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Abstract: Analysis of 1,382 measures of battery State of Health (SoH) from 283 Nissan Leafs 
(“Leaf/s”), manufactured between 2011 and 2017, has detected a faster rate of decline in this 
measure of energy-holding capacity for 30 kWh variants.  At two years of age, the mean rate of 
decline of SoH of 30 kWh Leafs was 9.9% per annum (95% uncertainty interval of 8.7% to 11.1%; 25 
n=82).  This was around three times the rate of decline of 24 kWh Leafs which at two years 
averaged 3.1% per annum (95% uncertainty interval of 2.9% to 3.3%; n=201).  For both variants 
there was evidence for an increasing rate of decline as they aged, although this was much more 
pronounced in the 30 kWh Leafs.  Higher use of rapid DC charging was associated with a small 
decrease in SoH.  Additionally, while 24 kWh cars with greater distances travelled showed a higher 30 
SoH, in 30 kWh cars there was a reduction in SoH observed in cars that had travelled further.  The 
30 kWh Leafs sourced from United Kingdom showed slower initial decline than those from Japan, 
but the rate of decline was similar at two years of age.  Improvements in the battery health 
diagnostics, continuous monitoring of battery temperatures and state of charge, and verification of a 
fundamental model of battery health are needed before causes and remedies for the observed 35 
decline can be pinpointed.  If the high rate of decline in battery capacity that we observed in the first 
2.3 years of a 30 kWh Leaf’s lifetime were to continue, the financial and environmental benefits of 
this model may be significantly eroded.  Despite 30 kWh Leafs accounting for only 14% of all light 
battery electric vehicles registered for use on New Zealand roads at the end of February 2018, there 
is also the potential for the relatively poor performance of this specific model to undermine electric 40 
vehicle uptake more generally unless remedies can be found.   
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Introduction 
  
A barrier to uptake of electric vehicles is the concern amongst prospective purchasers that the 
batteries will not last long enough to maintain a practical maximum range (Ford et al. 2015, Moller 
& Ivanov 2017).  This concern is potentially more acute in New Zealand where most electric 50 
vehicles are purchased second hand and imported from Japan and the UK, and there is not yet a 
well-developed battery replacement or refurbishment industry.  Nissan Motor Company Ltd have so 
far only guaranteed to supply batteries for the relatively small number of Leafs that were sold new 
into the New Zealand market (EVTalk, 2017).  
 55 
A battery’s capacity can be measured by a ‘State of Health’ (SoH) metric, the condition of a battery 
compared to its ideal condition.  It is related to the fraction of electrical energy that the battery can 
hold as a percentage of the energy that the battery could store at time of manufacture.  SoH does not 
correspond to any particular physical quantity, but rather it’s a quantity derived from a number of 
parameters.  The lithium-ion battery SoH is a value officially referred to by Nissan as 'LBSOH' and 60 
is generated by the car's battery management system and outputted by the Nissan Consult 3 tool 
(My Nissan Leaf, 2012). It is also possible to read the SoH of the battery using an OBDII adapter 
and the LeafSpy application (Pollick, 2018).   
 
Battery capacity is important for electric vehicle owners because it is a primary factor in the 65 
maximum range that the car can travel once the battery is fully charged.  Limited range and 
associated “range anxiety” are important perceived barriers for many potential purchasers of the 
early and less expensive electric vehicle models, like the Leaf (Barton & Schutte 2015, Ivanov & 
Moller 2017a).  The increased range of the 30 kWh Leaf from late 2015 onwards may partially 
alleviate the “range anxiety” of some purchasers, but these models are currently around a third more 70 
expensive to buy on New Zealand’s second hand car market than their 24 kWh counterparts.   
 
