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Abstract: This paper aims to describe the geometrical structure and explicit expressions of family
of finitely parametrized probability densities over smooth manifold M. The geometry of family
of probability densities on M are inherited from probability densities on Euclidean spaces {Uα}
via bundle morphisms, induced by an orientation-preserving diffeomorphisms ρα : Uα → M.
Current literature inherits densities on M from tangent spaces via Riemannian exponential map
exp : Tx M → M; densities on M are defined locally on region where the exponential map is a
diffeomorphism. We generalize this approach with an arbitrary orientation-preserving bundle
morphism; we show that the dualistic geometry of family of densities on Uα can be inherited to family
of densities on M. Furthermore, we provide explicit expressions for parametrized probability densities
on ρα(Uα) ⊂ M. Finally, using the component densities on ρα(Uα), we construct parametrized
mixture densities on totally bounded subsets of M. We provide a description of inherited mixture
product dualistic geometry of the family of mixture densities.
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1. Introduction

Statistics and data analysis on manifolds is of interest in fields such as image processing, shape
analysis, machine learning, and natural computation. For instance, the notion of probability densities
on manifold of motions [1] arises naturally; yet a description of geometrical properties and the explicit
expressions of families of probability densities over a such general manifold is lacking.

Striving for explicit expressions of probabilty density functions over manifolds goes back to the
field of directional statics on spheres [2], and recently [3] on the space of symmetric positive definite
matricies. Both studies employ the notion of Riemannian exponential map described by Pennec in [4].

However, finding the exact expression of Riemannian exponential map for general Riemannian
manifolds can in practice be computationally expensive, as it involves solving the geodesic equation,
which is a second-order differential equation. Therefore, in this work we aim to extend and generalize
the approach by [4] in two ways:

1. Inherit the dualistic geometry of family of parametrized probabilty densities over Euclidean
spaces to probability densities over manifolds via orientation-preserving bundle morphism. This
generalizes the Riemannian exponential map

2. Construct and study the product dualistic geometry of families of parametrized mixture densities
on totally bounded subsets of M. This generalizes the extent of region where family of
finitely parametrized probability densities and their corresponding geometrical structure can be
described on M.

The discussion of this paper revolves around the following bundle morphism induced by a local
orientation-preserving diffeomorphism ρ : U ⊂ Rn → M.
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S ⊂ Prob(U) S̃ ⊂ Prob(M)

U ⊂ Rn ρ(U) ⊂ M

ρ−1∗

ρ

ρ−1

In this work we will discuss how the geometry of S, a family of probability densities over
Euclidean space U ⊂ Rn, is inherited to S̃ via pulled-back bundle morphism defined by ρ−1.

The paper is organized as follows: In the second section we discuss and establish the domain
of discourse. We provide a brief summary of the natural identification of probability densities over
manifolds both as functions and as volume forms described in the existing literature. This allows us to
use density and volume form interchangeably in further discussion for simplicity. This describes the
vertical parts of the bundle morphism shown above.

In the third section we extend the notion of naturality of Riemannian structure to dualistic
structure [5] of Hessian-Riemannian manifolds. We study how dualistic structure can be inherited
from one manifold to another via a diffeomorphism. We show how the pulled-back dualistic structure
can be determined explicitly via the pulled-back local coordinates. As it is well known that statistical
manifolds can be endowed with dualistic geometry. This will be used throughout the rest of the paper
to naturally inherit family of probability densities over Euclidean spaces to probability densities over
manifolds. This describes the top horizontal part of the bundle morphism shown above.

In the forth section we consider the entire bundle morphism and present a construction of
probability densities on manifolds that generalizes the current approach [4] as discussed above. We
first show how family of parametrized probability densities S̃ on M is inherited from open subset
U ⊂ Rn via the bundle morphism, while preserving the dualistic geometrical structure of S on U.
This allows us to derive an exact expression of probability density functions on M as a pulled-back
densities. Moreover, the induced family of probability densities S̃ on M inherits the dualistic geometry
of S on U, which in turn allows us to inherit useful properties such as metric and divergence. This
local construction is then extended to construct parametrized mixture densities over totally bounded
subsets of M. We show that, under rather mild natural conditions, the family of mixture densities is a
product manifold with the corresponding dualistic product geometry (generated by locally induced
family of probability densities).

Finally, in section five we provide a simple example of inducing family of mixture Gaussian
density functions over the unit 2-sphere S2.

2. Setting

Let M be connected n-dimensional smooth Riemannian manifold with finite Riemann volume.
Let Vol(M) denote the line bundle of smooth densities over M, and E (Vol(M)) denote the smooth

sections of Vol(M). Let Dens+(M) denote the subspace of positive densities over M (reader is kindly
referred to relevant publications [6,7] for details on volume bundle):

Dens+(M) = {µ ∈ E (Vol(M)|µ(x) > 0∀x ∈ M)} ⊂ Vol(M) .

We consider the subspace of positive densities that integrate to 1 over M: Prob(M) ={
µ ∈ Dens+(M)|

∫
M µ = 1

}
⊂ Dens+(M).

Let µ0 := dVg denote the Riemannian volume form, be the reference measure on M. The space of
probability density function over M denoted by P(M) ⊂ L1(M, µ0) ⊂ C∞(M,R+) can be associated
naturally to Prob(M) ⊂ Dens+(M) volume forms in via Hodge star operator [8], or more notably in
recent work, a diffeomorphism [7,9] given by the map:
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Φ : Dens+(M)→ C∞(M,R+)

µ 7→
√

µ

µ0
=
√

Jacµ0
µ .

For the rest of the paper we will associate the space of probability densities as a function space
and space of densities naturally with respect to the Riemannan volume form dVg.

In this work we will also restrict our attention to finitely parametrized families of probabilty
distributions. Family of finitely parametrized probability distributions, equipped with Fisher
information metric, has the structure of a Riemannian manifold also known as a statistical manifold
[5].

That is, the statistical manifold of the family of probability distributions will be finite dimensional
for the rest of the paper.

3. Preliminary: Induced dualistic structure

Consider a statistical manifold S with its corresponding metric g together with a pair of
g-conjugate connections (∇,∇∗). The triplet (g,∇,∇∗), known as the dualistic structure [5], is
fundamental to the study of the intrinsic geometry of statistical manifolds [10]. The triplet (g,∇,∇∗)
satisfies the following:

X〈Y, Z〉g = 〈∇XY, Z〉g + 〈Y,∇YZ〉g , ∀X, Y, Z ∈ E (TS) .

In this section we show how dualistic structure can be inherited to an arbitrary smooth manifold
from a given manifold with dualistic structure naturally via a diffeomorphism.

We discuss two different ways of pulling back (dually flat) dualistic structures given a
diffeomorphism from one manifold to another. We first show that general dualistic structures can
be pulled back directly via diffeomorphism. We then show when the manifolds are dually flat, the
induced dualistic structure can be computed implicitly via the pulled-back coordinates and metric.

Whilst the first method arises more naturally in a theoretical setting, the second provides a more
computable way to describe an such an induced dualistic structure that is equivalent to the first when
the manifolds are dually flat.

It is worth noting that, the intrinsic geometry of a statistical manifolds (S, g,∇,∇∗) can be
alternatively be associated to a pair (g, T), where T denotes Amari-Chenstov tensor T(X, Y, Z) =

〈∇∗XY−∇XY, Z〉g.
In a recent paper, Ay et al. [11] showed how (g, T) can be inherited via sufficient statistics. In our

case since diffeomorphisms are injective therefore is a sufficient statistics, our discussion is a special
case of what they showed.

In this section we provide an alternative proof for the case when S is finite dimensional, and when
the map between statistical manifolds is a diffeomorphism. In particular we show the relation between
induced dualistic structure, Hessian structure, and local coordinate systems on finite dimensional
statistical manifolds.

3.1. Naturality of dualistic structure

Suppose S is a finite dimensional manifold equipped with torsion-free dually flat dualistic
structure (g,∇,∇∗), then we can induce via a diffeomorphism a (dually flat) dualistic structure onto
another manifold S̃.

Theorem 1. If ϕ : S̃ → S is a diffeomorphism between smooth manifolds, and S is equipped with
torsion-free dualistic structure (g,∇,∇∗), then S̃ is a Riemannian manifold with induced dualistic structure
(ϕ∗g, ϕ∗∇, ϕ∗∇∗).
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Proof. Let S̃ be a smooth n-dimensional manifold, and let S be a smooth n-dimensional manifold with
torsion-free dualistic structure (g,∇,∇∗) then the following condition is satisfied:

X〈Y, Z〉g = 〈∇XY, Z〉g + 〈Y,∇∗YZ〉g , ∀X, Y, Z ∈ E (TS) .

Let ϕ : S̃→ S be a diffeomorphism. Then the pullback of g along ϕ given by g̃ = ϕ∗g defines a
Riemannian metric on S̃.

Consider pullback of ∇ via ϕ is given by:

ϕ∗∇ : E(TS̃)× E(TS̃)→ E(TS̃)

(ϕ∗∇)(X̃, Ỹ) = ϕ−1
∗ ∇(ϕ∗X̃, ϕ∗Ỹ) = ϕ−1

∗ ∇ϕ∗X̃ ϕ∗Ỹ ,

where E(TS̃) denote the set of smooth sections of tangent bundle over S̃, ϕ∗ is the push-forward
of ϕ, and ϕ∗ is the pullback of ϕ. Since pullback of torsion-free connection by diffeomorphism is a
torsion-free connection. Therefore ϕ∗∇ and ϕ∗∇∗ are torsion-free connections on the tangent bundle
over S̃: π∼ : TS̃→ S̃.

Therefore it remains to show that (∇̃, ∇̃∗) := (ϕ∗∇, ϕ∗∇∗) is g̃-conjugate pair of connections on S̃.
i.e. they satisfy the following equation:

X̃〈Ỹ, Z̃〉g̃ = 〈∇̃X̃Ỹ, Z̃〉g̃ + 〈Ỹ, ∇̃∗X̃ Z̃〉g̃, ∀X̃, Ỹ, Z̃ ∈ E(TS̃) .

Let X̃, Ỹ, Z̃ ∈ E(TS̃), and let p̃ ∈ S̃ be arbitrary.

〈∇̃X̃Ỹ, Z̃〉g̃( p̃) = 〈(ϕ∗∇)X̃Ỹ, Z̃〉g̃( p̃) = 〈ϕ−1
∗ ∇ϕ∗X̃ ϕ∗Ỹp̃, Z̃p〉g̃

= 〈ϕ−1
∗

(
∇ϕ∗X̃ ϕ∗Ỹ

)
ϕ( p̃)

, ϕ−1
∗
(

ϕ∗Z̃
)

ϕ( p̃)〉g̃

=
(

ϕ∗
−1

g̃
)

ϕ( p̃)

(
∇ϕ∗X̃ ϕ∗Ỹϕ( p̃), ϕ∗Z̃ϕ( p̃)

)
= 〈∇ϕ∗X̃ ϕ∗Ỹϕ( p̃), ϕ∗Z̃ϕ( p̃)〉g = 〈∇ϕ∗X̃ ϕ∗Ỹ, ϕ∗Z̃〉g(ϕ( p̃)) .

