
Article

Mathematical modeling of rogue waves: A survey of
recent and emerging mathematical methods and
solutions.

Sergio Manzetti †,‡ ID *
1 Uppsala University, BMC, Dept Mol. Cell Biol, Box 596, SE-75124 Uppsala. Sweden; email:

sergio.manzetti@icm.uu.se
2 Fjordforsk A/S, Midtun, 6894 Vangsnes. Norway; email: sergio.manzetti@fjordforsk.no
* Correspondence: sergio.manzetti@fjordforsk.no; Tel.: +47-4017-6707
† Current address: Fjordforsk A/S, Midtun, 6894 Vangsnes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Abstract: Anomalous waves and rogue events are closely associated with irregularities and 
unexpected events occurring at various levels of physics, such as in optics, in oceans and in the 
atmosphere. Mathematical modeling of rogue waves is a highly actual field of research, which has 
evolved over the last decades into a specialized part of mathematical physics. The applications of the 
mathematical models for rogue events is directly relevant to technology development for prediction 
of rogue ocean waves, and for signal processing in quantum units. In this survey, a comprehensive 
perspective of the most recent developments in methods for representing rogue waves is given, 
along with discussion of the devised and forms and solutions. The standard nonlinear Schrödinger 
equation, the Hirota equation, the MMT equation and further to other models are discussed, and 
their properties highlighted. This survey shows that the most recent advancement in modeling rogue 
waves give models which can be used to establish methods for prediction of rogue waves at open 
seas, which is important for the safety and activity of marine vessels and installations. The study 
further puts emphasis on the difference between the methods, and how the resulting models form 
a basis for representing rogue waves in various forms, solitary or with a wave-background. This 
review has also a pedagogic component directed towards students and interested non-experts, and 
forms a complete survey of the most conventional and emerging methods published until recently.
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1. Introduction18

Anomalous waves, or “rogue waves”, represent a rare phenomenon at sea which occurs on19

multiple occasions yearly [1,2] and cause yearly millions of dollars of loss of cargo and loss of lives20

[3]. Rogue waves are abnormally elevated waves, with a 2-3X height of the average wave normal and21

with unusually steep shapes [4,5]. Rogue waves were recorded for the first time in 1995 during a22

winter storm in the North Sea, when the “New Years Wave” hit the Draupner platform with a wave23

height of 27 meters and 2.25X the average wave height [4]. The laser-installation on the deck, which24

regularly records the elevation of the platform over the sea bed, registered the solitary giant wave25

with its 15.4 m elevation above and 11,6 meter below the zero-level [4]. The shape of the wave was26

symmetrical (Fig 1) with a Gaussian-bell shape and with a particular narrow wavelength. This shape27

and behavior of anomalous waves is conserved across several observations made in the last 25 years,28

including the rogue wave that hit the North Alwyn platform in November 1997 [6], the Gorm platform29

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 June 2018                   doi:10.20944/preprints201803.0135.v4

©  2018 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Axioms 2018, 7, 42; doi:10.3390/axioms7020042

http://www.mdpi.com
https://orcid.org/0000-0003-4240-513X
http://dx.doi.org/10.20944/preprints201803.0135.v4
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/axioms7020042


2 of 20

in 1984 [6] and from Storm 172 on the North Alwyn field 100 miles east of Shetland [5]. The latter was30

particularly unusual, with a height 3.19X the average (Fig 1).31

.32

33

Figure 1. The laser-readings of the most extreme rogue wave registered (top), which hit the34

the North Alwyn platform east of Shetland [5], reaching 18.04 meters and a ratio of 3.19X with35

surrounding waves. Bottom: The New Years wave registered in 1995 on the Draupner platform (top)36

in the North Sea.37

38

Rogue waves are known to have sunk over 20 supercarriers since 1970 [6] and carry a force of39

16-20 times (100 metric ton/m2) that of a 12 meter wave, and can easily break ship structures which40

are designed to withstand far lower impact forces (6 metric ton/m2) [3]. Rogue waves are an eminent41

threat to shipping and naval activities, and increase in prevalence with climate-change weather patterns42

[7]. In this context, the insurance sector has searched for new models for predicting rogue waves and43

for fortifying naval structures [3], as both off-shore installations, shipping and also cruise-ships have44

been increasingly exposed to rogue waves in the last decades [3,6]. This development has also sparked45

the project “Max Wave” [2] which has contributed with new models and algorithms for predicting46

rogue waves by the use of satellite observation data. Rogue waves occur also in optical systems [8] in47

the atmosphere [9], in plasma [10] as well as in molecular systems during chemical reactions [11].48

Earlier mathematical models and derived algorithms that were used to predict wave patterns were49

originally developed by using the linear Gaussian random model, and rogue phenomena at sea50

were largely disregarded as superstition. The linear Gaussian model is essentially a superposition51

of elementary waves and predicts the occurrence of a rogue event at a very low probability. This52

low probability is however incorrect accounting for the laser-readings made in the last 2 decades53

at off-shore installations. Non-linear models which show a better agreement with the frequency54

of rogue events at sea, are therefore gradually replacing the Gaussian model used in the insurance55

industry. Non-linear models have been studied by several groups, and include the modified non-linear56

