

Article

Estimating Ocean Vector Winds and Currents Using a Ka-band Pencil-Beam Doppler Scatterometer

Ernesto Rodríguez ^{1*} 0000-0003-3315-4578, Alexander Wineteer ¹, Dragana Perkovic-Martin ¹, Tamás Gál ¹, Bryan Stiles ¹, Noppasin Niamsuwan ¹, and Raquel Rodriguez Monje ¹

¹ Jet Propulsion Laboratory, California Institute of Technology

* Correspondence: ernesto.rodriguez@jpl.nasa.gov; Tel.: +1-818-354-5668

Abstract: Ocean surface currents and winds are tightly coupled essential climate variables, and, given their short time scales, observing them at the same time and resolution is of great interest. DopplerScatt is an airborne Ka-band scatterometer that has been developed under NASA's Instrument Incubator Program (IIP) to provide a proof of concept of the feasibility of measuring these variables using pencil-beam scanning Doppler scatterometry. In the first half of this paper, we present the Doppler scatterometer measurement and processing principles, paying particular attention to deriving a complete measurement error budget. Although Doppler radars have been used for the estimation of surface currents, pencil-beam Doppler Scatterometry offers challenges and opportunities that require separate treatment. The calibration of the Doppler measurement to remove platform and instrument biases has been a traditional challenge for Doppler systems, and we introduce several new techniques to mitigate these errors when conical scanning is used. The use of Ka-band for airborne Doppler scatterometry measurements is also new, and, in the second half of the paper, we examine the phenomenology of the mapping from radar cross section and radial velocity measurements to winds and surface currents. To this end, we present new Ka-band Geophysical Model Functions (GMF's) for winds and surface currents obtained from multiple airborne campaigns. We find that the wind Ka-band GMF exhibits similar dependence to wind speed as that for Ku-band scatterometers, such as QuikSCAT, albeit with much greater upwind-crosswind modulation. The surface current GMF at Ka-band is significantly different from that at C-band, and, above 4.5 m/s has a weak dependence on wind speed, although still dependent on wind direction. We examine the effects of Bragg-wave modulation by long waves through a Modulation Transfer Function (MTF), and show that the observed surface current dependence on winds is consistent with past Ka-band MTF observations. Finally, we provide a preliminary validation of our geophysical retrievals, which will be expanded in subsequent publications. Our results indicate that Ka-band Doppler scatterometry could be a feasible method for wide-swath simultaneous measurements of winds and currents from space.

Keywords: surface currents; ocean vector winds; scatterometry; Doppler.

1. Introduction

The two-way interaction between ocean surface currents and ocean winds is an important component of the ocean-atmosphere system. Surface winds drive currents, but are, in their turn, modulated by currents since the forcing wind stress is relative to the current's moving reference frame [1]. In addition, surface currents advect warm or cold water, and the resulting temperature gradients modulate the winds (e.g., [2]), possibly causing a change in the structure of mesoscale and sub-mesoscale circulation (e.g., [3]). At small space and time scales, the interaction of winds and surface currents becomes tighter as winds can drive inertial oscillations or aid in the formation of mesoscale fronts (e.g., [4]), where significant vertical ocean motion can occur, leading to enhanced mixing. For these reasons, it is very desirable to be able to obtain *simultaneous* synoptic measurements of ocean surface currents and winds.

37 Measurements of ocean vector winds have a long heritage with radar scatterometers using either
38 Ku-band rotating pencil beam scatterometry (e.g. NASA's QuikSCAT and RapidScat, ISRO's OSCAT
39 and ScatSat) or multiple beam C-band scatterometry (e.g., EUMETSAT's ASCAT series). The possibility
40 of measuring surface currents using radar along-track interferometry was first suggested by Goldstein
41 et al. [5,6] and an airborne vector measurement was demonstrated by [7]. Implementing a dual
42 beam along-track interferometer from space is challenging. Chapron et al. [8], with colleagues from
43 IFREMER and elsewhere, suggested that single-antenna SAR Doppler centroid measurements could
44 be used instead, albeit potentially at lower resolution and accuracy. Rodríguez (Ocean Vector Winds
45 Science Team Meeting, 2012) suggested that a slight modification of the pencil beam scatterometer
46 to include Doppler measurements could produce wide-swath vector surface current measurements,
47 and Bao et al. [9] subsequently published an analysis of the performance of a Doppler scatterometer
48 spaceborne system. Fois et al. [10] showed that a Doppler system amenable to the ASCAT architecture
49 could also be implemented by correlating the Doppler shift from opposite sense chirps.

50 Given the scientific potential for simultaneous measurements of winds and currents, NASA
51 funded the development of a Ka-band Doppler scatterometer system, called DopplerScatt, under
52 the NASA Instrument Incubator Program (IIP). Here, we present the Ka-band measurement
53 phenomenology, the processing and calibration algorithms, and the detailed detailed measurement
54 error budget for the DopplerScatt wind and current measurements. These measurements are then
55 validated using data collected in several field campaigns.

56 The DopplerScatt instrument design is presented in Section 2.1. We then present a review of the
57 measurement principles and an overview of the processing in Section 2.2. The measurement principles
58 are examined further in Appendix A, which extends the work of Bao et al. [9] to include several
59 additional effects. One aspect where pencil-beam Doppler centroid systems differ from side-looking
60 SAR systems is in the variation of Doppler bandwidth with scan angle [11]. This variation allows the
61 estimation of the Doppler centroid using phases from multiple bursts in order to reduce the noise of
62 the estimate. We present detailed algorithms for the estimation of the Doppler centroid that extend the
63 classical work of Madsen [12] to multiple bursts in Section 2.5. We derive a new analytical estimate for
64 the radial velocity and validate it using DopplerScatt field measurements.

65 In Sections 2.4-2.6, we present the description of the end-to-end processing algorithms. Given
66 the novelty of the pencil-beam Doppler measurements, we pay attention to the sensitivity equations
67 for the velocity, and validate the DopplerScatt random error performance by comparing theoretical
68 predictions and estimates obtained from campaign data.

69 DopplerScatt also differs from spaceborne scatterometers in having only one polarization and
70 one antenna beam. In traditional scatterometry, this limitation would lead to unacceptable azimuth
71 ambiguities, but we show in Section 2.6 that, following the spirit of Mouche et al. [13], the surface
72 current radial velocity information can be used to obtain unambiguous wind directions.

73 A critical part of the radial velocity measurement (and one of the primary limitations for
74 spaceborne SAR systems to date) is calibrating the antenna position so that the look vector is known
75 to sufficient accuracy. In Section 2.8, we show that it is possible to use measurements over multiple
76 scan cycles of the pencil-beam antenna to determine angular biases and illustrate with results from
77 DopplerScatt. These results illustrate the system's stability over multiple campaigns.

78 After laying down the theoretical and processing framework, we examine in Section 3 the
79 geophysical results obtained during multiple flights conducted by the DopplerScatt instrument during
80 2016 and 2017. These results include estimates of the ocean correlation times at Ka-band (Section 3.1);
81 estimates of the geophysical model function (GMF) relating σ_0 and winds for vertical-polarization,
82 moderate incidence angle Ka-band data (Section 3.2); the separation of the ocean surface currents into
83 two components: one directly proportional to the local wind, representing the sum of Bragg wave
84 motion, Stokes and wind drift, and coupling of surface waves orbital velocities; and another one
85 corresponding to the deeper current that does not respond immediately to the local wind (Section 3.4).
86 In Sections 3.3-3.5 we present some preliminary comparisons of the final DopplerScatt data products

against available *in situ* data. Given the complexity of comparing radar surface velocities with *in situ* measurements conducted by various methods, we will give a more detailed accounting of this subject elsewhere. The mechanisms that generate the surface current GMF through modulation of Bragg waves by long ocean waves is discussed in Section 4. Finally, in Sections 4–5, we compare our findings with similar findings obtained at different frequencies or by different measurements, and assess the prospects for Ka-band Doppler scatterometry.

2. Materials and Methods

2.1. The DopplerScatt Instrument

DopplerScatt is a vertically polarized single-beam Ka-band coherent scatterometer using a rotating pencil-beam antenna to illuminate circular regions that can be built into a continuous swath, similar to the principle of the NASA's Seawinds Instrument on QuikSCAT [14]. The 12 RPM rotation rate of the antenna is set so that, for a given range, every point in the swath is observed from at least two different directions, resulting in the observation geometry shown in Figure 1. The data are recorded coherently onboard and processed on the ground to estimate radial velocities, by using pulse-pair phase differences, and normalized radar backscatter cross sections, σ_0 . The azimuth diversity of the measurements allows for inversion of both vector surface velocities and winds, as will be explained below. The antenna beam boresight is set at a nominal incidence angle of 56° , which, at a nominal flight altitude of 8.53 km, results in a ground scan radius, R , of approximately 12.5 km, for a total observation swath of about 25 km. The system is highly configurable in terms of the inter-pulse period, the burst repetition interval, and the system bandwidth, allowing for operation at multiple altitudes. Table 1 presents the configuration that was used to obtain the results used in this paper.

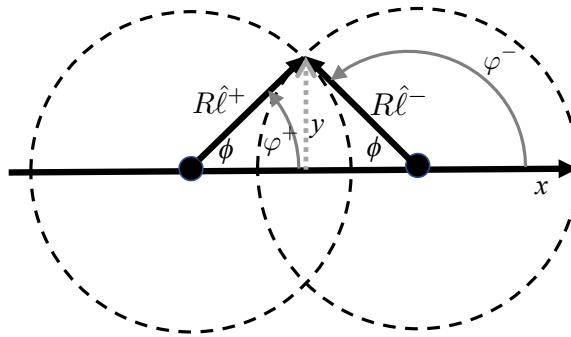


Figure 1. Geometry, viewed from above, for the inversion of vector surface velocities and winds. The platform flies along the x -direction, and the cross-track distance is given by y . For a given range, the footprint scans along a circle of radius R centered at the radar position (indicated by a dark circle). For this simple geometry, any given point in the swath is mapped twice, with a plane-projected look vector in the forward (backward) direction given by $\hat{\ell}_\parallel^+$ ($\hat{\ell}_\parallel^-$). The angle $\phi = \arctan(2y/D) = \varphi^+$ is the angle between the forward look and platform directions and D is the platform separation. It is related to the backward look angle by $\varphi^- = \pi - \phi$.

A 3D model of DopplerScatt is presented in Figure 2. A 5 MHz chirp signal is generated digitally, upconverted, and amplified using a commercial Ka-band solid state amplifier (SSPA), built by QuinStar Technology, to achieve a peak transmit power of 100 W. The signal is transmitted and received by a rotating, 3° one-way beamwidth, vertically-polarized, waveguide slotted array antenna, base-banded by the RF receiver, and digitized at high rate by a commercial digital receiver built by Remote Sensing Solutions. The processing of the complex data from the digital receiver will be described below. For the nominal system parameters in Table 1, the system achieves a noise-equivalent σ_0 of about -37 dB, which is sufficient for sampling scenes for even very low winds ($\mathcal{O}(2 \text{ m/s})$).

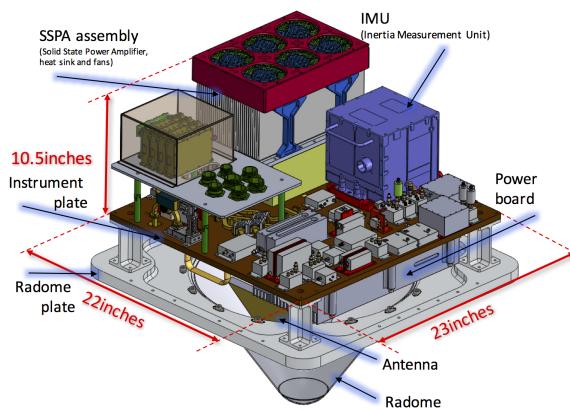


Figure 2. 3D model of the DopplerScatt system prior to integration into the radome and mounting plate installed in the belly of a King Air B200 airplane.

116 Although the system pulse repetition frequency allows for SAR processing, the achievable azimuth
 117 resolution using SAR will vary significantly with azimuth angle, and, at this point, we have decided
 118 to process the data in real-aperture mode to obtain more uniform sampling characteristics. This
 119 leads to a two-way azimuth footprint size of approximately 600 m. In the range direction, the chirp
 120 bandwidth results in a ground sample spacing of 36 m. The achievable ground resolution when
 121 combining multiple looks for different directions will vary across the swath, but can lead to significant
 122 improvements in the resolution cell size, especially in the swath “sweet-spots” between the nadir track
 123 and the far-swath [15].

124 Pulsed pair Doppler processing is achieved by cross-correlating bursts which are transmitted at a
 125 burst repetition frequency of 4.5 kHz, Nyquist oversampling the Doppler bandwidth for all azimuth
 126 angles. The system’s phase and power stability is monitored using an internal calibration loop which
 127 includes the transmit and receive paths, excluding the rotating antenna. Intensive laboratory testing
 128 prior to deployment, and subsequent calibration field data, showed that the pulse-pair difference
 129 timing stability is insensitive to temperature and introduces radial velocity errors much smaller than
 130 1 cm/s. The system delay showed some sensitivity to temperature, but drifts were much smaller than
 131 the inverse bandwidth of the system. The system gain exhibited variations with temperature and these
 132 were calibrated using loop-back calibration and corrected during the processing to obtain σ_0 .

133 The instrument position and attitude are obtained using a GPS receiver coupled with an
 134 Applanix POS AV-610 Internal Motion Unit (IMU). The IMU manufacturer specifications¹ relevant to
 135 DopplerScatt’s performance are given in Table 2, assuming Precise Point Positioning (PPP)² processing.
 136 The rotation angle is obtained by means of an encoder, which has a nominal resolution of 88 mdeg, but
 137 has an unknown mounting offset that needs to be obtained from calibration. The nominal antenna
 138 pattern was obtained using near-range field measurements. The nominal boresight was obtained by
 139 combining mechanical measurements of the antenna location together with IMU attitudes and the
 140 azimuth encoder measurement.

141 2.2. Current Measurement Principle

142 DopplerScatt measures two basic quantities, pulse-pair phase differences and return power, which
 143 are then converted to surface radial velocities, v_{rs} , and normalized backscatter cross section, σ_0 . The
 144 use of σ_0 for vector wind retrieval using a pencil-beam scatterometer is well known (e.g., [16]), and we

¹ https://www.applanix.com/downloads/products/specs/POSAV_DS_feb_2017_yw.pdf

² http://www.navipedia.net/index.php/Precise_Point_Positioning

Table 1. DopplerScatt nominal parameters.

Parameter	Value
Peak Power	100 W
3 dB Azimuth Beamwidth	3°
3 dB Azimuth Footprint	600 m
3 dB Elevation Beamwidth	3°
3 dB Elevation Footprint	1.4 km
Nominal boresight angle	56°
Burst Repetition Frequency	4.5 kHz
Inter-pulse Period	18.4 μ sec
Chirp length	6.4 μ sec
Pulses per burst	4
Pulse Bandwidth	5 MHz
Azimuth Looks	100
Range Resolution	30 m
Resolution in Elevation	36.2 m
Resolution in Azimuth	485 m
Nominal Platform Altitude	8.53 km
Nominal Swath	25 km
Scan Rate	12 RPM
Noise Equivalent σ_0	-37 dB

Table 2. Applanix POS AV 610 performance specifications.

Parameter	Accuracy
True Heading	5 mdeg
Roll & Pitch	2.5 mdeg
Attitude Drift	<0.01 deg/hr
Velocity	0.5 cm/s
Horizontal Position	<10 cm
Vertical Position	<20 cm

refer the reader to the literature for a review of the principles. The principles of using a pencil-beam system to measure surface currents was presented by Bao et al. [9]. In this paper, we extend their derivation to include various effects not accounted for in their first order approximation and also examine the algorithm for radial velocity in detail.

In Appendix A, we present a detailed measurement model and find that the complex correlation coefficient, $\gamma(\tau)$, for a pulse pair separated by a time τ is given by

$$\frac{\langle E_1 E_2^* \rangle}{\sqrt{\langle |E_1|^2 \rangle \langle |E_2|^2 \rangle}} \equiv \gamma(\tau) = \exp[-i\Phi(\tau)] \gamma_N \gamma_T(\tau) |\gamma_D(\tau)| \quad (1)$$

$$\frac{\Phi}{2k\tau} = \hat{\ell} \cdot \left(\mathbf{v}_p - \left(\mathbf{v}_W + \left\langle \frac{\delta\sigma_0}{\sigma_0} \hat{\ell} \cdot \delta\mathbf{v}_W \right\rangle_W \right) \right) - v_{rG} - v_{rA} \quad (2)$$

where E_i is the complex return signal, Φ is the pulse-pair phase difference, $2k\tau = 4\pi\tau/\lambda$, $\hat{\ell}$ is the look vector from the platform to the scattering cell³, \mathbf{v}_p is the platform velocity vector, and \mathbf{v}_W is the velocity vector for the surface scatterers averaged over the resolution cell. Equation (2) shows that the normalized pulse-pair phase is proportional to the radial velocity along the look direction, $\hat{\ell} \cdot (\mathbf{v}_p - \mathbf{v}_W)$, as in [9], but also includes three additional terms.

³ We drop the C subscript and overbars of Appendix A in the main text to simplify notation.

156 The first term, $\left\langle \frac{\delta\sigma_0}{\sigma_0} \hat{\ell} \cdot \delta\mathbf{v}_W \right\rangle_W$, represents the correlation between σ_0 and \mathbf{v}_W fluctuations within
 157 the resolution cell, reflects the modulation of the resolution cell Doppler centroid by changes in
 158 σ_0 . Thus, if velocity and back scatter modulations are correlated (by hydrodynamic, tilt, or other
 159 modulations), the radial velocity contributing to the Doppler will not be $\hat{\ell} \cdot \mathbf{v}_W$, but will be shifted
 160 towards the velocities in the brighter parts of the long waves and may cause a net Doppler shift even
 161 when the average wave orbital velocity is negligible. The presence of this coupling was first shown by
 162 Chapron et al. [8], and has been incorporated subsequently into the DopRIM model [17–19]. This type
 163 of modulation has been shown to be important at C-band [8,18] and X-band [20], and to introduce a
 164 significant wind component which is a function of both wind speed and direction, with theory being
 165 in general good agreement with observations. At Ka-band, there is a much smaller literature, although
 166 recently Yurovsky and colleagues [21,22] have shown empirical and theoretical evidence for a wind
 167 induced component, which will be discussed in greater detail below.