Similarly, we have:

〈Ỹ, ∇̃∗X̃ Z̃〉g̃( p̃) = 〈ϕ∗Ỹ,∇ϕ∗X̃ ϕ∗Z̃〉g .(ϕ( p̃))

Since (∇,∇∗) is g-conjugate pair of connection on S, we have for each p̃ ∈ S̃:

〈∇ϕ∗X̃ ϕ∗Ỹϕ( p̃), ϕ∗Z̃ϕ( p̃)〉g + 〈ϕ∗Ỹϕ( p̃),∇∗ϕ∗X̃ ϕ∗Z̃ϕ( p̃)〉g = ϕ∗X̃
(
〈ϕ∗Ỹ, ϕ∗Z̃〉g

)
(ϕ( p̃)) .

Hence:
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ϕ∗X̃
(
〈ϕ∗Ỹ, ϕ∗Z̃〉g

)
(ϕ( p̃)) = ϕ∗X̃

(
〈ϕ∗Ỹ, ϕ∗Z̃〉g ◦ ϕ ◦ ϕ−1

)
(ϕ( p̃))

= ϕ∗X̃
(
(ϕ∗g)(Ỹ, Z̃) ◦ ϕ−1

)
(ϕ( p̃))

= X̃
(
〈Ỹ, Z̃〉g̃ ◦ ϕ−1 ◦ ϕ

)
◦ ϕ−1(ϕ( p̃))

= X̃〈Ỹ, Z̃〉g̃( p̃) .

Combining the above results we get:

〈∇̃X̃Ỹ, Z̃〉g̃( p̃) + 〈Ỹ, ∇̃∗X̃ Z̃〉g̃( p̃) = X̃〈Ỹ, Z̃〉g̃( p̃) , ∀X̃, Ỹ, Z̃ ∈ E(TS̃) .

Therefore S̃ can be equipped with the induced torsion-free dualistic structure (g̃, ∇̃, ∇̃∗) =

(ϕ∗g, ϕ∗∇, ϕ∗∇∗) as desired.

Remark 1. This means the diffeomorphism ϕ : S̃→ S̃ is a local isometry.

This also implies if (∇, g) satisfies Codazzi’s equation [12]:

Xg (Y, Z)− g (∇XY, Z)− g (Y,∇XZ) = (∇X g) (Y, Z) = (∇Zg) (Y, X) ,

then
(
∇̃, g̃

)
:= (ϕ∗∇, ϕ∗g) also satisfies Codazzi’s equation. The derivation is as follows (cf. proof

of Prop 4.2 [12]):

(
∇̃X̃ g̃

) (
Ỹ, Z̃

)
= X̃g̃(Ỹ, Z̃)− g̃(∇X̃Ỹ, Z̃)− g̃(Ỹ,∇X̃ Z̃) .

By duality of (∇,∇∗), the above equals to:

= g̃(∇X̃Ỹ, Z̃) + g̃(Ỹ, ∇̃∗X̃ Z̃)− g̃(∇X̃Ỹ, Z̃)− g̃(Ỹ,∇X̃ Z̃) = g̃(Ỹ, ∇̃∗X̃ Z̃)− g̃(Ỹ,∇X̃ Z̃) .

By a similar argument, we also have:

(
∇̃Z̃ g̃

) (
Ỹ, X̃

)
= g̃(Ỹ, ∇̃∗Z̃X̃)− g̃(Ỹ,∇Z̃X̃) .

Hence the following is satisfied:

(
∇̃X̃ g̃

) (
Ỹ, Z̃

)
−
(
∇̃Z̃ g̃

) (
Ỹ, X̃

)
= 〈Ỹ, T̃∗

(
X̃, Z̃

)
− T̃

(
X̃, Z̃

)
〉g̃ ,

where T̃, T̃∗ denote the torsion of ∇̃, ∇̃∗ respectively. Since ∇̃ and ∇̃∗ are torsion free, the
expression is identically zero on all p̃ ∈ S̃. Therefore

(
∇̃, g̃

)
satisfies Codazzi’s equation. By Proposition

2.1 in [13], g̃ is a Hessian metric with respect to ∇̃, meaning there exists a potential function ψ̃ on S̃
such that g̃ = ∇̃ ∇̃ ψ̃ is a Hessian metric, and (S̃, g̃, ψ̃) is a Hessian manifold.

We can also determine the pull-back curvature on S̃ with dualistic structure (ϕ∗g, ϕ∗∇, ϕ∗∇∗) by
the following immediate corollary:
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Corollary 1. Let ϕ : (S̃, g̃)→ (S, g) be a local isometric diffeomphism. Suppose S has g-conjugate connections
(∇,∇∗), and let (∇̃, ∇̃∗) := (ϕ∗∇, ϕ∗∇∗) be the induced g̃-conjugate connections on S̃, then ϕ∗R = R̃ and
ϕ∗R∗ = R̃∗. In particular if S is dually flat, then so is S̃.

Proof. Let ϕ : (S̃, g̃, ∇̃, ∇̃∗)→ (S, g,∇,∇∗) be a local isometry, where (g̃, ∇̃, ∇̃∗) = (ϕ∗g, ϕ∗∇, ϕ∗∇∗),
then by the proof of theorem 1:

∇̃X̃Ỹ = (ϕ∗∇)X̃Ỹ = ϕ−1
∗ (∇ϕ∗X̃ ϕ∗Ỹ), ∀X̃, Ỹ ∈ E

(
TS̃
)

.

Hence we have:

ϕ∗(∇̃X̃∇̃Ỹ Z̃) = ∇ϕ∗X̃∇ϕ∗Ỹ ϕ∗Z̃ , (1)

ϕ∗(∇̃[X̃,Ỹ]Z̃) = ∇ϕ∗[X̃,Ỹ]ϕ∗Z̃ = ∇̃[ϕ∗X̃,ϕ∗Ỹ]ϕ∗Z̃ .

Equation 1 is obtained by:

ϕ∗
(
∇̃X̃∇̃Ỹ Z̃

)
= ϕ∗∇̃

(
X̃, ∇̃Ỹ Z̃

)
= ∇

(
ϕ∗X̃, ϕ∗∇̃Ỹ Z̃

)
= ∇

(
ϕ∗X̃,∇

(
ϕ∗Ỹ, ϕ∗Z̃

))
= ∇ϕ∗X̃∇ϕ∗Ỹ ϕ∗Z .

By definition the Riemannian curvature tensor on S is given by: X, Y, Z ∈ TS:

〈R(X, Y)Z, W〉 = 〈∇X∇YZ, W〉 − 〈∇Y∇XZ, W〉 − 〈∇[X,Y]Z, W〉 .

Let X̃, Ỹ, Z̃, W̃ ∈ TS̃. The pullback curvature tensor ϕ∗R is thus given by:

〈(ϕ∗R)(X̃, Ỹ)Z̃, W̃〉 = 〈∇̃ϕ∗X̃∇̃ϕ∗Ỹ ϕ∗Z̃, W̃〉

− 〈∇̃ϕ∗Ỹ∇̃ϕ∗X̃ ϕ∗Z̃, W̃〉 − 〈∇̃[ϕ∗X̃,ϕ∗Ỹ]ϕ∗Z̃, W̃〉

= ϕ∗(∇X∇YZ)− ϕ∗(∇Y∇XZ)− ϕ∗(∇[X,Y]Z)

= ϕ∗(〈R(X, Y)Z, W〉) .

By symmetry, ϕ∗R∗ satisfies:

〈(ϕ∗R∗)(X̃, Ỹ)Z̃, W̃〉 = ϕ∗(〈R∗(X, Y)Z, W〉) .

If S is dually flat, meaning R = 0 = R∗, we then have the equality:

R∗ ≡ 0⇔ R ≡ 0⇔ ϕ∗R ≡ 0⇔ ϕ∗R∗ ≡ 0 .

This result has been known for Levi-Civita connection on Riemannian manifolds. Here we
generalize it slightly to pair of g-conjugate dual connections.
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3.2. Computing induced dualistic structure

Finally we discuss how pulled-back dually flat dualistic structure (ϕ∗g, ϕ∗∇, ϕ∗∇∗) can be
determined explicitly via the Hessian dualistic structure generated by the pulled-back metric, local
coordinates, and the corresponding induced potential function.

Definition 1. Given a smooth manifold M, a divergence [5] D or contrast function[14] on M is a smooth
function D : M×M→ R+ satisfying the following:

1. D(p; q) ≥ 0, and
2. D(p, q) = 0 iff p = q .

A dualistic structure
(

gD,∇D,∇D∗
)

on S can be determined by divergence function D via the
following equations [5,14,15] for each point p ∈ S:

gD
ij

∣∣∣
p
= gD

p
(
∂i, ∂j

)
:= −∂1

i ∂2
j D[p; q]|q=p

ΓD
ijk

∣∣∣
p
= 〈∇D

∂i
∂j, ∂k〉

∣∣∣
p

:= −∂1
i ∂1

j ∂2
k D[p; q]|q=p ,

where (θi) denote local coordinates on M with corresponding local coordinate frame (∂i) about
p. Let ∂`i denote the ith partial derivative on the `th argument of D. By an abuse of notation, we may
write [5]:

D[∂i; ∂j] := −∂1
i ∂2

j D[p; q]|q=p , and

−D[∂i∂j; ∂k] := −∂1
i ∂1

j ∂2
k D[p; q]|q=p . (2)

Remark 2. Conversely, given a torsion-free dualistic structure and a local coordinate system, there exists a
divergence that induces the dualistic structure [16]. We will refer to the divergence D̃ on S̃ corresponding to the
pulled-back dualistic structure (ϕ∗g, ϕ∗∇, ϕ∗∇∗) (not necessarily dually flat) as the induced divergence on S̃.

For the rest of the section we will assume both S and S̃ are dually flat, and we show how the
pulled-back dually flat dualistic structure can be determined explicitly.

Let
(

∂i := ∂
∂θi

)
denote the local coordinate frame for TS corresponding to local ∇-affine

coordinates (θi), and let D ⊂ TS̃ denote the tangent subspace spanned by vector fields
(
∂̃i := ϕ−1

∗ ∂i
)
.

Since
[
ϕ−1
∗ ∂i, ϕ−1

∗ ∂j
]
= ϕ−1

∗
[
∂i, ∂j

]
= 0, the vector fields

(
∂̃i := ϕ−1

∗ ∂i
)

commute, hence the space D
spanned by

(
∂̃i
)

is involutive. Therefore by theorem of Frobenius, D is completely integrable, hence
there exists (ϕ∗∇)-affine coordinates (θ̃i) on S̃ with corresponding local frame

(
∂̃i
)
.

Remark 3. The pulled-back coordinates and the corresponding local coordinate frame described in this fashion
does not depend on the dual flatness of S and S̃. Of course, when S and S̃ are not dually flat, the coordinate
systems may no longer be ∇,∇̃-affine.