Schrödinger Equation (NLSE) [6], the Peregrine soliton model [12] the Levi-Civita and Nekrasov57

models [13,14], the Davey–Stewartson model [15], the fourth order partial differential equation58

of Kadomtsev–Petviashvili, the one-dimensional Korteweg–de Vries equation for shallow water59

surfaces, the second-order Zakharov partial differential equation [16], and the fully nonlinear potential60

equations. Other systems have recently been developed, and are here reviewed in detail given their61

relevance to rogue wave ocean phenomena, including the inhomogenous non-linear Schrödinger62
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equation [17], the Akhmediev model [18–21], and the recent models developed by Cousins and Sapsis63

[22–24].64

2. The non-linear Schrödinger equation in prediction of rogue-waves65

Rogue waves occur both in oceans as well as in optical systems [12], as well as in other66

wave-systems (see above). For fiber optical systems, rogue waves are normally entirely67

one-dimensional, however two-dimensional rogue waves have been recently documented, by68

the form of the two-dimensional dissipative rogue waves [25]. These recently discovered optical69

rogue waves occur when a delayed feedback is generated in the transverse plane of the the cavity,70

forming an overlap of counter-directional fiber-optic signals, which leads to a rogue amplitude71

[25]. These two-dimensional signals in optical systems are described by an own form of PDE, the72

Lugiato-Lefever equation [26], which allows for 2D rogue wave solutions to be modelled without73

collapse dynamics. This model is also used for describing a large spectrum of nonlinear phenomena in74

optical systems, such as bistability, localized structures, self-pulsating localized structures and also75

complex spatiotemporal behavior through an extended quasi-periodicity [27]. Rogue waves formed76

in fiber optic systems have also been recently considered as a new field of research in optics, given77

their anharmonic and nonlinear properties which can be a future application optical technologies78

[28]. In particular, an own class of rogue waves which have the potential for application in optical79

technologies are the self-similar pulses [29–32]. Self-similar pulses are wave-amplitudes measured in80

fiber amplifiers [33], which experience an optical gain together with a Kerr-nonlinearity (Fig 2).81

82

.83

84

Figure 2. Observed Kerr-Nonlinearity in a crystal exposed to a magnetic field. [34]. Reprinted85

with permissions. c© Copyright OSA Publishing.86

87

During the induction of the self-similar impulse in the solid, a fluid or any wave-carrying88

medium, the shape of the resulting rogue wave no longer depends on the shape or duration of89

the seed pulses, but depends only on the seed pulse energy (chirping). This creates a large effect90

on the amplitude, which is largely independent on the initial conditions of the wave pattern. This91

event, or formation of a rogue component in the wave-train, has also been observed in ocean wave92

systems [35] and has attracted various groups to develop prediciton methods using the variations of93

the non-linear Schrödinger equation (NLSE) [17,29,33,36,37]. One group in particular developed the94

variable coefficient inhomogenous nonlinear Schrödinger equation (vci-NLSE) for optical signals [17]:95

iψx +
1
2

β(x)ψtt + χ(x)|ψ|2ψ + α(x)t2ψ = iγ(x)ψ, (1)

which derives from the Zakharov equation [38]. Here ψ(t, x) is the complex function for the96

electrical (wave) field and x and t are respectively the propagation distance function and retarded time97
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function. The parameter α(x) defines the normalized loss rate and the function α(x)t2 accounts for the98

chirping effects (which indicates that the initial chirping parameter is the square of the normalized99

growth rate). The parameter β(x) defines the group-velocity dispersion (i.e. for an entire wave-train),100

while χ(x) defines non-linearity parameters, and γ(x) defines loss or gain effects of the wave-signal.101

This equation is adaptable both for oceanic waves, as well as for optical non-linear wave guides.102

Equation (1) is essentially the same as the generalized Gross-Pitaevskii equation with the harmonic103

oscillator potentials in the Bose-Einstein condensates [39] and can be solved by applying the similarity104

transformation [40] by replacing ψ(t, x) in equation (1) with:105

ψ(t, x) = ρ(x)Ψ(T, X)eiφ(t,x), (2)

where ρ(x) is the amplitude, and T and X represent the differential functions describing the106

original propagation distance and the similarity variable, while φ(t, x) is the linear variable function of107

the exponential term, which all must be considered well to avoid singularity of the system ψ(t, x) [17].108

T and X are given as:109

T =
t− tc(x)

W(x)
(3)

X =
∫ z

0

β(s)
W2(s)ds

(4)

and hence the similarity transformation gives:110

iΨX +
1
2

ΨTT + |Ψ|2Ψ = 0, (5)

which is the standard non-linear Schrödinger equation.111

112

The transformation and integrability conditions derived by [17] show that the factors of the113

wave system, such as effective wave propagation, distance, central position amplitude, the width114

and phase of the pulse are ultimately dependent on the group velocity dispersion and on the115

non-linearity parameters of the system (α, β, γ, χ). The “self-similar” solution found in the process116

of the transformation of the variable coefficient inhomogenous nonlinear Schrödinger equation into117

the standard nonlinear Schrödinger equation can ultimately be controlled under dispersion and118

non-linearity management [17]. Once transformed from the iNLSE, the solutions to the NLSE are119

derived by the derivation of polynomial conjugates to the root exponential function. This process is120

