also plays
7 an important role, and it is likely that this will be a limiting factor for many applications, since
= the positioning of sensors is often largely driven by user acceptance rather than optimality of ADL
72 recognition performance [9]. It is worth mentioning here, however, that in some settings, such as in
73 the scenario described in the Sensor Platform for HEalthcare in Residential Environment (SPHERE)
za project [15-17], we may not limited to the use of accelerometers alone, and other sensor modalities may
7s be more appropriate for the activities that are hard to classify using (e.g. wrist-worn) accelerometers.

76 2.1. Activities

77 The first work to investigate performance of recognition algorithms with multiple, wire-free
7e accelerometers on a large set (20) of activities using datasets annotated by the subjects themselves was
7o by [14]. Another study by [18] examined eight activities: the first six from [14], as well as climbing
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Table 1. Activities found ADL studies using accelerometers.

1. Walking 24. Kneeling 47. Queuing in line
2. Ascending stairs 25. Running 48. Dusting

3. Descending stairs 26. Sitting drinking coffee 49. Ironing

4. Sitting 27. Eating breakfast 50. Vacuuming

5. Standing 28. Eating lunch 51. Brooming

6. Lying down 29. Eating dinner 52. Making the bed
7. Working at computer 30. Sitting talking on phone 53. Mopping

8. Walking and talking 31. Using toilet 54. Window cleaning
9. Standing and talking 32. Walking carrying object 55. Watering plant
10. Sleeping 33. Washing dishes 56. Setting table

11. Eating 34. Picking up canteen food 57. Stretching

12. Personal care 35. Lying using computer 58. Scrubbing

13. Studying 36. Wiping whiteboard 59. Folding laundry
14. Household work 37. Talking at whiteboard 60. Riding elevator
15. Socialising 38. Making fire for barbecue 61. Strength-training
16. Sports 39. Fanning barbecue 62. Riding escalator
17. Hobbies 40. Washing hands 63. Sit-ups

18. Mass media 41. Setting the table 64. Walking left

19. Travelling 42. Watching TV 65. Walking right
20. Cycling 43. Making coffee 66. Jumping

21. Pushing shopping cart 44. Attending presentation 67. Nordic walking
22. Driving car 45. Standing eating 68. Playing soccer
23. Brushing teeth 46. Standing drinking coffee 69. Rope jumping

30f32

s down stairs, and sit-ups. Table 1 shows the activities that we have identified in the literature while
a1 completing this review. Note that some in some sense encompass others (e.g. “eating lunch” is a subset
=2 of “eating”).

83 Since each study defines a different set of activities, and indeed how certain activities are defined,
s« it makes it somewhat difficult to compare the absolute classification results between studies and hence
es evaluate the different methodologies taken by researchers. In a given context, one might be interested
e in for example ADL for health-related purposes (c.f. the SPHERE project [15]), which would provide a
ez specific driver for which activities are selected.

ss  2.2. Structured vs. Unstructured Models

80 When performing classification on sequential data, it is common to ignore the sequential nature

oo of the data and instead treat the data as if it were “independently and identically distributed” (iid),

o1 and subsequently use a standard ML algorithm that is designed for 7id data. Intuitively, we might

.2 imagine that the strength of the temporal dependence in the sequence will determine how effective

o3 this approximation is, and this will in turn depend on how the data is pre-processed (i.e. is raw

s« data presented to the classifier, or are features instead computed from the time series?). It has been

os shown [19] that under certain conditions structured models (e.g. Hidden Markov Models (HMMs)

96 [20] or Conditional Random Fields (CRFs) [21]) and unstructured models (e.g. SVMs [11]) can yield

oz equivalent predictive performance on sequential tasks, whilst unstructured models are also typically

ss much cheaper to compute.

%0 CRFs have been successfully employed for activity recognition in a smart-home environment [22],
10 which although using environmental sensors rather than body-worn sensors would appear to have the
101 same temporal characteristics. An approach based on semi-Markov CRFs that allows for overlapping
102 activities was introduced by [23], whose results indicated that the proposed approach worked well
103 even for complicated (higher-level) activities such eating and driving a car. The average precision and
s recall were both over 85%, higher than were obtained by using HMMs or Topic Models (TMs).
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105 The theoretical analysis in [19] related the excess risk incurred by unstructured models to the rate
1s  Of decay of correlations within the sequence. It would therefore be advisable to perform the a-priori
17 procedures outlined in [19] to determine whether activity recognition from accelerometer data, using
10e  the various types of feature construction discussed in Section 2.3, is a setting that requires structured
100 models or not.

110 2.3. Feature Extraction

111 Rather than attempt to classify every single data point (at e.g. 50Hz sampling rate), it makes sense
12 to compute features of the data that are based on some kind of temporal window. This reduces the
us  computational burden of the classification algorithms, reduces the effects of noise, and reduces the
us temporal dependence of subsequent examples, so that they can be treated as if they were iid. In fact,
us  such temporal dependence still exists, but this is mostly ignored in the literature - c.f. the discussion in
us  Section 2.2. There is a trade-off here: the longer the window length, the more these positive benefits
ur are realised; however if the window length becomes too large, the probability that a given window
us contains more than one activity is increased, the delay before a classification output can be generated
1o is increased, and the number of training examples for the classifier will also be reduced.

120 In both [14] and [18], feature extraction based on windows with 50% overlap were used: [14] used
121 window sizes of 512 samples with 256 samples of overlap at a sampling rate of 76.25Hz, equating to a
122 window length of 6.7 seconds; [18] used window sizes of 256 samples with 128 samples of overlap at a
123 sampling rate of 50Hz, equating to a window length of 5.12 seconds. Typically features are computed
12¢ in each of the accelerometer directions independently, although in some cases features that combine
125 the axes are also used.

126 Typical features can be split into two types: time domain features such as the mean, standard
127 deviation, and correlation within the window; frequency domain features that are gathered after
12 computing a Fast Fourier Transform (FFT) over the window. The frequency domain features include
120 entropy, energy, and coherence (correlation in the frequency domain). Using a short window length
130 enables near real-time inference of the user’s current activity and ensures the detection can rapidly
11 adapt to changes.

132 According to [24], mid-sized time windows (from 5 to 7 seconds long) perform best from a range
133 of windows from 1 to 15 seconds for wrist-placed accelerometers. The results are slightly different for
13 other accelerometer placements, but the trend of mid-size windows performing best holds [24].

135 Not all features are equally useful in discriminating activities. Feature selection methods such
136 as filter, wrapper, or embedded selection [25] can be applied to reduce the number of features. For
13z example, [26] reports on applying Relief-F, a filter-based approach, to select accelerometer features for
13e  activity recognition. Alternatively, methods such as Principal Component Analysis (PCA) are used to
13s  map the original features into a lower dimensional subspace with mutually uncorrelated components.
120 Reducing the number of features significantly reduces the computational effort of the classification
11 process [24].

142 A recent study showed on a variety of datasets that extremely simple histogram-like features
13 [27] can still achieve good recognition performance. It would be interesting to test these features
12a  more comprehensively against other feature types mentioned above. The statistical features that
s were extracted were comprehensive, but many the set of features widely adopted by the community
s (e.g. [27]) were omitted.

147 Using only simple features has the appealing property that the computational burden is extremely
1ee  low, which brings in the possibility of performing low-power feature extraction on the sensing device
140 before transmission. This idea was investigated in depth in [28], where the authors presented a
10 comparative performance evaluation study of a large number of features from acceleration data
11 computed on embedded hardware platforms. The features were evaluated in the dimensions of cost
12 and accuracy, and the paper concluded that simple time domain features computed in fixed-point
153 arithmetic have the best cost / accuracy trade-off. The results showed that computing and transmitting
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1s¢  a few of these time-domain features instead to sending the full acceleration data allows to reduce
155 energy consumption by an order of magnitude, while still achieving acceptable accuracy.