Let
(

∂i := ∂
∂ηi

)
denote local coordinate frame of TS corresponding to local ∇∗-affine coordinates

(ηi). We can define local (ϕ∗∇∗)-affine coordinates (η̃i) on S̃ with corresponding local coordinate
frame

(
∂̃i := ϕ−1

∗ ∂i).
It is immediate that (θ̃i), (η̃i) are ϕ∗g-dual coordinates:
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〈∂̃i, ∂̃j〉g̃ = (ϕ∗g)
(

ϕ−1
∗ ∂i, ϕ−1

∗ ∂j
)

= g
(

ϕ∗ϕ−1
∗ ∂i, ϕ∗ϕ−1

∗ ∂j
)

= g
(

∂i, ∂j
)
= δ

j
i .

Moreover, if we consider smooth pulled back coordinates (θi := θi ◦ ϕ) and the correspond local
coordinate frame

(
∂i

)
:=
(

∂
∂θi

)
on TS̃. Then

∂̃i(θ j) = ϕ−1
∗ ∂i(θj ◦ ϕ)

= ∂i(θj ◦ ϕ ◦ ϕ−1) = ∂iθj = δ
j
i .

This implies for each i, there exists a constant ci such that θ̃i = θi + ci, this implies ∂̃i = ∂i for all i
Since g̃ is a Hessian metric with respect to ∇̃, there exists a potential function ψ̃ such that

g̃ = ∇̃∇̃ψ̃ g̃ij = ∂̃i ∂̃jψ̃ = ∂i∂jψ̃. The corresponding g̃-dual local coordinate system of S̃ with respect to(
θi
)
, denoted by (ηi) can be defined by (ηi) = ∂iψ̃ with correspond local coordinate frame

(
∂

i
)

of TS̃
[5].

Now let’s consider the Hessian Riemannain structure of dually flat manifolds [13] induced by the
following divergence function:

D : S̃× S̃→ R+

( p̃, q̃) 7→ D( p̃, q̃) = ψ̃( p̃) + ψ̃†(q̃)− 〈θ( p̃), η(q̃)〉 ,

where ψ̃† is a smooth function on S̃ representing the Legendre-Fréchet transformation of ψ̄ with
respect to the pair of g̃-dual local coordinates (θi), (ηi) on S̃. Let g denote the Hessian metric generated

by D: gi j| p̃ := gD
ij

∣∣∣
p̃
. By definition g̃ij

∣∣
p̃ = −∂

1
i ∂

2
j D = gD

ij

∣∣∣
p̃
.

Let
(
∇D,∇D∗

)
denote pair of g̃-dual connections defined by D. We now show

(
∇̃, ∇̃∗

)
=(

∇,∇∗
)

Let X̃, Ỹ, Z̃ ∈ E
(
TS̃
)

and p̃ ∈ S̃, the following is satisfied by construction:

X̃〈Ỹ, Z̃〉g̃ = 〈∇̃X̃Ỹ, Z̃〉g̃ + 〈Ỹ, ∇̃∗X̃ Z̃〉g̃
X̃〈Ỹ, Z̃〉g = 〈∇X̃Ỹ, Z̃〉g + 〈Ỹ,∇∗X̃ Z̃〉g .

Since g̃ = g, the two equations are equal, hence if we let for p ∈ S̃ let (∂i = ∂̃i) denote the local
frame of TpS̃, and let X̃ = ∂̃i = ∂i, Ỹ = ∂̃j = ∂k, and Z̃ = ∂̃k = ∂k then:

〈∇̃X̃Ỹ, Z̃〉g̃ + 〈Ỹ, ∇̃∗X̃ Z̃〉g̃ = 〈∇X̃Ỹ, Z̃〉g + 〈Ỹ,∇∗X̃ Z̃〉g
= 〈∇̃∂̃i

∂̃j, ∂̃k〉g̃ + 〈∂̃j, ∇̃∗∂̃i
∂̃k〉g̃ = 〈∇∂i

∂j, ∂k〉g + 〈∂j,∇
∗
∂i

∂k〉g

= 0 + 〈∂̃j, ∇̃∗∂̃i
∂̃k〉g̃ = 0 + 〈∂j,∇

∗
∂i

∂k〉g

Since ∂̃i = ∂i for all i, and g̃ = g, we have for all p̃ ∈ S̃:
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〈∂̃j, ∇̃∗∂̃i
∂̃k〉g̃ = 〈∂̃j,∇

∗
∂̃i

∂̃k〉g̃ , ∀i, j, k .

Therefore ∇̃∗ = ∇∗, and hence by symmetry
(
∇̃, ∇̃∗

)
=
(
∇,∇∗

)
.

Furthermore, we can determine the explicit expression of the Christoffel symbols of the induced
connection ∇∗ = ∇̃∗ = ϕ∗∇∗ at p̃ ∈ S̃ in pulled-back coordinates θi = θi ◦ ϕ as follows. Let p ∈ S be
an arbitrary, and let p̃ := ϕ(p) = ϕ−1(p) ∈ S̃, then:

Γ̃∗ijk
∣∣∣

p̃
= ∂i∂j∂kψ̃( p̃) = ∂i g̃jk( p̃)

= ∂̃i g̃jk( p̃) =
(

ϕ−1
∗ ∂i

)
g̃jk( p̃)

= ∂i

(
gjk ◦ ϕ ◦ ϕ−1

)
(ϕ( p̃)) = Γ∗ijk

∣∣∣
p

.

4. Probability densities on manifold

In this section we construct family of probability densities over smooth manifolds via
orientation-preserving bundle morphism. This extend and generalize the construction of probability
distributions on geodesically complete Riemannian manifolds via Riemanian exponential map
described in previous literature [4], summarized as follows:

Given an arbitrary point x on Riemannian manifold M, the geodesic γv : [0, Iv) ⊂ R→ M with
initial point p and initial velocity v ∈ Tx M is uniquely determined on an interval [0, Iv). This allows us
to define the Riemannian exponential map at a given point x, which maps the tangent space Tx M to M
by tracing along the geodesic γv starting at x, determined by initial velocity v ∈ Tx M for time 1. To be
precise, we have the following definition [17]:

Definition 2. Given a point x ∈ M, consider the subset Ox of Tx M given by:

Op := {v ∈ Tx M | γv is defined on [0, Iv) , and Iv > 1} ,

then the exponential map at x is the map:

expx : Ox → M

expx(v) := γv(1) .

For each x ∈ M, there exists a local neighbourhood Wx in Tx M where the Riemannian exponential
map is a diffeomorphism. The the image of Riemannian exponential map can be viewed as a
generalization of “going from p with direction v in the shortest path for time 1" within this local
neighbourhood. It is also well known that if M is geodesically complete, then the Riemannian
exponential map is defined on the entire tangent space Tx M for any x ∈ M.

In previous literature [4], probability densities and the corresponding statistical properties on
geodesically complete Riemannian manifolds are constructed by inheriting probability densities on
the tangent space via the Riemannian exponential map.

In particular, let Wx ⊂ Tx M denote the region where the exponential map is diffeomorphism. For
each y ∈ expx(Wx) there is a unique v ∈Wx such that expx(v) = y.

Given a probability density function p on Tx M, a probability density function p̃ on M whose
function value on y = expx(v) ∈ expx(Wx) can be constructed by:
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p(v) = p̃(expx(v)) ,

or equivalently, since expx is a diffeomorphism,

p̃(y) = p(logx(y)) , (3)

where logx is the inverse of the Riemannian exponential map on Wx.
However, finding the exact expression for Riemannian exponential map for general Riemannian

manifolds maybe computationally expensive in practice, as it involves solving the geodesic equation,
which is a second order differential equation. Therefore in this work we are aim to find the explicit
expression of parametrized probability distributions on manifold with a more general map.

We extend and generalize the above construction in two ways:
We first discuss family of probability densities on M inherited locally from open subsets of Rn

via an orientation-preserving bundle diffeomorphism. We discuss how the pulled-back family of
probability densities on M inherit the geometrical properties from the family of probability densities
on Rn, and show that it generalities the above construction with the Riemannian exponential map.

We then extend this to construct probability distributions on M supported beyond the region
where the map ρ is a diffeomorphism. In particular, we show that parametrized family of probability
densities on inherited in this fashion can be extended to any totally bounded subset V of M. We first
consider an orientation-preserving open cover of V, where each element of the open cover is equipped
with a local family of inherited probability distributions. A family of parametrized mixture densities
LV on the entire V can thus be constructed by gluing the locally inherited densities. Finally we discuss
the geometrical properties of elements of LV , and show that it is a product manifold of locally inherited
family under two conditions.

We shall begin our discussion by first considering the case when M is Riemannian manifold. In
the last subsection we generalize it to arbitrary smooth topological manifold.

4.1. Local densities on M via local bundle morphism

Let M be a smooth topological manifold, let U be an open subset of Rn. Suppose there exists
orientation-preserving diffeomorphism ρ : U ⊂ Rn → M. Here we consider locally inherited family of
probability densities on M via orientation-preserving diffeomorphism ρ. In particular we construct
local parametrized families of probability densities over ρ(U) ⊂ M as a subspace of the density bundle
Vol(M) via the bundle morphism induced by ρ.

Let Ŝ := {pθ |θ ∈ Ξ ⊂ Rm} ⊂ P(U) denote a finitely parametrized family of probability density
functions over U ⊂ Rn. We further assume elements of Ŝ are mutually absolute continuous, then Ŝ has
the structure of a statistical manifold [5].

Let µ0 be an arbitrary reference measure on U, and let S := {νθ |θ ∈ Ξ} denote the set of volume
densities over U naturally associated to Ŝ with respect to µ0 (as discussed in section 2).

Locally defined family of probability densities over ρ(U) ⊂ M can thus be constructed via the
pullback bundle morphism defined by orientation-preserving diffeomorphism1 ρ−1 : M→ U:

1 Since ρ is an orientation-preserving diffeomorphism, then so is ρ−1
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S ⊂ Prob(U) S̃ ⊂ Prob(M)

U ρ(U) ⊂ M

ρ−1∗

ρ

ρ−1

where S̃ ⊂ Prob(M) is a family of probability densities over M given by:

S̃ := ρ−1∗S =
{

ν̃θ = ρ−1∗νθ

}
.

More precisely, let x ∈ V := ρ(U) ⊆ M, and let X1, . . . , Xn ∈ Tx M be arbitrary vectors. Given a
density νθ ∈ S ⊂ Prob(U), the pulled-back density ν̃θ on V ⊂ M is given by:

ν̃θ := ρ−1∗
α νθ(X1, . . . , Xn)

∣∣∣
y
= νθ(ρ

−1
α∗ X1, . . . , ρ−1

α∗ Xn)
∣∣∣
ρ−1

α (y)
, ∀y ∈ Vα ⊆ M. (4)

Since ρ is an orientation-preserving diffeomorphism, so is ρ−1, hence we have the following
equality:

1 =
∫

U
νθ =

∫
V:=ρ(U)

ρ−1∗νθ .

Suppose νθ has probability density function pθ with respect to the reference measure µ0 on U, i.e.
νθ = pθdµ0, then in local coordinates

(
x1, . . . , xn) of M, the above integral has the following form:

1 =
∫

U
pθdµ0 =

∫
V

(
pθ ◦ ρ−1

) (
det Dρ−1

)
dx1 ∧ · · · ∧ dxn .