It is therefore concerning that commentary in electric vehicle social media has asserted that SoH of 
30 kWh Leaf batteries declines faster than the 24 kWh models, especially in hotter regions of the 
USA (NZ EV Owners Group, 2018; My Nissan Leaf, 2018).  Given that higher temperatures and 75 
warmer climates accelerate battery degradation (Keil, 2016; Mao, 2017), SoH may be higher on 
average for cars entering New Zealand from the UK compared to those from Japan.  To date, well 
quantified data and robust statistical analysis has not been published to evaluate these claims. 
   
It is normal for the SoH of lithium ion batteries to decrease over time.  For example, Nissan 80 
estimated that the battery of the Leaf should retain 80% capacity after 5 years (Nissan, 2012; 
Nissan, 2017).  The decrease in the battery’s SoH is referred to in this document as the decline.  We 
define the rate of decline as the instantaneous decrease in state of health at a particular point in time 
(% per annum).    
 85 
Flip the Fleet is a citizen science project in which electric vehicle owners from throughout New 
Zealand sign up to provide monthly records on their cars’ distance travelled, efficiency, charging 
patterns, and average speed (Ivanov & Moller 2017b).  Over 620 electric vehicles have signed up to 
contribute data since the testing phase of the project began in July 2016, and the public launch in 
June 2017.  Twenty-two models of electric vehicles provide monthly data, of which 73% are Leafs.  90 
A subsample of participants also provide SoH measures at the end of each month from LeafSpy.  
Here we explore these SoH data of Leafs in New Zealand, and investigate potential factors that are 
associated with different rates of decline. 
 
  95 
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Methods 
 
A convenience sample (non-random, self-selecting participants) of 82 of the 30 kWh and 201 of the 
24 kWh Leafs contributed 1,382 battery SoH measurements for this analysis.  Most records were 
taken between June 2017 and the present, and submitted to Flip the Fleet 100 
(http://www.flipthefleet.org/).  There were also 76 participants who submitted 359 historical records 
of SoH from July 2014 to June 2017.  In addition to cars enrolled in Flip the Fleet, there were 39 
records from 24 kWh and 30 kWh cars presented for auction and randomly measured in the Osaka, 
Nagoya, and Kobe regions of Japan in early February 2018.  We also included 14 SoH 
measurements from 6 of the 30 kWh vehicles in use on New Zealand roads that had not been signed 105 
up to Flip the Fleet.  There was no evidence that these additional samples differed in nature from 
the samples from Flip the Fleet. 
 
Most (81%) of the sample are in private ownership and used for domestic travel and the remainder 
are part of fleets operated by companies.  Here we present data from Leafs divided into two groups: 110 
201 with a 24 kWh lithium ion battery (manufactured in 2011 - 2016), and 82 with a 30 kWh 
battery manufactured in late 2015, 2016 and 2017.  Most of the vehicles in our sample were sourced 
second-hand from either Japan (89%), United Kingdom (7%), Australia (<1%), or Europe (<1%).  
There was a small fraction (3%) that were NZ-new 24 kWh Leafs.  Overall, 32% of the total life of 
all vehicles, and 49% of the total distance travelled by the Leafs occured in New Zealand.  115 
 
Bayesian hierarchical models (Gelman, 2006), taking into account the correlated nature of 
measurements from the same car, were fitted to the data.  This model choice is particularly 
appropriate to analyse this dataset because of the wide and increasing scatter of the measurements 
with age of car, repeated measures of SoH from the same cars, and varying number of 120 
measurements per car.  The R statistical environment (R core team, 2016) was used for analysis, 
with the packages dplyr (Wickham, 2017) for data manipulation, brms (Bürkner, 2017) for 
Bayesian models, and ggplot2 (Wickham, 2016) for graphical display.  
 