168 The second term, v_{rG} , is due to shifts in the Doppler centroid caused by non-random (i.e.,
 169 non-wave-related) variations in the backscatter cross section over the resolution cell, such as those
 170 due to a gradient in wind speed, or a σ_0 variation due to surfactants. A detailed derivation of the
 171 magnitude of this term is given in Appendix A. When the antenna pattern is well approximated by a
 172 Gaussian, as is the case for DopplerScatt, the term is well approximated by

$$v_{rG} = \left(\frac{\Delta\sigma_0}{\sigma_0} \sigma_{\phi a} \right) v_p \sin \phi \quad (3)$$

173 where $\Delta\sigma_0$ is the change in σ_0 over the footprint, $\sigma_{\phi a} \approx 0.02$ is the standard deviation of the
 174 azimuth beamwidth, and ϕ is the azimuth angle relative to the velocity direction. For a 0.1 dB variation
 175 over the ~ 600 m azimuth footprint, corresponding roughly to a 10 cm/s change, and a nominal
 176 platform velocity of 130 m/s, this corresponds to a maximum error of about 6 cm/s at broadside, while
 177 the average error over the swath is significantly smaller. This error can increase substantially in the
 178 presence of sharp σ_0 discontinuities, and must be corrected in the processing if the discontinuity is
 179 large enough using the measured σ_0 data.

180 The final term, v_{rA} , is due to shifts in Doppler centroid due to asymmetry in the antenna
 181 pattern, and, if large enough, must be corrected in the processing by using antenna pattern calibration
 182 measurements.

183 The magnitude of the pulse-pair correlation, γ , determines the noise in the estimated pulse-pair
 184 phase difference and contains contributions from three distinct mechanisms. The first term, $\gamma_N =$
 185 $\text{SNR}/(1 + \text{SNR})$, where SNR is the system signal to noise ratio, is the use term induced by the presence
 186 of random thermal noise. Given the small noise-equivalent σ_0 for DopplerScatt, it only plays a role
 187 for very low wind speeds. The next term, γ_T , is due to changes in scatterer phase due to surface
 188 motion between the pulses used to form the pulse-pair phase. This temporal correlation is the product
 189 of γ_{TS} , due to the finite lifetime of surface scatterers, and γ_{TW} , due to scatterer motion induced by
 190 long-wavelength surface waves

$$\gamma_{TW}(\tau) = \exp \left[- \left(\frac{\tau}{T_W} \right)^2 \right] \quad (4)$$

$$T_W = \left(\sqrt{2} k \sigma_{Wr} \right)^{-1} \quad (5)$$

191 where T_W is the correlation time due to wave motion, and σ_{Wr} is the standard deviation of the
 192 wave orbital velocity along the radial direction. Although an upgrade is planned, DopplerScatt does
 193 not have the capability to resolve surface waves currently, so an estimate of the orbital radial velocity
 194 variance cannot be obtained from the data itself, but it can be obtained using *in situ* knowledge of the
 195 surface wave spectrum or by assuming that it is purely wind-driven and has reached equilibrium
 196 with the wind. The term γ_{TS} is due to non-linear dissipation of resonant scatterers or wave breaking,

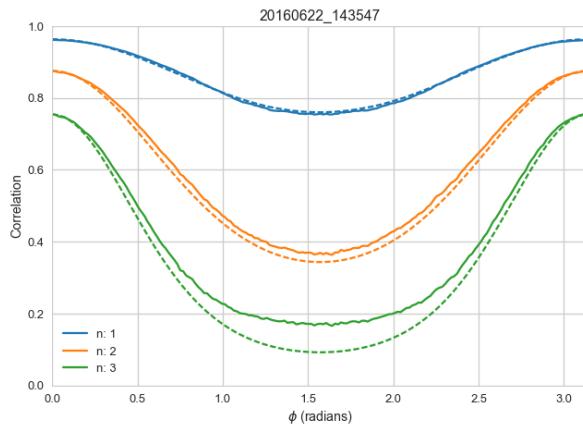


Figure 3. Observed (solid lines) and modeled (dashed lines) pulse-pair correlations for pulse-pair separations $\tau = n\tau_0$, $\tau_0 = 0.22$ msec, as a function of ϕ , the azimuth angle relative to the platform velocity.

for which we do not have appropriate models at this time. However, the temporal correlation term can be estimated from the data itself, as we will show below.

The final term contribution to signal decorrelation, γ_D , is due to the variation of the Doppler shifts within the resolution cell, and is given by the Fourier transform of the resolution cell illumination at the Doppler shift spatial fringe rate, equation (A27). For a Gaussian antenna pattern and range resolution that is small compared to the changes in Doppler in the range direction, this term can be approximated by

$$\gamma_D \approx \exp \left[- \left(\frac{\tau}{T_D} \right)^2 \sin^2 \phi \right] \quad (6)$$

$$T_D = \left(\sqrt{2} k v_p \sigma_{\phi a} \right)^{-1} \quad (7)$$

where T_D is the Doppler decorrelation time at broadside, which is on the order of 0.35 msec. γ_D reaches a maximum in the fore and aft directions, and a minimum at broadside. Notice that $T_D/T_W = \sigma_{Wr}/v_p \sigma_{\phi a} \ll 1$, since we find in Section 3 that the typical ocean correlation time $T_W \gtrsim 2$ msec. The Doppler term dominates the correlation for about 80% of the swath, but, due to the $\sin^2 \phi$ term, the surface temporal correlation is dominant for the inner 20%.

To test the validity of the correlation model, we estimate the pulse-pair correlations as a function of τ and ϕ from collected data correlations and compare against predictions for the DopplerScatt parameters assuming a Gaussian antenna pattern. A typical result is shown in Figure 3, where observed correlations (solid lines) estimated using 100 pulse pairs for a 200 km line of data are plotted against the theoretical prediction in equation (6) for three different pulse-pair separations given by $\tau = n\tau_0$ for $n = 1, 2, 3$ and burst-repetition interval $\tau_0 = (4.5 \text{ kHz})^{-1} \approx 0.22$ msec. Since the temporal correlation is unknown, it is fit for each pulse-pair interval by making the theoretical and observed curves match in the aft direction, $\phi = 0$. These estimates will be used to estimate ocean correlation times in the results section below.

Several features of the DopplerScatt signal are apparent from Figure 3, in addition to the good agreement between theory and observations (the deviations for low correlation values are due to biases in the correlation estimator, and the two curves agree for moderate to large values of γ). As expected, the correlation is inversely proportional to the Doppler bandwidth, with $\gamma_D \approx 1$ in the fore ($\phi = \pi$) and aft ($\phi = 0$), while the correlation is minimized at broadside ($\phi = \pm\pi/2$). Thus, it is expected that the radial velocity errors will be at a maximum in the broadside direction, and at a minimum

fore and aft. The second lesson from this figure is that temporal correlation of the signal can be a significant contributor to signal decorrelation. The variability of the ocean temporal correlation times as a function of environmental conditions will be examined below.

2.3. Estimation of Pulse-Pair Phase

Traditionally, the estimation of phase differences for Doppler centroids [12] and radar interferometry [23], for pulses separated by $j\tau_B$ ($j \geq 1$ is an integer), where τ_B is the burst repetition interval, has been done by using the phase of the pulse-pair interferogram

$$\hat{\Phi}_j = \frac{1}{j} \arg \left[\sum_{n=1}^{N_p} \left\langle E_n(t) E_{n+j}^*(t + j\tau_B) \right\rangle \right] \quad (8)$$

where the index n labels subsequent pulses in the received pulse train. Following Madsen [12], in SAR applications $j = 1$, since typically pulses separated by more than one can be regarded as uncorrelated. This can be shown to be the maximum likelihood estimator (MLE) for the interferometric phase when using *independent* pulse pairs, but not when the pulses are not independent. As can be seen from Figure 3, pulses in the DopplerScatt return may have significant correlation across many transmit events and a natural question arises on what the best combination of pulse pairs should be used to estimate the pulse-pair phase. In Appendix B, we present the derivation of the MLE estimator for the pulse-pair phase difference, as well as the Crámer-Rao asymptotic lower bound for the estimator variance [24]. Unfortunately, unlike for the independent pulse-pair samples, the MLE equation (A42) does not have an analytic solution, but must be solved numerically by a one-dimensional search, or by iteration, which has a computational cost. In the low-correlation limit, the estimator can be approximated by the weighted average of the MLE estimator

$$\hat{\Phi} = \sum_{j=1}^{N_j} w_j \hat{\Phi}_j \quad (9)$$

where w_j is an approximate inverse variance weight given by equation (A53).

For independent pulse pairs with the same correlation γ , the Cramér-Rao bound is given by [23]

$$\sigma_{\Phi}^2 = \frac{1}{2N_L} \frac{1 - \gamma^2}{\gamma^2} \quad (10)$$

where N_L is the number of *independent* pulse pairs used in the estimate. When the pulses are correlated, the Cramér-Rao bound is given by equation (A47), which can be calculated analytically but does not lend itself to a simple expression, except in the low-correlation limit when it is given by equation (A50), which represents a weighted combination of equation (10) accounting for changes in the number of samples and correlations.

To assess the relative performances of the estimation algorithms we generated correlated circular-Gaussian samples with the correlation coefficient given by equation (1), using a Gaussian antenna pattern. The temporal correlation function was assumed to be of the form $\gamma_T = \exp[-(\tau/T_{sc})^2]$ and T_{sc} was varied between 0.5 msec to 4.0 msec, consistent with ocean observations presented below. We examine three estimators: the MLE estimator; and the two estimators obtained by taking $N_j = 1, 3$ in equation (9). The $N_j = 1$ case corresponds to the Doppler centroid estimator given by Madsen [12] and has correlations similar to the $n = 1$ line in Figure 3 (although with varying temporal correlation). The $N_j = 3$ estimator uses the three pulses shown in Figure 3. For this simulation, we use 100 pulses (as in the processor) and the nominal system parameters in Table 1. The results for phase are converted into radial velocity error by dividing by $2k\tau$ and are presented in Figure 4.

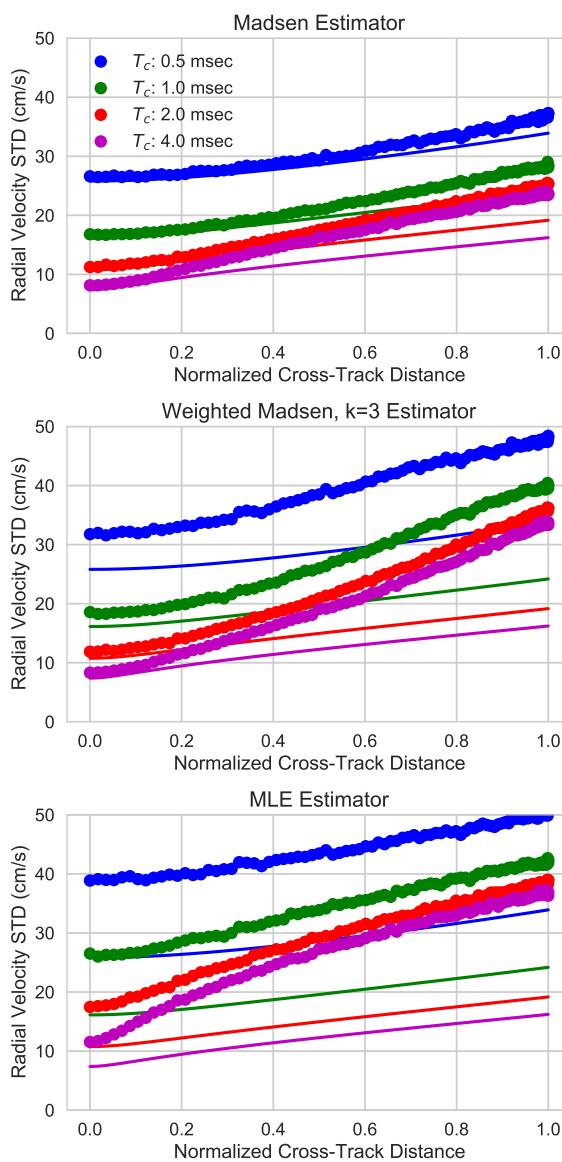


Figure 4. Performance of three pulse-pair estimators described in the text as a function of cross-track distance divided by the swath radius $= |\sin \phi|$. Solid lines correspond to the Cramér-Rao bound given by equation (A47). Circles correspond to the simulation results as a function of correlation time for T_c of 0.5 msec (blue), 1.0 msec (green), 2.0 msec (red), and 4.0 msec (purple).

Figure 4 shows the radial velocity error increasing with cross-track distance for all estimators, and decreasing with increasing correlation time. Surprisingly, the best estimator is the Madsen estimator ($N_j = 1$), while taking additional samples ($N_j = 3$) increases the noise, as does using the MLE solution (possibly due to errors in the numerical search). These characteristics hold for high SNR data where reducing thermal noise variability is not important, while lower SNR results (not shown), that will be more representative of spaceborne data, do show the benefit of using multiple samples in the retrievals.

The reason the Madsen-type estimators do not conform to the approximate Cramér-Rao bounds is that they utilize the number of pulses used to form the interferogram, N_p , as the number of independent looks, N_L , in equation (10). This is appropriate only in the limit when pulse-to-pulse correlation is low, as derived in Appendix B. However, when pulse-to-pulse correlation is high, $N_L \ll N_p$. A better estimator for the number of looks is given by the total interferogram observation time divided by the

271 total correlation time, $N_L = N_p \tau_B / T_c$, T_c is determined by solving $|\gamma(T_c)| = 1/e$. From equations (4)
 272 and (6), T_c is given by

$$T_c = T \sqrt{1 + \log(\gamma_N)} \quad (11)$$

$$T^{-2} = [T_W^{-2} + T_D^{-2} \sin^2 \phi] \quad (12)$$

273 Since $T_D \ll T_W$, for about 80% of the swath T^{-1} varies sinusoidally with azimuth angle (or
 274 linearly with cross-track distance), but approaches a fixed value determined by the ocean correlation
 275 time in the nadir portion of the swath. For $\log \gamma_N > -1$, the equivalent number of looks can be written
 276 as

$$N_L = \min \left(\frac{N_p \tau_B \sqrt{T_W^{-2} + T_D^{-2} \sin^2 \phi}}{\sqrt{1 + \log(\gamma_N)}}, N_p \right) \quad (13)$$

277 In the high-correlation limit, $1 - \gamma \ll 1$, which applies in most situations for DopplerScatt, one
 278 can use the Cramér-Rao bound to derive a simple formula for the radial velocity error variance

$$\sigma_{vr}^2 = \left(\frac{1}{2k\tau_B} \right)^2 \frac{1}{2N_L} \frac{1 - \gamma^2}{\gamma^2} \quad (14)$$

$$\approx \left(\frac{1}{2k\tau_B} \right)^2 \frac{\tau_B}{N_p} \sqrt{T_W^{-2} + T_D^{-2} \sin^2 \phi} \quad (15)$$

279 which shows that for about 80% of the swath, the radial velocity *variance* will vary *linearly* with
 280 cross-track distance and approach a fixed value for the center swath. If the effect of the equivalent
 281 number of looks were not taken into account, the prediction would be that the radial velocity variance
 282 would exhibit a *quadratic* behavior with cross-track distance, in the high correlation limit. This equation
 283 also shows that $\sigma_{vr}^2 \sim \tau_B^{-1}$, rather than the τ_B^{-2} behavior that would be expected if the phase variance
 284 were independent of the pulse-pair separation.

285 In Figure 5, we show the expected random error performance as a function of SNR and ocean
 286 temporal correlation using the exact correlations and estimated number of looks. For SNR greater
 287 than 20 dB, the high correlation behavior described above applies, but the performance across the
 288 swath flattens out significantly as the SNR becomes smaller, since the performance is dominated by
 289 the thermal noise and not the Doppler correlation. The impact of ocean correlation time is only evident
 290 in the nadir part of the swath and for lower SNRs.

291 In Figure 6, we compare the estimated noise in the radial velocity (blue), against predictions using
 292 equation (10) with the estimated γ using either the naïve Cramér-Rao bound ($N_L = N_p$) (green), or
 293 the version where N_L is estimated from the total correlation time (orange). The estimates of the radial
 294 velocity random error (blue) were obtained for each pulse-pair by removing a trend in range for the
 295 radial velocity and computing the standard deviation of the resulting signal: this is a conservative
 296 estimate since there will be some natural variability due to waves and currents. Since the ocean
 297 surface correlation time is unknown *a priori*, we estimate the γ_N and T_c by fitting a quadratic in
 298 time for multiple pulse separations to the logarithm of the correlation function and averaging the
 299 estimates for each range line for the same samples used to estimate the random error (additional results
 300 regarding the temporal correlation function are given in Section 3.1). Both measured and predicted
 301 random errors show periodic variations with azimuth due to the changes to predicted the Doppler
 302 correlation in equation (6), with minimum errors occurring in the fore and aft directions, and maxima
 303 at broadside. The figure shows that the naïve estimator underestimates the observed error significantly,
 304 while the Cramér-Rao bound with N_L determined by the correlation time is in good agreement with

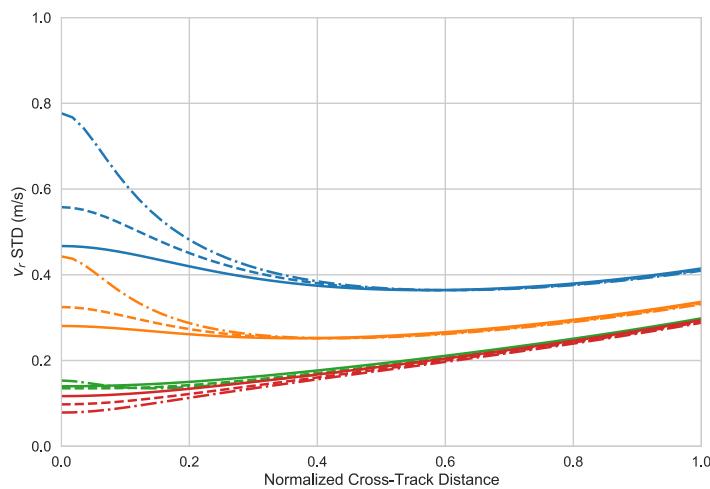


Figure 5. Random component of the radial velocity for SNRs of 5 dB (blue), 10 dB (orange), 20 dB (green) and 30 dB (red) and radial velocity standard deviations (0.2 m/s (solid), 0.4 m/s (dashed), and 0.6 m/s (dot-dashed) for a platform velocity of 130 m/s and assuming that $N_p = 100$ and $\tau \approx 0.2$ msec. The cross-track distance is divided by the distance from the nadir track to the outer swath.