Next we show the diagram commutes: since ρ is a local diffeomorphism, for each v ∈ U,
∃!y ∈ ρ(U) ⊂ M such that y = ρ(v), and (v, pθ) is a section in the line bundle πU : Prob(U)→ U. We
have the following equalities:

ρ ◦ πU(v, pθ) = ρ(v) = y ,

πM ◦ ρ−1∗(v, pθ) = πM

(
ρ−1−1

(v), ρ−1∗ pθ

)
= ρ−1−1

(v) = ρ(v) = y .

Finally, suppose S has dualistic structure given by (g,∇,∇∗). Since ρ−1 is a diffeomorphism, so
is ρ−1∗ . Therefore by the discussion in Section 3, S̃ has inherited dualistic structure (ϕ∗g, ϕ∗∇, ϕ∗∇∗),
where ϕ = ρ−1∗ . In particular, the induced family of probability distributions inherits the geometrical
structure via the bundle morphism as well.

Remark 4. Note that both the local coordinate map pθ ∈ S 7→ θ ∈ R` and ϕ := ρ−1∗ are diffeomorphisms.
For the rest of the paper we will, without loss of generality, assume S̃ to be parametrized by (θi) instead of the
pulled-back local coordinates

(
θi ◦ ρ−1∗

)
unless specified otherwise (described in Section 3.2 and Remark 3) if

the map ρ−1∗ is clear.

Example 1. Suppose
(

S, g,∇(α),∇(−α)
)
⊂ Prob(U) is an α-affine statistical manifold for some α ∈ R, with

Fisher metric g, the associated g-dual α-connections
(
∇(α),∇(−α)

)
, and the corresponding α-divergence Dα on

S [5]. Since ρ : U → M is a (local) diffeomorphism, it is injective, hence a sufficient statistic for S [5].
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By the invariance of Fisher metric and α-connection under sufficient statistic, the induced family S̃ is also
an α-affine statistical manifold.

Furthermore, due to the monotonicity of α-divergence (as a special case of f -divergence), the induced
divergence D̃α (see remark 2) on S̃ can be computed by:

D̃α(ρ
−1∗ p, ρ−1∗q) = Dα(p, q) , for p, q ∈ S .

4.1.1. Special case: Riemannian exponential map

We now illustrate the framework outlined above on a special case of locally inherited family of
probability densities discussed in [4] via Riemann exponential map:

Example 2. Let M be a complete Riemannian manifold. For each x ∈ M [17]:

seg(x) :=
{

v ∈ Tx M| expx(tv) is a minimizing unit speed curve , t ∈ [0, 1]
}

,

sego(x) := {sv|s ∈ [0, 1) , v ∈ seg(x)} ,

cut(x) := seg(x) \ sego(x) ,

where cut(x) is known as cut locus in current literature.
Consider the open set Ux := Tx M \ cut(x) ⊂ Tx M, then expx : Ux → M is a local diffeomorphism.
Since each tangent Tx M is a topological vector space, it can be considered naturally as a metric space with

the metric topology induced by the Riemannian metric. Since finite dimensional topological vector spaces of
the same dimension n := dim(M) are unique up to isomorphism, Tx M is isomorphic to Rn. Moreover, since
Euclidean metric and Riemannian metric are equivalent on finite dimensional topological vector spaces, the
respective induced metric topologies are also equivalent. This means probability density functions over Tx M can
be considered naturally as density functions over Rn.

Let Sx denote a finitely parametrized family of probability densities over Ux. Since expx is a diffeomorphism
in Ux, we can construct parametrized family of probability distributions on expx(Ux) by:

Sx ⊂ Prob(Ux) Prob(M)

Ux ⊂ Tx M M

log
∗
x

expx

logx

where logx := exp−1
x denotes the Riemannian log function. p̃ ∈ S̃x = log∗x are given by p̃(y) =

log∗x p(y) = p(exp−1
x (y)) = p(logx(y)). This coincides with equation 3.

Since expx is an orientation preserving diffeomorphism on Ux = M \ cut(x), this reduces to a special case
of the construction via orientation-preserving bundle morphism discussed above.

It is worth nothing that for general Riemannian manifolds, this approach maybe quite limiting
since Ux maybe a small region in the tangent space.

Throughout the rest of the paper, we will be using the Riemannian exponential map as an
example to illustrate our approach. It is however worth noting that our construction applies to all
orientation-preserving diffeomorphism, not just the Riemannian exponential map.

4.2. Mixture densities on totally bounded subsets of M

In this section we discuss probability distributions on M supported beyond the region where the
map ρ is a diffeomorphism. In particular, we discuss how parametrized family of mixture probability
densities with locally inherited dualistic geometry can be defined on totally bounded subsets of M.
We begin with the notion of orientation-preserving open cover on M.
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4.2.1. Orientation-preserving open cover

Definition 3. Let M be an n-dimensional smooth manifold, an orientation-preserving open cover of M is
a set of pairs {(ρα, Uα)}, where Uα ⊂ Rn, ρα : Uα → M are orientation preserving diffeomorphisms, and
{ρα(Uα)} is an open cover of M.

Remark 5. There always exists an orientation-preserving open cover for orientable smooth manifold M; we may
simply consider the smooth atlas A := {(ρα, Uα)} of M. It is worth noting that we only require ρα : Uα → M
to be orientation-preserving locally on each Uα. Therefore, orientation-preserving open cover exists even when
M is inorientable.

We now provide two examples of orientation-preserving open cover using Riemannian
exponential map:

Example 3. Given a complete, Riemannian manifold M, and a point x ∈ M, the injectivity radius at x is the
real number [17]:

inj(x) := max
r∈R

{
expx : B(0, r) ⊂ Tx M→ M is a diffeomorphism

}
.

For x ∈ M, let Bx := B(0, inj(x)) ⊂ Tx M ∼= Rn denote the ball of injectivity radius centred at 0 i.e. the
largest metric ball in Tx M such that expx is a diffeomorphism, then

{
expx(Bx)

}
is an open cover of M.

In Bx, the pushforward of the Riemannian exponential map denoted by (expx)∗ : Bx ⊂ Tx M→ M is the
identity map, a linear isomorphism. Therefore expx is an orientation preserving local diffeomorphism on the ball
of injectivity radius [17]. Hence {(ρx, Ux)} :=

{
(expx, Bx)

}
is an orientation-preserving open cover of M.

Example 4. Alternatively we can consider another orientation-preserving open cover extended from the one
defined above:

{
(expx, Tx M \ cut(x))

}
=
{
(expx, sego(x))

}
is also an orientation-preserving open cover of M.

4.2.2. Refinement of orientation-preserving open cover:

Given an orientation-preserving open cover over Riemannian manifold M, there exists a refinement
of open cover by metric balls in M.

This will be used to construct a finite orientation-preserving open cover of totally bounded subsets
of M.

Lemma 1. Let M be a n-dimensional Riemannian manifold, and orientation-preserving open cover of
{(ρα, Uα)} of M. There always exist refinement {(ρα, Wα)} of {Uα} satisfying:

1. {ρα(Wα)} covers M, and
2. ρα(Wα) are metric balls in M.

Proof. Given (orientation-preserving) open cover {(ρα, Uα)} of M. For each α, ∀xα ∈ ρα(Uα) there
exists normal neighbourhood Nxα ⊂ ρα(Uα).

Since Nxα is open for all xα ∈ ρα(Uα), there exists εxα > 0 such that the metric ball centred at xα

denoted by Bxα satisfies: Bxα := B(xα, εxα) ⊂ Nxα ⊂ ρα(Uα) ⊂ M.
In other words, Bxα is the metric ball centred at xα in normal coordinates under norm given by

radial distance function.
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Since ρα is a diffeomorphism for all α, this implies ρ−1
α (Bxα) =: Wxα ⊂ Uα for each xα ∈ ρα(Uα).

Hence {(ρα, Wxα)} is the desired refinement of {(ρα, Uα)}.

Observe that the proof did not use the fact that ρα is orientation-preserving. It suffices to consider
open cover {(ρα, Uα)} of M such that ρα are just diffeomorphisms with the following simple result:

Lemma 2. Let f : M → N be a local diffeomorphism between manifolds M, N. Then there exists local
orientation-preserving diffeomorphism f̃ : M→ N.

Proof. Since f : M → N is a local diffeomorphism, the pushforward f∗ : Tp M → Tf (p)N is a linear
isomorphism for all p ∈ M. Since f∗ is a linear isomorphism, the determinant of the matrix D f is
non-zero: detD f 6= 0. If f is orientation-preserving, then there’s nothing left to prove. Hence we will
now assume f is orientation reversing, in other words: detD f < 0.

Let
(

x1, . . . , xn) denote local coordinates in M, let f denote coordinate representation of f , then
we can write:

f
(

x1(p), . . . , xn(p)
)
=
(

f 1(x), . . . , f n(x)
)

,

where x :=
(

x1(p), . . . , xn(p)
)
.

Choose a ∈ [1, . . . , n], and let f̃ : M→ N denote the diffeomorphism from M to N defined by the
following coordinate representation:

f̃
(

x1(p), . . . , xn(p)
)
=
(

f 1(x), . . . , f a+1(x), f a(x), . . . , f n(x)
)

.

In other words, we define f̃ by swap the ath and a + 1st coordinates of f . The matrix representation
of f̃∗ in standard coordinates is thus given by:

D f̃ = I′ · D f ,

where I′ is the matrix given by:

I′ =


Ia−1

0 1
1 0

In−(a+1)

 ,

where Ik is the identity matrix of the dimension k, the sub-matrix

[
0 1
1 0

]
is located at the (a, a)th to

the (a + 1, a + 1)st position of I′, and the rest of the entries are all zero. Since detD f < 0, this means
detD f̃ = detI′ · detD f = −1 · detD f > 0.

For the rest of the discussion we will consider the orientation-preserving open cover by metric
balls {(ρα, Wxα)} of Riemannian manifold M.

Example 5. Consider once again orientation-preserving open cover of Example 3 given by {(ρα, Uα)} ={
(expx, Tx M \ cut(x))

}
=
{
(expx, sego(x))

}
x∈M.

Metric balls in normal neighbourhoods are geodesic balls, i.e. for all B(xα, εxα), there exists δxα such that
B(xα, εxα) = expxα

(B(
−→
0 , δxα)
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An orientation-preserving open cover by metric balls can be given by the refinement: {(ρα, Wxα)} ={(
expx, B(

−→
0 , δxα

)}
x∈M

.

4.2.3. Mixture densities on totally bounded subsets of M

Now we are ready to construct parametrized family of probability densities on totally bounded
subsets of Riemannian manifold M. Let V ⊂ M be totally bounded subset of M, and let {(ρα, Uα)}
be an orientation-preserving open cover of M. Let {(ρxα , Wxα)} denote a refinement of {(ρα, Uα)} by
open metric balls in M discussed in Lemma 1.

Since {ρα (Wxα) = B(xα, εxα)}xα∈M is an open cover of M by metric balls, it is an open cover of

V ⊂ M as well. Moreover, since V is totally bounded, there exists a finite subcover {B(xα, εxα)}
Λ
α=1 of

V.
For simplicity, by an abuse of notation, we will denote the finite subcover by {(ρα, Wα)}Λ

α=1 :=
{(ρxα , Wxα)}

Λ
α=1.