The predictor included in the primary model was age by battery capacity type.  The date of 125 
manufacture, or date of first registration in the country of origin when this was not available, was 
used to calculate the age of the car at each measurement.  To allow for a model with no intercept, 
the dependent variable SoH was linearly transformed so that the origin corresponded to a 100% 
SoH at age 0.  The rate of decline of battery SoH by age was allowed to vary by vehicle within the 
model, and model predictors were assumed to be of a Gaussian form.  A second model was fitted 130 
which additionally allowed the decline by age to vary by the battery capacity and country of origin.  
A third model also included predictors of odometer and rapid charges per unit of distance travelled.  
 
Statistical models where age had a linear or quadratic relationship with SoH were compared using 
“leave-one-out” cross-validation information criteria with a lower value representing a model that 135 
provides a better “out-of-sample” fit to the data (Vehtari, 2017).  The rate of decline of SoH by each 
Leaf model is presented as the mean rate at a given age.  The mean posterior values are given, along 
with the 95% uncertainty intervals, which contain the value for the population with 95% probability 
given the model and data.  
 140 
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Results  
 
Battery SoH declined at a population level consistently with age, but there was considerable 145 
variation between vehicles of a given age (Fig. 1 & 2).  Some individual vehicles maintained a 
steady SoH, others inflected sharply downward after stable periods, and some even increased up to 
100% for reasons we cannot identify (Fig. 2).  Several participants reported that their SoH builds 
steadily after several rapid charging events in quick succession when on long journeys, followed by 
decline when the vehicle has once again been slow-charged at home at daily intervals.  150 
 
A quadratic model provided better out-of-sample predictions than a linear model (leave-one-out 
cross-validation information criteria of 4985 for the quadratic model versus 5475 for the linear 
model, with a lower score indicating a better fit to the data).  This improvement was largely driven 
by the 30 kWh cars benefiting from a quadratic term (coefficient value -1.4%, 95% uncertainty 155 
interval -2.0% to -0.7%).  In contrast, the coefficient for the quadratic term for the 24 kWh Leafs 
had a much small magnitude (-0.1%, 95% uncertainty interval -0.2% to 0.0%).  
 
The decline in the 30 kWh Leafs was much faster than the 24 kWh Leafs (Fig. 3 & 4).  The mean 
rate of decline of 24 kWh Leafs at one year of age was 2.9% per annum (95% uncertainty interval 160 
of 2.6% to 3.2%).  In contrast, the mean rate of decline of 30 kWh Leafs at this age was 7.2% p.a. 
(95% uncertainty interval of 6.7% to 7.6%).  At two years, the rate of decline in the 24 kWh Leafs 
was relatively unchanged at 3.1% p.a. (95% uncertainty interval of 2.9% to 3.3%), but the rate of 
decline in the 30 kWh Leafs increased to 9.9% p.a. (95% uncertainty interval 8.7% to 11.1%).  
 165 
There was reasonable variation between vehicles, with some cars showing minimal decline as a 
function of age while others showed substantial decline.  This was especially the case with 30 kWh 
Leafs, which after 1.4 years some had 100% SoH while others were at 85% SoH.   
 
SoH was positively associated with distance travelled in 24 kWh Leafs, but negatively associated in 170 
30 kWh Leafs: for every 10,000 km that a 24 kWh Leaf had traveled above the mean for a given 
age, SoH increased by 0.3% (95% uncertainty interval 0.0% to 0.5%); whereas for every 10,000 km 
above the mean for 30 kWh Leafs, SoH decreased by 0.6% (95% uncertainty interval of 0.1% to 
1.0%).  The number of rapid charges per 100 km travelled was associated with a decrease in SoH of 
0.6% (95% uncertainty interval of 0.3% to 1.0%) in both 24 and 30 kWh models.  That is, a Leaf 175 
with an odometer of 10,000 km and 150 rapid charges, is expected to have a SoH 0.9% lower than a 
Leaf with an equivalent odometer and no rapid charges.   
 