156 Recently [29,30] examined the possibility of learning features automatically. Feature learning
157 is a well-studied approach for static data (e.g. object recognition in computer vision). In contrast to
158 heuristic feature design, where domain specific expert knowledge is exploited to manually design
10 features such as described above, the goal is to automatically discover meaningful representations
10 Of data. This is usually done by optimising an objective function that captures the appropriateness
161 Of the features, such as by energy minimisation or so-called “deep learning” (see [31] for a review)
162 Building on this, [32] developed sparse-coding framework for activity recognition exploits unlabelled
163 sample data, whilst learning meaningful sparse feature representations. The authors give results
1ee On a benchmark dataset showing that their feature learning approach outperforms state-of-the-art
1es approaches to analysing ADL, and claim that their approach will generalise well (see Section 2.7 for
166 further discussion of this).

167 Finally, an interesting approach using Bayesian non-parametric methods was taken by [33], in
1es  which they employed an Hierarchical Dirichlet Process (HDP) model [34] (a form of TM) to infer
16s  physical activity levels from the raw accelerometer data, and used the extracted mixture proportions
170 as features to perform the multi-label activity classification. They then showed that the correlation
i1 between inferred physical activity levels to the users’ daily routine was better than when using
12 FFT-based features. This is similar in nature to an earlier study by [35], who used an Expectation
173 Maximisation (EM)-based clustering algorithm to generate features for their classifier which they used
174 to recognise 9 sporting activities, and reported a ~ 5% improvement over a standard classification
17s  approach.

we  2.4. Segmentation

177 Explicit segmentation of the sensor data stream is in itself is a non-trivial problem, and approaches
s can roughly be partitioned into methods that rely on a sliding window [36], and probabilistic methods
170 based on HMMs (e.g. [37]). The goal of the segmentation problem is to infer a hidden state at each
180 time, as well as the parameters describing the emission distribution associated with each hidden state.
;1 Typically in the segmentation problem self-transition probabilities among states are assumed to be high,
12 such that the system remains in each state for non-negligible time. More robust parameter-learning
13 methods involve placing HDP priors over the HMM transition matrix [34].

184 Typically the approaches taken to activity recognition based on accelerometer data have taken
s the approach described earlier of [14,18], extracting small windows of consecutive sensor readings
1 from the continuous sensor data stream. It has been claimed by [29] that this circumvents the need for
167 explicit segmentation. On the basis of the discussion in Section 2.2, we would argue that this is only
s true if the window length is long enough so that the dynamics of the system (i.e. the rate of decay in
180 the auto-correlation) are accurately captured, and that rigorous analysis of this is yet to be performed.

1o 2.5. Positioning of Sensors

101 Many positions for the placement of accelerometers have been considered, including: 1) hip (belt);
102 2) wrist; 3) upper arm; 4) ankle; 5) thigh; 6) chest/trunk; 7) armpit; 8) trouser pocket; 9) shirt pocket;
103 10) necklace.

104 The results of [14], which considered locations 1-5 of the above, suggested that multiple
105 accelerometers aided in recognition, since conjunctions between acceleration feature values at different
106 sites were useful for discriminating many activities. However they also found that with just two biaxial
17 accelerometers — thigh and wrist — the recognition performance dropped only slightly.
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108 In another study [38], which considered locations 1, 2, 8, 9, and 10 of the above 1 it was found
100 that any of the positions were good for detecting walking, standing, sitting and running. Ascending
200 and descending the stairs was difficult to distinguish from walking in all positions, since the classifier
201 was trained for multiple persons. Their general conclusion was that the wrist performed best overall
202 because the feature set was optimised for the wrist position.

203 As there are numerous placement locations on the body another questions arises; will activity
20 Tecognition benefit from taking into account data from different on-body locations? In [39] a study
20 was performed to determine if a model trained on the combined on-body locations performed better
206 than a model that is aware of the location of the sensor. They report that classification models aware of
20z the on-body location perform better than location independent models indicating that data collected
20e  from other on-body locations may not be beneficial if the sensor location is known or fixed (as in the
200 case of wrist-worn wearables).

210 Again we should stress that the optimal positioning of a sensor will also be driven by user
2 acceptance, as well as by the resultant classification accuracy. A meta-analysis of user preferences in
212 the design of wearables indicated that they would like to wear the sensor on the wrist, followed in
213 descending order by the trunk, belt, ankle and finally the armpit [9].

za 2.6, Accelerometer Selection and Configuration

215 Digital accelerometers are configurable, allowing their users to tailor the raw data generation
zs  to the needs of their application. Different configuration options include the number of axes, the
z1z  range of the acceleration, the resolution of the analog-to-digital converter (ADC), and the sampling
zs  frequency. Looking in to the literature, it appears to be no consensus in the research community on
210 what is the best choice for these configuration parameters for given types of activities. For instance,
220 in the literature that is reviewed in this paper, summarised in Table 2, we see the use of both biaxial
=z and triaxial accelerometers; sensors with a range of acceleration from +2g to £16g; and sampling
222 frequencies that range from 1 to 100 Hz. In several occasions, these configuration parameters are
223 often omitted or provided without justification. Moreover, little interest is shown to the energy
22 consumption of the acceleration sensors. Whilst energy consumption is not a challenge when data is
225 collected in controlled environments, it constitutes a major challenge when data is collected in natural
226 environments, particularly when the duration of the experiment exceeds the battery lifetime of the
227 SeNsor, as it can lead to loss of blocks of raw data [40]. However, low power accelerometers consume
226 several orders of magnitude less power than low power gyroscopes. For example, the SPW-2 wearable
220 sensor [41] employs the ADXL362 accelerometer and the LSM6DS0 gyroscope; ADXL362 consumes
230 approximately 8uW at 50 Hz while LSM6DS0 consumes approximately 2.3mW at 59.5 Hz.

231 Digital accelerometers incorporate an ADC. The resolution of the raw samples depends on the
232 configuration of these parameters. The size of each sample is defined by the bit-resolution n of the
23 ADC, (n = 8, 12 and 16 bits are typical). The resolution of the measurement also depends on the
2sa  maximum acceleration range of the sensor (R) and is derived by 2|R|/2". Thus, this configuration
235 parameters control a trade-off between being able to sense high acceleration and the resolution of the
236 measurements. The sampling frequency, the bit-resolution, along with the number of axes, also control
237 the amount of data that is produced. Regardless of whether the raw data is transmitted wirelessly to
23e  the infrastructure or stored to a local flash memory, energy consumption scales with the amount of
239 produced data. Indeed, different configurations of the acceleration sensor can make the battery lifetime
220  Of the wearable sensor last from few days to few years [41]. Therefore, in cases of long experiments
2a Where battery lifetime is a concern, accelerometers should not use higher resolution and sampling
22 frequency than necessary.