reviewed in detail here from the studies by [19].121

2.1. The solutions to the NLSE122

The NLSE equation has been solved by various groups, including [16,19,40–42]. Following one123

of the most recent works by [18,19] in particular, the steps for deriving exact solutions to the NLSE124

are defined by identifying rational solutions [18] for the homogenous nonlinear system in eqn. (5)125

by using the Darboux transformation [43]. This method is often used to derive rational solutions for126

non-linear systems and is adaptable to specific optical rogue waves as well as ocean rogue waves,127

when represented by the NLSE. The main definition of a rogue event is that the wave “appears from128

nowhere and vanish without a trace”, which is feature partly related to the behavior of solitons, which129

are independent waves that self-propagate and exit a collision unchanged. The origin of solitons arises130

from the first observation of a single solitary wave in the North Sea, made in 1834 by J. S. Russell,131

who later reproduced the solitary wave in a tank. Since then, solitons have been mainly studied in132

optical systems, and are represented as solutions to several types of nonlinear PDEs, including the133

NLSE, the Korteweg de Vries equation and the Sine-Gordon equation. This type of rogue behavior,134

is described by the rational solutions derived from the NLSE [19], which describe an induction of a135
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system instability to the top of a plane wave amplitude, which is transferred to the highest amplitude136

and then decays exponentially towards zero [18]. This behaviour is represented by Ma-solitons and137

by Akhmediev breathers or “Akhmediev solitons” [18,19,44–46]. The difference between these two138

soliton models lies in the initial conditions, where the Ma-solitons originates from the initial conditions139

while the Akhmediev solitons arise during evolution of the system given by modulation instability140

[44,47,48].141

When solving the NLSE according to the Akhmediev scheme [19] , their method describes the142

modeled envelope function (ψ) as a solution ranked into an order of hierarchy, starting from first,143

and progressing to the second, third or fourth order [19]. The difference between each order is the144

increasing amplitude of the rogue wave (first order -lowest amplitude, fourth order sharpest peak145

and highest amplitude). The envelope function ψ is expressed as a ratio of polynomials multiplied146

to the complex exponential root function, eix. The polynomials, which are given by functions of147

variable x and t, are identified by performing the Darboux transformation on the NLSE system [19].148

Akhmediev and colleagues furthermore apply a compatibility-check between the root function eix and149

the reference-state for two specified column matrix elements, which define initial conditions for the150

NLSE. These matrix elements (vectors) are given specifically by Akhmediev and colleagues [19] as151

two differential equations:152

rx = il2r + ilψ∗s− il2|ψ|2r +
1
2

ψ∗s (6)

sx = il2s + ilψr− 1
2

ψtr +
i
2
|ψ|2s (7)

which are split into real and imaginary parts, before being simplified and solved to fit into the153

modified Darboux scheme [19,43] to give the two linear differential forms:154

rl(x, t) =
√

2
[

xt− 1
2
+ ix

]
e−ix/2 (8)

sl(x, t) =
√

2
[

x− i(t +
1
2
)

]
e−ix/2 (9)

Where the two vectors (8), (9) are used in the Darboux scheme to find ψj, where j is the order of155

hierarchy. The general solution to the NLSE, derived from this scheme [19] is given by the following156

general form (for any order in the hierarchy):157

ψj(x, t) =
[
(−1)j +

Gj(x, t) + ixHj(x, t)
Dj(x, t)

]
eix (10)

where G, H and D are the polynomials of the two variables x and t (mentioned above). The first158

order-solution [19] has the following polynomials: G = 1, H = 2 and D = 1 + 4t2 + 4x2 which give the159

following envelope function (shown in Fig 3):160

ψl =

[
1− 4

1 + 2ix
1 + 4t2 + 4x2

]
eix (11)
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.161

162

Figure 3. The plot of ψ1, the first-order solution to the standard NLSE [19]. Real and imaginary163

part shown respectively above and below. Plotted with SageMATH [49,50].164

165

For the second-order solution, [19] identify the vectors r2 and s2 by solving the equations (6) and166

(7) by using the form of ψ given in (10). This gives the second-order solution:167

ψ2(x, t) =
[
(−1)2 +

− 2t4 − 12t2x2 + ix
(

8t2x2 + 2t2 − 4x4 − 2x2 + 15
4

)
− 3t2 − 10x4 − 9x2 + 3

8

16t6

3 + 13t2 + 16x6

3 + 36x4 + 33x2 + 3
4

]
eix

(12)
which is shown in figure 4. The third and fourth order rational solutions are furthermore168

calculated and given in [19].169
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.170

171

Figure 4. The plot of ψ2, the second-order solution to the standard NLSE [19]. Real and172

imaginary part shown respectively above and below. Plotted with SageMATH [49,50].173

174

The same hierarchy-dependency is given in the approach by [17], for the transformed vci-NLSE,175

who define the general solutions for the NLSE in the hierarchical n-th order given by:176