There was no evidence that the rate of decline of 24 kWh Leafs differed between source countries, 
with a mean rate of decline close to 3.0% in both Japanese and UK sourced Leafs.  In contrast, the 180 
rate of battery decline in 30 kWh Leafs was at first slower in cars sourced from UK compared to 
Japan before rates converged: UK-imported Leafs (n = 21) had a mean rate of decline of 5.7% p.a. 
(95% uncertainty interval 5.0% to 6.5%.) compared to Japan-imported Leafs (n = 67) which had a 
mean rate of decline of 7.5% p.a. (95% uncertainty interval 7.1% to 7.9%).  By age two, UK-
imported Leafs mean rate of decline had increased to 11% p.a. (95% uncertainty interval 8.8% to 185 
13.4%) compared to Japan-imported Leafs increasing to 9.3% p.a. (95% uncertainty interval 7.7% 
to 10.9%).  
 
The decline in the winter range of vehicles due to the decline in SoH was calculated using Flip the 
Fleet’s mean winter efficiency of 6.25 km/kWh in July 2017, and the usable capacity of the battery 190 
packs of 21.3 kWh for 24 kWh (Lohse-Busch, 2012) and 28 kWh for 30 kWh (based upon reported 
LeafSpy values).  This range in 30 kWh Leafs had reduced by 29 km on average over 2.3 years (the 
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oldest of these models), compared to a decline of 9 km in 24 kWh Leafs over the same period 
(Fig. 5). 
 195 

 
 

 
 

Figure 1: All individual battery SoH measurements as a function of age with average 200 
2nd-degree polynomial fits for both 24 kWh and 30 kWh models.  Nissan’s estimate for 
decline is 80% SoH after 5 years (Nissan, 2012; Nissan, 2017) and is shown by a red 
dot.  There was large variability between cars, but both battery models showed 
increasing decline with age.  
 205 
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Figure 2: Example longitudinal battery SoH data from ten 24 kWh Leafs (top two rows) and ten 
30 kWh Leafs (bottom two rows).  There is large variation between cars, although the overall 210 
longitudinal trend is a decline in SoH over time, especially in the 30 kWh Leafs. 
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 215 
Figure 3: Comparison of the decline in mean battery SoH in the 24 kWh compared to the 30 kWh 
Leafs.  These two lines are identical to those presented in Fig. 1.  While it took 4.6 years for the 
24 kWh Leafs to reach a mean 85% SoH, the 30 kWh Leafs reached this in 2.1 years.  The 85% 
threshold is where the first ‘bar’ is lost in a 24 kWh state of health indicator on the dashboard.  This 
has been adjusted to approximately 80% on the 30 kWh Leaf (My Nissan Leaf, 2018).  220 
 

 
Figure 4: The rate of decline in SoH by battery model between one and two years.  The age bracket 
of 1-2 years made a fair comparison possible, as the 30 kWh models have only been on sale for just 
over 2 years.  Shaded regions represent 95% uncertainty intervals.  While 24 kWh models have a 225 
slight increase in the rate of decline as they age, the 30 kWh model has shown a moderately 
increasing rate of decline as the battery ages. 
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 230 
Figure 5: Comparison of the reduction in mean winter range (at an efficiency of 6.25 km/kWh) in 
the 24 kWh compared to the 30 kWh Leafs.  This is calculated using the usable capacity of the 
battery packs of 21.3 kWh for 24 kWh (Lohse-Busch, 2012) and 28 kWh for 30 kWh (based upon 
reported LeafSpy values).  The available range on a full charge is decreasing faster in the 30 kWh 
than 24 kWh Leafs.  235 
 
 
 
Discussion  
 240 
Our data indicate that the batteries of 30 kWh Leafs are declining at a faster rate on average than 
observed in 24 kWh Leafs.  Otherwise, the dominating predictor of SoH was the age of the car.  
Somewhat paradoxically, SoH increased with greater distance travelled in 24 kWh Leafs, but 
decreased when greater distance had been travelled by a 30 kWh Leafs.  SoH also decreased 
slightly with increased use of fast charging per distance travelled.  Considerable variation between 245 
rate of decline of individual cars have been observed overlaying these broad patterns, especially in 
the 30 kWh model. 
 