305 the observations. The fact that the naïve estimator underestimates the error significantly explains
 306 the degraded performance when multiple pulses are used in combination using equation (9): the
 307 estimation weights w_j are too large for the larger pulse-pair separations, resulting in the introduction
 308 of additional noise. One can improve the multi-pulse estimator in equation (9) by using the predicted
 309 variances which incorporate the effective number of looks into the weights, w_j , but we have found that
 310 this modification has only small effect on the estimation, due to the larger errors for greater pulse-pair
 311 separation. At this point, we do not have a simple explanation why the MLE estimator performs so
 312 poorly against the pulse-pair interferogram phase.

313 *2.4. Processing to σ_0 and radial velocities*

314 Figure 7 presents an overview of the DopplerScatt data processing, which, following the usual
 315 NASA conventions, produces data at three different levels: Level-0 (L0) data transformed from
 316 raw digital subsystem (DAQ) and IMU data into quality-assessed engineering radar and IMU
 317 data in physical units; Level-1 (L1) data produces geolocated estimates of σ_0 and residual radial
 318 velocity, after subtracting platform motion effects, obtained by combining 100 transmit pulses;
 319 Level-2 (L2) data contains geolocated estimates for surface vector winds and currents sampled along
 320 individual observations swaths. Level-3 gridded data is obtained by combining multiple swaths
 321 and requires accounting for temporal differences between different swaths, which typically requires
 322 some assumption about dynamics, and is not an official product at this point given uncertainties in
 323 the dynamics at DopplerScatt resolution scales. Below, we describe the general interest L1 and L2
 324 processing algorithms, as L0 processing is hardware specific.

325 The DopplerScatt instrument uses four different coordinate systems to go from raw measurements
 326 to geolocated data: a system intrinsic to the antenna; a system fixed relative to the instrument mounting
 327 plate; a system relative to the aircraft; and, finally, the East-North-Up (ENU) geolocated coordinate
 328 system. In the early part of L1 processing, GPS/IMU data are merged with the time-tagged radar
 329 data and transformation matrices between the coordinate systems are derived. The down-converted
 330 IQ radar data, including cal-loop and surface returns, are range compressed using time domain

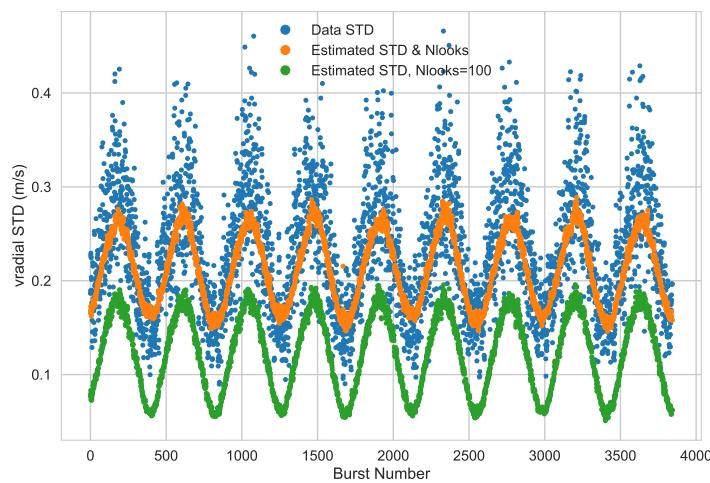


Figure 6. Estimates of radial velocity random error obtained from observations (blue), using equation (10) (divided by $2k\tau$) with $N_L = N_p$ (green), and using the same equation but estimating N_L from the correlation time T_c (orange). The data shown corresponds to 4.5 revolutions of the antenna. Note the variations in random error as a function of azimuth due to the variations in $\gamma_D(\phi)$, with error maxima appearing at broadside, as predicted by equation (6).

331 convolution using a weighted reference chirp, to reduce range sidelobes. Estimates of both the phase
 332 and amplitude of the loop-back chirps are calculated and stored for data processing.

333 A critical part of the processing is in the estimation of $\hat{\ell}$, the vector along the look direction, which
 334 is given in the ENU system by

$$\hat{\ell} = \sin \theta [\hat{\mathbf{n}} \cos \alpha + \hat{\mathbf{e}} \sin \alpha] - \hat{\mathbf{u}} \cos \theta \quad (16)$$

335 where $\hat{\mathbf{n}}$, $\hat{\mathbf{e}}$, $\hat{\mathbf{u}}$ are unit vectors pointing north, east and up, respectively; θ is the look angle; and α
 336 is the azimuth angle measured clock-wise relative to north.

337 Assuming a local spherical Earth approximation with radius of curvature R_E , the look angle to
 338 the center of the range pixel can be written in terms of the range, r , the height of the platform above
 339 the WGS84 ellipsoid from the GPS measurements, h , and the surface height, η , which is assumed to be
 340 constant over the resolution cell:

$$\cos \theta = \frac{h - \eta}{r} + \frac{(r / (R_E + \eta))^2 - ((h - \eta) / (R_E + \eta))^2}{2(r / (R_E + \eta))(1 + ((h - \eta) / (R_E + \eta)))} \quad (17)$$

341 The range term has precision comparable to the system timing, which is much better than the
 342 precision in the height above the surface η , obtained using the CNES-CLS11 mean sea surface [25].
 343 Neglecting curvature terms, the error in the look angle is given by

$$\delta\theta \approx \frac{\delta(h - \eta)}{r \sin \theta} \quad (18)$$

344 Using the nominal DopplerScatt parameters, and assuming that the coupled IMU-GPS and
 345 knowledge of the ocean surface are known to within 10 cm, the error in the look angle will be on
 346 the order of $6.6\mu\text{rad} \sim 4 \times 10^{-4}\text{deg}$, which will cause minimal errors on velocity estimation and
 347 geolocation.

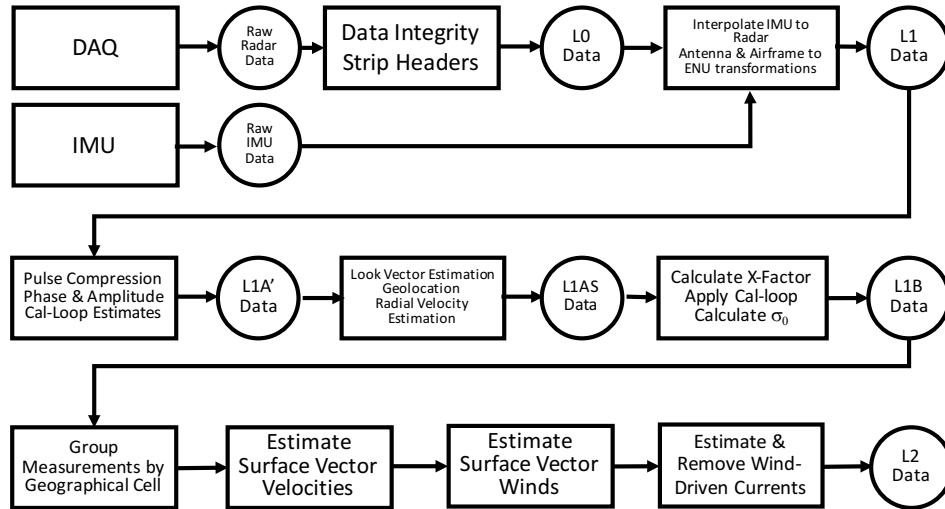


Figure 7. End-to-end flow of the DopplerScatt processor.

348 Following Appendix A, the azimuth angle must be estimated as the mean value over the footprint
 349 weighted by the antenna pattern and brightness. We assume constant brightness over the footprint
 350 and compute the mean value as

$$\alpha = \frac{\int d\alpha' G^2(\theta, \alpha') \alpha'}{\int d\alpha' G^2(\theta, \alpha')} \quad (19)$$

351 where G^2 is the two-way gain mapped into elevation and azimuth coordinates, and, given the
 352 small angular size of the range pixel, integrate along an iso- θ cut in the elevation direction. α can
 353 be in error due to errors in the measured antenna pattern or due to coupling between the odd parts
 354 of the antenna pattern and brightness gradients. These effects are much smaller in practice than the
 355 errors that can be caused by a systematic offset, $\delta\alpha$, between the antenna azimuth encoder and the
 356 IMU. Below, we discuss how this mounting offset can be estimated during the calibration process.

357 Once the look vector is estimated, the scatterer position, \mathbf{S} , is determined in the ENU coordinate
 358 system using $\mathbf{S} = \mathbf{P} + r\hat{\ell}$, where \mathbf{P} is the nominal radar phase center position from the GPS/IMU.
 359 Geolocation into latitude and longitude from ENU is then performed for each pulse.

360 To estimate the surface velocity, pulse-pair phase differences are computed using 100 contiguous
 361 bursts, and the platform motion effects are removed by multiplying by a term $\exp[2ikj\tau\hat{\ell}' \cdot \mathbf{v}'_p]$,
 362 where $\hat{\ell}'$ and \mathbf{v}'_p are the estimated look vector and IMU/GPS platform velocity, respectively. This
 363 process of interferogram flattening also ensures that the residual phase does not suffer from phase-wrap
 364 ambiguities. After estimating the flattened interferometric phase, $\hat{\Phi}$, using the estimator in equation (9)
 365 ($N_j = 1$ or 3 are both kept), the raw surface-projected radial velocity, v'_{rs} , is estimated using the equation

$$v'_{rs} = \frac{1}{\sin \theta} \frac{\delta\hat{\Phi}}{2k\tau} = \frac{1}{\sin \theta} \left[\frac{\hat{\Phi}}{2k\tau} - \hat{\ell}' \cdot \mathbf{v}'_p \right] \quad (20)$$

366 At this point, the radial velocity contains potential calibration errors, as well as contributions from
 367 not only surface currents but also the velocity of the scatterers due to Bragg wave motion, differential
 368 brightness due to long-wave modulation, Stokes and wind drift effects. The final radial velocity,
 369 v_{rs} , removes these effects by subtracting a calibration term, F_C , and (optionally) a surface current
 370 geophysical model function (GMF) term F_S

$$v_{rs} = v'_{rs} - F_C - F_S \quad (21)$$

371 Section 2.7 discusses F_C , while F_S is discussed in Section 3. We refer to the radial velocity without
 372 F_S correction as the *uncorrected* radial velocity.

373 The backscatter cross section σ_0 is computed from the multi-looked received power, P_r , by using
 374 the equation

$$P_r = P_t \sigma_0 L X \quad (22)$$

$$X(r) = \frac{\lambda^2}{(4\pi)^3} \frac{\Delta r}{r^3} \int d\alpha' G^2(\theta, \alpha') \quad (23)$$

375 where P_t is the transmit power, L is the system loss outside the calibration loop, and Δr is the
 376 range resolution. In the equation for the X -factor, we have assumed that the integral along the range
 377 direction of the range point target response, χ^2 , is given by $\Delta r = \int dr' \chi^2(r' - r)$. The same 100 pulses
 378 are used for computing the multi-looked power as the for the interferograms.

379 **2.5. Estimating the Surface Velocities and Errors**

380 The DopplerScatt rotating pencil-beam illuminates a swath of width $2R = 2h \sin \theta$ (see Figure 1),
 381 where h is the platform height above the surface and θ is the look angle. For a given range (or
 382 look angle), every point in the swath is imaged twice, looking forward and back, respectively. Using
 383 equation (21), estimates for $v_{rS}^{+/-}$, the radial velocities projected on the horizontal plane can be obtained
 384 after removing the platform velocity contribution to the pulse pair phase. The radial velocities are
 385 defined by

$$v_{rS}^{+/-} = \mathbf{v}_S \cdot \hat{\ell}_{||}^{+/-} = \frac{\mathbf{v}_S \cdot \hat{\ell}^{+/-}}{\sin \theta} \quad (24)$$

386 where $\hat{\ell}^{+/-}$ is the look vector from the radar to the scattering point; they are related to $v_{x/y}$, the
 387 surface velocities along the x/y directions, respectively, by

$$\begin{pmatrix} \cos \phi & \sin \phi \\ -\cos \phi & \sin \phi \end{pmatrix} \begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} v_{rS}^+ \\ v_{rS}^- \end{pmatrix}$$

$$\sin \phi = \frac{y}{R}$$

388 where $\phi = \varphi^+$ is the forward-look azimuth angle shown in Figure 1. It is related to φ^- , the
 389 back-look azimuth angle, by $\varphi^- = \pi - \phi$.

390 Separating explicitly the measured radial velocities and the velocity GMF, this equation can be
 391 inverted

$$\begin{pmatrix} v_x \\ v_y \end{pmatrix} = \frac{1}{\sin 2\phi} \begin{pmatrix} \sin \phi & -\sin \phi \\ \cos \phi & \cos \phi \end{pmatrix} \begin{pmatrix} v_{rS}^+ - F_S^+ \\ v_{rS}^- - F_S^- \end{pmatrix} \quad (25)$$

392 so that the surface components can be retrieved everywhere, with the exception of along the nadir
 393 path ($\phi=0$) for the y -component, or at the edge of the swath ($\phi = \pi/2$) for the x -component, when the
 394 inverse matrix is singular.

395 In practice, due to the finite beamwidth of the antenna and finite cell size of the retrieval, a given
 396 point in the ground can be imaged multiple times, and the surface currents are inverted by weighted
 397 least-squares inversion. However, for the purpose of calculating the measurement sensitivities, these
 398 simplified equations are sufficient to illustrate the nature and magnitude of the errors, provided random
 399 measurement errors are adjusted for the appropriate number of looks. The sensitivity equations are
 400 then given by

$$\delta v_x = \frac{\delta v_{rs}^{'+} - \delta v_{rs}^{'-}}{2 \cos \phi} - \frac{\delta (F_S^+ - F_S^-)}{2 \cos \phi} \quad (26)$$

$$\delta v_y = \frac{\delta v_{rs}^{'+} + \delta v_{rs}^{'-}}{2 \sin \phi} - \frac{\delta (F_S^+ + F_S^-)}{2 \sin \phi} \quad (27)$$

401 These equations show that the surface velocity errors are a function of cross-track distance, y ,
 402 but not of the along-track coordinate, x , with unbounded errors at the nadir and far swath. They
 403 also indicate that we can expect the along-track error to be large at the edges of the swath, while the
 404 cross-track errors will grow in the nadir direction. Finally, they show that, if the radial velocity errors
 405 are symmetric with respect to look direction (i.e., $\delta v_{rs}^+ = \delta v_{rs}^-$), then the along-track velocity errors
 406 cancel, whereas, if they are antisymmetric (i.e., $\delta v_{rs}^+ = -\delta v_{rs}^-$), the cross-track errors cancel.

407 Aside from geophysical effects in F_S , the DopplerScatt surface velocity error budget is dominated
 408 by two types of errors: random noise which is caused by thermal noise, speckle, and temporal
 409 decorrelation; and errors due to incorrect removal of the platform Doppler velocity from the radial
 410 velocity. Assuming that the fore and aft random velocity errors are not correlated, the random error
 411 standard deviations will be given by

$$\sigma_{v_x} = \frac{\sqrt{\sigma_{vrS+}^2 + \sigma_{vrS-}^2}}{2 \cos \phi} \approx \frac{\sigma_{vrS}}{\sqrt{2} \cos \phi} \quad (28)$$

$$\sigma_{v_y} = \frac{\sqrt{\sigma_{vrS+}^2 + \sigma_{vrS-}^2}}{2 \sin \phi} \approx \frac{\sigma_{vrS}}{\sqrt{2} \sin \phi} \quad (29)$$

412 where $\sigma_{vrS+/-}^2$ is the radial velocity random variance for the fore/aft directions using
 413 equations (14). The last approximation follows in the high SNR limit, when the σ_0 variations due to
 414 different azimuth look angles can be ignored as a contributor to the total pulse to pulse correlation, so
 415 that $\sigma_{vrS+}^2 \approx \sigma_{vrS-}^2$.

416 The previous formulas apply for estimates obtained by combining pairs of radial velocity
 417 measurements. In practice, we combine all fore and aft radial velocity measurements whose centers
 418 lie in a finite resolution cell small enough so that the azimuth angle can be taken to be constant. This
 419 allows us to reduce the random measurement noise by the square root of the number of independent
 420 fore and aft measurements that lie within the resolution cell. Figure 8 shows the theoretical predicted
 421 random error performance as a function of SNR and correlation time for a 200 m resolution cell, which
 422 corresponds to approximately 25 independent fore and aft radial velocity estimates. Combining
 423 multiple radial velocities from similar look directions also allows for an independent estimate of the
 424 random component of the error and the associated estimated standard error, as shown in Figure 9.
 425 Using equations (28) and (29), these standard errors can be propagated to the along and cross-track
 426 error estimates (see Figure 10), which show good agreement with the theoretical results in Figure 8.