1 They also considered placement in a bag, although this is no longer “body worn”.
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243 In [38], the authors investigate whether the high frequency information in the signal is relevant to
2as  the classification problem, and if not what level of down-sampling can be applied without affecting
a5 classification performance. In particular, the sampling frequency of 50 Hz was down-sampled to lower
s frequencies (without a low-pass filter) from 1 to 30 Hz. Accuracy was seen to increase with higher
2z sampling rates, stabilising between 15-20 Hz, and only improved marginally above this. However
2es it should be noted that this was a biaxial rather than triaxial accelerometer, and that a fairly limited
200 subset of features (no spectral features) were used, so it is difficult to draw a solid conclusion from this
20 single study. More recent works also demonstrate that simple classification tasks can be effectively
=1 conducted at very low sampling frequency and resolution, increasing the battery lifetime of wearable
22 sensors by more than an order of magnitude [42]. Khan et al. [43] performed a comprehensive study
23 on optimising the sampling frequency of accelerometers in the context of human activity recognition.
2sa Their work concludes that the sampling rates that are used in the literature are up to 57% higher than
25 what is needed, leading to the waste of precious resources.

26 2.7. Generalisation Performance

257 In [18], trained classification algorithms from data collected in four different settings are assessed
2¢  in the following ways:

250 1. A single subject over different days, mixed together and cross-validated.

260 2. Multiple subjects over different days, mixed together and cross-validated.

261 3. A single subject on one day used as training data, and data collected for the same subject on
262 another day used as testing data.

263 4. One subject for one day used as training data, and data collected on another subject on another
264 day used as testing data.

2es  These aim to target test/retest reliability (for single and multiple subjects), within subjects and between
266 subjects generalisation performance respectively. The authors showed that using Fourier features as
207 described in Section 2.3 and off-the-shelf classifiers, they were able to achieve near perfect accuracy
28 (> 99%) in settings 1 and 2, =~ 90% accuracy in setting 3, and only ~ 65% accuracy in setting 4.

260 These results were corroborated by those of [14], which showed that although some activities
270 are recognised well with subject-independent training data, others appear to require subject-specific
xn  training data (such as “stretching” and “riding an elevator” - see Section 2.1).

272 Another issue is that of laboratory versus naturalistic settings. An early study [44] reported an
23 overall accuracy of 95.8% for data collected in a laboratory setting but recognition rates dropped to
z7a 66.7% for data collected in naturalistic settings, which demonstrated that the performance of algorithms
25 tested only on laboratory data (or data acquired from the experimenters themselves) may suffer when
276 tested on data collected under less-controlled (i.e. naturalistic) circumstances.

277 A recent activity recognition challenge [45] introduced a new semi-naturalistic dataset with several
ze  interesting features. Firstly, the data sequences were annotated by several annotators. Interestingly,
270 this demonstrates the presence of annotation ambiguity on activity recognition datasets both in terms
20 Of the temporal alignment of the labels and the specification of the activities. Indeed, the regions of
2e1  highest ambiguity are those with the highest rates of activity transitions. Since the labels themselves
2e2 are ambiguous, evaluation of performance also becomes ambiguous in this setting. To overcome these
203 difficulties, performance evaluation was based on proper measures between probability distributions.

204 2.8. Public Data-Sets

265 In Table 2 we provide a summary of some of the most commonly cited publicly available data-sets,
20 along with their characteristics. Note that we have focused on data-sets for activity recognition based
2ez on body-worn accelerometers — since accelerometer data is now readily available from smart-homes,
2ee there may be many more datasets available that do not focus on ADL, such as those focusing on
20 lower-level “gestures” or gait analysis. We note that there are vast differences in the quantity of data,
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200 the number of subjects, the accelerometer sampling rates and ranges, and the settings of the recordings.
201 This makes it especially difficult to compare results from different data-sets.

202 3. Materials and Methods

203 The previous section outlined several open questions in accelerometer-based activity recognition.
20a In this section we discuss the methods that we will use to answer these questions. In particular
205 we focus on assessing the effect of sampling rate, feature extraction, window length and sequential
206 classification for activity recognition, and the resources, models, experimental protocol are described
207 below.

20 3.1. Data-sets

299 A list of publicly available datasets for AR based on accelerometers is given in Table 2, with details
;00 regarding the collection of the data, annotations, setting, and hardware. Of these, datasets 1, 11, 12 are
so1  used in this study, with the following to be noted:

302 HAR This was collected by attaching a smart-phone (with accelerometer and gyroscope) in
303 a waist-mounted holder, with 30 participants conducting 6 activities in a controlled
304 laboratory environment. More details can be found in [4].

305 USCHAD This was recorded by 14 subjects (7 male, 7 female) performing 12 activities in a
306 controlled laboratory environment (with accelerometers and gyroscopes), with ground
307 truth annotation performed by an observer standing nearby. More details can be found
308 in [55]

309 PAMAP2 This contains data of 18 different physical activities performed by 9 subjects wearing 3
310 inertial measurement units (over the wrist on the dominant arm, on the chest, and on the
311 dominant side’s ankle) and a heart rate monitor. More details can be found in [56].

312 In all the data-sets, sensors were either placed on the waist (W) or lower-arm/wrist (L), and in

a3 some cases additional sensors were placed on other parts of the body. For the purposes of this study,
s We are limiting our analysis to the W and L placements, since a meta-analysis of user preferences in
a5 the design of wearables indicated that these were two of the most preferable locations (along with on
s16  the chest/trunk) [9].

a17 All of these data-sets are artificial in the sense that they were collected in controlled laboratory
se  environments, although varying degrees of effort have been made to make the environment as
a1s  naturalistic as possible. There is clearly a trade-off here between ease of data collection (including
;20 ground-truth labelling) and the degree of realism that can be achieved. In order to ensure that
sz performance is comparable between datasets, we have limited the set of activity labels that we consider
sz to activities 1-6 in Table 1.

s2s  3.2. Sensor Calibration

324 Some datasets provide acceleration readings that are in raw digital format rather than ones
s2s  calibrated against gravity. Digital codewords can be converted to gravity units with offset (0) and scale
226 (s) parameters which specify the 0 g position and the number of bits that represent 1 g respectively
52z [57]. For an accelerometer with a sensitivity of +Rg with b-bits of precision, one might expect 0 = 201
22 ands = 21’% (i.e. accelerations are evenly distributed over the range of codewords). However, these
s20  are insufficient estimates in general, due to variance in the manufacturing process, sensitivity towards
:30  environmental conditions and other confounding factors [57]. Therefore, we propose to learn these
a1 offset and scale parameters by first noting that the norm of the accelerations at rest must equal 1 g. We
22 define the offset and scale vectors as 0 = (0x, 0y, 0,)  ands = (52, 5y, s;) " respectively. With these a
sz tri-axial digital codeword, d = (d,, dy, dz)T, is converted to acceleration with the following operation
s a = (d—o0)@s, where @ is the element-wise division operator. The norm of this vector, ||a|,, is a
a5 scalar which will equal 1g at rest.
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336 Given a dataset of N digital codewords, {d;}Y ;, we define a squared error loss as

1N

c=3y (1 lail3)’ M

i=1

sz where ||a;|3 denotes the squared 2-norm of the i-th instance.The gradient of the loss with respect to
:3e  the offset and scale vectors can be shown to be

N
Vol = -2Y (1 |a3)(d; — 0) 5> @
i=1
N
VoL = 23 (1 ai]3)(d —0)? 05 ©)
i=1

;39 and these may trivially be incorporated with with any state-of-the-art optimisation algorithms to find
sa0  the optimal o and s.

