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Abstract: Censoring occurs when complete follow-up time information is unavailable for patients 9 
enrolled in a clinical study. The process is considered to be informative (nonignorable) if the 10 
likelihood function for the censoring model cannot be partitioned into a set of response parameters 11 
that are independent of the censoring parameters. In such cases, estimated survival time 12 
probabilities may be biased, prompting the need for special statistical methods to remedy the 13 
situation. The problem is especially salient when censoring is skewed toward the early phase of a 14 
study. In this paper, we describe a method to impute censored follow-up times using a counting 15 
process method.  16 

 17 
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1. Introduction 21 

Ideally, censoring in a survival analysis should be non-informative and not related to any aspect 22 
of the study that could bias results [1-7]. For example, toxic side effects of an investigational drug 23 
may prompt the most ill patients to withdraw early from the study. Other patients may opt to leave 24 
before the intended end of a trial if the treatment is effective and they feel well. Even when censoring 25 
is non-informative (e.g., relocation to another city because of plant closure), by chance alone, it may 26 
still have a serious effect on estimated survival probabilities, especially if the dropouts occur early in 27 
the study.  28 

In this paper, we present an example of early censoring to illustrate how the resulting survival 29 
probabilities may be biased. We then describe a method to impute censored follow-up times by 30 
rearranging the data as a counting process and generating jump-point plots.   31 

2. Materials and Methods 32 

2.1 Imputing Censored Follow-up Times 33 

Let  denote the follow-up time for the ordered observation, given a total of 34 	observations and  integer valued time  points 35 
 = + 1, = + 1,… , = + 1; ≥ . (1) 

Accordingly, 36 
 ≤ … ≤  (2) 

and 37 
 ≤ ≤ … ≤ ≤ . (3) 
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Then,  38 
 ∀ ∧ ∋: = 1 , = 1 , (4) 

the counting process “indicator” variable  assumes the value 0 if ≤  and 	corresponds 39 
to a censored follow-up time (i.e., the outcome event, such as death, has yet to occurred by time ).  40 
Otherwise, when the observation denotes an event,  assumes the value 0 if <  and the 41 
value 1 if ≥  [8]. 42 

Next, we fit a multiple logistic regression model with + 1 	covariates to the above counting 43 
process data, i.e., 44 

 = 1| , , , … = 11 + ⋯  (5) 

where the first covariate denotes time  and the remaining  covariates , , … ,  45 
represent outcome related risk factors. Note that the selection of this model is arbitrary and any other 46 
binary predictor equation could be substituted at this step. For example, the addition of a higher 47 
order term to the model or taking the logarithm of a covariate might be desirable. Other possible 48 
options include using a log-binomial or negative-binomial equation to model the data [9-10]. Model 49 
fit may be assessed by examining diagnostic leverage and residual plots, in lieu of standard goodness 50 
of fit tests, which would assume that the underlying counting process data are independently 51 
distributed [11-13].      52 

A jump-point plot for a particular covariate pattern corresponding to a censored follow-up time 53 
 may be obtained by plotting the model predicted values ̂  against the time variable . Let 54 

 denote the value of  that maps to ̂ = .50 (i.e., maximum likelihood estimate of the mean 55 
jump-point observation). The imputed censored follow-up time is given as 56 

 imp = , , , (6) 

where  is the natural upper limit for a patient’s follow-up time. For example, in the case of 57 
cancer therapy, the maximum life expectancy of a patient rarely exceeds 101 years of age. For a patient 58 
aged 89 at diagnosis, we see that  is computed as 101 − 89 . The original censored follow-up 59 
times are then replaced with imp . However, it is important to note that these follow-up times are 60 
still treated as censored values rather than events when computing survival probability estimates.   61 

Assuming Martingale independence and considering the event times to be binomially 62 
distributed [i.e., the probability  of an event  occurring in a particular risk set  is equal 63 
to its expectation  divided by the risk set size  (accounting for censored and event times), 64 
with corresponding variance equal to 1 − ], it follows that the resulting data be may 65 
analyzed using standard methods for handling censored time-to-event observations (e.g., Kaplan-66 
Meier and Cox proportional-hazards models) [14-15]. Here, the sampling variability for estimating 67 
the imputed censored follow-up times is absorbed into the sampling variability for each binomially 68 
distributed event time, given that the estimates are asymptotically consistent and adhere to certain 69 
regularity conditions. 70 

3. Results 71 

3.1 Kaplan-Meier (Product-Limit) Example 72 
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Consider the data in Appendix A, which provides the event and censored follow-up times for 73 
250 cancer patients undergoing treatment and their simulated complete values (for illustrative 74 
purposes). Approximately 10% of the follow-up times were censored, with the majority of these 75 
values occurring early in the study. Figure 1 shows a Kaplan-Meir (KM) plot comparing the original 76 
censored data with the dataset of complete follow-up times. The probability of surviving 5 years (60 77 
months) was ~26% for the original censored data compared with ~18% for the complete dataset. In 78 
Figure 2, we compare the complete dataset with the imputed censored dataset. At 5 years, rounding 79 
to the nearest whole number, we see that the survival times are identical (i.e., 26%). Indeed, the 80 
survival curves are similar until ~90 months, at which point the survival times for the imputed 81 
censored time curve are divergently lower than those for the complete dataset. This lack of fit at the 82 
extreme end of the KM curves is evident when examining the panel of diagnostic plots in Figure 3.  83 

   84 

 85 

 86 

 87 

Figure 1. Kaplan-Meir (KM) plot comparing the original censored data with the dataset 
of complete follow-up times. 