427 In addition to the random measurement error, the other major source of instrument-related errors
 428 is the subtraction of the platform radial velocity contribution, which can suffer from errors in the
 429 estimated platform velocity, as well as look and azimuth angle estimation. Of these, the azimuth angle
 430 estimation is dominant for a mechanically scanned antenna, since knowledge of the azimuth angle is
 431 dependent on the encoder accuracy of the reported the antenna scan angle. In this case, the associated
 432 radial velocity error will be given by

$$\delta v_{rs} \approx v_{p\parallel} \sin \varphi \delta \varphi \quad (30)$$

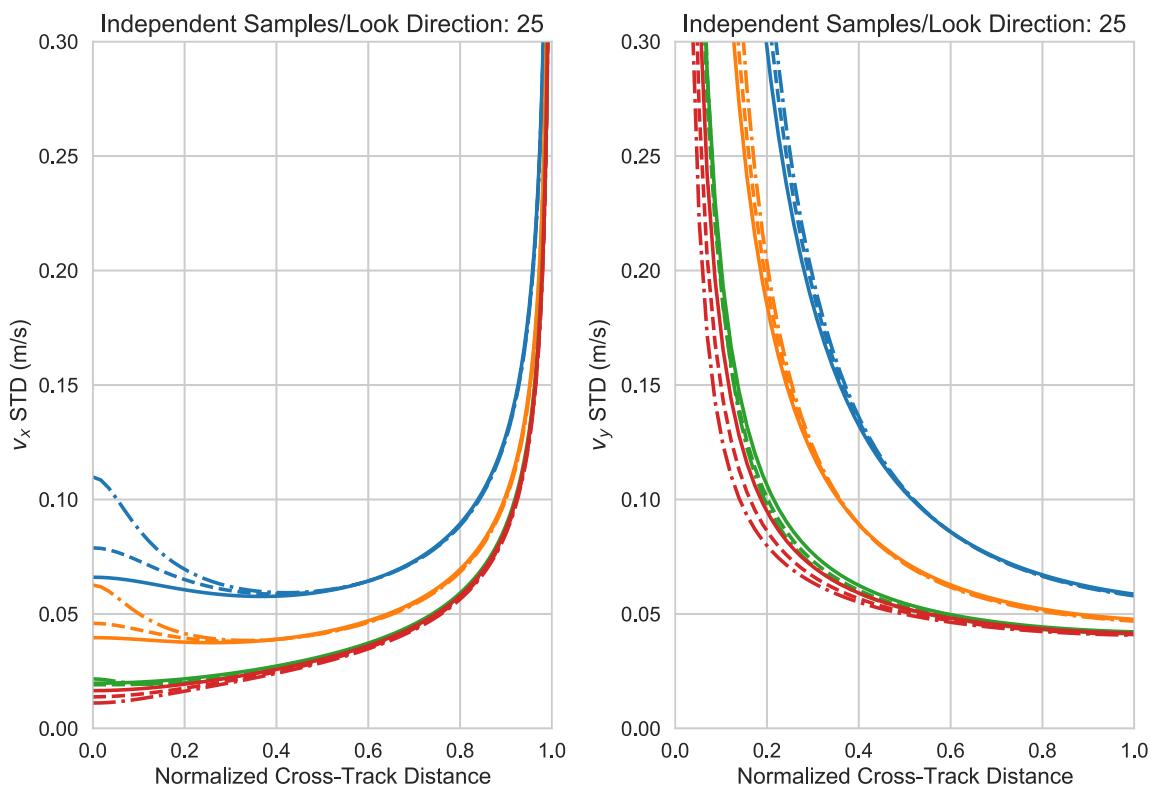


Figure 8. Along-track (left) and cross-track (right) surface velocity errors for the same cases as shown in Figure 5: SNRs of 5 dB (blue), 10 dB (orange), 20 dB (green) and 30 dB (red) and radial velocity standard deviations (0.2 m/s (solid), 0.4 m/s (dashed), and 0.6 m/s (dot-dashed) for a platform velocity of 130 m/s and assuming that $N_p = 100$ and $\tau \approx 0.2$ msec.

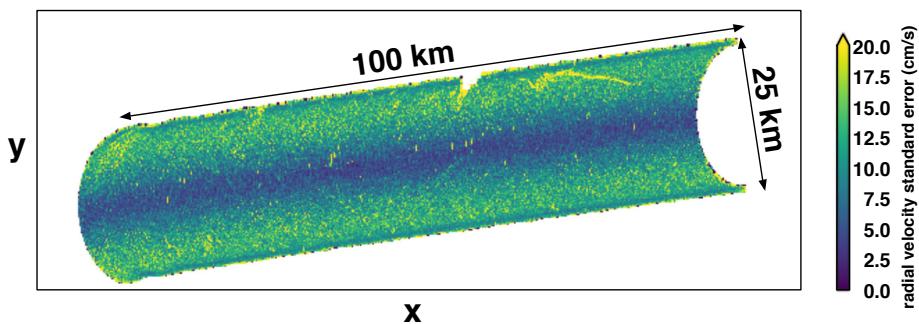


Figure 9. Estimated standard error of the radial velocity for fore-looking angles (aft-looking results are similar) obtained by dividing the standard deviation of fore-looking radial velocities in 200 m boxes, divided the square root of the number of independent samples (~ 25).

433 where, as shown in Figure 1, φ is the relative angle between the platform velocity and the look
 434 direction. Since $\varphi^- = \pi - \varphi^+$, one will have $\delta v_{rs}^+ = \delta v_{rs}^-$ as long as the azimuth error remains constant
 435 between fore and aft observations. Replacing this in equations (26) and (27), one sees that a constant
 436 azimuth bias will affect the cross-track surface current, but will have little impact on the along-track
 437 component. An error in the along-track component due to a constant azimuth bias will introduce a
 438 constant cross-track bias

$$\delta v_y = v_{p\parallel} \delta \varphi \quad (31)$$

439 This equation shows the great sensitivity of the cross-track component to azimuth errors. For
 440 example, to get to a velocity error of 10 cm/s assuming a platform velocity of 100 m/s, one must
 441 require that $\delta \varphi \leq 10^{-4} \approx 0.006^\circ$, which can present a significant installation challenge.

442 In practice, we expect errors in the azimuth angle to have two main sources: 1) a constant bias
 443 due to a mismatch between the antenna spin mechanism coordinate system; and, 2) periodic changes
 444 in rotation speed due to changes in friction as the antenna spins. This leads us to assume that azimuth
 445 estimation error will be of the form

$$\delta \varphi(\eta) = \delta \varphi_0 + \sum_{n=1}^{N_h} [a_n \cos(n\eta) + b_n \sin(n\eta)] \quad (32)$$

446 where η is the antenna encoder angle, which, for nominal flight conditions will be approximately
 447 φ , but will be offset by a constant when cross-winds induce a difference between the flight direction
 448 and the airplane forward direction. Following the previous argument, the cross-track surface velocity
 449 component will be most sensitive to terms in $\delta \varphi$ which do not change sign when $\eta^+ \rightarrow \eta^-$, while the
 450 along-track component will be sensitive to those harmonics that do change sign.

451 The final source of surface velocity errors is due to errors in the wind-driven radial velocity
 452 contribution, F_S . In Section 3.4, we show that F_S is well represented by a low-order harmonic expansion

$$F_S(\varphi, U_{10}, \varphi_U) = \delta v_r(U_{10}) + \sum_{n=1}^{N_S} v_{rn}(U_{10}) \cos(n(\varphi - \varphi_U + \delta \varphi(U_{10}))) \quad (33)$$

453 where U_{10} is the neutral wind speed measured at 10 m; φ_U is the wind azimuth direction; and δv_r ,
 454 v_{rn} , and $\delta \varphi$ are the wind speed dependent model parameters up to order N_S . In practice, the dominant
 455 terms are the first harmonic ($n = 1$) and, to a lesser extent, the constant term. The F_S associated errors,
 456 up to order $n = 2$, are then

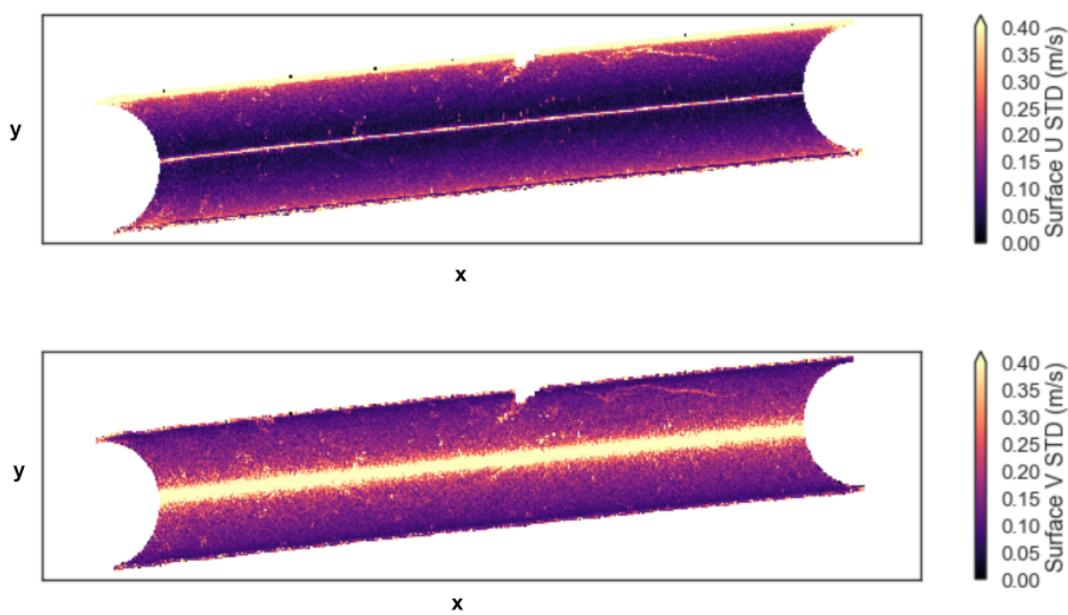


Figure 10. Estimated along-track (upper) and cross-track (lower) surface velocity component errors, obtained by propagating radial velocity standard errors, as in Figure 9. Note the agreement with theoretical estimates shown in Figure 8 for high SNR situations.

$$\delta v_x = -\delta (v_{r1} \cos \varphi_U + 2v_{r2} \sin \phi \sin \varphi_U) \quad (34)$$

$$\delta v_y = -\frac{\delta (\delta v_r + v_{r2} \cos 2\varphi_U)}{\sin \phi} - \delta (v_{r1} \sin \varphi_U - 2v_{r2} \sin \phi \cos 2\varphi_U) \quad (35)$$

The $n = 1$ term in F_S is equivalent to a current along the wind direction, and errors result in a two-dimensional current error vector, $-\delta (v_{r1} \cos \varphi_U, v_{r1} \sin \varphi_U)$. As shown in Section 3.4, v_{r1} is relatively constant for most of the wind speed range and is about 0.75 m/s, so that, in practice, the major error contribution from the first order term will be through errors in the estimated wind direction, resulting in an error vector $v_{r1} (\sin \varphi_U, -\cos \varphi_U) \delta \varphi_U$, whose magnitude is $v_{r1} \delta \varphi_U$. The effect of a wind direction error will be to add an approximately constant magnitude surface current vector in the direction *orthogonal* to the wind direction, whose scale of variability will be the spatial scale of wind direction change. Given the magnitude of v_{r1} , the wind azimuth angle estimation will play a dominant role in the subtraction of the wind-driven surface current components, but not in their derivatives, since the wind direction varies much more slowly than the ocean circulation direction. The v_{r1} error will introduce a current of magnitude δv_{r1} *parallel* to the wind direction. Given the Ka-band F_S relative insensitivity to wind speed, this error is expected to be an order of magnitude smaller than the wind direction error. This situation should be contrasted to that found a C-band [8,13,26], where $v_{r1} \sim a U_{10}$ ($0.05 \lesssim a \lesssim 0.15$), and a 1 m/s wind speed error can lead to significant additional surface velocity errors.

It is important to note that errors in the even harmonics of F_S (especially the constant term) lead to an error in the cross-track surface velocity component that is inversely proportional to the cross-track distance, switches sign depending on whether the return is from the left or right swaths, and can become significant near the nadir track. These types of errors (which could also be introduced by an instrument pulse-pair phase bias) must be calibrated from the data itself. Note that higher order harmonics will introduce distortions that can be expressed as low-order polynomials in the cross-track

478 distance; e.g., errors in the $n = 2$ term result in linear distortions across the swath. Given sufficient
 479 variability in the current data, so that the mean current contribution is small, these systematic terms
 480 can also be calibrated out.

481 *2.6. Estimating the Wind Speed and Direction*

482 Remote sensing of ocean winds takes advantage of the interaction between the ocean surface
 483 and the wind. As wind blows across the surface of the ocean, it promotes the growth of capillary and
 484 gravity-capillary waves that scatter energy back to a radar dominantly through the Bragg mechanism
 485 (at vertical polarization), wherein only surface waves that have the appropriate wavelength for
 486 constructive interference (given the electromagnetic wavelength and local incidence angle) contribute
 487 to the scattering [27]. For Ka-band and 56° incidence, the resonant Bragg waves have a wavelength of
 488 ~ 5 mm, and lie in the part of the spectrum directly responsive to wind inputs. However, resonant
 489 Bragg waves can also be generated by straining of longer waves [28,29], and not directly by the wind.

490 Although there is a good general understanding of the mechanisms responsible for generating
 491 Bragg waves (see [28,29] [30]), current theory cannot yet predict the high wavenumber spectrum
 492 required to predict radar backscatter given the wind and observation vectors. The traditional approach
 493 to wind estimation is to use an empirical wind GMF, $F_W(U_{10}, \phi_U)$, that maps winds to backscatter. In
 494 Section 3.2, we see that Ka-band wind GMF, like the Ku-band QuikSCAT GMF, exhibits a power-law
 495 dependence on wind speed, U_{10} , and a low-order harmonic dependence on the wind relative azimuth,
 496 ϕ_U . By observing from different fore and aft azimuth directions (Figure 1), one can use traditional
 497 scatterometer techniques to estimate the wind speed and azimuth. The first step the wind processor
 498 takes is to turn a group of σ_0 (and other) measurements into fore and aft looks for each wind vector
 499 cell (200x200 meter ground cells in this case). To do this, a k-means centroid estimator is used to find
 500 two optimal centroids in antenna azimuth and group (median or mean) measurements into fore and
 501 aft looks based on those centroids. With fore and aft measurements, the wind processor performs an
 502 optimization of the likelihood function, $J(U_{10}, \phi_U)$, in each wind vector cell to find the wind speed
 503 and direction that best match observed σ_0 for both fore and aft looks.

$$J(U_{10}, \phi_U) = \sum_i^n \left(\frac{\sigma_{0i} - F_{Wi}(U_{10}, \phi_U)}{\sigma_i} \right)^2, \quad (36)$$

504 where σ_{0i} is the observed backscatter, and index i represents fore/aft looks. $F_{Wi}(U_{10}, \phi_U)$ is
 505 the calculated backscatter from the GMF based on trial wind speeds and directions. σ_i represents
 506 the measured variance in observed σ_0 . In contrast to QuikSCAT, where vertically and horizontally
 507 polarized beams were used to make up to four independent measurements of each ground cell
 508 [14], DopplerScatt operates a single vertically polarized beam, making only two independent
 509 measurements of each ground cell. Two independent measurements is the theoretical minimum
 510 number of measurements required to solve for wind speed and direction, making wind retrieval
 511 difficult in the presence of noise since wind direction ambiguities will occur.

512 To overcome this limitation, we use the fact that the Doppler measurement reflects the surface
 513 velocity of small waves, which propagate mainly along the wind direction, with (usually) relatively
 514 small changes in direction due to refraction by the non-wind driven surface current. As a first guess
 515 to the wind direction, we use ϕ_{dop} , the direction of propagation of the total Doppler inferred surface
 516 current, uncorrected by F_S . A peak finder is used to find optimal wind direction selections along a best
 517 speed ridge (the selection of wind speeds for each possible wind direction that optimizes the objective
 518 function), and the likelihood peak nearest to ϕ_{dop} is selected. We refer to this direction as the initially
 519 selected σ_0 direction, ϕ_{σ_0} , and note that $\phi_{\sigma_0} \neq \phi_{dop}$ in general. An initially selected speed, U_{σ_0} , is then
 520 selected by selecting the wind speed along the best speed ridge where $\phi = \phi_{\sigma_0}$.

521 With ϕ_{σ_0} and U_{σ_0} selected, the wind processor begins to improve wind estimates in areas of
 522 reduced wind retrieval skill. An important consideration in scatterometry is that some measurement
 523 geometries offer better wind retrieval skill (less noise) than others. With a spinning antenna, a "sweet

524 spot" exists on either side of center-swath, sometimes called "mid-swath" [31]. Conversely, the center
 525 and far edges of the swath offer reduced variation between measurements, allowing noise to become
 526 a significant issue during wind retrieval. QuikSCAT overcame these issues with spatial filtering of
 527 ambiguities using DIRTH [32]. Another consideration is that scatterometers typically receive weak
 528 return signal at low wind speeds, often corrupting measurements below a few m/s [33].

529 First, regions of low wind speeds (and low SNR) are improved by introducing ϕ_{dop} and a spatial
 530 median of ϕ_{σ_0} . A weighting function based on wind speed smoothly folds in ϕ_{dop} and $\widetilde{\phi_{\sigma_0}}$ using,

$$\phi_{\sigma_0,dop} = w_1\phi_{\sigma_0} + w_2\widetilde{\phi_{\sigma_0}} + w_3\phi_{dop}, \quad (37)$$

531 where,

$$w_1 = 1 - \frac{1}{1 + e^{U_{\sigma_0} - 4}}, \quad (38)$$

$$w_3 = w_2 = \frac{1 - W_1}{2}, \quad (39)$$

532 These logistic weightings result in almost no contribution from ϕ_{dop} and $\widetilde{\phi_{\sigma_0}}$ where wind speeds
 533 are greater than 7 m/s, and about half weighting on w_1 at 4 m/s. These weightings were chosen to
 534 ensure sufficient weighting at low wind speeds while allowing ϕ_{σ_0} to dominate at moderate and high
 535 wind speeds.