341 We select only the subset of instances for which the accelerometer is at rest to ensure that gravity
sz is the only factor contributing to recorded acceleration. For example, data within a window will be
a3 selected if the maximum variance of the three axis within this window is below a low threshold. Many
sas  datasets consist of multiple participants and we calibrated digital codewords on a per-participant basis
ss  as it was not clear whether the same accelerometer was consistently used.

sas  3.3. Features

347 In this sub-section we will describe the types of features that will be used in our experimental
345 COMparison.

a0 3.3.1. Engineered Features

350 The purpose of feature extraction is to present a learning algorithm with informative
1 representations of the data so that induction can be performed effectively. Firstly, the raw acceleration
52 was separated into ‘body” and ‘gravity’ streams with the use of low- and high-pass filters. From these
3 two streams the acceleration and jerk (derivative of body acceleration) on each axis were presented to
s the feature extraction algorithm. Statistical measures were extracted (for a full list see [4]) from the
s time, frequency and information theoretic domains.

356 A large number of features were extracted here (321 in total), but, as we incorporate sparse
sz regularisation, the least informative features will be eliminated, performing feature selection. Often
sss  practitioners will incorporate domain knowledge to specify appropriate features a priori, but we prefer
0 to investigate those that were deemed most informative by the learning procedure.

360 Another set of features that we consider in this work are the Empirical Cumulative Distribution
se1  Function (ECDF) features that were introduced in [27]. These features are computed from the empirical
2 cumulative distribution of all axes. A practitioner specifies the percentiles of interest (e.g. k values
ses  between 0 and 100), and these values are interpolated from the ECDF. This produces k features per
sea  axis, and excellent performance is reported by the authors.

ses  3.3.2. Sparse Coding and Dictionary Learning

Dictionary Learning, also known as Sparse Coding [58] is a class of unsupervised methods for
learning sets of over-complete bases to represent data in a parsimonious manner. The aim of sparse
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coding is to find a set of vectors d;, known as a dictionary, such that we can represent an input vector
x € R" as a linear combination of these vectors:

k
X = Zzidi st. k> n. (4)

ses  While there exist efficient techniques to learn a complete set of vectors (i.e. a basis) such as Principal
sz Components Analysis (PCA)[59], an over-completeness can achieve a more stable, robust, and compact
s decomposition than using a basis [60]. However, with an over-complete basis, the coefficients z; are no
se0 longer uniquely determined by the input vector x. Therefore, in sparse coding, we introduce additional
370 Sparsity constraints to resolve the degeneracy introduced by over-completeness.
Sparsity is defined as having few non-zero components z; or many that are close to zero. The
sparse coding cost function on a set of m input vectors arranged in the columns of the matrix X € R™"*™
as

n
min | X - DZ|7 +1 Y Q(z)
b i=1
st|di||><C, Vi=1,...,k (5)

sn where D € R"*K is the set of basis vectors (dictionary), Z € R¥*" js the set of coefficients for each
sz example, and Q)(.) is a sparsity inducing regularisation function, and the scaling constant A determines
a3 the relative importance of good reconstructions and sparsity. The most direct measure of sparsity is
sra the Ly quasi-norm Q(z;) = 1(|z;| > 0), but it is non-differentiable and difficult to optimise in general.
ss A common choice for the sparsity cost ()(.) is the L penalty Q(z;) = Y_' ; |zi| (see [61] for a review).
s7e  Since it is also possible to make the sparsity penalty arbitrarily small by scaling down z; and scaling d;
27 up by some large constant, ||d||? is constrained to be less than some constant C.

378 Since the optimisation problem is not jointly convex in Z and D, sparse coding consists of
s performing two separate optimisations: (1) over coefficients z; for each training example x; with D
se0  fixed; and (2) over basis vectors D across the whole training set with Z fixed. Using an L sparsity
;e penalty, sub-problem (1) reduces to solving an L; regularised least squares problem which is convex
;a2 in z; which can be solved using standard convex optimisation software such as CVX [62]. With a
ses  differentiable Q(-) such as the log penalty, conjugate gradient methods can also be used. Sub-problem
ses  (2) reduces to a least squares problem with quadratic constraints which is convex in d, for which again
ses  there are standard methods available. Other approaches to solving this problem include Bayesian
s methods wherein the joint uncertainty over the dictionary elements and reconstruction coefficients is
se7  captured [63].

388 Since the data is decomposed as a linear superposition of the dictionary elements, classifiers
se0  can use the reconstruction coefficients, Z, directly as features [63]. Since sparsity is imposed on the
a0 representation of the data, only a few bases will be “active’ for any given instance.

se1  3.3.3. Fixed Dictionaries

392 It is worth noting that of course the sparse coding problem is a simpler optimisation problem if
303 the dictionary is fixed rather than learnt. In this case, one can use dictionaries that are based on basis
s0s functions from a specific class, such as the Fourier basis or wavelet bases. Here we briefly introduce
ses the Fourier basis and Gabor wavelet basis as described in [10].
Fourier analysis represents any finite continuous energy function f(f) as a sum of sinusoidal
waves exp (iwt),

F6) = 5= [ flw)explivt)de. ©)
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Table 3. Example of the dyadic sampling scheme for a signal of length 128 and A = 2.

i 2 27 N2 |gq k

2 4 1/2 64 0:128 08
3.8 1/4 3 0:64  0:16
4 16 1/8 16 032 032
5 32 1/16 8 0:16  0:64
6 64 1/32 4 0:8 0128

The more regular the function f(t) is, the faster the decay of the amplitude |f(w)| as w increases. If
f(t) is defined only over an interval, e.g. [0, 1], the Fourier transform becomes a decomposition into
an orthonormal basis: {exp(i2rtmt)},, ., of 1[0, 1]. If the signal is uniformly regular, then the Fourier
transform can represent the signal using very few nonzero coefficients. Hence this class of signal is
said to be sparse in the Fourier basis. The wavelet basis was introduced by Haar [64] as an alternative
way of decomposing signals into a set of coefficients on a basis. The Haar wavelet basis defines a
sparse representation of piecewise regular signals, and has therefore received much attention from the
image processing community. An orthonormal basis on L, can be formed by dilating and translating

these atoms as follows,
1 t —2/n
Y. (t) = — , 7
(im0 =20 (5 )}]Z %

The definition of a time-frequency dictionary ¥ = { } yer is that it is composed of waveforms

of unit norm (||4, ||, = 1) which have a narrow spread in time (1) and frequency (c2). Choice of the
dictionary ¥ should, if possible, be based on knowledge of properties of the signal. One of the most
common choices for a general class of real-world signals is the Gabor dictionary, as it can represent
a wide range of smooth signals. Gabor time-frequency atoms are scaled, translated and modulated
Gaussian functions g(t) [65]. Without loss of generality, discrete real Gabor atoms will be considered,
which are given by

s = 5 (5 cos(et+o) ®

see where Z is a normalisation factor (to ensure that for each atom H 7.9 H =1), vn = (Sn, ttn, &n) denotes

so7  the series of parameters of the functions of the dictionary, and g(f) = exp™"  is the Gaussian window.

A sampling pattern is dyadic if the daughter wavelets are generated by dilating the mother

wavelet as in Equation 7 by 2/ and translating it by k2/, i.e. s = 2/, u = k2/. Dyadic sampling is optimal

because the space variable is sampled at the Nyquist rate for any given frequency. The dictionary is
then defined as,

Yia= {‘/’n = 3%¢(t)}ogq<AN2—/,0§k<Azf ’ ©)

s Where g, 4(t) is the discrete Gabor atom as defined in Equation (8). An example of this sampling
300 scheme is given in Table 3 for a signal of length 128 and dilation factor A = 2.

a0 3.3.4. Convolutional Sparse Coding

101 The canonical approach to sparse coding intrinsically assumes independence between
a2 Observations during learning. For many natural signals however, sparse coding is applied to “patches”
a3 of the signal, which violates this assumption (e.g. since data will generally not be aligned in phase).
204 Convolutional Sparse Coding (CSC) explicitly models local interactions through the convolution
s0s operator [66], however the resulting optimisation problem is considerably more complex than
06 traditional sparse coding. Fast CSC (FCSC) was introduced by [66], who used an optimisation approach
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207 that exploits the separability of convolution bands across the frequency spectrum which resulted in an
s efficient dictionary learning algorithm. It was initially designed for two dimensional image patches,
a0 Where the convolutions are therefore within the 2-dimensional space of the image, but the approach
a0 can be readily applied to lower or higher dimensional problems.