It is unknown what causes the accelerated reported battery capacity loss that we have observed in 
30 kWh Leafs, but other research suggests plausible hypotheses for further test.  It is well known 250 
that capacity declines if batteries experience high temperatures.  The chemistry in Leaf batteries 
was changed from lithium manganese oxide (LMO) in the 24 kWh batteries (AESC, 2013) to nickel 
manganese cobalt (NMC) in the 30 kWh batteries (Lima, 2015).  It is not clear exactly what 
variation of NMC was used, however an NMC-LMO blend shows reasonable loss when stored at 
high temperatures and high State of Charge (SoC), with 10% loss in capacity occuring at 35℃ 255 
when stored at 100% SoC for 9 months (Mao, 2017), and NMC111 showed 11% loss at 40℃ when 
stored at 80% SoC for 10 months (Keil, 2016).   
 
In addition, the 30 kWh batteries may experience more extended periods at higher temperatures.  
The higher energy density, higher volumetric mass density, and faster DC charging currents (Lima, 260 
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2016) may lead to higher battery temperature in the 30 kWh Leaf, through higher peak temperature 
at the end of the charging event, and then slower cooling afterwards.  A ‘long life 80% mode’ which 
terminates AC charging when the battery reaches 80% SoC is an option in many of the 24 kWh 
models, but is not available in 30 kWh models (Nissan, 2017).  This will most likely increase the 
time the 30 kWh battery spends at higher states of charge which, if combined with high temperature 265 
over time, may cause an increased rate of battery decline.  Hence, the change in chemistry, 
potentially higher temperature experienced, and higher SoC may partly explain the greater capacity 
loss observed.  
 
Trajectories of SoH change are so variable between individual vehicles, and there are instances of 270 
sharp inflections in SoH (Fig. 2).  There was sometimes a quick drop in SoH following the purchase 
of a second-hand Leaf in New Zealand.  This may be because these cars had been predominantly 
rapid charged in Japan, and so had inflated SoH at the time of transfer to New Zealand.  There 
might also be loss of capacity during the storage, auction, and shipping process if the car is stored at 
a high SoC and a high temperature for many months (Keil, 2016; Mao, 2017).  SoH of many 275 
30 kWh cars has continually declined, and some show decline before stabilising.  It is possible that 
the cars that have stabilised are being used under conditions that are favourable for the battery or, 
alternatively, driving/charging patterns are masking the decline in SoH.  The hierarchical Bayesian 
model took this individual variation into account by allowing the fit to vary by car, and confirms 
that the overall population-level trend is for continuing decline as they age.  280 
 
We cannot discount the possibility that some of the observed variation between individual cars 
results from disparity between the SoH calculation and the actual battery capacity.  Actual battery 
capacity for a measured SoH, and so inferred range, could be higher or lower than indicated, and on 
average even different between 24 kWh and 30 kWh types.  Verification of actual battery capacity 285 
compared to reported SoH, in both 30 kWh and 24 kWh types, is required to measure the size of 
“nuisance” variation that any such errors may have introduced and to improve estimation of the 
model parameters around model, age, distance and fast charging.  Research to discover the short-
term causes of fluctuations of the SoH index would be valuable if it identified covariates that can 
help eliminate nuisance variation and better estimate underlying battery health in absolute terms in 290 
future.  In the meantime SoH is, at best, treated as a relative indicator rather than an absolute 
measure of battery health.  
 