536 The second area where scatterometer, ϕ_{σ_0} , winds require improvement is at the center of the
 537 swath, where measurement geometry does not offer enough variation in azimuth to compute directions
 538 accurately. Again, a logistic weighting function is used to fold ϕ_{dop} and $\widetilde{\phi_{\sigma_0}}$ into the $\phi_{\sigma_0,dop}$ estimate
 539 made above.

$$\phi_U = w_4\phi_{\sigma_0,dop} + w_5\widetilde{\phi_{\sigma_0}} + w_6\phi_{dop}, \quad (40)$$

540 where w_5 and w_6 are again equally split in the remainder of $1 - w_4$. A logistic function is used to
 541 determine w_4 such that w_4 is nearly 0 at the center of the swath, and increases to about 0.75 near the
 542 sweet spot. This allows for a smooth transition across the swath while creating usable wind directions
 543 near the center. With the final wind direction, ϕ selected, the original best speed ridge is used to select
 544 the wind speed at ϕ .

545 The technique proposed here should be contrasted to that proposed at C-band by Mouche et
 546 al. [13], which uses both the direction **and the magnitude** of the Doppler currents to improve wind
 547 retrievals from SAR data. This approach makes sense at C-band, where the magnitude of the Doppler
 548 current is a strong function of wind speed. This is not the case at Ka-band, as we will see in Section 3.4,
 549 and we do not use the magnitude of the Doppler current in wind estimation. Another major difference
 550 is that, except for regions of low skill, we only use the Doppler current direction to help resolve azimuth
 551 ambiguities. This allows us to examine the relative direction between the wind and the wind-driven
 552 current, which not the same.

553 Formal error on DopplerScatt winds must consider both the contribution from σ_0 variance and
 554 Doppler determined surface current error. Due to measurement geometry, we can expect larger errors
 555 near the center of the swath and the edges of the swath, which is typical to heritage scatterometers.
 556 A formal error propagation was conducted for DopplerScatt using a method similar to the bootstrap
 557 method. A randomly selected Gaussian noise was added to σ_0 and surface current inputs using
 558 estimated σ_0 variance and Doppler determined surface current variance, before running the wind
 559 processor many times. Results indicate sweet-spot RMS errors of about 0.25 m/s in wind speed and 3°
 560 in wind direction. Along the center of the swath, RMS errors are about 0.5 m/s in wind speed and 7°
 561 in direction. These errors are fairly consistent with QuikSCAT simulated errors [32]. While we expect
 562 DopplerScatt errors to vary over wind speed, proximity to coast and a relatively small amount of data
 563 make breaking out this dependence an exercise for a later time.

564 The wind processor produces two wind versions, both run on the same 200 m grid that surface
 565 currents are retrieved on. The first version uses the uncorrected surface current directions as a strong
 566 weighting prior, favoring smoothed uncorrected surface current directions over those computed by
 567 the wind processor. This first version retrieves wind speeds based on σ_0 from the GMF and direction
 568 heavily weighted towards the surface current direction. The second processing version is that presented
 569 above, and blends uncorrected surface current directions into σ_0 retrieved directions only at low wind
 570 speeds and/or near the center of the swath, where scatterometer σ_0 based directional skill is typically
 571 low. While the second of the two versions is the wind product we present as the DopplerScatt winds,
 572 the first wind product produces scientifically interesting results and is worth investigating for that
 573 reason.

574 **2.7. σ_0 Calibration**

575 DopplerScatt implements an internal calibration loop to measure and remove system instabilities
 576 from the majority of the transmit and receive paths. Additionally, temperature sensors throughout the
 577 radar are used to help remove component loss characteristics as the instrument heats and cools during
 578 operation; however, a heater is used to help maintain the temperature of radar components, which
 579 largely negates temperature changes during level flight. The resulting losses typically vary by less
 580 than 0.05 dB during operation and are thus not included during processing.

581 The σ_0 estimation requires good knowledge of attitude and pointing for accurate calibration,
 582 largely due to its dependence on the two-way antenna gain pattern, G^2 , in equation (23). If σ_0 is
 583 to be correctly calculated, the gain pattern of the antenna must be removed from σ_0 using X-factor
 584 computation. Here, we refer to elevation angle, Θ , as the elevation angle from the center of the antenna
 585 bore-sight. This is distinct from the incidence angle, θ . Prior to flight calibration, we found that σ_0
 586 was sloped by about -2.5 dB/degree of elevation, indicating a bias in elevation angle knowledge. By
 587 adding an empirically derived constant bias of 0.042° to the elevation angle and re-computing X-factor,
 588 the non-physical slope of σ_0 was removed. Figure 11 shows the average return power, σ_0 and X-factor
 589 after correction and averaging over a large area. We find that, post-correction, σ_0 remains flat over the
 590 main lobe of the antenna, with no significant slope after the initial 0.042° adjustment.

591 **2.8. Radial Velocity Calibration**

592 To achieve an error of 10 cm/s, one would require 7.7×10^{-4} rad, or 4.4×10^{-2} degree azimuth
 593 angle accuracy, which is not achievable with the DopplerScatt encoder. Thus, it is necessary to calibrate
 594 systematic errors in azimuth pointing during flight using the data themselves. In the past, some
 595 researchers have used stationary land targets for calibration, but, in the presence of topography, the
 596 accuracy of the look angle θ is determined by knowledge of the topography, atmospheric delays, and
 597 knowledge of the platform position. We do not have access to digital elevation models that meet the
 598 accuracy requirements needed for calibration, and so must look for alternate approaches. We have
 599 found that a novel approach that involving flying the same calibration lines over the ocean in opposite
 600 directions provides a feasible means for azimuth angle calibration.

601 The main challenge when using the ocean as a calibration target is the ocean Doppler induced by
 602 surface currents. In the presence of a surface current and an azimuth bias, one has

$$v_{rs} = -\sin(\alpha - \alpha_p)v_{p\parallel}\delta\varphi + v_W \cos(\alpha - \alpha_W) \quad (41)$$

$$= -\sin(\alpha - \alpha_p)v_{p\parallel} \left[\delta\varphi + \frac{v_{Wx}}{v_{p\parallel}} \right] + v_{Wa} \cos(\alpha - \alpha_p) \quad (42)$$

603 where α_p and α_W are the azimuth directions of the platform and surface current, respectively;
 604 $v_{p\parallel}$ is the platform horizontal velocity divided by $\sin\theta$; and v_{Wa} and v_{Wx} are the surface current
 605 components along and across the platform velocity vector, respectively. It is clear from the last

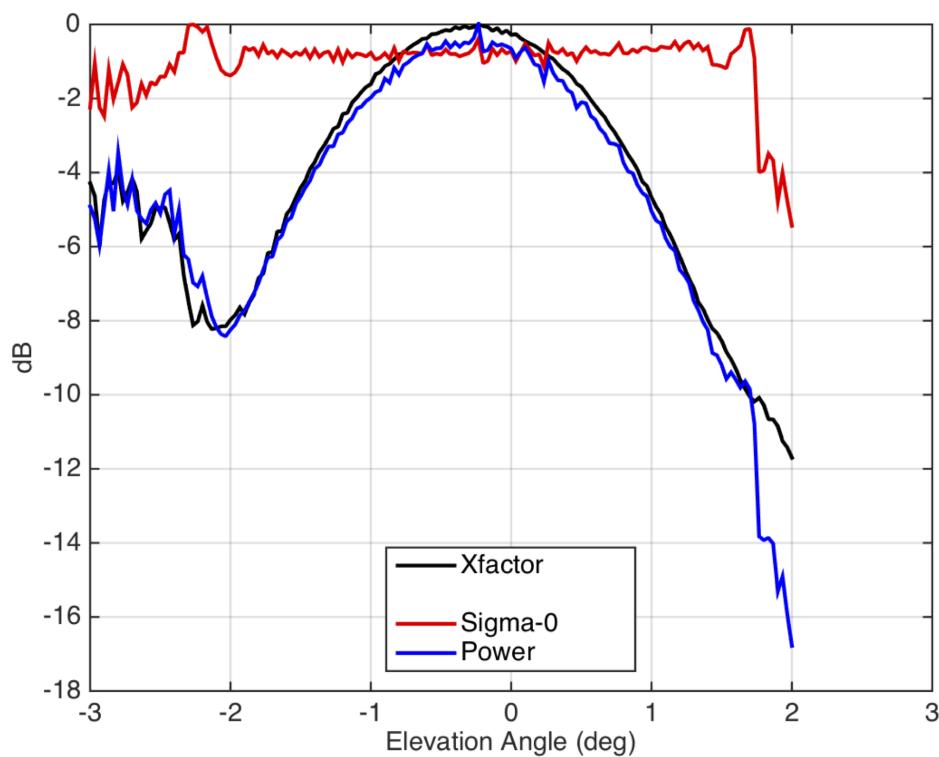


Figure 11. Normalized return power (blue), X-factor (black) and relative σ_0 (i.e., the difference in dB between Power and X-factor) after averaging over many measurements. The σ_0 shows no trend over the antenna main lobe. There is a slight bias in the X-factor, but this introduces negligible wind speed errors.

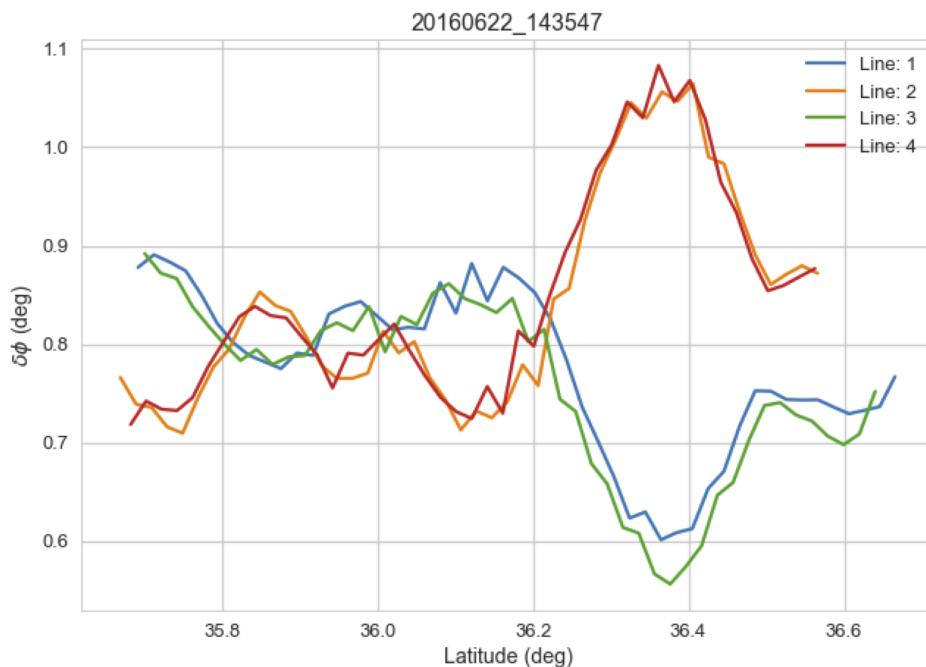


Figure 12. Estimates of the azimuth bias obtained by fitting opposite direction flight lines over a period of 4 hours. Flight lines 1 and 3 are in the same direction and opposite to lines 2 and 4. The impact of cross-track currents is clearly visible as geolocated differences around a mean bias of $\approx 0.8^\circ$, where the sign of the difference depends on the flight direction.

equation that using the radial velocity to estimate the azimuth offset by fitting to a sinusoidal signature over all azimuths will yield a bias in the estimated azimuth offset

$$\delta\varphi_B = \frac{v_{Wx}}{v_{p\parallel}} \quad (43)$$

which is proportional to the cross-track component of the current, and will result in an error that is of the same magnitude as this component.

For the DopplerScatt swath, constant cross-track velocity components will certainly occur, and one needs another approach. We propose an approach where data with different (ideally, opposite) headings is collected. In that case, the surface current for the same azimuth look direction will remain constant, while the contribution from the azimuth bias will change. In the simplest case, where the two headings are in opposite directions, α_p and $\alpha_p + \pi$, the sign of the current relative in the coordinate system defined by the platform velocity vector flips between passes, and the estimated azimuth bias, $\widehat{\delta\varphi}$, will have the form

$$\widehat{\delta\varphi}^{+/-} = \delta\varphi \pm \delta\varphi_B \quad (44)$$

and one can estimate the bias term as $\delta\varphi = (\widehat{\delta\varphi}^+ + \widehat{\delta\varphi}^-)/2$. An example of this process is shown in Figure 12, which clearly demonstrates both the impact of the cross-track currents and the feasibility of estimating a bias. We find that the bias estimated using this procedure is stable over multiple calibration runs separated by as much as six months.

After an initial estimate and removal of the phase bias using this simple method, we find that residual cross-track dependent biases due to errors in the estimated azimuth over the antenna rotation period remain in the estimated radial velocity (see Figure 13, upper panel). To estimate these encoder angle dependent biases, we take the radial velocity differences for opposite direction flight lines looking in the same direction at the same pixel. Given the change of sign in the relative direction with

respect to the flight direction, the surface current motion cancels (provided it can be considered as static over the data collection time) and we fit the harmonic coefficients in equation (32). We note that some coefficients will be better defined than others, depending on the aircraft crab angle. In general, coefficients for even harmonics that do not flip sign when the azimuth encoder changes by π , are well determined, whereas those for odd harmonics are not, and we do not fit for them. Figure 13, upper panel, shows the harmonic fit for two independent flight line pairs, while the lower panel shows the radial velocity error signature after calibrating for the harmonics. This signature has proven to be stable during a continuous installation of the instrument on the aircraft.

The opposite-direction, repeat pass technique is not sensitive to harmonics that have a periodicity such that the resulting error is identical for fore and aft viewing geometries; i.e., odd/even harmonics in equations (32)/(45). These terms are especially important for the component of the cross-track velocity component, where the error can be proportional to the inverse of the cross-track distance. To calibrate these error terms, we average the velocity components in the along track direction and accumulate the results over multiple flight lines taken at different locations, to minimize aliasing by the true surface velocity. The resulting data are fit with low-order polynomials and an inverse distance term, and the resulting fit assessed for significance. We have not found any systematic effects in the along-track velocity component, but there are significant $(\sin \phi)^{-1}$ terms in the cross-track component that persist across many days and which must be removed, as shown in Figure 15.

3. Results

The results presented in this section were acquired over four separate campaigns in 2016 and 2017. The first set of calibration flights were collected along the Big Sur coast, California, from Point Conception to Monterey Bay ($\sim 300 \times 25 \text{ km}^2$) and consisted of two northbound and two southbound passes along the same nadir track (Figure 13). In September, 2016, six 4-hour sorties (each $\sim 200 \times 100 \text{ km}$) were collected flying west from the Oregon coast into the California current. In April 2017, DopplerScatt participated in the CARTHE Submesoscale Processes and Lagrangian Analysis on the Shelf (SPLASH) campaign⁴, covering the Mississippi River plume and Barataria Bay, Louisiana, (see Figure 23) for 8 days of data collection. Finally, DopplerScatt collected 4 days of data west of Monterey, California, in May 2017. During the data collections, a wide variety of wind conditions were encountered (Figures 16 and 17). No buoy wave spectral measurements were available, but, for the most part, little swell was present and most of the waves were wind driven. Models for winds and currents existed for some of the sites, and are described below.

3.1. Ocean Temporal Correlation

The correlation time of the ocean backscatter cross section is the ultimate limitation on the accuracy that can be obtained from the Doppler method, since both signal-to-noise ratio or the Doppler bandwidth of the footprint can be reduced by transmitting more power or using a larger antenna. In the absence of temporal decorrelation, very long pulse separation could be used to improve radial velocity estimates. Given the importance of the surface temporal correlation time in determining and predicting the accuracy of the estimated radial velocity, it is important to note that the DopplerScatt spinning configuration can be used to estimate it directly. The Doppler bandwidth contribution vanishes in the fore and aft directions, so that the only contributions to the correlation are the constant noise correlation factor, γ_N , and the ocean temporal correlation (4). We fit the correlation time by calculating the average correlation in the forward direction by averaging over 25 km along-track. The logarithm of the resulting value is fit with a quadratic, from which the correlation time can be derived. Figure 16 presents the results for the estimated correlation time as a function of wind speed. The data used spanned all of the data collections and had 25 km mean winds ranging between about 4 m/s

⁴ <http://carthe.org/splash/>

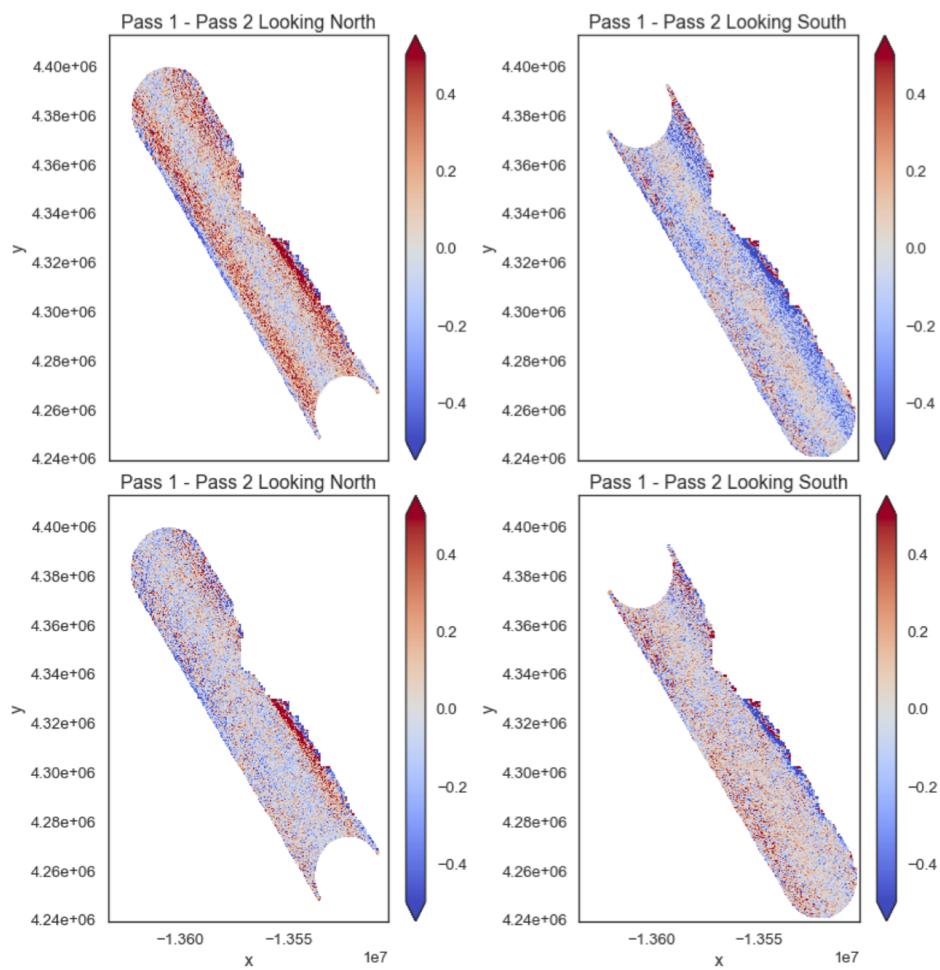


Figure 13. (upper panels) Radial velocity differences for two passes prior to calibration using harmonic expansion. (lower panels) Radial velocity differences for the same two passes after calibration using harmonic expansion. The left/right panels show radial velocities looking north/south, respectively. Note the cross track error signature evident in the upper panels is not evident in the lower panels.