ψn =
1

W

√
β

χ
[(−1)−1 +

Gn + i(Z− Z0)Hn

Fn
× ei[(1− v2

2 )(Z−Z0)+vT+φ] (13)

where each factor is given for the first and second order rational solutions [17]. Similarly to the177

hierarchy solutions of Akhmediev [19], the increasing order gives higher and higher rogue waves,178

compared to their surrounding waves. The first and second order rational solutions given in [17]179

reflect respectively a 3X and 5X rogue wave height, compared to the surrounding waves. For plots of180

these, refer to [17].181

182

The similarity between (13) and (10) is striking, and both retain the basic form of a complex183

polynomial multiplied by a complex exponential root function giving soliton solutions. The root184

functions of (10) and (13) are shown in their generic form in Fig 5, which depicts the distinction185

between the seed pulse for the regular NLSE and the vci-NLSE, as studied respectively by [17,19] for186

the rogue wave problem.187
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.188

189

Figure 5. The root functions for the standard NLSE and the inhomogenous variable coefficient190

NLSE. Top: The seed impulse used in the solutions to the standard NLSEm, eix [19]. A generic191

form of the seed impulse used in the solutions of the inhomogenous variable coefficient NLSE [17]192

( f (x) = ei(1−x2/2)+x. Real part (Blue) and imaginary part (Red).193

194

The root function for the vci-NLSE (Fig 5) shows its specific pattern of wave accumulation, which is195

similar to the formation of wave packets. This pattern is conserved with the physical behavior of rogue196

wave formation, where the rogue wave forms during a focusing phase [51]. Other approaches used to197

solve the NLSE have been given by [37], who used the inverse scattering method of transformation,198

which is a generalization of the Fourier analysis. Their solutions differ from the methods discussed199

above, and are periodic and ascribed by a complex envelope function for the deep water train with200

added higher-order terms from the perturbation procedure [37] One of the solutions are shown in201

figure 6, which shows the following variant of the Osborne models:202

ψ =
cos(
√

2x)sech(
√

2t) + i
√

2tanh(2t)√
2− cos(

√
2x)sech(

√
2t)

e2it, (14)
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which is a periodic function in space, derived from the general form given in [37], shown in203

Figure 6.204

.205

206

Figure 6. The selected wavefunction from the Osborne models [37]. Top: Real part; Bottom:207

Imaginary part. Plotted with SAGEMATH [49,50]208

209

The disadvantage of this system, compared to single-peak models derived from [19] lies in their210

periodicity and multiple peaks, while the rational solutions behind the single peak models of [18,19]211

are the first in general to serve as prototypes for rogue waves.212

3. The Korteweg de Vries equation213

Wave systems defined by higher order nonlinear PDEs, such as (2), can be solved also by the214

bilinearization technique [52]. This technique involves the step of transforming the differential215

equation into a more tractable form by replacing the unknown time- and position-dependent envelope216

function with a new form [52]. After this replacement has been performed, the bilinearization217

technique applies Hirota bilinear operators for a modified Bäcklund transformation technique [53],218

which assists in rewriting the original PDE into a simplified PDE composed of bilinear operators, from219

where exact soliton solutions can be identified. The most suitable example [52] for the application of220

the bilinearization technique is on the Korteweg de Vries (KdV) equation:221

Ψt + 6ΨΨx + Ψxxx = 0 (15)

where the boundary conditions are that ψ→ 0 as |x| → ∞ . The real wavefunction is differentiated222

according to the spatial and temporal dimensions as denoted. In the bilinearization technique, a223

transformation of the wavefunction to another form is the first step, where an ideal steady-state form224

is proposed [52] to:225

ψ(x, t) = (p2/2)sech2(η/2), (16)

where226
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η = px− p3t + η0, (17)

and η0 and p are arbitrary constants. By the bilinearization technique [52], one can rewrite (16) to227

the form:228

ψ(x, t) = 2p2(eη/2 + e−η/2), (18)

which is converted to its functional form:229

ψ(x, t) = 2
∂2ln[ f (x, t)]

∂x2 , (19)

with f(x) = 1+eη .230

The bilinearization technique [52] substitutes (19) into the original KdV equation (15) and231

integrates it with respect to x:232

fxt f − fx ft + fxxxx f − 4 fxxx fx + 3( fxx)
2 = 0 (20)

which is the original version of the bilinearized variant of the Korteweg de Vries equation (15) as233

derived by [53]. The solution to (20), f(x) = 1+eη , is defined as a more fundamental quantity than ψ in234

eqn. (18) for the structure of the original nonlinear PDE in eqn. (15). In the method of bilinearization,235

the Hirota bilinear operators are introduced. These are defined by the following definition [53]:236

Dn
t Dm

x a · b = (∂/∂t− ∂/∂t′)n(∂/∂t− ∂/∂t′)ma(x, t)b(x′, t′) |x=x′ ,t′=t (21)

with m and n being arbitrary positive integers. At this stage, the converted form of the KdV237

equation (20) is rewritten as a PDE composed of Hirota operators:238

Dx(Dt + D3
x) f · f = 0, (22)

which is a simplified form for the identification of exact solutions using the Bäcklund239

transformation for the original nonlinear PDE (15). The exact solution structure for the type of240

Hirota-operator based PDE form (22) of the KdV equation (15) is given by:241

Ψ = 1 + ε(eη1 + eη2)− ε2 F(Ω1 −Ω2, p1 − p2)

F(Ω1 + Ω2, p1 + p2)
eη1+η2 (23)

which represents the two-solition solution to the original KdV equation (15). η1 and η2 are242

the functions with the independent variables x and t as given in (16) for each of the solitons, and243