The objective for convolutional sparse coding is

K 2 K
arg min = ||x — d; * z; +,32sz\|1
d,Z k:l 2 k:1
st |ldi3<1 Yk=1,...,K, (10)

s where d; € RM is the k-th filter, z; € RP is the corresponding sparse feature map, and x € RP~M+1 js
a1z animage.

a13 Recently, there have been attempts to use shift-invariant sparse coding to learn features for
a1s  activity recognition [67]. In this work the authors used a shift invariant form of Non-negative Matrix
as  Factorisation (NMF) [68], which is closely related to CSC, except that the signals are required to be
a1e  non-negative. For NMF to work it was necessary to double the signal dimensions with negative copies,
a1z and then for classification the approach was to sum the activations over the temporal dimension of the
«as  frame, yielding the summed activations for each feature as a feature vector that is passed to the classifier
a0 (note that coefficients are non-negative). In this case, the algorithm was applied to raw (normalised)
s20 signals, which is of course dependent on the placement and orientation of the accelerometer.

a2 A related approach was taken by [69], using a sparse-coding framework for human activity
a2 recognition. In this case the authors used a clustering approach to group together sparse codes, rather
a2s than full CSC. In this case, only the magnitude of the accelerometer readings was used, which worked
a2« well for the range of activities they were analysing. The authors make the point that an advantage of
a5 sparse-coding type approaches is the ability to leverage unlabelled data to improve representation
426 pOWEr.

a2z 3.3.5. Classification using Sparse Codes

azs For all of the sparse coding techniques above, the coefficients that are learnt on each signal become
a0 the features for the classification algorithm, as proposed by [32]. We note that there has been some
430 work in unifying dictionary learning and classification in a single optimisation framework [70], which
a1 has the potential to learn bases that are simultaneously useful for reconstruction and classification, we
a2 will leave this as a possible avenue for future work.

a33 In theory, dictionaries learnt from the data as in Section 3.3.2 should be more tailored to the signals
a3a  present within the data, and hence should be able to represent (and hence reconstruct) the signals with
a5 fewer active components. In addition, smaller dictionaries should be sufficient. Of course there is
a3s  nothing in Equation (5) that enforces discriminative power in the coefficients. In our experiments we
a7 will consider only learnt dictionaries since the fixed dictionaries performance was very poor and are
a3s  more expensive, and the performance of CSC was unstable.

a0 3.4. Classification Models

440 We consider three classifiers in this work: Random Forest (RF), Logistic Regression (LR), and
a1 Multi-layer Perceptron (MLP). Although our datasets are sequential, we sill simplify our notation in
as2  this section and assume the data are iid.

a3 3.4.1. Notation

a4a Each observation is a sequence of length N;, and each position of the sequence is a D-vector,
as i.e. Xy € RNnXD_ Given a target label space, Y = {1,2, ..., Y}, consisting of Y values, every sequence
ws has an associated target vector, y,, € YNn. A dataset then consists of M observation-target pairs,
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sz D= {(xm, ym)%:l }. For the m-th observation, its n-th position is selected with xy, , (“tokens’) and the
ass  corresponding label for this position (‘tags’) is identified by yy; .

as9 Concretely, taking activity recognition as an example, x,; represents the data sequence of length
a0 Ny, whereas x,;, , represents the n-th window of the sequence with the associated tag y ..

w1 3.4.2. Random Forest

452 The RF algorithm is a popular and effective method for classification and regression problems.
a3 At a high level, a RF can be viewed as an ensemble of decision trees. The original formulation of
ssa  a RF [71] implements each of the trees as a Classification or Regression Tree (CART) [72] and uses
«ss  the Gini impurity measure as the splitting criteria. The Gini impurity measures the probability of an
ase  incorrect classification given the class distribution. Thus there is a direct relationship between the
a7 (im)purity of the split and the probability of an incorrect classification making it an effective splitting
ass  criterion. The subset of features each split has available to choose from is randomly selected (typically
ase /1, where n is the number of features) in a process referred to as ‘feature bagging’. Given a large
aso number of trees in the RF this leads to correlation between any dominating features across the many
a1 trees in the forest. The data available to each tree is a bootstrap sample (with replacement) which helps
sz avoid overfitting. In order to produce a prediction, each input is passed through all trees and their
a3 predictions aggregated, with the final prediction chosen through a majority vote.

aea  3.4.3. Logistic Regression

a65 LR is a discriminative probabilistic model. In general, given a weight vector w € RP*K LR
ass models the probability distribution as

ply | x) = —Piz)

= (11)
Z‘f:l exp zk

sz where z = w - x € RK. The parameters of this model (w) are optimised to minimise the negative log
ss likelihood of the labels given the data. Many optimisation techniques can be used here, including
aso  Stochastic Gradient Descent (SGD), Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
470 algorithms efc. We use L-BFGS in our work. Regularisation is performed on the weight matrix.

ann 3.4.4. Multi-layer Perceptron

a2 Neural Networks (NNs) are a very popular non-linear classification technique that are based on
a3 cascading several nonlinear functions. These techniques are described in great detail in, e.g. , [73], and
a7a  here we will discuss the selected architecture of the network.

a75 The architecture of the network (i.e. the number of layers, and number of hidden units per
a7e layer) can be selected to trade off computational complexity and feature accuracy. On highly
a7z resource-constrained devices, for example, the practitioner may target networks with little capacity.
azs  All experiments in this paper involve one hidden layer with 100 hidden units.

a79 Hence, with activation functions o3, the output of a two-layer NN is compactly written:

f(X) =0y (01 (Xwy 4+ by) wa + by) (12)
w0 Where 07 is the activation function of the first layer (rectified unit) and oy is the activation function of

a1 the output layer (softmax). The network is optimised by maximum likelihood, and regularisation is
sz imposed on the weights, w; and wy, but not the biases.
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Figure 1. In this figure we show how marginal inference is performed over node y, with CRF models,
where we have related the theoretical foundations of CRFs described in this section to a graphical
representation of a short sequence. Note, the CRF is an undirected graphical model, and the arrows
shown in this image indicate the direction of the passed messages when performing inference on ;.

a3 3.4.5. CRF

484 All models so far have made iid assumptions about the datapoints. Since activity recognition is by
«es definition a sequential problem, we investigate the benefits of modelling the sequential nature of the
sss data with CRFs.

487 Conditional Random Fields (CRFs) [21,74] constitute a structured classification model of the
«ss  distribution of y,; conditional on x;,. The most common form of CRF is the linear-chain CRF which
a0 are applied to sequential data, e.g. natural language, but more general CRFs can be learnt on trees and
a0 indeed arbitrary structures. In general the probability distribution over the n-th node is influenced by
201 the neighbouring nodes with graphical models, and this influence is propagated over the structure
«2 using algorithms based on message passing [75]. In this section, we introduce the CRF, but refer the
a3 reader to other texts (e.g. [19,21,74]) for more detail.