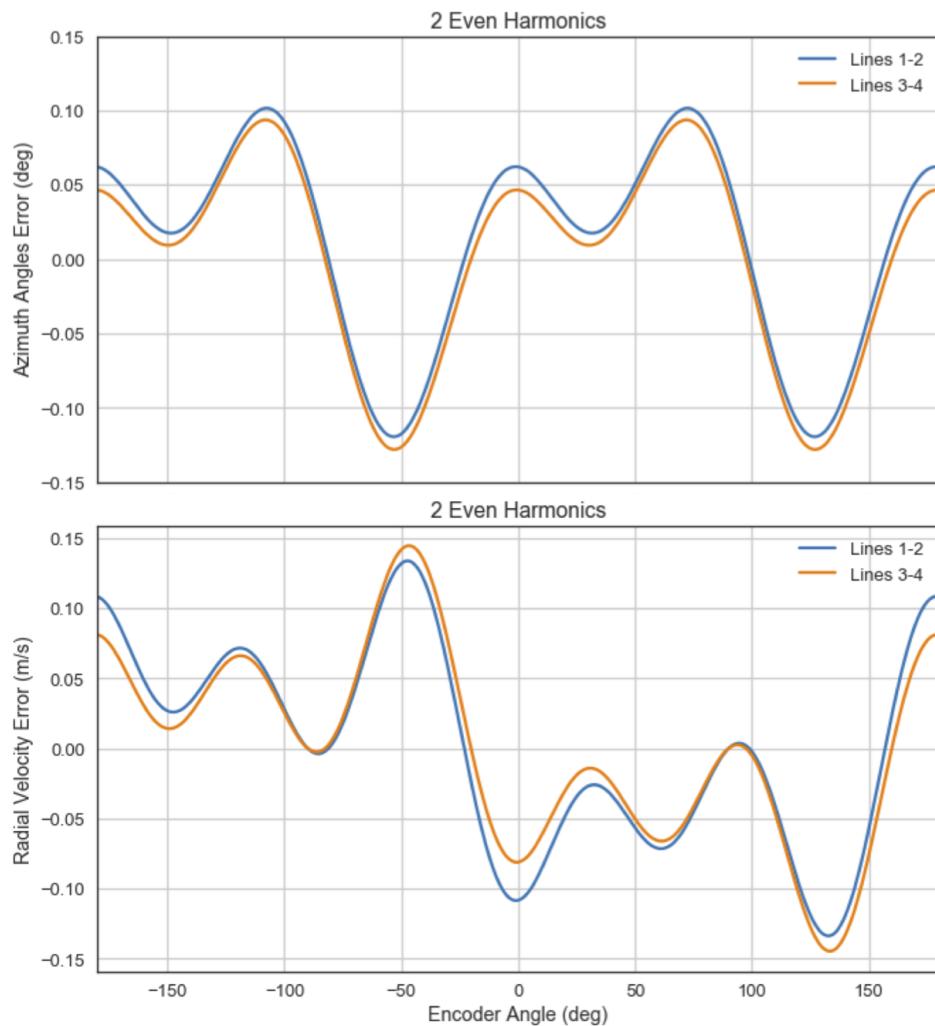


Figure 14. (Upper panel) Azimuth bias as a function of encoder angle obtained by fitting opposite direction flight line radial velocity differences assuming only two even harmonics are fit. (Lower panel) Radial velocity error corresponding to the harmonic fit in the upper panel. The two different color represent estimates from two different flight line pairs collected approximately 2 hours apart, showing good stability in the retrieved biases at the ~ 1 cm/s scale.

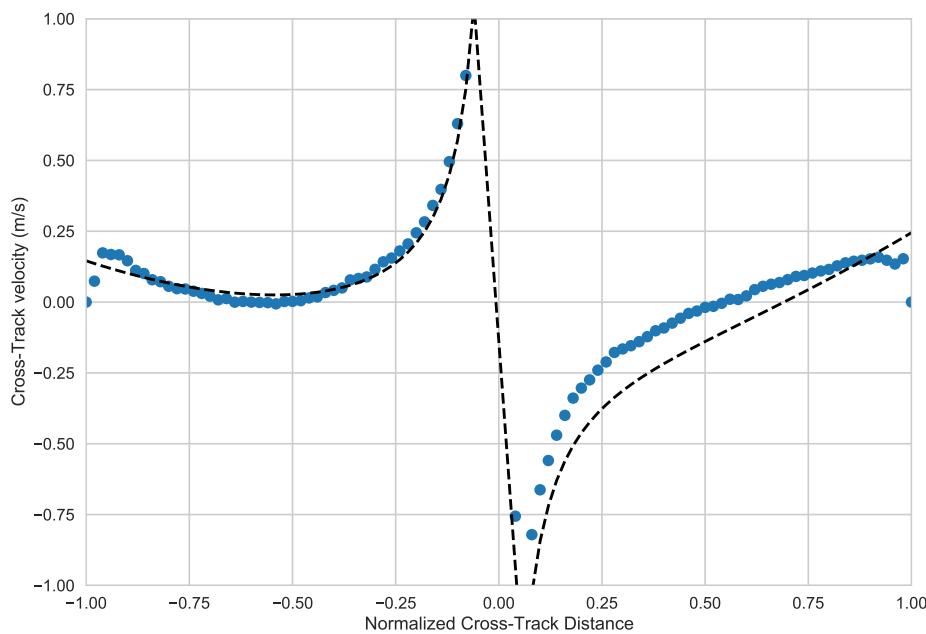


Figure 15. (blue dots) Along-track average of the cross-track velocity component v_y for one day data collection, plotted as a function of $\sin \phi$. The grey area indicates the standard deviation of the data around the sample mean. The dashed line is a fit containing a $(\sin \phi)^{-1}$ term, and polynomials to second order in the cross-track distance. This signature is consistent across data collections.

to about 18 m/s. The mean temporal correlation time decreases with wind speed and ranges from a little over 3 msec to about 1 msec. Equation (4) predicts that the correlation time should be inversely proportional to the radial orbital velocity of ocean waves inside the radar footprint. Given the fine range resolution and relatively coarse azimuth resolutions, we expect that the total variance will be maximized when the waves are perpendicular to the look direction and minimized when traveling in the range direction. In Figure 16, we use the wind-driven Pierson-Moskowitz spectrum to compute the predicted correlation for both wave direction cases. The predicted results agree well with the simple Pierson-Moskowitz estimate, although the correlation time is shorter than expected at low wind speeds, probably due to the fact that in the wave radial velocity in those situations probably contains non-wind-driven swell contributions, which cannot be neglected.

3.2. Wind Geophysical Model Function

With the launch of AltiKa in 2013 [34], a shift has begun towards higher frequency wind-observation instruments, but Ka-Band Geophysical Model Functions (GMFs) are rare. The majority of well validated scatterometer GMFs were developed using C or Ku-band data [35–37], owing to the large number of past scatterometers operating in those frequency bands. For years, a study by Masuko et al. using platform-measured backscatter from a Ka-band radar was the only available Ka-band GMF [38], although studies at near-nadir have shown a 6 dB offset from that model is necessary, likely due to calibration issues [39–41]. More recently, Yurovsky et al. [21] have derived a Ka-band wind GMF over a wide range of incidence angles using platform data called KaDPMMod. This GMF more closely matches Ku-band GMFs and agrees fairly well with a 6 dB offset from Masuko. However, due to the nature of platform measurements, the data set used for training KaDPMMod is sparse over azimuth, causing some potential uncertainties in the azimuth modulation.

We have developed a V-pol Ka-band GMF for incidence angles around 56° using airborne data taken during the four DopplerScatt campaigns. Wind speeds and directions interpolated and collocated to DopplerScatt L1B data were taken from the highest resolution models available for each deployment.

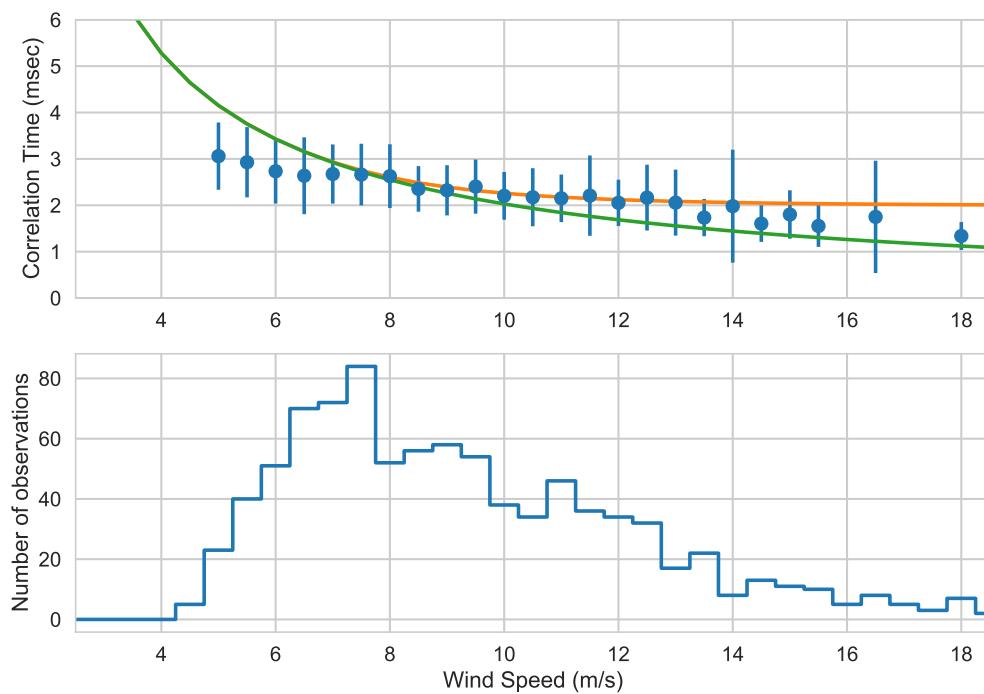


Figure 16. (Upper panel) Estimated ocean correlation time mean and standard deviation (blue error bars) and predictions from the Pierson-Moskowitz spectrum when waves are traveling in the azimuth (green) or range (orange) directions. (Lower panel) Number of observations as a function 25 km mean wind speed.

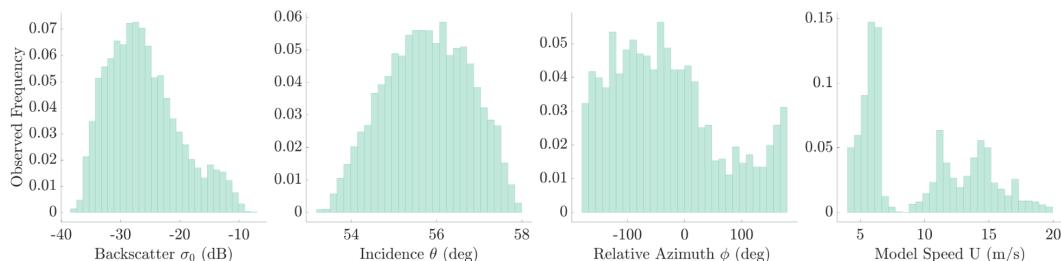


Figure 17. Collocated DopplerScatt and model data histograms after filtering. From left to right, relative frequency of: backscatter, incidence angle, relative azimuth to model direction, and model wind speed. In total there are about 7.2 million data points. Zero degrees relative azimuth corresponds to the upwind direction. In spite of conical scanning, the azimuth angles are not uniformly distributed because we have discarded pixels very near the coast, which lie predominantly in one direction.

696 In the case of data taken near the Monterey Bay, the North American Mesoscale Forecast (NAM)
 697 model was used with a 3 km spatial resolution and time steps of 1 hour. For data taken off the coast of
 698 Mississippi, a 250 m spatial resolution University of Miami Unified Wave INterface-Coupled Model
 699 (UWIN-CM) was used with time steps of 1 hour. In total, about 7.2 million data points were collected
 700 from incidence angles between 53° and 59° degrees, wind speeds between 3 m/s and 20 m/s, and all
 701 relative wind directions (thanks to DopplerScatt's spinning antenna).

702 Prior to building a model function, data more than 3 dB from the peak of the antenna pattern was
 703 removed, as were data within 2 km of the coast (to avoid wind shadowing) or data flagged by quality
 704 control in the processing. Rain was not present in any of the data taken. Histograms of the training
 705 data set are shown in Figure 17, including the model winds used for training. Bins were populated
 706 with mean backscatter in a 3-dimensional incidence, relative wind direction, and wind speed space.
 707 To remove outliers, an iterative binning approach was used during which backscatter measurements
 708 more than 2 standard deviations from the bin mean were removed. All binning was done in linear
 709 (non-dB) space. After binning, there were a total of about 18 thousand data points. Due to flight paths,
 710 coastlines tended to flag out data in the positive region of relative azimuth, resulting in the skewed
 711 distribution across relative azimuth. During the course of these data collections, we tended to fly over
 712 either high winds or low winds, with very few moderate wind speeds predicted by the models used.

713 Radar backscatter depends on the three variables considered here in different ways. With wind
 714 speed, backscatter follows a power law akin to $\log \sigma_0 = A + B \log U_{10}$. This functional form matches
 715 the saturation typically experienced by scatterometers at high wind speeds. For DopplerScatt, we've
 716 found the value of B to be about 2. This predicts a saturation of somewhere around 20 m/s, consistent
 717 with other scatterometers. [42] A cosine expansion is typically used to represent the variation in
 718 backscatter over relative wind direction. [43]

$$\sigma_0 = A_0(\theta, U_{10}) + A_1(\theta, U_{10}) \cos(\phi') + \dots + A_N(\theta, U_{10}) \cos(N\phi'), \quad (45)$$

719 where A_0 through A_N are fitting parameters that depend on both incidence, (θ) , and wind speed,
 720 (U) , and ϕ' is the relative wind direction (the azimuth angle between DopplerScatt's look and the
 721 wind). Traditionally, the harmonic expansion is taken in real (not dB) space, but fitting in dB space
 722 offers some advantage for noisy data and, and will aid in comparison with Yurovsky et al. [21]
 723 who take this approach. We fit a harmonic series in dB space: the two fitting approaches are very
 724 similar if $A_n/A_0 \ll 1$, but fitting in dB space may introduce higher harmonics in real space. Note
 725 that, due to tradition, for the wind GMF we take $\phi' = 0$ when looking in the upwind direction; i.e.,
 726 in a direction opposite the wind direction. Following the oceanographic convention, we take the
 727 downwind direction as the reference (e.g., for the current GMF relative direction). The A_N dependence
 728 on temperature is not considered here. Often, equation (45) is fit separately for multiple incidence
 729 angles and wind speed regimes to break out the wind speed/incidence behavior; however, in order to

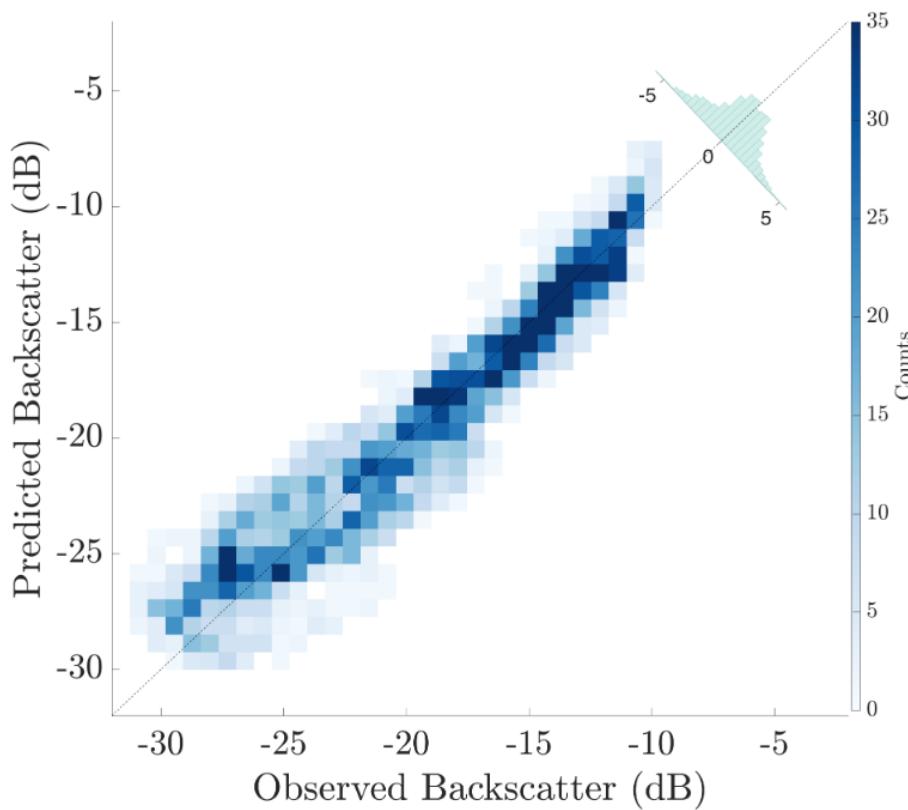


Figure 18. A histogram of model-calculated σ_0 versus observed σ_0 for the binned training data. A histogram at the top right represents the distribution of samples on either side of the $x = y$ line.