Ω1 = −p3
1 and Ω2 = −p3

2, following the same definition for (16) for each soliton. η represent the244

perturbations [52]. The KdV equation (15) has also been solved by Matveev by identifying positon245

solutions [54], which exert the same behavior as solitons, such as conserved shape after collision, and246

elastic collision behavior. The positon differs from the soliton in that it has an infinite energy, and is247

therefore not a strong model for oceanic or optical rogue waves. Positons have however a tendency248

to represent smoother solutions than solitons to the KdV equation, and can have very high peaks249

compared to the wave normal. The KdW equation has also been solved by a nonlinear Fourier method250

[55,56], which is represented by a superposition of nonlinear oscillatory modes of the wave-spectrum.251

This model, developed by Osborne [55,56], has a capacity to include a large number of non-linear252

oscillatory patterns, also known as multi-quasi-cnoidal waves, which are used to form the rogue wave253

by superposition in constructive phases. These solutions to the original KdV equation (15) include254

several solitons, depending on the number of degrees of freedom selected for the numerical simulation255

of the KdV equation. This yields a 3D wave complex composed of solitons and radiation components256

in the simulated wavetrain [55].257
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4. The extended Dysthe equation258

In 1979, Dysthe [57] developed a modification of the perturbation-based NLSE by adding an259

additional term to the third-order perturbation variant originally developed by Higgins [58]. Dysthe’s260

method gave an NLSE variant, known as the extended Dysthe equation, which showed to have a261

better agreement with the mean flow response to non-uniformities in deep-water waves. The extended262

Dysthe equation is given by:263

i
k

ψxyy + ψyy + 2ikψx + 2ψz = oε4, (24)

where the inhomogenous component is the fourth-order perturbation defined by Dysthe [57].264

Dysthe transformed this equation to standard NLSE using dimensionless variables, and added the265

following perturbation to the general solution:266

ψ = c0(1 + α)ei(θ′− 1
2 ic2

0t) (25)

where α and θ are small real perturbations of the amplitude and phase respectively. After insertion267

of (25) in the dimensionless form of (24) and linearizing, Dysthe obtained a simplified system of two268

PDEs, where the respective plane-wave solutions are in the form:269 (
α′

θ′

)
∝ ei(λx+µy−Ωt) (26)

and270

φ ∝ e[Kz+i(λx+µy−Ωt)] (27)

where K =
√
(λ2 + µ2) and λ, µ and Ω are selected parameters which satisfy a set of dispersion271

relations given by Dysthe [57].272

The stability of the solutions derived by Dysthe shows that the Dysthe equation represents a273

more realistic model than the NLSE, given that it does not predicts a maximum growth rate for all274

wavevectors, but only for some wavevectors only. This displays that the fourth-order perturbation275

term added to the NLSE gives a considerable improvement to the results relating to the stability of276

the finite amplitude wave. It is particularly the first derivative by the transformed variables in the x277

and z dimensions in eqn. (24) which contributes to the excellent results of Dysthe. Dysthe and Trulsen278

[59,60] further developed this equation by including up to the fifth-order of the derivative of the wave279

amplitude describing the linear dispersive terms, and simulated successfully [61] the New Year’s280

wave [4] using the extended Dysthe equation [57,61].281

5. The MMT model282

The MMT equation is a one-dimensional nonlinear dispersion equation which was originally283

proposed by Majda, McLaughlin and Tabak [62]. The MMT equation gives soliton-like solutions284

which have been analyzed in detail by Zhakarov [63–65] and gives four-wave resonant interaction285

between waves, which, when coupled with large scale forces and small-scale damping, yields a family286

of solutions which exhibit direct and inverse cascades [22]. The MMT equation is given by:287

iψt = |∂x|α + λ|∂x|β/4(||∂x|β/4ψ|2|∂x|β/4ψ) + iDψ (28)

where ψ is a complex scalar and |∂x|α is the pseudodifferential operator defined on the real axis288

through the Fourier transform:289

|∂x|αψ(k) = |k|αψ̂(k) (29)
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The last term in (28) is the dissipation term, which is tuned to fit ocean waves through the290

Laplacian operator, Dψ, defined in the Fourier space:291

D̂ψ(k) =

{
−(|k| − k∗)2ψ̂(k) |k| > k∗

0 |k| 6 k∗
(30)

This dissipation term, used by [22] is similar to other dissipation models used by Komen and292

colleagues [66], who have developed concrete models for simulating large wave groups with focusing293

and defocusing effects. λ is the nonlinearity coefficient and corresponds to the focusing phase when294

< 0, and to the defocusing phase when > 0. The MMT equation (28) differs from the standard NLSE295

by that its family of solutions develop in a more exponential pattern, rather then the Gaussian-bell296

shaped pattern observed for the solutions for the NLSE [22]. The interesting aspect of this pattern297

of the spectrum of solutions of the MMT equation is in the mode of formation of the rogue wave,298

where there energy is transferred from and to the surrounding waves. The solutions are in other words299

induced by the intermittent formation from the localized rogue event arising out from the regular300