404 The general equation for estimating the probability of a sequence is given by:
1 Nm -
PCRF(Ym|Xm) = Zi H eXP{A f(Ym,n—1/Ym,n/Xm/ n)} (13)
CRF ;-1

ss  where Ny, denotes the length of the m-th instance and # iterates over the sequence. The model requires
a0s  specification of feature functions that are (often binary) functions of the current and previous labels,
+07 and (optionally) the sequence x,;.

498 We will use the vectors &y, B,,, v,,, ,, and matrices ¥, during inference in CRFs. Subscripts are
a0 used to denote the position along the sequence, e.g. &, is a vector that pertains to the n-th position of
so the sequence, and parentheses are used to specify an element in the vectors, e.g. the y-th value of the
so1 1-th alpha vector is given by &, (). Matrices are indexed by two positions, and the (i, j)-th element of
so2 ¥, is specified by ¥, (i, j).

503 In order to reduce the time complexity of inference, we describe a dynamic programming routine
sos based on belief propagation here. We first calculate localised ‘beliefs’ about the target distributions,
sos and these are called potentials. The accumulation of local potentials at node # is termed the ‘node
sos potential’. This |Y|-vector where the y-th position is defined as ¢, (y) = exp{)::]I:l Aifi(D,y,x,n)},
o7 where f; is the j-th feature function. Similarly, the accumulation of local potentials at the n-th edge is
sos termed the ‘edge potential’. This is a matrix of size || x |)| where the (1, v)-th element is given by
soo ¥y (1,0) = eXP{Zle Aifi(u,v,x,1)}. Node potentials are depicted as the edges between observation
s10 - and targets in Figure 1, while in the same figure, edge potentials are depicted by edges between pairs
su of target nodes.

s12 Given these potentials, we can apply the forward and backward algorithm on the CRFs chain. By
sis  defining the intermediate variables vy, ; =&, 1 ® ¢, _;,and §,11 = B, 1 © ¢, (where ©® denotes
s1e  the element-wise product between vectors) the forward and backward vectors are recursively defined
515 dS!
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wn =%, 17,1 (14)
B, =¥nni1 (15)

sie  with the base cases #; = 1 and B, = 1. The un-normalised probability of the n-th position in the
siz - sequence can be calculated with

P(Yy) = OP, OB, (16)

s18 Finally, in order to convert this to a probability distribution, values from (16) must be normalised
s1e by computing the ‘partition function’. This is a real number, and may be calculated at any position
s20 11 wWith Zerr = Yy P(Y, = y/'). The partition function is a universal normaliser on the sequence,
sz and its value will be the same when computed at any position in the sequence. With this, we can now
s22 calculate the probability distribution on the n-th position

P(Yn
p(v) = L), (7)
CRF
523 In this work, we incorporate the methodology of [76] for our analysis of CRFs where unigram

s2¢ potentials of the CRF derive from the class-membership probability estimates of a base classifier.
s2s  Intuitively, this technique will introduce significant contextual information to the CRF (since the
s26 decision boundary will not necessarily be linear) but additionally the model can propagate the localised
sz beliefs along the whole sequence. Empirically, this approach has been reported to not lose predictive
s2s power but learning also converges at a significantly higher rate. This approach has not been used in
s20  activity recognition work previously, to the best of the author’s knowledge.

530 Another technique that is popular in the activity recognition field for adding sequential
s dependence in classifiers involves using the predicted probabilities of the previous time step as
ss2 additional features for the current time window. We do not consider this since the CRF described here
s offers a more principled approach for propagating belief and uncertainty.

ssa 3.5, Experiments

535 As explained in the previous section, three datasets are considered in our experiments: HAR,
sss  USCHAD, and PAMAP2. The primary contributions of this work derive from studying the classification
ssz  performance of the LR, RF, and MLP classifiers over several different window length and sampling
sse  rate configurations.

530 Our analysis first resamples the data to {5,10,20,30,40,50} Hz. We illustrate the effect of
se0 resampling the data in Figure 2. In this figure we observe that the lower sampling rates tend to
sa1 ‘lose’ the high-frequency aspects of the accelerometer, as expected. Particularly, we highlight the almost
sa2 total loss of peaks between 6 and 8 second period with the 5 Hz sampling frquency in Figure 2 on
sas  the x-channel. However, between 4 and 6 seconds, the integrity of the ‘peaks” appears to be high,
sas indicating inconsistent data representations at the different sampling rates. Window lengths of length
sas 1.5,3.0,4.5, and 6.0 seconds are considered for feature extraction. Three classes of feature are extracted:
ses  statistical [4], dictionary [63] and ECDF [27] features are extracted. We selected these three since they
sez represent a diverse set of features that are both pre-specified and learnt from data.

sa For every experimet described here, we perform cross validation for hyper parameter selection.
se0  We employ 5-fold corss validation on all classifiers over set of parameters:

550 RF: Ensemble size: {10, 20,40, 80,160}; Max depth of tree: {2,4,6,8,10}.
LR: L2 regulariser: {1074,1073,1072,10~1,10°,10', 107,103, 10%}
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Figure 2. The raw data (top) at 50 Hz, and resampled data at 40, 30, 20, 10, and 5 Hz. Notice that
the high-frequency aspects of the accelerometer data are removed with lower sampling frequencies.
Samples are marked with x symbols. The x, y and z axes are depicted in blue, orange and green
respectively.
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Figure 4. Calibrated accelerometer readings (upper) that were derived from raw (uncalibrated)
accelerometer values (lower). The intervals shaded in red were used to perform calibration.

MLP: 12 regulariser: {1072,10~°,10~1,10-%°,10%,10°,10!,10'%,10?} Empirically we found
553 values outside of this range performed very poorly, so we concentrated our search space
554 over a smaller interval than with LR.

555 Finally, we consider the effect of incorporating structure into the classification procedure using

sss  the methods described by [76].

ss7 4. Results and Discussion

sse  4.1. Validation of Calibration

559 In Figure 3 we show the difference between the true and estimated offset and scale parameters
seo for a synthetically generated dataset as function of the number of learning iterations. Convergence
ses  was determined when the norm of the gradient fell below an arbitrary small threshold (10~7), and we
sz can see that the estimated parameters have converged to their true values within approximately 400
ses iterations and that even after one iteration the estimated values were in a good approximation region.
564 Convergence errors cannot be shown for the real datasets as the true parameters are not available.
ses However, visual inspection of the norm of the accelerations show that good approximations are made
ses (Figure 4 (top)), but that when using the parameters from one recording on another, the norm is offset
sez from the 1 g position, see Figure 4 (bottom).

see 4.2, Analysis of confiqurations

569 Our analysis covers the following contexts: three datasets (HAR, USCHAD, PAMAP2), six classifiers
s2o (LR, MLP, RF; and these three classifiers chained together with CRFs), three classes of feature
sn1  representation (statistical, dictionary-learnt, and ECDF), six sampling rates (5, 10, 20, 30, 40, and
sz 50 Hz), four window lengths (1.5, 3.0, 4.5, and 6 seconds). In total, this produces approximately 1300
s7s  results to discuss. We will structure our analysis of these results by first presenting the analysis for one
s7a  particular dataset (HAR). We will then discuss inter- and intra-dataset analyses.
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Figure 5. Visualisation of the classification performance on the HAR dataset for stat features (left),
dict features (middle) and ecdf features (right) over varying window lengths (rows) and sampling
rates (columns). Darker red colours indicate better performance.