730 fit a single model function over all wind speeds and incidence angles, an integrated model was used,
 731 similar to Yurovsky et al. [21]. This helps to interpolate the data set we are fitting over data-sparse
 732 parts of parameter space, but also introduces the possibility of incorrectly biasing the fit (e.g., only a
 733 single power law in speed is assumed for the entire speed range). We believe our data set has enough
 734 data to use an integrated model while still benefiting from this technique.

735 The functional form shown in equation (46) was chosen to include a cosine expansion in relative
 736 azimuth, a logarithmic speed dependence, and a linear dependence on incidence angle. The form is
 737 the same as the Yurovsky et al. KaDPMMod functional form, besides the linear incidence dependence,
 738 which was reduced from a fourth order to a first order polynomial because DopplerScatt only views a
 739 relatively small range of incidence.

$$10 \log_{10} \sigma_0 = \sum_{n=0}^2 \sum_{m=0}^1 \sum_{k=0}^1 C_{nmk} \cos n\phi' \theta^m (\log_{10} U_{10})^k. \quad (46)$$

740 Equation (46) expands to a 12 coefficient model function, for which least squares optimization was
 741 done to determine the coefficients shown in Appendix C. The least squares fit results in a root mean
 742 square error of about 2 dB. Comparing actual to predicted backscatter in Figure 18 finds no significant
 743 bias or unaccounted model shape. Over the range of incidence angles measured, this model function
 744 appears to be a good fit, but we cannot recommend its use outside of the trained range of $54^\circ - 59^\circ$
 745 incidence.

746 Figure 19 shows the DopplerScatt GMF shape at 56° incidence and various wind speeds and
 747 relative azimuths, along with the corresponding binned data used for fitting. The fit again appears to
 748 be a good representation of the underlying data. Beyond the goodness of fit, the GMF shape saturates

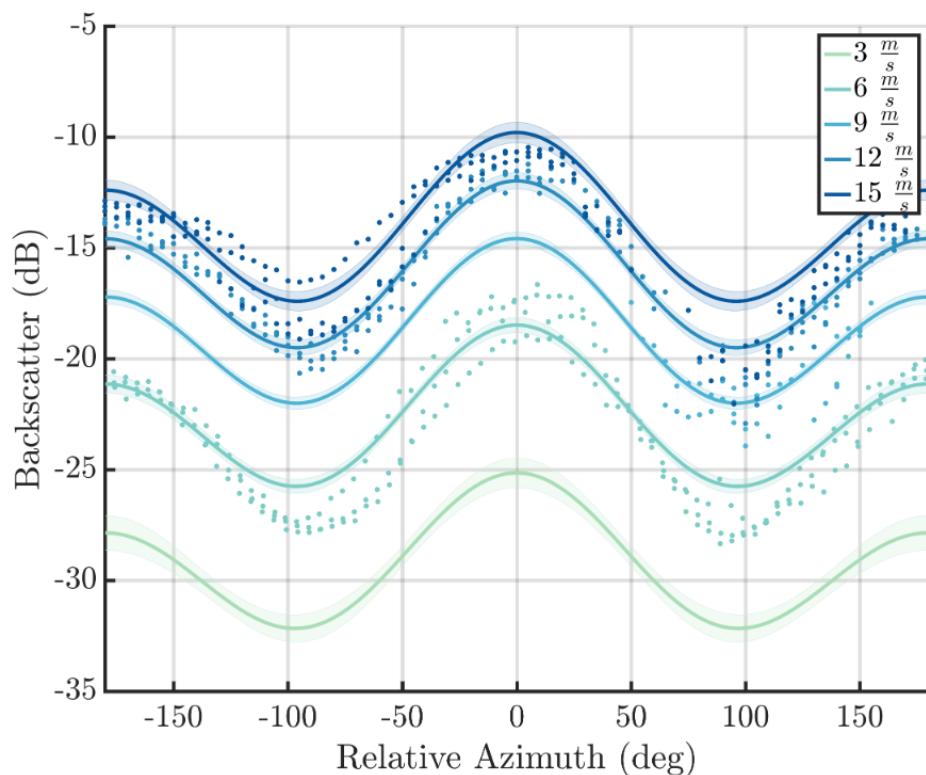


Figure 19. A comparison between the DopplerScatt Ka-Band GMF and the binned data set it was fit to at 56° incidence. Shaded error bars represent 95% confidence intervals for the fit. The relative azimuth for the wind GMF is taken with the origin in the *upwind* direction.

as wind speed increases and modulates from highest return at upwind to low return at cross wind. Fit error is shaded behind wind speed curves and represents 95% confidence intervals.

The wind speed dependence of the azimuth-averaged GMF, the underlying binned data variability, and the Ku-band GMF for 56° incidence from NSCAT/QuikSCAT are shown in Figure 20. Simulated backscatter data from the GMF and binned training data was averaged into wind speed bins for both 55 and 56 degrees incidence. The GMF follows observations and the theoretical power law well, with saturation somewhere above 15-20 m/s. This is consistent with Yurovsky et. al., where they found saturation beginning at 15 m/s. Variations with incidence angle are small, as might be expected for 1 degree variation, but consistent across wind speed. Figure 21 considers the relative-azimuthal dependence of τ_0 over wind speed by separating between down-wind ($\phi' = 180^\circ$), up-wind ($\phi' = 0^\circ$) and cross-wind ($\phi' = 90^\circ$). Here, we again see the expected power law dependence of both the observations and the simulated GMF data. As we might expect, we see a consistent difference between the three wind direction regimes, with upwind consistently presenting the largest return signal, followed by downwind and finally cross-wind. While this plot seems to indicate some saturation at wind speeds above 15 m/s, we have not found that to be the case during wind retrieval compared to buoy measurements. We have found that the model wind estimates used to bin against were low relative to the actual winds, which could incorrectly lead to saturation. Compared to the previous plot, Figure 20, we see smaller error bars since we are no longer averaging over all relative azimuths. Unlike Figure 20, the fits for the azimuth cuts do not follow the data as well for the highest wind speeds, possibly pointing to limitations in the fitting model over the full set of azimuth angles. Additional high wind speed data is required to resolve this issue.

The DopplerScatt GMF is similar to the KaDPMOD GMF but with some important distinctions. The most obvious difference between the two GMFs is that there is significantly more modulation

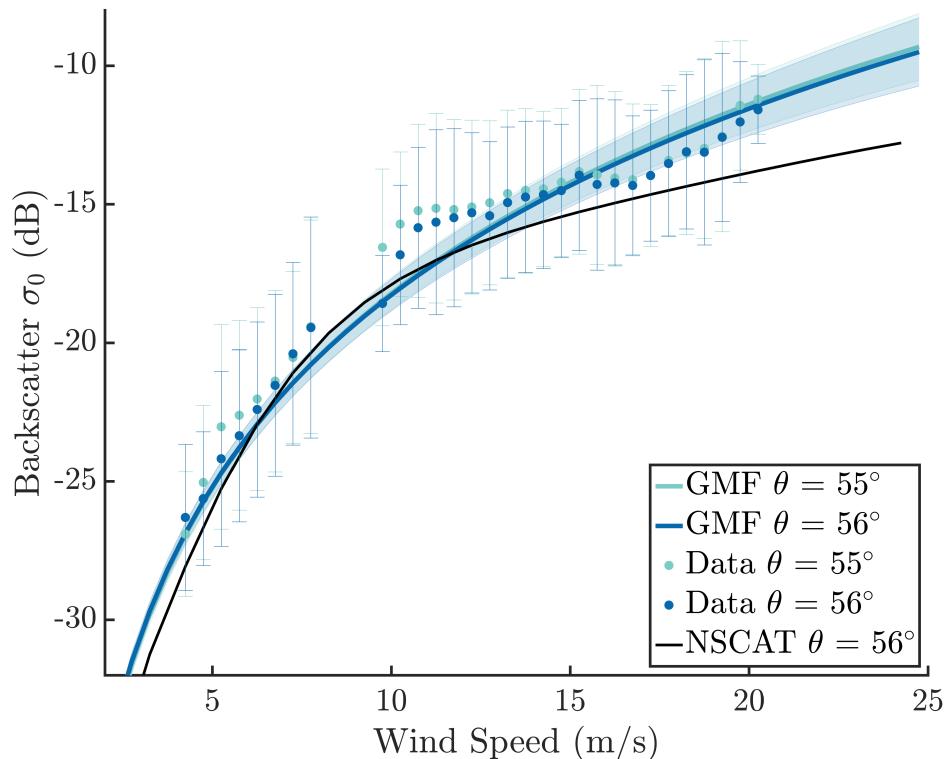


Figure 20. The DopplerScatt σ_0 data set over wind speed and the GMF in the same range. Shaded error regions around the GMF represent 1 standard deviation in the data used to make this plot. We can expect variation solely from modulation across wind direction in the GMF. Individual data points show error bars that also represent 1 standard deviation, but include both contributions from directional modulation and measurement noise. The black line shows the V-pol NSCAT/QuikSCAT GMF extrapolated to 56° incidence angle.

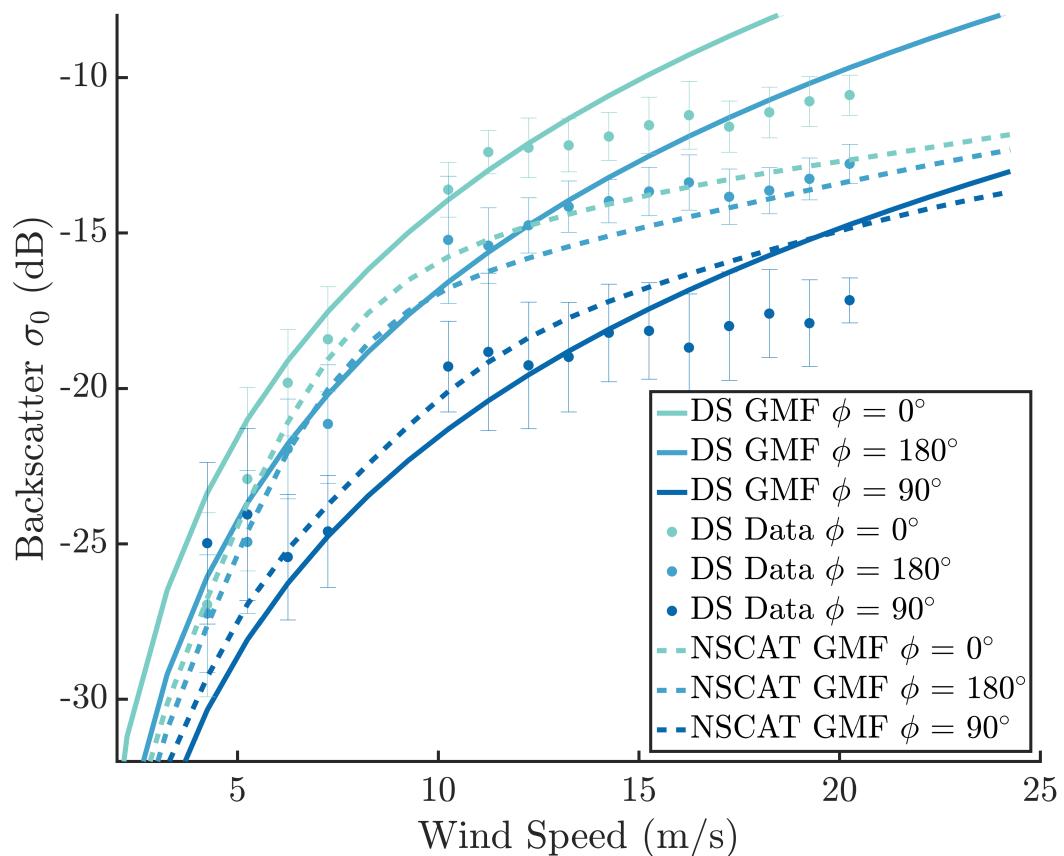


Figure 21. The DopplerScatt σ_0 data set over wind speed and the GMF in the same range, split by up, down, and cross wind. Similar data from the NSCAT/QuikSCAT GMF are plotted as dashed lines.

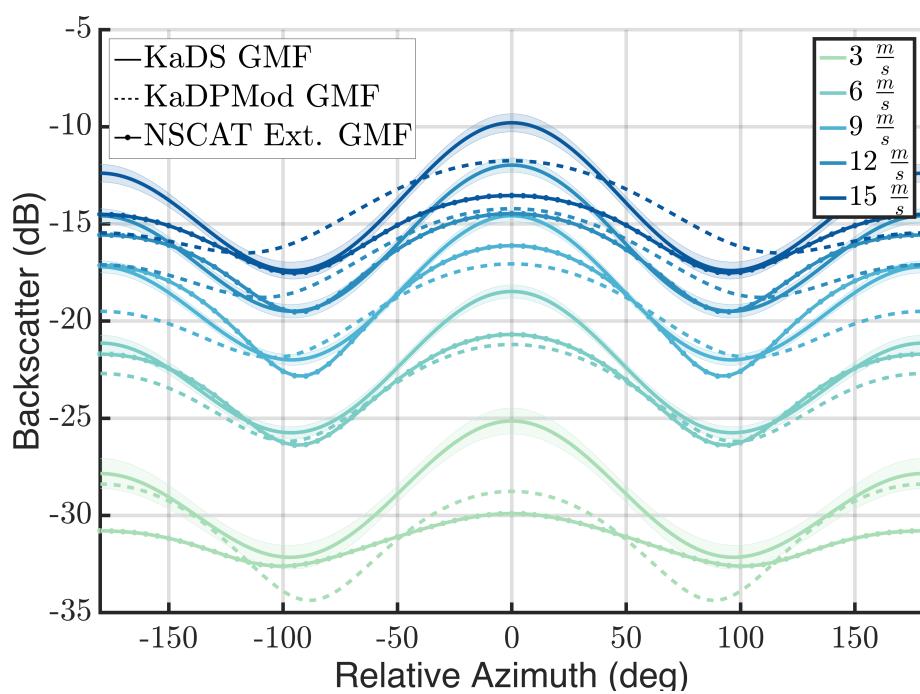


Figure 22. comparison between the KaDPMOD wind GMF (dashed lines), NSCAT (lines and o signs), and the DopplerScat Ka-band wind GMF (solid lines). Shaded regions again represent 95% confidence intervals for the DopplerScat wGMF. The relative azimuth for the wind GMF is taken with the origin in the *upwind* direction.

772 between upwind and downwind in the DopplerScat GMF than in the KaDPMOD GMF. We believe
 773 this difference stems from the data sets used for fitting. KaDPMOD has a sparse data set across relative
 774 azimuth (by nature of platform measurements), while the DopplerScat GMF benefits from relatively
 775 even sampling across relative azimuths. The sparsity of the KaDPMOD training data set (particularly
 776 in our incidence range) could effectively lead to interpolation across relative azimuth and incidence
 777 when fitting, leading to a smoother objective function across relative azimuth. This is the danger
 778 when fitting an integrated model function, as we discussed earlier. Based on private communications
 779 with the KaDPMOD team, we found that the platform data collected in the DopplerScat incidence
 780 range corresponds well with the DopplerScat GMF. Despite the differences between the two fit GMFs,
 781 the correspondence of the underlying data sets is a good indicator of calibration between the two
 782 experiments.

783 3.3. Wind Retrieval Results

784 Results from a particularly interesting DopplerScat deployment off the coast of Louisiana during
 785 the SPLASH campaign are shown here. On April 18, 2017, DopplerScat flew over the area containing
 786 the Mississippi River plume and Barataria Bay. Looking at DopplerScat σ_0 data in Figure 23, there
 787 are distinctive features, potentially due to a combination of local flows and surface characteristics.
 788 Just right of the center in Figure 23, the Mississippi river plume is clearly visible as a low backscatter
 789 feature. The river outflow and coastal currents move towards the West (left) in the south, but curve
 790 north at the edge of Barataria Bay and recirculate to the East (right) near the coast (see models and
 791 results in Section 3.5). Since water viscosity plays an important role in determining how the wind
 792 forces capillary waves, we can expect a complex behavior in σ_0 due to cool, fresh water with potential
 793 sediments and surfactants exiting from the river and mixing with the salty, clear, warmer ocean water.
 794 Additionally, scatterometers measure the wind speed relative to the moving surface current frame [1],

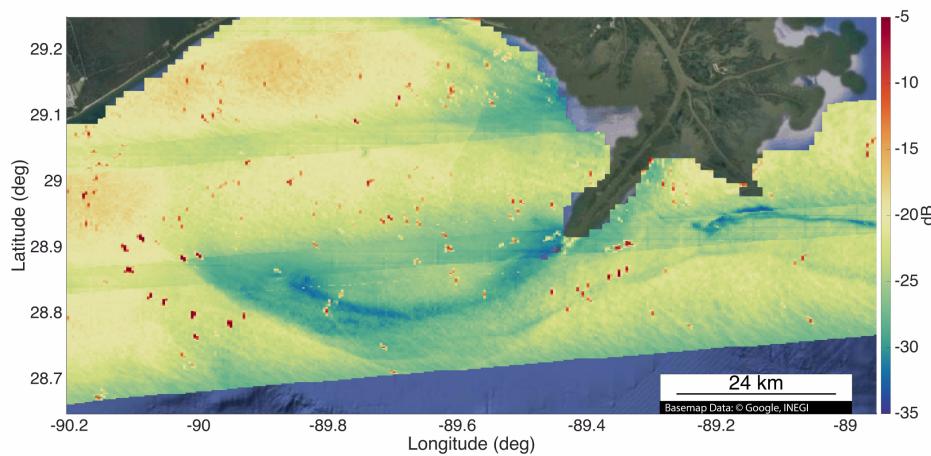


Figure 23. DopplerScatt aft looking measured backscatter on April 18, 2017, near the outlet of the Mississippi river, at 200 m resolution. Interesting features are apparent and will affect wind retrieval. Strong point sources are due to a large number of ships and oil platforms in the area.

so, since winds were mainly in North-West direction (Figure 24), we can also expect the changes in direction in the current to show up as decreased backscatter when the current moves with the wind, while backscatter is expected to increase when the current moves against the wind. Both of these changes are observed, although changes due to cooler plume waters, or current divergence, could be responsible for some of the decrease in the plume region. This flight area also includes a large number of highly reflective oil platforms, one of which was leaking oil at the time. Near the leaking platform, at 28.9° N latitude and 89° W longitude, what is likely an oil trail is visible as low backscatter.