Gaussian background and collapsing into the surrounding waves. The energy of the rogue wave is301

transferred to the surroundings and experiences a complete zero-point state, merging completely in302

the background [22].303

The MMT model shows also the formation of quasisolitons which appear in triple-wave packets,304

as modelled by Zakharov and Pushkarev [63] and differ from regular solitons in that they radiate305

the energy backwards towards the preceding amplitudes. This behavior of the solutions may be306

particularly compatible with the simulation of rogue wave events occurring in regions with strong307

counter-wind currents, such as in the Aghulas-current [67] or in the regions of the Irish sea [2], which308

are heavily populated by rogue events, on the passage of the warm waters of the Gulf stream when309

encountering the frequent low-pressure systems over the Irish sea with counter-wave winds. The310

quasibreathers or quasisolitons [63], have the root function similar to the Dysthe-type solutions given311

in (25). Zakharov and Pushkarev [63] approach the solutions in the form:312

ψ(t) = ei(Ω−kV)tφk (31)

where Ω and V are constants (Ω < 0 and V > 0 ), and k is the wavenumber, which is an313

approximate solution to the soliton-like solution for the MMT model. In this approximation, [63] give314

φk the following form:315

φk = λ

∫
T1234φ∗1 φ2φ3δ(k + k1 − k2 − k3)dk1dk2dk3

−Ω + kV − |k|α , (32)

which represent a form which gives quasi-soliton solutions [68] to the MMT equation. This form316

of the solutions to the MMT equation radiates energy backwards to the proceeding amplitudes, and317

represents therefore an energy-focusing which is rather un-similar from the focusing effects modeled318

by others for rogue patterns (vide supra). It is interesting to note that backward radiation plays also319

a central role for the dynamics of the quasi-solitons, and not only for their energy-accumulation320

profile. Using the MMT model, Zakharov and Pushkarev [63] developed also a model for collapses of321

the rogue event, by using self-similar solutions, and model the formation of the wave wedge in the322

appearing and vanishing state, given by a Fourier-space distribution of the wave-function. Zakharov323

and Pushkarev [63] have also used the MMT model to develop turbulence-based solution for the324

localized rogue event, using the initial condition in the form of a NLSE soliton:325

ψ(x, 0) =
q

2k9/4
m

eikmx

cosh(qx)
, (33)

which shows a conserved action and momentum, and an “inner turbulence” localized both in the326

real and Fourier spaces of the solutions to the modeled envelope function. This “intrinsic turbulence”327
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is described by the authors in affecting the form of its wave-spectra, which is irregular and with a328

stochastic behavior [63]. This model of the rogue wave shows quasi-periodic oscillations with slowly329

diminishing amplitudes over time – caused by the destruction of rogue wave by the surrounding330

interference, which the authors denoted as a "quasi-breather".331

6. The Hirota equation332

Multisolitons and breathers for rogue waves have been also successfully modeled [69] by applying333

the Darboux transformation on the Hirota equation [53]. In their approach, Tao and He [69] developed334

the Lax pair on the Hirota equation, by using the AKNS [70] procedure to get the Lax pair with the335

spectral parameters of the Hirota equation given below:336

iψt + α(2|ψ|2ψ + ψxx) + iβ(ψxxx + 6|ψ|2ψx = 0 (34)

where the Lax pair is expressed as337

φx = Mφ, φt = Nφ (35)

gives rise to the extended matrix representation of the operators in the Hirota equation as338

described by Tao and He [69]. Tao and He further applied the Darboux transformation [43] on the339

Lax-represented system by using the simple gauge transformation for spectral problems,340

φ[1] = Tφ (36)

where T is the polynomial applied on the parameter λ given in the Lax pair, and φ is the seed341

function. Tao and He [69] argue however that regular seed solution φ = eix as described in the342

previous sections is too special, and makes the rogue wave model not universal enough. Tao and343

He develop therefore a different seed function compared to Akhmediev and colleagues [19,44] for344

instance, and develop a more extended form of the seed function by starting from a zero seed solution345

and a periodic seed solution to construct the complete solutions for the breathers and solitons. At zero346

seed and with the parameter λ from the Lax pair they set the following Hermitian seed pair:347

φ = e−i(ξ+iη)x−(4βi(ξ+iη)3+2αi(ξ+iη)2t (37)

and348

φ∗ = ei(ξ+iη)x+(4βi(ξ+iη)3+2αi(ξ+iη)2t (38)

back in the Darboux Transformation to get the 1-soliton solution:349

ψ
[1]
soliton = 2ηe2i(−iξx−4βξ3t−2αξ2t+12βξη2t+2αη2t) × sech(−2ηx− 24βη2t + 8βη3t− 8αηξt). (39)

Tao and He [69] further report the model for the 2-soliton solution, and finally give the form of350

the 1-soliton breather solution:351

ψ
[1]
breather = eiφ

[
c− 2η[ηcosh(2d2)− iσsinh(2d2)− ccos(2d1]

ccosh(2d2)− ηcos(2d1)

]
, (40)

where d1, d2, σ are given [69]. Tao and He finally construct the Rogue wave solutions to the352

original Hirota equation in (34) by Taylor expansion on the breather solutions in (40). The Taylor353

expansion is carried out at the η variable of the breather solution (40) which is given in [69], and forms354

the general form of the first order rogue wave of the Hirota equation:355
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ψroguewave = kei(−2ξx+βt)
(