Some of the observed variation could also be from the non-random nature of the sample. Our data 
are based on a ‘convenience sample’ provided by volunteers, rather than a formal random sample. 295 
Most observations in the panel began well before any collective signs of lower SoH were detected, 
and the majority of participants do not measure their SoH regularly, or they only started to do so 
recently once prompted by us. Therefore we do not expect bias in the sample of SoH measurements.  
Nor is there any reason to suspect any bias to be stronger in one variant than the other, in which 
case sampling bias can not be a sufficient explanation for why the rapid decline in SoH is so much 300 
higher  in the 30 kWh variant. Finally, the observed difference in SoH decline is so large for 30 
kWh that it seems extraordinarily unlikely that sampling bias could explain the observation. 
 
We cannot also exclude the possibility that the faster rate of decline seen in some cases is the result 
of manufacturing faults, rather than the more systemic stresses discussed above.  Tracing the place, 305 
time and batch of batteries that are showing premature SoH loss is therefore an important next step 
to see if the problem is localised and has already been eliminated.   
 
More vehicles and especially longer runs of data for the same Leafs in New Zealand conditions are 
needed to refine our models.  Many (49%) of the Leafs in our study have provided only three or 310 
fewer data points.  Also, much of the travel and life of the Leafs studied was spent in their country 
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of origin where charging and climatic influences may have been very different than those in New 
Zealand.  This mix of two phases of the vehicle’s life, and the potential for lagged or legacy effects 
of the way the vehicle was treated before reaching New Zealand where our monitoring starts, may 
also have hampered our ability to detect other significant drivers of the wide range in individual 315 
battery SoH trajectories observed.  This will also have likely hampered our ability to identify 
strategies to minimise rate of decline in the remaining life of the car in New Zealand.  
 
An experimental study in Phoenix, Arizona found slightly increased rates of SoH decline in two 
24 kWh Leafs that were always rapid charged compared to two others that were slow charged 320 
(Shirk, 2015).  The sample size was small, the experiment lasted only a year and a half, and the 
vehicles were driven extraordinarily long distances in much hotter conditions than prevail in New 
Zealand.  With a much larger sample and under normal-use situations, our analysis has replicated 
this finding, showing a small increased SoH loss in cars with a greater proportion of DC rapid 
charging. While successive rapid charging may increase SoH in the short term, our modelling 325 
suggests that it causes a slight decline in SoH in the longer run.  The effect may be stronger than 
indicated by our modelling because of this short term elevation of SoH after fast charging, or if 
longer distance travelled is in part conflated with increased use of fast chargers.  
 
Another battery index, denoted Hx by LeafSpy, which is understood to be a measure of internal 330 
battery susceptance, has a similar value to the SoH metric just after manufacture, but then it 
generally declines faster than SoH itself as the Leaf ages.  Flip the Fleet has only recently begun 
collecting Hx and battery temperature data with a goal to build models like those presented here for 
SoH to predict Hx.  Increased internal resistance will increase the internal pack energy loss while 
rapid charging and during high speed driving.  This will increase overall battery temperature which 335 
may accelerate the decline in SoH.  Near continuous monitoring of both 24 kWh and 30 kWh 
battery SoH, Hx and battery temperature during charging and discharging cycles are needed to test 
these predictions and better discern the effect of rapid charging, number of charging cycles, age and 
especially temperature on SoH.  
 340 
There is a need to test and refine an underlying model of battery SoH decline, partly so that Leaf 
owners can do all they can to prolong battery life, and partly so we can better project the longer 
term future of SoH, vehicle range and repairs and maintenance costs.  An important aspect is to 
understand whether loss in reported battery capacity will progress in the quadratic fashion detected 
by our model so far (Fig. 1 & 3).  A simple geometric rate of decline model (decreasing rate of 345 
decline over time) would result if a constant fraction of ions are immobilised in the batteries each 
year, in the way projected by Larsen (2016) for Leafs.  Our observed pattern rejects this geometric 
model.  Sharp downward inflections in battery health are expected in generalised battery health 
scenarios (Buchmann, 2014; Warnecke, 2017) and the technology applied to electric vehicles in 
general.  Leafs, with their battery chemistries, have not been in place long enough to know if and 350 
when such downturns will occur, nor how sharp they will be.  The declines observed in Fig. 1 
indicate a largely linear decline over time in 24 kWh models, but a much faster increase in decline 
over time in 30 kWh models. 
 