For each α ∈ [1, . . . , Λ], let Sα := {να := νθα |θα ∈ Ξα ⊂ Rmα} ⊂ Prob(Wα) denote finitely
parametrized volume form over Wα parametrized by θα ∈ Ξα. Note that in general we allow
the parametric families Sα to have different parametrizations and dimensions mα. Furthermore,
consider for each α the induced family of local probability densities S̃α := ρ−1∗

α Sα =
{

ṽα = ρ−1∗
α να

}
⊂

Prob(M) ⊂ Vol(M) on ρα(Wα) ⊂ M, we can then define parametrized mixture densities over V ⊂ M
by patching together the locally induced ones:

ν̃ :=
Λ

∑
α=1

ϕα · ν̃α , (5)

where ϕα ∈ (0, 1) for all α ∈ [1, . . . , Λ], and ∑Λ
α=1 ϕα = 1.

Let S0 denote the simplex of mixture coefficients treated as a family of discrete distributions:

S0 :=

{
{ϕα}Λ

α=1 | ϕα ∈ (0, 1),
Λ

∑
α=1

ϕα = 1

}
⊂ (0, 1)Λ−1

=
{
{ϕα = P(A = α)}Λ

α=1

}
.

Then S0 is an exponential family, hence a dually flat manifold with local parametrization(
θ0

j

)Λ−1

j=1
7→ {ϕα}Λ

α=1, given by [5]:

θ0
j = log

ϕj

1−∑Λ
α=1 ϕα

, j ∈ [1, . . . , Λ− 1] .

Let Ξ0 :=
{(

θ0
j

)Λ−1

j=1

}
denote the set of parameters of S0. We denote the set of mixture densities

by LV :

LV :=

{
ν̃ =

Λ

∑
α=1

ϕα · ν̃α | {ϕα}Λ
α=1 ∈ S0, ν̃α ∈ S̃α

}
.

In local coordinates
(

x1, . . . , xn) of M, the mixture volume form ν̃α can be expressed in the
following form:
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ν̃ = p̃(x, ξ)dx1 ∧ · · · ∧ dxn =
Λ

∑
α

ϕα · p̃α(x, θα)dx1 ∧ · · · ∧ dxn , (6)

where p̃α(x, θα) are parametrized probability density functions naturally associated to ν̃α that
are parametrized by sets of parameters (θα) ∈ Ξα (see remark 4). In local coordinates

(
x1, . . . , xn) of

M, p̃α(x, θα) is defined implicitly by p̃α(x, θα)dx1 ∧ · · · ∧ dxn := ν̃α. The parameters of the mixture
distribution p̃(x, ξ) are collected in (ξi)

d
i=1 :=

(
θ0, θ1, . . . , θΛ) ∈ Ξ0 × Ξ1 × · · · × ΞΛ, where d :=

dim (Ξ0 × Ξ1 × · · · × ΞΛ).

4.2.4. Remark: Exhaustion by compact set and the extent of extended support

It is worth noting that since every smooth topological manifold is σ-locally compact, M admits a
compact exhaustion:

Definition 4. An exhaustion by compact sets is an increasing sequence of compact subsets Kj of M such
that φ 6= K1 ⊂ int(K2) ⊂ K2 ⊆ · · · and:

lim
j→∞

Kj = ∪∞
i=1Ki = M .

For each x ∈ M, for any totally bounded subset V ( M, there exists N ∈ N such that for all n > N:

Kn (⊃ Kn ) ⊃ V .

Even though at first glance totally bound-ness might be quite restrictive, this shows that it allows
us to approximate the manifold sufficiently well.

4.3. Geometrical structure of LV

Consider a totally bounded subset V ⊂ M, orientation-preserving finite open cover {(ρα, Wα)}Λ
α=1

of V by metric balls, and dually flat families of densities Sα over Wα. We will show that the family
of mixture distirbutions LV is, under two conditions, a dually flat product Riemannian manifold,
hence naturally inheriting the local geometry of families of component densities Sα established in the
beginning of section 3.

For each α, let
(

Sα, gα,∇α,∇α∗
)
⊂ Prob(Wα) be a family of probability densities over Wα that

has the structure of a dually flat statistical manifold. Let S̃α := ρ−1∗
α Sα denote the pulled-back

family of probability densities on ρα(Wα) ⊂ M with corresponding pulled-back dualistic structures(
g̃α, ∇̃α, ∇̃α∗

)
discussed in section 3. Let S0 :=

{
{ϕα}Λ

α=1 | ϕα ∈ (0, 1), ∑Λ
α=1 ϕα = 1

}
⊂ (0, 1)Λ−1

denote the simplex of mixture coefficients with corresponding dualistic structure
(

g0,∇0,∇0∗
)

.

4.3.1. LV as a smooth manifold

For simplicity, let p̃α(x) := p̃(x, θα) denote the probability density function corresponding to
ν̃α ∈ S̃α for all α. We first show that LV is indeed a smooth manifold under the following two natural
conditions:

(C1). Family of mixture component distributions have different proper support: Let Kα :={
x ∈ M | p̃α(x) > 0, ∀ p̃α ∈ S̃α

}
denote the proper support of probability densities p̃α ∈ S̃α for each

α ∈ {1, . . . , Λ}. We assume Kα \ Kβ 6= ∅ for β 6= α.
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(C2). No functional dependency between mixture component densities : We construct mixture
densities in LV as unconstrained mixtures, meaning there are no functional dependency between
mixture component. In other words, changing parameters θβ ∈ Ξβ of mixture component p̃β ∈ S̃β has
no influence on p̃α ∈ S̃α for β 6= α and vice versa. We write this condition as follows: For each p̃α ∈ S̃α,
∂ p̃α

∂θ
β
k

= 0, ∀θ
β
k ∈ Ξβ ⊂ Rmβ , ∀β 6= α.

Remark 6. 1. The first condition C1 can always be satisfied simply by choosing a suitable open cover of V.
2. The second condition C2 is automatically fulfilled for unconstrained mixture models. One can imagine

introducing functional dependencies among mixture component distributions, but this is not the case
considered here. We make the assumption that: if we alter one distribution p̃α ∈ S̃α, it does not affect
distributions in S̃β for β 6= α.

We now discuss the implications of conditions C1 and C2 in further detail:
The first condition C1 implies: The component distributions p̃α ∈ S̃α are linearly independent

functions, and the map
(
θ0) ∈ Ξ0 7→ (ϕα)

Λ
α=1 7→ ∑Λ

α=1 ϕα p̃α(x, θα) is injective.
The second condition C2 implies:
Consider two distributions p̃, q̃ ∈ LV sharing the same mixture coefficients {ϕα}Λ

α=1, i.e. p̃(x) =
∑Λ

α=1 ϕα p̃α(x) and q̃ = ∑Λ
α=1 ϕα q̃α(x).

If p̃(x) = q̃(x) for all x ∈ M:

∂ p̃(x)
∂θα

i
=

∂q̃(x)
∂θα

i
, ∀α, ∀i

∂` p̃(x)(
∂θα

i
)` =

∂` q̃(x)(
∂θα

i
)` , ∀` ∈ N+ ,

hence by condition C2, for each α ∈ [1, . . . , Λ], there exists a constant cα such that

ϕα p̃α(x) = ϕα q̃α(x) + cα, ∀x ∈ M .

Since p̃α and q̃α are probability densities:

ϕα ·
∫

M
p̃α︸ ︷︷ ︸

=1

= ϕα ·
∫

M
q̃α︸ ︷︷ ︸

=1

+
∫

M
cα .

This means
∫

M cα = cα ·
∫

M 1 = 0. Since M has finite (non-zero) Riemannian volume:
∫

M 1 > 0,
this implies cα = 0 and hence p̃α = q̃α for all α.

Hence by injectivity of the parametrization mapping θα 7→ p̃α of S̃α for α ∈ [1, . . . , Λ], the
parametrization of mixture component parameters (θ1, . . . , θΛ) 7→ ( p̃1, . . . , p̃Λ) is injective as well.

Therefore the parametrization map
(
θ0, θ1, . . . , θΛ) ∈ Ξ0×Ξ1× · · ·×ΞΛ 7→ p̃(x) = ∑Λ

α=1 ϕα p̃α(x)
onto LV is an isomorphism.

By condition C2, the parameters are also independent in the sense that for β 6= α:

0 =
∂ p̃α

∂θ
β
k

=
∂ p̃α

∂θα
i
·

∂θα
i

∂θ
β
k

∀ p̃α ∈ S̃α ⇔
∂θα

i

∂θ
β
k

= 0 .
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Moreover, recall the pulled-back local coordinates maps
(

θ
α
i := θα

i ◦
(

ρ−1∗
)−1

= θα
i ◦ ρ∗

)
on S̃α,

then:

∂θα
i ◦ ρ∗

∂θ
β
k ◦ ρ∗

=
(

ρ−1∗
)
∗

∂

∂θ
β
k

(θα
i ◦ ρ∗) =

∂

∂θ
β
k

(
θα

i ◦ ρ∗ ◦ ρ−1∗
)
= 0 .

In other words, pullback by ρ does not introduce additional functional dependencies among
parameters.

Mixture densities p̃ ∈ LV can thus be identified naturally by the map p̃ = ∑Λ
α=1 ϕα p̃α 7→

(ϕ1, . . . , ϕΛ, p̃1, . . . , p̃Λ), where the image represents the mixture coefficients and the mixture
component distributions. Since parametrizations θα 7→ p̃α are smooth with smooth invserse, LV is a
smooth manifold with coordinates LV 3 p̃ := ∑Λ

α=1 ϕα p̃α(x, θα) 7→ (θ0, θ1, . . . , θΛ) ∈ Ξ0 × Ξ1 × · · ·ΞΛ.