1− 2k1 + 2k2 + ik3t
k1 − k2

)
(41)

where the polynomials k1, k2, k3 are given by Tao and He [69]. The rogue wave model resulting356

from this form is more general than the model given by Akhmediev and collegues [71] on the Hirota357

equation. This difference is caused by the appearance of several parameters related to the eigenvalues358

of the Lax pairs, and gives however a possibility to tune more finely the model to experiments on rogue359

waves. This advantage of the model by Tao and He increases the ability to modulate the precision of360

reproducing a rogue wave model by calculations. Tao and He’s method grants also the possibility in361

calculating higher order rogue wave solutions to the Hirota equation by determinant representation of362

the Darboux Transform, which was carried out in a subsequent work [72].363

7. The Ablowitz-Musslimani models: Non-local rogue waves364

Another critical method for modelling rogue waves was developed by Ablowitz and Musslimani365

[73–76] and uses nonlocal integrable models of the NLSE (1) and KdV (15) equations, where the366

resulting wave is derived by reverse space-time symmetry. The model evolves by establishing367

integrability by an infinite number of constants of motion or an infinite number of conservation368

laws. By this, the method uses a compatible pair of linear equations (similar to the Lax pair in369

the Hirota equation in (35)) with the nonlinear integrable equation. The method by Ablowitz and370

Musslimani differs from the Hirota method in that the pair of linear equations represent the scattering371

problem and the evolution of the scattering data [73,76]. Furthermore, the method by Ablowitz and372

Musslimani is different from others in that it constructs an inverse scattering problem also known as a373

linear Riemann-Hilbert problem, which gives the solution to the nonlinear PDE with dependency on374

time.375

The approach by Ablowitz and Musslimani [73] starts by linearizing the equation:376

iqt(x, t) = qxx(x, t)± 2q(x, t)q∗(−x, t)q(x, t), (42)

where one can immediately observe the existence of a Hermitian pair with reverse directional377

variables. This form, where reverse variables are used, defines the nonlocal property of the equation378

and has the advantage by that the equation remains invariant in time and space, after the complex379

conjugate is taken. Hence, the nonlocal equation is parity- and time- symmetric (PT -symmetric),380

which prevents the equation from yielding different results by a self-induced potential.381

An exemplary Lax pair is given in [77] as:382

vx =

(
−ik q(x, t)

r(x, t) ik

)
v, (43)

vt =

(
A B
C −A

)
v, (44)

where v is the two-component vector and k is a special parameter, and A and B are complex383

functions. Ablowitz and Musslimani use at this step specific compatibility conditions [78] to transform384

the original PDE in (42) (i.e. ψxt = ψtx) and gains the simplified PDE pair:385

iqt(x, t) = qxx(x, t)− 2r(x, t)q2(x, t), (45)

− irt(x, t) = rxx(x, t)− 2q(x, t)r2(x, t). (46)

which yield the original form in eqn. (42). Ablowitz and Musslimani further define the nonlocality386

by using a specific symmetry reduction:387
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r(x, t) = ∓q∗(−x, t). (47)

This step is particularly characteristic to Ablowitz-Musslimani models [73–76], which of the new388

class of nonlocal integrable evolution equations with the nonlocal NLSE hierarchy are directly derived389

by.390

The aforementioned property of conserved quantities and conservation laws is also characteristic to391

Ablowitz-Musslimani models [73,75]. Here they define a set of eigenfunctions which obey specific392

boundary conditions [73]. The eigenfunctions are very similar to the seed functions used by other393

groups and when inserted in the Lax pair, yield a Riccati model of the conservation quantities. This394

yields the global conservation laws which are given in [73] by:395

C0 =
∫ +∞

−∞
q(x, t)q∗(−x, t)dx,

C1 =
∫ +∞

−∞
[qx(x, t)q∗(−x, t) + q(x, t)q∗x(−x, t)]dx,

C2 =
∫ +∞

−∞
[qx(x, t)q∗x(−x, t) + σq2(x, t)q∗2(−x, t)]dx,

which are real integrable Hamiltonians. Ablowitz and Musslimani [73] derive furthermore local396

conservation laws defined by the equations:397

∂t[q(x, t)q∗(−x, t)] + i∂x[q(x, t)q∗x(−x, t) + q∗(−x, t)qx(x, t)] = 0 (48)

∂t[q(x, t)q∗x(−x, t)] + i∂x[q∗x(−x, t)qx(x, t) + q(x, t)q∗xx(−x, t)− σq2(x, t)q∗2(−x, t)] = 0 (49)

which are used to develop the framework for the direct scattering problem and the inverse398

scattering problem, where the scattering data is given by specific scattering matrices. The same399

symmetry is also in the problem of the potential and in the eigenfunction and leads naturally to the400

same symmetry relation in the scattering matrices, which are given by:401

N(x, k) = ΛM∗(−x,−k∗) (50)

and402

N̄(x, k) = Λ−1M̄∗(−x,−k∗), (51)

where Λ is a 2x2 matrix with zeros in the diagonal and 1, ±1 on the lower and upper403

diagonal respectively. For the inverse scattering problem, Ablowitz and Musslimani [73] account404

for the symmetry condition by considering the set of basis terms as a left scattering problem, and405

supplement these terms with the equivalent right-scattering problem, which from they formulate the406