Figure 2. Kaplan-Meir (KM) plot comparing the imputed censored data with the dataset 
of complete follow-up times. 
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 88 

 89 

3.2 Generating The Jump-Point Plot 90 

The jump-point plot corresponding to covariate pattern 91 
 = 76, = 3, = 0, = 0, = 1, = 0 (7) 

is shown in Figure 4. Here, the variables , , … ,  correspond to age (years), grade (I-IV), lymph 92 
node invasion (1=yes, 0=no), positive margins (1=yes, 0=no), no hormone therapy (1=yes, 0=no), and 93 
no radiation therapy (1=yes, 0=no), respectively. We see that the imputed censored follow-up time of 94 
29.33 months closely matches the actual event time of 29 months. This observation was originally 95 
censored at 1 month.  96 

 97 

3.3 SAS Code 98 

The SAS code use to generate the jump-point plot is shown in Figure 5. In this code, it is assumed 99 
that the data contained in Appendix A has been previously read into the dataset “a”. The counting 100 
process variables are created in dataset “b” and then modeled using the “PROC LOGISTIC” 101 

Figure 3. Diagnostic plots. A: Residual by predicted values; B: RStudent by Jacobian 
leverage; C: Expected raw residuals by predicted values.   

Figure 4. Jump-point plot.   
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procedure. The predicted probabilities generated by this procedure are plotted against time (ranging 102 
from 1 to 99 months) to obtain the jump-point plot. Analyses were performed using SAS Version 9.4. 103 
(Cary, NC). 104 

Figure 5. SAS code used to generate jump-point plot. 105 

4. Discussion 106 

In this manuscript we have introduced a simple method to partially correct for nonignorable 107 
early censoring. By rearranging the data as a counting process we are able to account for the follow-108 
up times of all patients, regardless of their censoring status. For example, if a patient is censored at 109 
50 months, the counting process creates 50 observations corresponding to each month and 110 
accordingly assigns the value of 0 to an indicator variable. On the other hand, if the patient had an 111 
event at 50 months, the counting process would create 49 observations with the indicator variable set 112 
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to 0 and similarly create new observations for each month thereafter until the last month of the study, 113 
but instead assigning the value of 1 to the indicator variable.  114 

These counting responses are then analyzed with logistic regression, or another appropriate 115 
model for fitting binary data. In addition to including outcome related covariates, a variable denoting 116 
the time (e.g., month) associated with the indicator variable is added to the model. The predicted 117 
value generated by the model for a particular covariate pattern (associated with a censored 118 
observation) is then plotted against the time variable (spanning each month of the study) to obtain a 119 
jump-point plot. Dropping a line from the midpoint of this plot to the x-axis gives an imputed 120 
censored follow-up time. We then replace the original censored time with this value if it larger of the 121 
two values. Also, the imputed value is constrained by a natural upper bound to prevent impossible 122 
censored follow-up times (e.g., the value must be consistent with a patient’s maximum biologic 123 
lifespan). 124 

An important aspect of this technique is identifying a well-fitting model for the counting process 125 
data so that it is able to accurately predict if the outcome is 0 or 1. Understanding the dynamics of the 126 
disease or process under study will aid in the selection of appropriate outcome-related covariates. 127 
However, formally testing for model goodness of fit is not practical given the highly correlated nature 128 
of the counting process data. In theory, while it may be possible to assess model goodness of fit for 129 
dependent data using a robust “Huber-White” approach, the regularity conditions for such estimates 130 
are quite stringent [16-18]. Instead, we recommend using leverage and residual diagnostic plots to 131 
rule out ill-fitting models [11-13]. In some cases, including power and trigonometric terms into the 132 
model may potentially improve the efficiency of the fitting algorithm.   133 

The advantage of using a counting process approach is that the imputed censored follow-up 134 
times, when appropriately constructed, will better reflect the survival prospects of those who 135 
continued in the study. However, because the method is modeled based, it may not be suitable for 136 
small datasets or those lacking a set of reasonably predictive covariates. Additionally, it may not 137 
always be possible to identify a well-fitting model if there are abrupt changes in the hazard function 138 
of the underlying data. The method at hand should not be used if patients who enroll later in study 139 
survive longer (e.g., treatment improves over time) or if enrollment criteria change over the course 140 
of the study (e.g., worst patients are excluded midway through recruitment) [5].   141 

5. Conclusions 142 

Overall, the best means for handling informative censoring is to avoid the problem in the first 143 
place. Careful planning at the study design stage, routine patient monitoring, and implementing 144 
proactive strategies to minimize patient dropout are some important steps to ensure the fidelity of a 145 
survival time study.  146 

While it was beyond the scope of the current manuscript, it will be informative in future analyses 147 
to compare our method with other approaches for dealing with censored values, especially 148 
highlighting best and worst-case scenarios [3, 19-24].  149 
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Appendix A. Example cancer dataset (N=250) 157 
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Appendix A (Continued) 158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 

A=Observation number, B=Age, C=Grade, D= Lymph node invasion, E=Positive margin, F=No 173 
hormonal therapy, G=No radiation therapy, H=Actual follow-up time, I=Original censored time, 174 
J=Imputed censored time, K=Censoring variable. 175 
  176 
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