Hydrophilic self-replenishing coatings for marine antifouling applications

I. Jiménez-Pardo, L.G.J. van der Ven, R.A.T.M. van Benthem, G. de With*, A.C.C. Esteves*

Figure S1. ¹H-NMR spectra (400 MHz, CDCl₃) for PC-mPEG2000 acetone and water extracts, and pure coatings components, tHDI, mPEG2000 and PC polymer.

	Weight loss (%)
PC-Ref	1.2 ± 0.5
PC-mPEG550	2.1 ±1.3
PC-mPEG1000	2.3 ± 1.1
PC-mPEG2000	3.1 ± 1.8

Figure S2. Coatings appearance and weight loss (%) after 1 year water immersion. PC and PC-mPEG2000 images after 1 year immersion in water. Transparent and colorless free standing coatings placed on top of a logo.

Figure S3. Fibrinogen calibration curve built from PBS protein solutions of 0.1 to $1 \text{ mg} \cdot \text{ml}^{-1}$ and having a good linearity in the measured concentration range with R^2 of 0.9999.

Figure S4. Swelling ratio profiles (weight of water swollen coating at different immersion times (W_t) divided by the initial dried coating (W_0)) for coatings immersed in water for 24 hours.