s7s 4.3. LR performance on HAR

576 Figure 5 shows the classification performance of LR on the HAR dataset. This figure illusatrates
s77 predictive accuracy over all sampling rates (rows), window lengths (columns), and features (stat
s7e  features shown on left, dict features in middle, and ecdf features on the right). The colour of the
s7o  subplot illustrates classification performance (0% is shown in blue, and 100% accuracy is shown in
seo dark red). Since we will use this style of figure throughout this discussion, we adopt the following
ses  convention: f = 5 will indicate the column relating to a sampling rate of 5 Hz, w = 1.5 will relate to
se2 the row associated with a window length of 1.5 seconds, and w = 3, f = 10 corresponds to the element
ses associated with a window length of 3 seconds and a sampling rate of 10 Hz.

ses With the stat features (left column in Figure 5), we observe relatively consistent performance over
ses  all configurations. The performance at w = 1.5, f = 5 is the lowest of all configurations investigated by
ses approximately 0.1. Intuitively, this performance gap makes sense: with such a low sampling rate many
se7  Of the characteristics of the signal are no longer present (c.f. Figure 2), and this is further compounded
see Dy the short window. As the window length and sampling rate grow, we can observe a general trend
seo  Of improving classification performance (with the maximal performance at ~ 0.94). Interestingly,
seo our results show that this performance can be achieved with the following configurations relatively
son  low-valued w = 3, f = 20 and w = 4.5, f = 10. This is perhaps somewhat surprising since the data is
s02 significantly under-sampled here.

593 The dict features produce test performance that is, overall, significantly worse than the stat
sos features, with maximal performance of ~ 0.88. We can also observe the general trend of improved
sos  results with increasing window length and sampling rate that we observed with the stat features. It is
sos  surprising that the dict features are not as performant as the stat or ecdf features, particularly since
so7 these features arise from an intuitive basis. We hypothesise that since these features are learnt from
sos data itself, and since we used a well-known heuristic of specifying the regularisation at 1—51 that this
soo heuristic is not optimal for this configuration. Additionally, the bases employed are not optimised for
s0 discrimination between classes. However, with 6 classes of approximately equal counts, a random
s1 classifier would achieve accuracy of ~ 0.166, indicating that these features are representing the data
ez and labels well.

603 Finally, the figure on the right hand side of Figure 5 shows the classification performance of the
s0s ecdf features on the HAR dataset. Here, we observe classification performance that is very similar to
s that obtained by the stat features. This is a satisfactory result since the ecdf features are very simple
sos and fast to extract from the raw data. This figure also demonstrates that classification performance
ez increases with context (i.e. longer window lengths and higher sampling rates), and once again the
s0s performance seems to ‘saturate’ beyond w = 3, f = 20.
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(a) LR-CREF classification performance over the three feature categories considered.
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Figure 6. Classification performance obtained by LR-CRF on the HAR dataset.

oo 4.4. LR-CRF performance on HAR

610 Figure 6 shows the classification performance that is obtained when modelling the sequences with
sz CRFs and with LR probability estimates as the node potentials. We will identify this pairing succinctly
sz as 'LR-CRF’, with corresponding parings with RF and MLP denoted as RF-CRF and MLP-CRF
e1s respectively. In Figure 6(a) the absolute performance is shown. By comparing the performance
e1a  shown on this figure with that shown on Figure 5 (note the colour scale is shared between these two
a5 figures) we can see that in general there is an improvement on classification performance over most
s Of the configurations. Indeed, introducing the CRF has lifted the minimal classification performance
ez by & 9% to over 90%. The difference between the LR-CRF and the basic LR models are depicted in
e1s  Figure 6(b). In this figure, the red hues indicate that the LR-CRF model was more performant than the
s10  basic LR model, blue colours indicate superior performance by the basic LR model, and white colours
20 specify that both classifiers perform comparably.

621 This figure shows that in nearly all configurations investigated modelling the structure of the data
e22 improves classification performance. Interestingly, the impact of CRFs on classification accuracy is
s2s most dramatic at low sampling rates and small window lengths. For example, for each of the three
e2a feature sets considered, the largest increase of performance is obtained at w = 1.5, f = 5 with increases
e2s to performance of ~ 7 — 11%. This is an intuitive result since these are the settings with least context,
s2s and CRFs provide a mechanism for transfering context through chains. The incorporation of structured
ez classifiers is known to positively impact classification performance in settings such as these [19].

e2e  4.5. Overall impact of CRFs on predictive performance

620 We summarise the improvement in classification performance in the box plots shown in Figure 7,
es0 and we can see here that the highest average improvement is obtained by the dict features where over
es1  70% of configurations receive over 5% improvement in accuracy.

632 In the Figure 8 below we visualise the effect over all configurations. Results on HAR are shown
e33  on the top row, Results on PAMAP?2 in the middle row, and USCHAD on the bottom row. The first
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Figure 7. Improvement in classification accuracy obtained by incorporating structure on the
classification task with CRFs
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Figure 8. Box plots over changes to performance in accuracy when using CRF models to capture
sequential dynamics. Results on HAR are shown on the top row, Results on PAMAP2 in the middle
row, and USCHAD on the bottom row. The first column presents the results of LR-CRFs, the middle
column on MLP-CRFs and the final column on RF-CRFs.
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Figure 9. Mean aggregated change in performance when aggregated over datasets (Figure 9(a)) and
features (Figure 9(b)).

column presents the results of LR-CRFs, the middle column on MLP-CRFs and the final column on
RF-CRFs.

In general with the HAR and PAMAP2 datasets we observe improvements to performance on all
features and all classifiers. The most pronounced average improvement is observed with RF on the
PAMAP?2 dataset with a median improvement of approximately 0.18, with a minimal improvement of
0.1.

Interestingly, the USCHAD, on average, does not benefit from the application of CRFs on the
task, particularly with the RF classifier from which we report a large negative change in accuracy. It is
difficult to explain this aspect of our results. We hypothesise that since the USCHAD dataset is small
that our models are overfitting to the data, despite our extensive cross validation on hyperparameters.
This is, perhaps, one weakness of using probability estimates as features in the CRF namely that the
indicative bias of the CRF is strongly influenced by the beliefs of an independent classifier rather than
being derived solely from the raw features themselves. However, one of the advantages of the model
is that it permits us to trivially learn non-linear sequence models in a principled manner. We must also
recognise the general advantages of using a sequential model on this data, however, as indicated in
Figure 8.

Finally, we illustrate another visualisation of the contributions of the CRFs in Figure 9. Here we
perform aggregation over datasets (Figure 9(a)) and features (Figure 9(b)). In effect these figures are
the ‘marginal’ distributions over the datasets and features in Figures 11 to 13.

Figure 9(a) shows that incorporating a CRF on the datasets for the HAR and PAMAP2 datasets
results in a net improvement in classification performance over all window and sampling rate
configurations, with more moderate improvements shown on the USCHAD dataset overall. In general,
the dict features make the largest contributions to this figure. There is also a general tendency for
more improvement on the configurations with less context, which is a natural effect of propagating
localised beliefs through the CRF structure. As reported earlier, the USCHAD dataset reports negligible
improvements on average (with approximately 2% improvement on average). In Figure 9(b), we can
see that the dict features benefit most from the introduction of sequential context.
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so1  4.6. Comparison between datasets and classifiers

662 In the appendix we present the complete set of results obtained for this work that we omit from
ess the main text owing to their size. Figure 11 shows the full set of results of the HAR dataset, Figure 12
sss shows the full results for the PAMAP2 dataset, and Figure 13 shows the full results for the USCHAD
ees dataset. In all caseses the first subfigure corresponds to the results obtained from LR, the middle
ess subfigure derives from MLP classifiers, and the final subfigure presents the results obtained from a RF.
667 On average, we can see that the HAR dataset receives the highest overall performance, particularly
ess  With the stat and ecdf features where the performance is often over 0.9. Since the performance of
ess this dataset is consistently high, we speculate that the dataset may present less of a challenge from a
oo classification perspective than the other two datasets that we consider. Several aspects will contribute
er1  to this. Firstly, in this dataset the activities were recorded in a very controlled laboratory environment,
ez and the manner in which some of the activities were recorded is far from natural (e.g. people will rarely
ers  walk a staircase for a period of minutes). Hence, while this dataset provides a powerful resource for
74 the analysis of common activities, it is difficult to know how models learnt on this data will generalise
ers in naturalistic settings.