Riemann-Hilbert problem and find the linear integral equations which govern the functions M and M̄407

in (50). These equations are given by:408

M(x, k) =
(

1
0

)
+

J̄

∑
l=1

B̄le2ik̄l x M̄(x, k̄l)

k− k̄l
− 1

2πi

∫ ∞

−∞

R̄(ξ)e2iξx M̄(x, ζ)

ζ − (k + i0)
dζ, (52)

M̄(x, k) =
(

0
1

)
+

J

∑
l=1

Ble2ikl x M(x, kl)

k− kl
− 1

2πi

∫ ∞

−∞

R(ξ)e2iξx M(x, ζ)

ζ − (k + i0)
dζ, (53)
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where R(k) and R̄(x) are the reflection coefficients. The terms Bl and B̄l are the conservation law409

Hamiltonians applied symmetrically. From this stage, Ablowitz and Musslimani [73] derive a linear410

algebraic integral system of equations that solve the inverse problem for the eigenfunctions M̄(x, k)411

and M(x, k).412

The resulting soliton solutions of the Ablowitz-Musslimani model assume hence the form413

q(x) = − 2(η + η̄)eiθ̄1 e−4iη̄2
1 te−2η̄1x

1 + ei(θ1+θ̄1)e4i(η2
1−η̄2

1)te−2(η1+η̄1)x
, (54)

which represents a family of solutions defined by the four independent parameters which have a414

dynamic relationship with the time-variable and which gradually develop a singularity in a finite time415

period, ts at x=0 where ts is given by:416

ts =
(2n + 1)π − θ1 − θ̄1

4(η2
1 − η̄2

1)
. (55)

(55) is a critical form of the time-variable which distinguishes the method of Ablowitz-Musslimani417

[73–78] from other rogue waves models and adds a non-linear evolution of the rogue wave. Ablowitz418

and Musslimani have also most recently developed a new model which includes nonlocal rogue waves419

with nonzero background, which provide and more realistic view of the rogue wave, which focuses420

energy from neighboring waves [79].421

Solutions to the Ablowitz-Musslimani model (42) were also developed by Yang and Yang [80], who422

used the Darboux transformation method on the PDE coupled with the Bäcklund transformation on423

the potential functions, identifying three types of rogue waves from the Ablowitz-Musslimani picture.424

Yang and Yang expanded the solutions to polynomials using Schur polynomials [80]. This analysis of425

the Ablowitz-Musslimani model showed greater variation in the rogue waves compared to the regular426

NLSE, where the variations were represented by the terms in the denominator of the soliton solutions.427

The parity-time symmetry potential of the Ablowitz-Musslimani equations has also been studied by Yu428

[81] very recently, who obtained discrete rogue wave solutions with three free parameters (refer to eqn.429

(54) for similarities). Yu studies in particular the effect that the dispersion of the parity-time symmetry430

has on the solutions, as well as the effect of the coefficients and the parameters. Yu [81] uses the431

Darboux transformation method in a similar fashion to Yang and Yang [80] to derive different forms of432

solitons with different height which are defined by two of the three free parameters in the solution (η433

and η̄ in eqn. (54)). Yu [81] also assesses the stability of rogue waves over a specific period of time, and434

includes a modulation instability coefficient which allows the modelling of several discrete solutions435

which represent various stages of a rogue wave formation (appearing suddenly and disappearing436

suddenly), a property of rogue waves also reported by Akhmediev and colleagues [18–20]. Finally, Yu437

models rogue waves which appear rapidly and do not disappear. This latter model may be particularly438

relevant to describe rogue events during low-pressure systems at open sea, which have been reported439

in several cases to give stable rogue waves with long life-time (i.e. the rogue waves reported in the440

study by Munk [35]).441

8. Conclusions442

A survey of various mathematical models for representing rogue waves has here been carried out443

to the maximum extent of including the most applied as well as most recent models. The overall survey444

yields a perspective which delineates the common traits between the methods. This survey also shows445

how novel and emerging models allow for better modelling of rogue waves, by including several446

parameters associated with the evolution of the rogue waves, such as the duration, the height and447

other particular properties that a rogue event can display when occurring in oceans, optical systems,448

or even in the atmosphere. The results show also new the versatile forms of the older models (MMT449

and Dysthe), can be furthermore adapted and studied numerically in upcoming papers, particularly450

with relevance to counter-wave winds which frequently occur on the Gulf-current outside the Irish451
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coast and on the Western Norwegian coast during North-East and North winds respectively. By the452

overall review of the various methods, a theorem is suggested for describing the origin of rogue waves453

in the ocean. The theorem suggests that a rogue wave in the ocean can be formed whenever there is a454

momentaneous surplus of energy perturbed on the momentum or in the kinetic term of a wave-train,455

induced either by a sudden change in the atmosphere leading to strong winds appearing suddenly456

over large volumes of water, or induced by a collision of large volumes of water with highly different457

temperatures and densities, or finally, as often observed, a rogue event occurs by the constructive458

overlap of waves, in opposite directions, in transverse directions or running in the same direction459

and its duration is determined, when occurring in the same direction, by the slight deviations in the460

momenta of the overlapping waves. Future work will be the submission of a project proposal for461

predicting rogue waves for off-shore structures, currently under development for the Norwegian462

Research Council.463
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MMT Majda, McLaughlin and Tabak
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