4.3.2. Torsion-free dualistic structure on LV

Now consider the following function on LV ×LV :

D : LV ×LV → R

D ( p̃, q̃) = D

(
Λ

∑
α=1

ϕα pα,
Λ

∑
α=1

ϕ′αqα

)
:= DKL

(
{ϕα} ,

{
ϕ′α
})

+
Λ

∑
α=1

Dα( p̃α, q̃α)

=
Λ

∑
α=1

ϕα log
(

ϕα

ϕ′α

)
+

Λ

∑
α=1

Dα( p̃α, q̃α) . (7)

where DKL is the Kullback-Leibler divergence (relative entropy) on mixture coefficients S0 ={
{ϕα = P(A = α)}Λ

α=1

}
as family of discrete distributions, and Dα is the induced divergence on

smooth manifolds S̃α described by Remark 2 in Section 3.
It is immediate by definition that D satisfies the conditions of a divergence:

1. Non-negativity: Since Dα’s and DKL are both non-negative, so is D:

D = DKL︸︷︷︸
≥0

+
Λ

∑
α=1

Dα︸︷︷︸
≥0

2. Identity: Since Dα’s and DKL are divergences, the following is satisfied:

D = 0⇔
{

DKL(ϕ) = 0
Dα( p̃α, q̃α) = 0 ∀α

}

⇔
{

ϕα = ϕ′α
p̃α = q̃α

}
∀α

⇔ p̃ = q̃

Let θα ∈ Ξα ⊂ Rmα be coordinates of Sα, and one again let (ξi)
d
i=1 := (θ0, θ̃1, . . . , θ̃Λ) denote

the coordinates of LV , where d := dim (Ξ0 × Ξ1 × · · · × ΞΛ) and
(

θ̃α
j := θα

j ◦ ρ∗α

)
denote the local

pulled-back coordinates of S̃α discussed in section 3.2 (see also Remark 3 and 4). Let the corresponding
coordinate frame be denoted by

(
∂i := ∂

∂ξi

)
. We can then construct a dualistic structure on LV [5,15]
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via divergence function D denoted by
(

gD,∇D,∇D∗
)

with the following equations as discussed in
Section 3

gD
ij ( p̃) := gD

(
∂i, ∂j

)∣∣∣
p̃
= −D[∂i; ∂j]

∣∣∣
p̃

= −DKL[∂i; ∂j]
∣∣∣

p̃
+

Λ

∑
α=1
−Dα[∂i; ∂j]

∣∣∣∣∣
p̃

= gDKL
(

∂i, ∂j

)∣∣∣
p̃
+

Λ

∑
α=1

gDα

(
∂i, ∂j

)∣∣∣
p̃

. (8)

Moreover, if ∂i =
∂

∂θ0
i

then:

gD
(

∂i, ∂j

)∣∣∣
p̃
= gDKL

(
∂i, ∂j

)∣∣∣
p̃
+ 0

= gDKL
(

∂i, ∂j

)∣∣∣
{ϕα}Λ

α=1

, (9)

where {ϕα}Λ
α=1 ∈ S0. If ∂i = ∂

β
i = ∂

∂θ
β
i

, where
(

θ
β
i

)
denote parametrization of S̃β for some

β ∈ {1, . . . , Λ}, then by condition C2:

gD
(

∂i, ∂j

)∣∣∣
p̃
= 0 +

Λ

∑
α=1

gDα

(
∂

β
i , ∂

β
j

)∣∣∣
p̃α

= 0 + ∑
α=β

gDα

(
∂

β
i , ∂

β
j

)∣∣∣
p̃α

= gDβ

(
∂

β
i , ∂

β
j

)∣∣∣
p̃β

= gβ(∂
β
i , ∂

β
j )
∣∣∣

pβ

, (10)

where gβ is the metric on Sβ, and pβ :=
(

ρ−1∗
)−1

p̃β = ρ∗ p̃β. The last equality is due to the

analysis towards the end of Section 3. Otherwise, let ∂i =
∂

∂θ0
i
, and ∂j = ∂

β
j = ∂

∂θ
β
j

for i 6= j, then

gD
(

∂i, ∂j

)∣∣∣
p̃
= gDKL

(
∂i, 0

)∣∣∣
{ϕα}Λ

α=1

+ gDβ

(
0, ∂

β
j

)∣∣∣
p̃β

= 0 + 0 = 0 .

The Christoffel symbols of the connection ∇D is given by:

ΓD
ijk

∣∣∣
p̃

:= 〈∇D
∂i

∂j, ∂k〉gD

∣∣∣
p̃
= −D

[
∂i∂j; ∂k

]∣∣∣
p̃

= −DKL[∂i∂j; ∂k]
∣∣∣

p̃
+

Λ

∑
α=1
−Dα[∂i∂j; ∂k]

∣∣∣
p̃

= 〈∇DKL
∂i

∂j, ∂k〉gD

∣∣∣
p̃
+

Λ

∑
α=1
〈∇Dα

∂i
∂j, ∂k〉gD

∣∣∣
p̃

, (11)

where we recall −D[∂i∂j; ∂k] := −∂1
i ∂1

j ∂2
k D[p; q]|q=p by equation (2) in Section 3. By a similar

argument as above in equation 9 and 10, we obtain the following:
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〈∇D
∂i

∂j, ∂k〉gD

∣∣∣
p̃
=


〈∇DKL

∂i
∂j, ∂k〉gDKL

∣∣∣
{ϕα}Λ

α=1

if ∂` =
∂

∂θ0
`

, for ` = i, j, k ,

〈∇Dβ

∂i
∂j, ∂k〉gDβ

∣∣∣∣
pβ

if ∂` = ∂
β
` = ∂

∂θ
β
`

, for ` = i, j, k ,

0 Otherwise.

(12)

This implies that for X0, Y0 ∈ E (TS0), Xα, Yα ∈ E
(
TS̃α

)
for α ∈ [1, . . . , Λ], we have the following:

∇D
(Y0+∑Λ

α=1 Yα)

(
X0 +

Λ

∑
α=1

Xα

)
= ∇D

(
X0 +

Λ

∑
α=1

Xα, Y0 +
Λ

∑
α=1

Yα

)

= ∇DKL
Y0

X0 +
Λ

∑
α=1
∇Dα

Yα
Xα . (13)

By symmetry and the fact that gD = gD∗ [5], we also have the following:

〈∇D∗
∂i

∂j, ∂k〉gD

∣∣∣
p̃
= 〈∇DKL

∂i
∂j, ∂k〉gD

∣∣∣
p̃
+

Λ

∑
α=1
〈∇Dα

∂i
∂j, ∂k〉gD

∣∣∣
p̃

, (14)

and we also obtain the following result analogous to equation (12):

〈∇D∗
∂i

∂j, ∂k〉gD

∣∣∣
p̃
=


〈∇D∗KL

∂i
∂j, ∂k〉gDKL

∣∣∣
{ϕα}Λ

α=1

if ∂` =
∂

∂θ0
`

, for ` = i, j, k

〈∇D∗β
∂i

∂j, ∂k〉gDβ

∣∣∣∣
pβ

if ∂` = ∂
β
` = ∂

∂θ
β
`

, for ` = i, j, k ,

0 Otherwise.

(15)

Finally, for X0, Y0 ∈ E (TS0), Xα, Yα ∈ E
(
TS̃α

)
for α ∈ [1, . . . , Λ], we would have the following:

∇D∗

(Y0+∑Λ
α=1 Yα)

(
X0 +

Λ

∑
α=1

Xα

)
= ∇D∗

(
X0 +

Λ

∑
α=1

Xα, Y0 +
Λ

∑
α=1

Yα

)

= ∇D∗KL
Y0

X0 +
Λ

∑
α=1
∇D∗α

Yα
Xα . (16)

Hence by equations (8, 13, 16), the dualistic structure
{

gD,∇D,∇D∗
}

naturally decomposes into
the part of mixture coefficients and mixture components. We abbreviate equations (8, 13, 16) to the
following compact notation:

{
gDKL ⊕

Λ⊕
α=1

gDα ,∇DKL ⊕
Λ⊕

α=1

∇Dα ,∇D∗KL ⊕
Λ⊕

α=1

∇D∗α

}
. (17)

4.4. Dualistic structure of LV

To show that LV is indeed a product Riemannian manifold, we recall some properties of product
Riemannian manifolds[18,19].
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Remark 7. Note that since LV consists of a finite mixture of probability distributions, to show that LV =

S0 × S̃1 × · · · S̃Λ, it suffices to consider the dualistic structure of the product of two manifolds.

Given two Riemannian manifolds (M, g1), (N, g2), the product Riemannian metric on M× N is
given by [18]:

g(X, Y) = g1(PX, PY) + g2(QX, QY) ,

where P, Q are projections from T(M × N) to TM, TN respectively. Suppose ∇1 and ∇2 are
connections of M, N respectively, then the product connection is given by [19]:

∇Y1+Y2 X1 + X2 = ∇1
Y1

X1 +∇2
Y2

X2 , (18)

where X1, Y1 ∈ TM and X2, Y2 ∈ TN. We once again abbreviate the product connection to a more
compact notation for simplicity: ∇ = ∇1 ⊕∇2. Since the Lie bracket of M× N is :

[X1 + X2, Y1 + Y2]M×N = [X1, Y1]M + [X2, Y2]N ,

and the curvature tensor is given by:

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z .

The curvature tensor on the M× N is thus:

R(X1 + X2, Y1 + Y2, Z1 + Z2, W1 + W2) = R1(X1, Y1, Z1, W1) + R2(X2, Y2, Z2, W2) , (19)

where R1, R2 denote the curvature tensor of M, N respectively. Hence if M and N are flat, so is
M× N.

Therefore to show that the Riemannian structure derived from the divergence D in equation (7)
(given by equation (17)) coincides with the product Riemannian structure discussed above, it suffices
to show the following result.

Theorem 2. Let (M, g1,∇1,∇1∗), (N, g2,∇2,∇2∗) be two smooth manifolds with their corresponding
dualistic structure, and consider their product (M × N, g,∇) with the product metric g and product
connection ∇ := ∇1 ⊕∇2, then the connection ∇1∗ ⊕∇2∗ is g-dual to ∇. In particular

(
∇1 ⊕∇2)∗ =

∇1∗ ⊕∇2∗ .Furthermore, if M and N are dully flat, then so is M× N.

Proof. Let (M, g1,∇1,∇1∗), (N, g2,∇2,∇2∗) be two smooth manifolds with their corresponding
dualistic structure. Let ∇ = ∇1 ⊕∇2 denote the product connection on M× N given by equation (18)
in compact notation. 2 Let 〈·, ·〉 := 〈·, ·〉g, where g = g1 ⊕ g2 denote the product Riemannian metric on
M× N.

Let (x1, x2) ∈ M × N be arbitrary, and let {X, Y, Z} = {X1 + X2, Y1 + Y2, Z1 + Z2} ∈
E (T (M× N)), then we have:

2 Please refer to comments following equation (18)
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X〈Y, Z〉 = (X1 + X2)〈Y1 + Y2, Z1 + Z2〉 (20)

= X1 (〈Y1, Z1〉+ 〈Y1, Z2〉+ 〈Y2, Z1〉+ 〈Y2, Z2〉)
+ X2 (〈Y1, Z1〉+ 〈Y1, Z2〉+ 〈Y2, Z1〉+ 〈Y2, Z2〉) , (21)

where X1, Y1, Z1 ∈ E (TM), X2, Y2, Z2 ∈ E (TN) follows from the natural identification
T(x1,x2) (M× N) ∼= Tx1 M× Tx2 N.