676 Other datasets (e.g. the SPHERE challenge [45] and Opportunity [54]) capture data and annotations
er7 in less controlled settings, but do not yet capture the aspects of activity required to be considered
e naturalistic. However, the SPHERE project is endeavouring to capture and release these datasets
ero  [15,16]. One of the challenges that will need to be addressed in this setting is that of acquiring labelled
ee0 data, since the cohort that contribute to the data collection campaigns occur in the homes of the
se1 participants. However, un- and semi-supervised techniques [77,78] and others involving active and
sz transfer learning [79-81] can be utilised in these settings.

683 Both PAMAP2 and USCHAD appear to be much more challenging to classify. For one thing, the
esa average classification performance is much less than HAR, and often there is significantly more variation
ses across configuration contexts, particularly with RFs. Interestingly, with these datasets, it seems that
ess the highest performance is often obtained with the longest window lengths (i.e. w = 6.0). Although
ee7 this is the longest window that we considered, we did not include longer windows (e.g. w = 7.5 or
see W = 9.0) in our analysis since we believed that in many real settings, some activities will not last for
eso longer than this (e.g. walking between rooms in a home environment).

690 A unifying result that is common to most experimental results is that the features with the least
e01 context (i.e. w = 1.5, f = 5) tend to achieve the lowest predictive accuracy on the test set. Often, this
02 trait can be compensated for by increasing the window length, but with the USCHAD dataset (Figure 13)
eos it is possible to see that with stat and ecdf features, only small improvements are achieved by
s increasing the window length for f = 5. In all of the settings of low context, significant improvements
eos are made by introducing a model over the sequence.

eos  4.7. Analysis of errors

697 In general, the misclassifications achieved by the classifiers are ‘reasonable.” As a concrete example,
eos  With the HAR dataset we show the contingency tables on the test set over the six activities (walking,
eos Walking upstairs, walking downstairs, sitting, standing, lying). The contingency tables from LR and
700 LR+CRF are shown in Figures 10(a) and 10(b) respectively. In these figures the rows indicate the
701 ground truth and the columns the predictions, i.e. element (i, j) indicates that label i is predicted as j.
72 The contingency table of a perfect classifier will have only zero-valued off-diagonal components.

703 We can broadly categorise these activities as ‘moving’ (consisting of walking, walking upstairs
70 and walking downstairs) and ‘sedentary” (sitting, standing and lying). Both contingency tables
75 considered demonstrate a strong ability to separate between the activity categories, but we can see that
s incorporating the CRF has corrected some of the errors that occurred when using the iid classification
707 model.

708 Distinguishing between the stationary activities is determined to be a harder classification task
7s in our evaluation (particularly between sitting and standing). It is interesting to see that in the iid
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Figure 10. Contingency tables of activities recognised on the HAR dataset with LR (Figure 10(a)) and
LR+CREF (Figure 10(b)) with a window length of 3 seconds, and a sampling rate of 20 Hz. Rows indiate
the ground truth and columns indicate predictions.

7o setting, lying can be confused as walking upstairs and walking downstairs since little is in common
71 between these two activities. We believe this to be because when walking up and down stairs the
72 accelerometer will be horizontal on the banister, which is a similar pose that would occur when lying
ns  down. However, we can also observe that by introducing the CRF to the problem that these errors
na  have been corrected, based on the incorporation of neighbouring context.

715 5. Conclusions

716 In this paper we have examined state-of-the-art methods in activity recognition methods using
nz accelerometers. Using three publicly available data-sets, we have attempted to answer some open
ns questions in the literature: Should we be using structured models, or is it sufficient to consider the
7o data as if it were iid? Are the approaches taken so far genuinely robust across different contexts across
720 a wide variety of activities that summarise activities of daily living? What are the most appropriate
a1 features and how robust are these across activities? What is the minimum sampling rate required to
722 get good classification performance?

723 Our results provide evidence for answering many of the questions posed at the beginning of
724 this paper. First, we have noted that incorporating lower sampling frequencies does not worsen
725 classification performance. That low sampling frequencies do not deteriorate classification is of
726 particular interest for machine learning and sensor researchers. We also conclude that the use of longer
727 feature windows for feature extraction can help the classification, as such configurations may capture a
72s  greater proportion of the temporal context of the activities. This context can alternatively be captured
720 by introducing structured models, and we showed examples where structured models are preferable
730 to unstructured models.

731 One of the principal contributions of this work is that, somewhat surprisingly, that many disparate
72 experimental configurations yield comparable predictive performance on testing data. We understand
733 these results arising from the experimental setup directly and indirectly defining a pathway for
73 context to be delivered to the classifier, and that, in some settings, certain configurations are more
35 optimal than alternatives Interestingly, our experiments show that regardless of how context arrives
736 to a classifier (whether via high sampling rate, wide feature windows or by modelling sequences)
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73z competitive performance can be achieved. In particular we summarise our analysis with the following
73s  Observations:

739 o Context can be delivered to classification models by increasing the sampling rate, selecting wide
740 feature windows for feature extraction, modelling the temporal dependence between features.
741 o Classification performance tends to improve when these configurations are independently
742 ‘increased’ (i.e. more context introduced).

743 o There tends to be a performance plateau for any given dataset (i.e. maximal performance) and
744 our results indicate this can be achieved on several device, feature and classifier configurations.
745 With these observations in mind, our recommendations are that practitioners that use low

76 sampling rates (e.g. in Internet of Things (IoT) settings) utilise sequential classifiers in prediction.
zaz On less constrained data acquisition contexts, however, there is more freedom for the practitioner
7e  to specify their pipeline. However, given the consistency of our empirical evaluation we would still
79 recommend incorporating sequential information on the task in general.

750 Additionally, we conclude that since most accelerometer-based activity recognition datasets have
751 been collected in controlled lab environments it is difficult to estimate performance of these methods
752 in the wild. Therefore there is a pressing need for naturalistic datasets, but several challenges are
73 impeding the collection and release of naturalistic activity recognition datasets.

754 Future work will include deeper analysis into the definition and explicit specification of the
7ss  most important features for activity recognition, particularly in natural settings. This will include
76 the incorporation of fully Bayesian models in where both the means and variances of the posterior
757 distribution will be informative towards this goal, e.g. Gaussian Process models using Automatic
s Relevance Determination (ARD) [82]. The introduction of such methods will reduce the risk of
7 overfitting, but Bayesian models can naturally be adapted to hierarchical models which can naturally
70 lead to transfer learning frameworks [83]. All future experiments will be validated against these
761 datasets and others.
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oss  Appendix

946 The complete set of results are provided in Figure 11, Figure 12, and Figure 13.
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Figure 11. Classification performance on the HAR dataset with all iid feature configurations
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Figure 12. Classification performance on the PAMAP2 dataset with all 7id feature configurations
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LR with "stat" features on USCHAD LR with "dict" features on USCHAD LR with "ecdf" features on USCHAD
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Figure 13. Classification performance on the USCHAD dataset with all iid feature configurations
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