We hypothesise that 30 kWh models experience a greater battery temperature increase during 355 
charging. The chemistry of the 30 kWh batteries are also possibly more sensitive to degradation due 
to elevated temperature, compared to the batteries in 24 kWh Leafs.  If so, elevated battery 
temperature could, at least in part, be driving faster decline in the 30 kWh Leafs.  Active thermal 
management systems have been developed to prolong battery life (Dincer et al. 2017), but Leafs do 
not have battery thermal management systems like those used by Tesla (Eberhard, 2016), BMW 360 
(Bower, 2015), Chevrolet (Chevrolet, 2018) and Renault (Prochazka, 2017).  Nissan included active 
air cooling for the e-NV200 which uses the same battery modules as the 24 kWh Leaf (Loveday, 
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2014).  Tesla S battery packs with thermal management systems have shown minimal decline over 
time (Lambert, 2016). 
 365 
Our results for 30 kWh Leafs show cause for concern because of rapidly reducing indicated range, 
the possible cost of early replacement of batteries, and the increased lifetime carbon emissions that 
will result due to early replacement.  A new complete battery pack replacement may come at a very 
considerable cost for a New Zealand Leaf owner and rapid battery health decline may undermine 
the resale value and utility of 30 kWh Leafs. Many early adopters of electric vehicles are motivated 370 
by a desire to reduce greenhouse gas emissions and thereby mitigate climate change (Peters et al. 
2018).  The environmental benefits will be reduced and toxicity impacts from battery manufacture 
increased if three or more batteries are required in the course of a 210,000 km life of a 30 kWh Leaf 
(Arup 2015).  The observed trajectory of SoH decline suggests that an 80% threshold where the first 
bar is lost from the dashboard indicator of battery health will be reached by many of the 30 kWh 375 
Leafs manufactured in 2015/2016 in the next 6 months (Fig. 3).  The majority of 30 kWh leaf 
owners in Flip the Fleet do not obtain the SoH of their batteries regularly and so will not be aware 
of their cars declining SoH.  The first indication of the problem identified in this study will not be 
evident to most until this first bar is lost. 
 380 
There is risk that rapid decline in the reported capacity of battery, a core and expensive component 
of an electric vehicle, will exacerbate uncertainty amongst prospective purchasers of any electric 
vehicle rather than just the 30 kWh Leaf.  Our analysis confirms an acceptable and cost effective 
longevity of the 24 kWh Leaf battery in Japan, UK and New Zealand conditions (Figs. 1-5).  
Identification of the cause of the accelerated reported decline in battery capacity of 30 kWh Leaf 385 
batteries and remedies for it are therefore an urgent New Zealand and international priority. 
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experts, most of whom are electric vehicle owners and contributors of data to Flip the Fleet: Donald 400 
Love, Jason Jensen, Joe Barnett, Joe Camuso, Russell Watson, Carl Barlev and Bill Alexander.  
Many of these contributors peer reviewed an earlier draft and now this revised draft of the report, 
but we have also benefited greatly from independent peer review by the following: Joe Barnett 
(SOC Ltd, vehicle import standards expert); Jonathan Beaver (Electrical engineer); John Futter 
(Electronic engineer, GNS Science); Rand Huso (Software engineer, GNS Science); Associate 405 
Professor Aaron Marshall (Electrochemical engineer, University of Canterbury); Leatham Landon-
Lane (Electrochemical engineer, University of Canterbury); Peter Ellis (Statistician); Bill Heffernan 
(Electrical engineer, University of Canterbury); Allan Miller (Electrical Engineer); Bruce 
McCallum (Electrical engineer); and an additional anonymous referee.  
 410 
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