Let π∗1 : T(M× N)→ M and π∗2 : T(M× N)→ N denote the natural projection map, then:

〈Y1, Z2〉 = 〈Y1, π∗1 Z2〉g1 + 〈π∗2Y1, Z2〉g2

= 〈Y1, 0〉g1 + 〈0, Z2〉g2 = 0 , (22)

and similarly 〈Y2, Z1〉 = 0 as well.
Hence equation (20) equals to:

X1 (〈Y1, Z1〉+ 〈Y2, Z2〉) + X2 (〈Y1, Z1〉+ 〈Y2, Z2〉)
= ∇1

X1
〈Y1, Z1〉+∇1

X1
〈Y2, Z2〉

+∇2
X2
〈Y1, Z1〉+∇2

X2
〈Y2, Z2〉

= ∇1
X1
〈Y1, Z1〉+ 0 + 0 +∇2

X2
〈Y2, Z2〉 . (23)

The last equality is due to the fact that 〈Y1, Z1〉 is a function on M, hence ∇2
X2
〈Y1, Z1〉 = 0, and by

symmetry ∇1
X1
〈Y2, Z2〉 = 0 as well. By a similar argument, we also have the following:

〈∇XY, Z〉 = 〈∇1
X1

Y1, Z1 + Z2〉+ 〈∇2
X2

Y2, Z1 + Z2〉

= 〈∇1
X1

Y1, Z1〉+ 〈∇1
X1

Y1, Z2〉

+ 〈∇2
X2

Y2, Z1〉+ 〈∇2
X2

Y2, Z2〉
= 〈∇1

X1
Y1, Z1〉+ 〈∇2

X2
Y2, Z2〉 . (24)

The first equality is due to equation (18), the assumption that ∇ is a product connection. The
last equality is due to a similar reason as equation (22), where 〈∇1

X1
Y1, Z2〉 = 〈∇2

X2
Y2, Z1〉 = 0, since

π∗i Zj = 0, and π∗i∇
j
Xj

Yj = 0 for i 6= j.
Subtracting equation (24) from equation (23), we have the equality:

X〈Y, Z〉 − 〈∇XY, Z〉 = ∇1
X1
〈Y1, Z1〉+ 0 + 0 +∇2

X2
〈Y2, Z2〉

−
(
〈∇1

X1
Y1, Z1〉+ 〈∇2

X2
Y2, Z2〉

)
= 〈∇1∗

X1
Z1, Y1〉+ 〈∇2∗

X1
Z1, Y1〉 ,

where ∇1∗ ,∇2∗ denote the g1, g2-dual connection to ∇1,∇2 on M, N respectively. The unique
[12] g-dual connection to ∇ of M× N, denoted by ∇∗, is thus given by the following:

∇∗Y1+Y2
X1 + X2 = ∇1∗

Y1
X1 +∇2∗

Y2
X2 .
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Furthermore, since the curvature of M × N satisfies product curvature tensor described in
equation (19), if (M, g1,∇1,∇1∗), (N, g2,∇2,∇2∗) are both dually flat, then so is their product
(M× N, g1 + g2,∇1 ⊕∇2,∇1∗ ⊕∇2∗).

Remark 8. By the theorem above, LV = S0 × S̃1 × · · · S̃Λ is therefore a product manifold with product
dualistic structure:

{
g0 ⊕

Λ⊕
α=1

g̃α,∇0 ⊕
Λ⊕

α=1

∇̃α,∇0∗ ⊕
Λ⊕

α=1

∇̃α∗
}

=

{
gDKL ⊕

Λ⊕
α=1

gDα ,∇DKL ⊕
Λ⊕

α=1

∇Dα ,∇D∗KL ⊕
Λ⊕

α=1

∇D∗α

}
,

where the equality follows from equation (17) and the discussion towards the end of Section 3.2. 3

Since mixture coefficients S0 correspond to the family of multinomial distributions, which in turn is a
member of the exponential family, it is dually flat. Therefore by the above result, if the mixture component
families S1, . . . , SΛ on orientation-preserving open cover {Wα}Λ

α=1 are all dually flat, then so is S̃1, . . . , S̃Λ.
Therefore by applying induction on the above result, LV = S0 × S̃1 × · · · S̃Λ is also dually flat.

Recall from equation (7) that a divergence function D on LV can be defined by the following:

D : LV ×LV → R

D ( p̃, q̃) = D

(
Λ

∑
α=1

ϕα pα,
Λ

∑
α=1

ϕ′αqα

)
:= DKL

(
{ϕα} ,

{
ϕ′α
})

+
Λ

∑
α=1

Dα( p̃α, q̃α)

=
Λ

∑
α=1

ϕα log
(

ϕα

ϕ′α

)
+

Λ

∑
α=1

Dα( p̃α, q̃α) .

Consider
(

S0, g0,∇0,∇0∗
)

,
(

S̃1, g̃1, ∇̃1, ∇̃1∗
)

, . . . ,
(

S̃Λ, gΛ, ∇̃Λ, ∇̃Λ∗
)

as dually flat manifolds

with their corresponding dualistic structures. 4

We will show that: if S0, S1, . . . , SΛ are all dually flat, the divergence function D defined in
equation (7) is in fact the canonical divergence of LV = S0 × S̃1 × · · · S̃Λ, with respect to product
dualistic structure

{
g0 ⊕

Λ⊕
α=1

g̃α,∇0 ⊕
Λ⊕

α=1

∇̃α,∇0∗ ⊕
Λ⊕

α=1

∇̃α∗
}

.

Let
(
θ0, η0

)
denote the local g0-dual coordinates of S0, and let

(
θ̃α
)

denote the local ∇̃α-affine
coordinates of S̃α for α ∈ [1, . . . , Λ].

By the discussion towards the end of section 3, let ψ̃α denote the pulled-back potential function
on S̃α defined by local coordinates

(
θ̃α
)

and pulled-back metric g̃α on S̃α. The g̃α-dual local coordinates

to
(
θ̃α
)

can be defined via induced potential function ψ̃α by:
(

η̃i
α := ∂

∂θα
i

ψ̃α

)
.

Since S0 and S̃α are all dually flat for α ∈ [1, . . . , Λ], we can write the divergences DKL and Dα of
S0 and S̃α in the canonical form [5] respectively as follows:

3 For detailed discussion of the dualistic structures on S0, S̃1, . . . , S̃Λ please refer to the beginning of Section 4.3.
4 Please refer to the beginning of this section (4.3) for detailed discussion of the induced dualistic structure on S̃α for

α ∈ [1, . . . , Λ].
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DKL(ϕ, ϕ′) := ψ0(ϕ) + ψ†
0(ϕ′)− 〈θ0(ϕ), η0(ϕ′)〉 ,

Dα( p̃α, q̃α) := ψ̃α( p̃α) + ψ̃†
α(q̃α)− 〈θ̃α( p̃α), η̃α(q̃α)〉 .

The functions ψ†
0 and ψ̃†

α denote the Legendre-Fenchel transformation of ψ0 and ψ̃α, and given by
the following equations, respectively:

ψ†
0(ϕ′) := sup

ϕ∈S0

{
〈θ0(ϕ), η0(ϕ′)〉 − ψ0(ϕ)

}
,

ψ̃†
α(q̃α) := sup

p̃α∈S̃α

{
〈θ̃α( p̃α), η̃α(q̃α)〉 − ψ̃α( p̃α)

}
.

The divergence D on LV from equation (7) can then be expressed as:

D ( p̃, q̃) = D

(
Λ

∑
α=1

ϕα pα,
Λ

∑
α=1

ϕ′αqα

)
= DKL

(
{ϕα} ,

{
ϕ′α
})

+
Λ

∑
α=1

Dα( p̃α, q̃α)

= ψ0(ϕ) + ψ†
0(ϕ′)− 〈θ(ϕ), η(ϕ′)〉

+
Λ

∑
α=1

ψ̃α( p̃α) + ψ̃†
α(q̃α)− 〈θ̃α( p̃α), η̃α(q̃α)〉

=

(
ψ0(ϕ) + ∑

α

ψ̃α( p̃α)

)
+

(
ψ†

0(ϕ′) +
Λ

∑
α=1

ψ̃†
α(q̃α)

)

−
(
〈θ(ϕ), η(ϕ′)〉+

Λ

∑
α=1
〈θ̃α( p̃α), η̃α(q̃α)〉

)
.

First and second part is convex due to linearity of derivative, the independence of parameters
given by condition C2, and the Hessians of potential functions ψ0, ψ̃1, . . . , ψ̃Λ are positive semi-definite.
The third part is a sum of inner products, which is again an inner product on the product parameter
space in Ξ0 × Ξ1 × · · ·ΞΛ.

Recall that the parameters of the mixture distribution p̃(x, ξ) ∈ LV are collected in (ξi)
d
i=1 :=(

θ0, θ̃1, . . . , θ̃Λ) ∈ Ξ0 × Ξ1 × · · · × ΞΛ, where d := dim (Ξ0 × Ξ1 × · · · × ΞΛ). 5

By linearity of derivative and condition C2, the gD-coordinate dual to (ξi)
d
i=1 is given

by (η0, η̃1, . . . , η̃Λ) :=
(

∂
∂ξi

(
ψ0(ϕ) + ∑Λ

α=1 ψ̃α( p̃α)
))

. Furthermore, the dual potential of(
ψ0(ϕ) + ∑Λ

α=1 ψ̃α( p̃α)
)

is given by the following Legendre-Fenchel transformation:

5 Recall that coordinates θ0 of mixture coefficients are not pulled-back.
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(
ψ0(ϕ) + ∑

α

ψ̃α( p̃α)

)†

=

sup
ϕ∈S0,p̃α∈S̃α

{(
〈θ0(ϕ), η0(ϕ′)〉+

Λ

∑
α=1
〈θ̃α( p̃α), η̃α(q̃α)〉

)
−
(

ψ0(ϕ) + ∑
α

ψ̃α( p̃α)

)}

= sup
ϕ∈S0,p̃α∈S̃α

{(
〈θ0(ϕ), η0(ϕ′)〉 − ψ0(ϕ)

)
+

Λ

∑
α=1

(
〈θ̃α( p̃α), η̃α(q̃α)〉 − ψ̃α( p̃α)

)}

= sup
ϕ∈S0

{
〈θ0(ϕ), η0(ϕ′)〉 − ψ0(ϕ)

}
+

Λ

∑
α=1

sup
p̃α∈S̃α

{
〈θ̃α( p̃α), η̃α(q̃α)〉 − ψ̃α( p̃α)

}
= ψ†

0(ϕ′) +
Λ

∑
α=1

ψ̃†
α(q̃α) .

The third equality follows from the functional independence of ϕ ∈ S0 and p̃α’s in S̃α. Hence
the Legendre-Fenchel transform of the first component of D is exactly the second component of D,
therefore D is the canonical divergence of

(
LV , g0 ⊕

⊕Λ
α=1 g̃α,∇0 ⊕⊕Λ

α=1 ∇̃α,∇0∗ ⊕⊕Λ
α=1 ∇̃α∗

)
.

Finally we discuss generalizations of the constructions discussed in this section.

4.5. Inheriting densities of unbounded support

Whilst the previous discussion allows us to inherit families of distributions supported in open
subsets of Euclidean spaces Rn, it can be extended to inherit families of distributions with unbounded
support over Rn.

One way is to inherit family of distributions with unbounded support by applying the
orientation-preserving bundle morphism construction twice.

Let x ∈ M be arbitrary. The first bundle morphism is constructed via a diffeomorphism between
Rn (linearly isomorphic to tangent spaces Tx M of M) to star-shaped open neighbourhoods Vx about
the origin of tangent spaces Tx M of M.

Using the bundle morphism construction discussed in the beginning of this section, this allows us
to construct a family of distributions supported Vx.

The second bundle morphism is constructed via local diffeomorphism expx : Vx ⊂ Tx M → M
from a (star-shaped) open subset Vx ⊂ Tx M ∼= Rn to expx (Vx) ⊂ M as discussed in the beginning of
this section. We discuss this more formally as follows:

Let M by a Riemannian manifold and let x ∈ M be arbitrary. Consider a metric ball B(x, εx) ⊂ M.
6

Metric balls B(x, εx) in M are geodesically convex, hence Vx := exp−1
x (B(x, εx)) is open and

star-shaped in Tx M ∼= Rn about
−→
0 ∈ Tx M.

By Gonnord and Tosel [20], there exists a diffeomorphism fx : Vx → Rn, and by lemma 2, we can
assume fx to be orientation-preserving.

Let S be a family of probability densities supported in Rn. We can induce a family of probability
densities S̃ on M by the following composition of orientation-preserving bundle morphisms.

6 One could, for example obtain it via an element of an orientation-preserving open cover of M by metric balls:
{ρα (Wxα ) = B(xα, εxα )}xα∈M discussed in lemma 1
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S ⊂ Prob(Rn) Prob(Vx) S̃ ⊂ Prob(M)

Rn Vx ⊂ Tx M expx (Vx) = (B(x, εx)) ⊂ M

f ∗x exp−1∗
x

fx expx

exp−1
x

Alternatively, we may also consider the family of truncated distributions S ⊂ Prob(Vx) supported
in Vx obtained from S ⊂ Prob(Rn) by:

S :=

{
p∫

Vx
p
| p ∈ S

}
⊂ Prob(Vx) .

4.6. Densities on general M

In the previous discussion, we assumed M to be a smooth Riemannian manifold. In this subsection
we discuss briefly how the approach can be extended easily to the case where M is a smooth topological
manifold with no pre-defined Riemannian structure. Indeed, a Riemannian structure is only required
for lemma 1 to construct an open cover by metric balls of totally bounded set V of M. Since there is no
additional conditions on the Riemannian structure, it can be arbitrarily defined.

Since smooth topological manifolds are paracompact, there always exist a Riemannian metric.
Here we discuss a specific metric inherited via a given orientation-preserving open cover.

Let {(ρα, Uα)} denote once again an orientation-preserving open cover of M.
Let hα be a positive definite 2-form on Uα. Then

(
ρ−1∗

α hα

)
: Txα M× Txα M→ R is the pulled-back

metric on each tangent space for xα ∈ ρα(Uα). A Riemannian metric on M can thus be constructed via
partition of unity subordinate to regular refinement of {Uα}.

5. Example

Finally we illustrate our approach with the following example on unit 2-sphere S2.

5.1. Local bivariate Gaussian distribution on S2

Let Sn denote the unit n-sphere in Rn+1:

Sn :=
{

x ∈ Rn+1 | ||x|| = 1
}

.

For simplicity, we will let n = 2 for the rest of the discussion. Consider the “northern" hemisphere
denoted by V1 =

{
(x, y, z) ∈ S2|z ≥ 0

}
.

In the existing literature, discussed in Example 2, family of probability densities on V1 can be
inherited via the following bundle morphism:

SU1 ⊂ Prob(U1) Prob(V1)

U1 ⊂ TNS2 V1 = expN(U1) ⊂ S2

log
∗
N

expN

logN

where N = (0, 0, 1) ∈ V1 denote the north pole on the sphere S2, expN : TNS2 → S2 the
Riemannian exponential map centred at N, and U1 ⊂ TNS2 a neighbourhood about

−→
0 ∈ TNS2 locally

diffeomorphic to V1 under expN . Family of probability volume densities on V1 is thus given by the
following map:

p ∈ SU1 ⊂ Prob(U1) 7→ log∗N p ∈ Prob(V1) .
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In practice this approach may be computationally expensive, as finding the inverse of Riemannian
exponential map involves solving a second order differential equation: geodesic equation. In the
2-sphere it is given by the following: Let x ∈ S2 and v ∈ TxS2 be arbitrary. Geodesic γ(t) on S2 with
γ(0) = x, γ′(0) = v is given by:

γ : [a, b]→ S2

t 7→ cos (t||v||) x + sin (t||v||) v
||v|| .

In this work, our approach allows us to consider the alternative maps that also preserve the
geometrical structure of SU1 . In particular we may consider any arbitrary diffeomorphism (by lemma
1), and in this case we consider the restricted spherical coordinates on V1 from {1} × U1, where
U1 :=

(
0, π

2
)
× (0, 2 · π), is given by:

ρ : {1} ×U1 → V1 ⊂ S2 ⊂ R3

(1, ϕ, θ)→ (1 · sin ϕ cos θ, 1 · sin ϕ sin θ, 1 · cos ϕ) . (25)

This map is the restriction of 3-dimensional spherical coordinate parametrization on the unit ball,
which is an orientation-preserving diffeomorphism on [0, 1]×U1:

ρ̃ : [0, 1]×U1 → R3

(r, ϕ, θ)→ (r · sin ϕ cos θ, r · sin ϕ sin θ, r · cos ϕ) .

Since ρ̃ is an orientation-preserving on [0, 1]×U1, so is ρ(1, ϕ, θ) = ρ̃ (r, ϕ, θ)|r=1 on {1} ×U1 [8].
Moreover, ρ is a bijective immersion7 hence a diffeomorphism on {1} ×U1 with inverse ρ−1(x, y, z) =
ρ̃−1 (x, y, z)|z=

√
1−x2−y2 , where p̃−1 denote the inverse of p̃ given by the following:

ρ̃−1 : R3 → [0, 1]×U1

(x, y, z) 7→ (r, ϕ, θ) =

(√
x2 + y2 + z2, tan−1

(y
z

)
, cos−1

(
z√

x2 + y2 + z2

))
.

The matrix Dρ̃−1 is given by:



x√
x2+y2+z2

y√
x2+y2+z2

z√
x2+y2+z2

zx
(x2+y2+z2)

3/2
1√

− z2
x2+y2+z2 +1

zy
(x2+y2+z2)

3/2
1√

− z2
x2+y2+z2 +1

−1
(

1√
x2+y2+z2

− z2

(x2+y2+z2)
3/2

)
1√

− z2
x2+y2+z2 +1

− y
x2

(
y2

x2 + 1
)−1

1
x

(
y2

x2 + 1
)−1

0



7 Since rank of ρ∗ is 2 = dim(U1).
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and the corresponding determinant is given by the following, which is always positive for
x, y, z ∈ R:

1
x2 + y2 + z2

1√
x2+y2

x2+y2+z2

.

Therefore ρ̃−1 is orientation-preserving, and so is ρ−1.8 Since
√

x2 + y2 + z2 = 1 is a constant in
S2 ↪→ R3, the determinant of Dρ−1 becomes:

1√
x2 + y2

,

which is always positive on S2.
In this example we will inherit truncated bivariate Gaussian distributions on the rectangle

U1 = (0, π
2 )× (0, 2 · π) ∼= {1} ×U1:

p(ϕ, θ) :=
1

Ap

1
cp

e((ϕ,θ)−µU1)
>

ΣU1((ϕ,θ)−µU1) ,

where Ap :=
∫

U1
p(ϕ, θ)dϕdθ, and cp is the standard scaling factor of bivariate normal

distributions given by 2π
√
|ΣU1 |. Let SU1 := {p(ϕ, θ)} denote the family of truncated Gaussian

distributions supported in U1.
Induced distributions S̃V1 on V1 ⊂ S2 via pullback bundle morphism induced by ρ−1 is given by

the following commuting diagram (c.f. Section 4.1):

SU1 ⊂ Prob(U1) S̃V1 ⊂ Prob(S2)

U1 V1 = ρ(U1) ⊂ S2

ρ−1∗

ρ

ρ−1

The induced probability density p̃ ∈ S̃V1 := ρ−1∗SU1 on ρ(U1) ⊂ S2 is given by (see equation (4)):

p̃ := ρ−1∗ p = p ◦ ρ−1 : S2 → R , for p ∈ SU1 .

The close form expression of p̃ ∈ S̃V1 is thus given by the following expression:

p̃(x, y, z) :=
1

Ap

1
cp

e(ρ
−1(x,y,z)−µU1 )

>ΣU1 ((ρ
−1(x,y,z)−µU1 ) ·

∣∣∣det Dρ̃−1
∣∣∣
r=1

=
1

Ap

1
cp

e(ρ
−1(x,y,z)−µU1 )

>ΣU1 ((ρ
−1(x,y,z)−µU1 ) · 1√

x2 + y2
,

where r := x2 + y2 + z2 = 1 in S2. Notice since z =
√

1− x2 − y2 on S2, the change of measure
only depends on x, y.

Furthermore, since SU1 is an exponential family, which is an α-affine manifold with α = 1 and ρ is
a (local) diffeomorphism hence a sufficient statistics for S̃V1 , by example 1, S̃V1 is an 1-affine manifold

8 By a slight modification to the proof of Lemma 13.20 of [8].
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as well. The canonical divergence on SU1 is given by the Kullback-Leibler divergence DKL, hence the
induced divergence D̃1 on S̃V1 can thus be computed by:

D̃1(ρ
−1∗ p, ρ−1∗q) = DKL(p, q) , for p, q ∈ SU1 . (26)

As an illustration of the construction of pulled-back dualistic structure and induced divergence
discussed in Remark 2 Section 3.

Let V2 =
{
(x, y, z) ∈ S2|y ≥ 0

}
denote another closed subset of S2 and let V = V1 ∪V2 denote a

totally bounded subset of S2.
Analogous to the previous construction, we once again consider restricted spherical coordinate

in equation (25): ρ : {1} × U2 → V2 on V2 from {1} × U2, where U2 := (0, π) × (0, π). ρ is an
orientation-preserving diffeomorphism on {1} ×U2. Let SU2 denote family of truncated Gaussian
distributions supported in U2, and let S̃V2 := ρ−1∗SU2 .

Let S0 := {{ϕ1, ϕ2} | ϕ1, ϕ2 ∈ [0, 1] , ϕ1 + ϕ2 = 1} denote the set of mixture coefficients. Consider
the set of mixture densities LV given by:

LV :=
{

ϕ1 · p̃1 + ϕ2 · p̃2 | {ϕ1, ϕ2} ∈ S0, p̃1 ∈ S̃V1 , p̃2 ∈ S̃V2

}
.

Since S̃V1 , S̃V2 are both dually flat, by the previous section, the canonical divergence DV of dually
flat manifold LV = S0 × S̃V1 × S̃V2 can thus be evaluated by equation (7):

DV( p̃, q̃) =
2

∑
α=1

ϕα log
(

ϕα

ϕ′α

)
+

2

∑
α=1

D̃α( p̃α, q̃α) ,

where p̃ := ∑2
α=1 ϕα · p̃α, q̃ := ∑2

α=1 ϕα · q̃α ∈ LV , and D̃α is the induced divergence on S̃Vα for
α = 1, 2 respectively given by equation (26).

Figure 1. A sample from a mixture of induced Gaussian distribution on V = V1 ∪V2

ϕ1 =
1
2

; µU1 = (0, 0) ; ΣU1 =

[
π 0
0 π

10

]

ϕ2 =
1
2

; µU2 =
(π

2
,

π

2

)
; ΣU2 =

[
π/32 0

0 π
32

]
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