Figure 24 shows the retrieved vector winds as estimated by DopplerScatt on April 18, 2017. Stepping back from the features, DopplerScatt estimated winds blowing towards the North-West at about 6.5 m/s. Data from the UWIN-CM model and data from NOAA's Real Time Mesoscale Analysis (RTMA) indicate winds blowing towards the North-West at about 6 m/s, but without any of the smaller features evident in the DopplerScatt data. Comparing the RTMA model to DopplerScatt results in a direction RMS of 25 degrees and a speed RMS of 2.7 degrees, quite good considering the strong features picked up by DopplerScatt but not the models.

As expected, retrieved winds from April 18th display prominent wind speed features in the areas where the Mississippi river flows through the bay. Currents and winds are generally aligned in the area where currents flow out of the Mississippi river and towards the left (West), resulting in a reduction in measured wind speed. The opposite is true where the river outflow currents wrap back around and flow against the wind. Based on data from the Advanced Very High Resolution Radiometer (AVHRR), there is about a 2° Celsius difference in temperature between the Mississippi river outflow and the surrounding ocean water. Studies have found a 0.25 m/s to 0.5 m/s decrease in wind speed when sea surface temperatures quickly drop by 1° Celsius [44]. We believe the combination of surface currents and temperature changes are both apparent in the nearly 3 m/s drop in wind speed across the Mississippi river outflow. It is likely that additional modulation due to surfactants, salinity and dissolved solids play a part in the river outflow, too, through viscosity effects.

Just to the right of the Mississippi river outflow, the signature of a leaking oil platform is apparent as a distinct line of low wind speeds. When viewing from the airplane and during ship investigations, this line appeared to be a convergence zone that had trapped leaking oil.

823 Shifting now to the overall DopplerScatt winds dataset, Figure 25 compares collocated buoy
824 wind measurements with DopplerScatt wind estimates. For our flights, we only found 5 buoys that
825 were close enough to DopplerScatt swaths for use. Median DopplerScatt data was taken over a 1 km
826 grid and plotted against hourly buoy data within 15 minutes and 200 meters (one grid cell) from
827 buoy measurements. In total, about 100 buoy measurements were available and close enough to
828 DopplerScatt data for use. Stability effects were not considered when comparing buoy winds to
829 DopplerScatt winds, since the temperature differences between air and water were less than 0.5°
830 Celsius, indicating relatively stable conditions. Since DopplerScatt measures wind speeds relative to
831 the moving ocean surface, we can also expect larger differences in wind speed between DopplerScatt
832 and buoys in areas of strong surface currents. No correction was made for this effect.

833 DopplerScatt wind directions compare favorably with Buoy measurements, with the majority
834 of points lying close to the $y = x$ line. Overall RMS direction difference versus buoys is about 18°.
835 DopplerScatt wind speeds also compare well with buoy wind speeds, with 1.5 m/s RMS difference.
836 April 18th and April 20th each observed strong surface currents in the Mississippi river plume that,
837 in the area of buoy measurements, caused a decrease in DopplerScatt estimated wind speeds. This
838 decrease is apparent in the buoy comparisons. Another comparison was made using two models
839 collocated to the DopplerScatt swath: a high resolution UWIN-CM model run for the Gulf of Mexico,
840 and the NOAA's RTMA, an hourly 3 km scale global assimilation. Compared to the same buoys, the
841 UWIN-CM model finds an RMS wind speed difference of 2.6 m/s and RMS wind direction difference
842 of 57°. The RTMA model finds an RMS wind speed difference of 5.1 m/s and RMS wind direction
843 difference of 61°. DopplerScatt winds offer a significant improvement over these two models in the
844 areas studied, probably due to the proximity to the coast and the fact that the model was not able to
845 assimilate high resolution SST measurements (M. Curcic, private communication).

846 Consider now the DopplerScatt winds estimated using a heavy weighting on uncorrected surface
847 current directions. We find that the buoy comparisons are again good (the two bottom panes in
848 Figure 25). This time, however, there appears to be a 10 degree bias between DopplerScatt wind
849 directions and Buoy wind directions. Since the "wind directions" estimated in this version of the
850 processor are essentially uncorrected surface current directions, we can expect a positive bias between
851 buoy winds and this version DopplerScatt winds based drift angles observed by HF radars [45],
852 although the exact angle of the difference will depend on the upper layer current structure. The
853 σ_0 -based directions do not consistently find this direction bias relative to the collocated buoys.

854 3.4. Surface Current Geophysical Model Function

855 The DopplerScatt polarization and incidence angles were chosen to simplify the interpretation of
856 measured Doppler as surface currents. By choosing a moderate to high incidence angle, $\sim 56^\circ$, one
857 minimizes the tilt modulation effects present at lower incidence angles, while also minimizing wave
858 breaking contamination that is common at higher incidence angles [29,30]. Using vertical polarization
859 further minimizes breaking wave contamination, since double-bounce scattering only dominates for
860 horizontal polarization [29,30]. For the incidence angles and polarization chosen, it is well known
861 that radar backscatter, and therefore, the associated Doppler velocities, will be dominated by resonant
862 Bragg scattering from capillary waves of wavelength ~ 5.1 mm [27–30]. The exact resonant wavelength
863 and reflection coefficient are modulated by the local large wave slope. Since the Bragg wavelength
864 $\sim 1 / \sin(\theta - \zeta)$, where ζ is the large-wave slope in the look direction, the range of Bragg wavelengths,
865 assuming large-scale wave slopes $\pm 10^\circ$, will only vary between ~ 4.6 mm to ~ 5.9 mm, so that the
866 Bragg waves are always capillary waves. In the absence of currents or large-scale waves, these capillary
867 waves (if not phase bound to other waves) will propagate with a nominal phase speed of 31 cm/s.
868 which only varies between 32 cm/s and 29 cm/s for the range of large scale slopes considered before.
869 If the Doppler velocities were due only to the Bragg waves modulated by surface current, \mathbf{v}_s , the
870 surface-projected radial velocity would be of the form

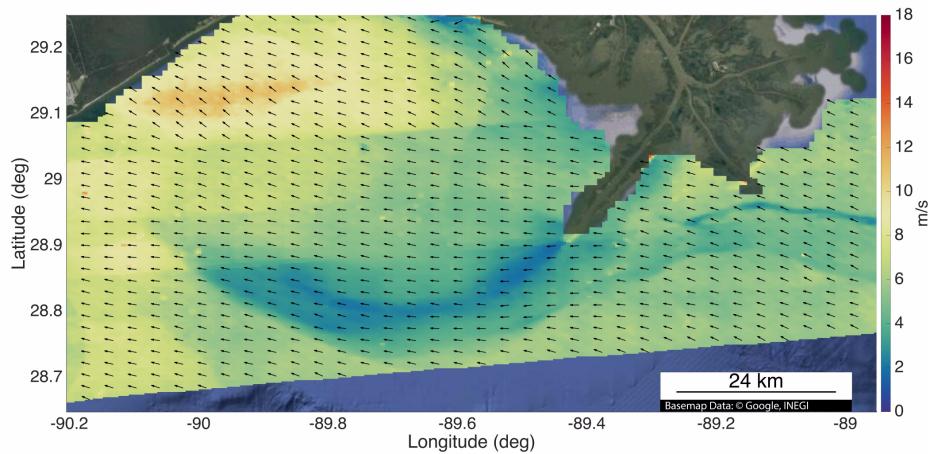


Figure 24. DopplerScatt retrieved wind vectors on April 18, 2017, near the outlet of the Mississippi river, at 200 m resolution. Direction vectors have been down-sampled for plotting but speeds have not. Currents, surface surfactants, temperature, and dissolved solids combine to create high resolution features visible in wind retrievals.

$$v_{rs}(\varphi, \varphi_U, \theta) = \frac{\mathbf{v}_S \cdot \hat{\ell}(\theta, \varphi)}{\sin \theta} + (\alpha_+(\varphi - \varphi_W) - \alpha_-(\varphi - \varphi_W)) \frac{c_B(\theta)}{\sin \theta} \quad (47)$$

where $\alpha_+(\alpha_-)$ is the fraction of Bragg waves moving along(against) the direction defined by the look vector $\hat{\ell}$, and φ and φ_W are the look vector and wind direction azimuth angles, respectively. Thus, the surface-projected Doppler velocity should have a surface current term that is proportional to the cosine of the angle between the look vector and the surface velocity, and a term that depends on the difference in azimuth angles between the look and wind directions. Using a small footprint, vertically polarized X-band data at high incidence angle, Moller et al. [46] observed this behavior, after subtracting an along-wind wind-drift surface velocity component equal to 3.5% of the wind speed.

This simple relationship can break down for two reasons. First, there is significant evidence that a significant fraction of the Bragg waves can be bound to longer waves and will travel at the longer wave phase velocity [28,29,47]. In that case, the waves will be mostly concentrated on the leeward face of the larger wave, near the crest. It is expected that in the field, bound waves might have a significant contribution at lower wind speeds, while higher wind speeds might exhibit a larger proportion of free waves. There is no clear data at this point to determine the exact proportion and contributions to the Doppler for different ocean surface conditions, although Plant and Irisov [29] have made a start for the backscatter cross section.

Another effect appears when the radar footprint is not small compared to the large-wave wavelength [8]. Because the large-scale waves modulate the amplitude (and, hence, σ_0) of the Bragg waves in a way that is correlated with the large wave phase, the large-wave radial velocity contribution to the Doppler will not cancel, since the Doppler measured at the radar is the σ_0 -weighted average of the Doppler velocities over the waves (see Appendix A for details). Chapron and co-workers [8,13,17–19] have shown that for C-band data at moderate incidence angles, there is a strong and quasi-linear dependence between the measured Doppler velocities and the wind speed. They attribute this to the effects of large-scale surface tilt and hydrodynamic modulation, which result in an effective amplification factor G to the wave Stokes drift (see Section 4 for additional details).

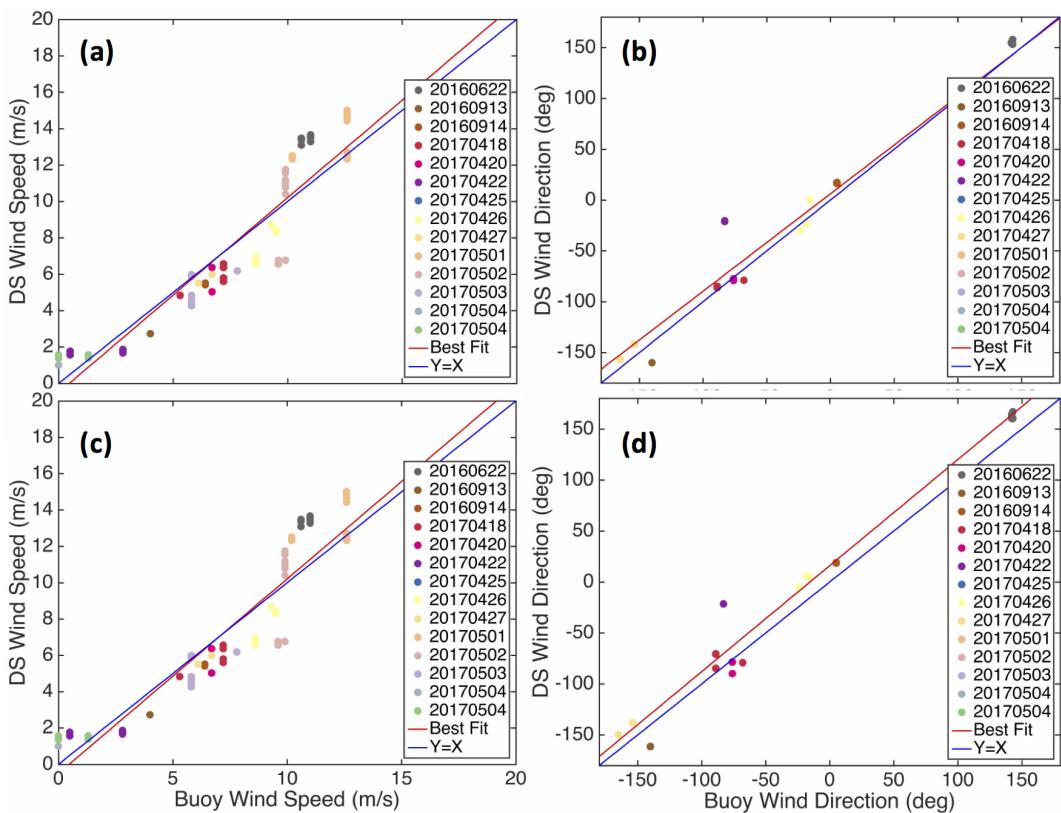


Figure 25. A comparison between DopplerScatt and buoy wind speeds for data taken near Oregon, Monterey CA, and Louisiana. Due to the limited coverage area, relatively few buoy collocations are available. Data is color coded by DopplerScatt flight (date). Dates in May/June are near Monterey, dates in April are near Louisiana, and dates in September are near Oregon. **a:** DopplerScatt wind speeds vs buoy wind speeds. **b:** DopplerScatt wind directions vs buoy wind directions. **c:** DopplerScatt wind speeds vs buoy wind speeds. (heavy surface current weighting) **d:** DopplerScatt wind directions vs buoy wind directions. (heavy surface current weighting)

Without wanting to prejudge the mechanisms operating at Ka-band, we assume that the measured Doppler surface velocity is given by

$$v_{rS} = \frac{\mathbf{v}_{SE} \cdot \hat{\ell}(\theta, \varphi)}{\sin \theta} + F_S(U_{10}, \varphi - \varphi_U) \quad (48)$$

where \mathbf{v}_{SE} is the Eulerian part of the surface current that is *not* responsive to the local wind, and F_S represents the contribution of the local wind to the surface current. The wind contribution to the current will not only be composed of the wave modulation effects discussed above, but will include surface currents due to Stokes drift, surface drift Lagrangian ($\sim 0.01 - 0.03U_{10}$) and Eulerian ($\sim < 0.01U_{10}$) components [45,48–50]. This wind-driven surface current sensed by the radar will represent the depth averaged current over a fraction of the Bragg wavelength [51], which will be on the order of a millimeter. Given the large shears expected very near the surface [47], it is not clear that the earlier estimates used for HF or C-band radars will apply, and, considering also the presence of bound waves, we do not assume a linear (or near-linear) model for the dependence on wind speed. Similarly, the Stokes drift, Lagrangian, and Eulerian wind driven components are known to have different directions relative to the wind direction. In what follows, we only assume that the net effect of all these contributions will have a systematic dependence on the the wind direction (which might vary with speed), but do not assume that the peak of the response will be along the wind direction.

To estimate F_S , we only assume that, over our data set, \mathbf{v}_{SE} is independent of the current components driven by the local wind, which given the variety of wind conditions and locations that we sampled in our data collections, is a reasonable assumption. To make a non-parametric estimate of F_S , we bin our data with respect to the local wind speed and relative wind azimuth direction observed by DopplerScatt. To explore the directional dependence of F_S , we used both the wind direction derived with slight nudging from the total Doppler current direction, and the direction heavily weighted by the total Doppler current direction, which reflects the net direction of wind and local currents. The results of this binning process are shown in Figure 26 for directions weighted heavily by the total Doppler direction, which have about a 10° offset to the right relative to the buoy wind direction, cf. Figure 25(d). To estimate the variability around the mean for each histogram, we assumed that data sets collected on different days were independent (consistent with our wind variability) and used the jackknife resampling method [52] to estimate the standard deviations (shown in grey shading) corresponding to the mean values (shown as dashed red line). The result for lightly nudged directions (not shown), which are unbiased relative to buoy directions, is very similar, but shows greater variability, especially at higher winds.

Examination the results of binning with the two wind directions shows very similar behavior with respect to the wind speed dependence. For very low wind speeds (upper-left panel), where few long-wavelength waves are assumed to be present, the surface scatterers propagate at (or near) the phase velocity of the free Bragg-resonant capillary waves (~ 31 cm/s), and the shape of the flat-topped wide response is similar to that observed by Moller et al. [46]. However, as the wind speed increases to about 4.5 m/s, the peak velocity increases and the shape of the distribution begins to approximate a sinusoid. For wind speeds greater than 4.5 m/s, the peak of the distribution remains approximately constant, up to higher wind speeds (~ 13 m/s), where a slight increase seems to occur, although there is significant scatter around the mean, making this trend less certain. Even though the shape is roughly sinusoidal, some bias and kurtosis are apparent. Examining the variability around the mean, it is also clear that the scatter around the mean is significantly less when the total Doppler directions are used, indicating that the direction of the wind-driven Doppler currents are not along the wind direction, but offset to the right, as expected for a mixture of Lagrangian and Eulerian wind drift currents. However, the magnitude of the current is significantly higher than that expected for the wind drift currents.

To get a more quantitative assessment, we fit the histograms with the 4th-order harmonic expansion given in equation (33). The results for both wind directions are presented in Figure 27 and tabulated in Appendix C. It is clear from this figure that the dominant behavior of F_S is given by

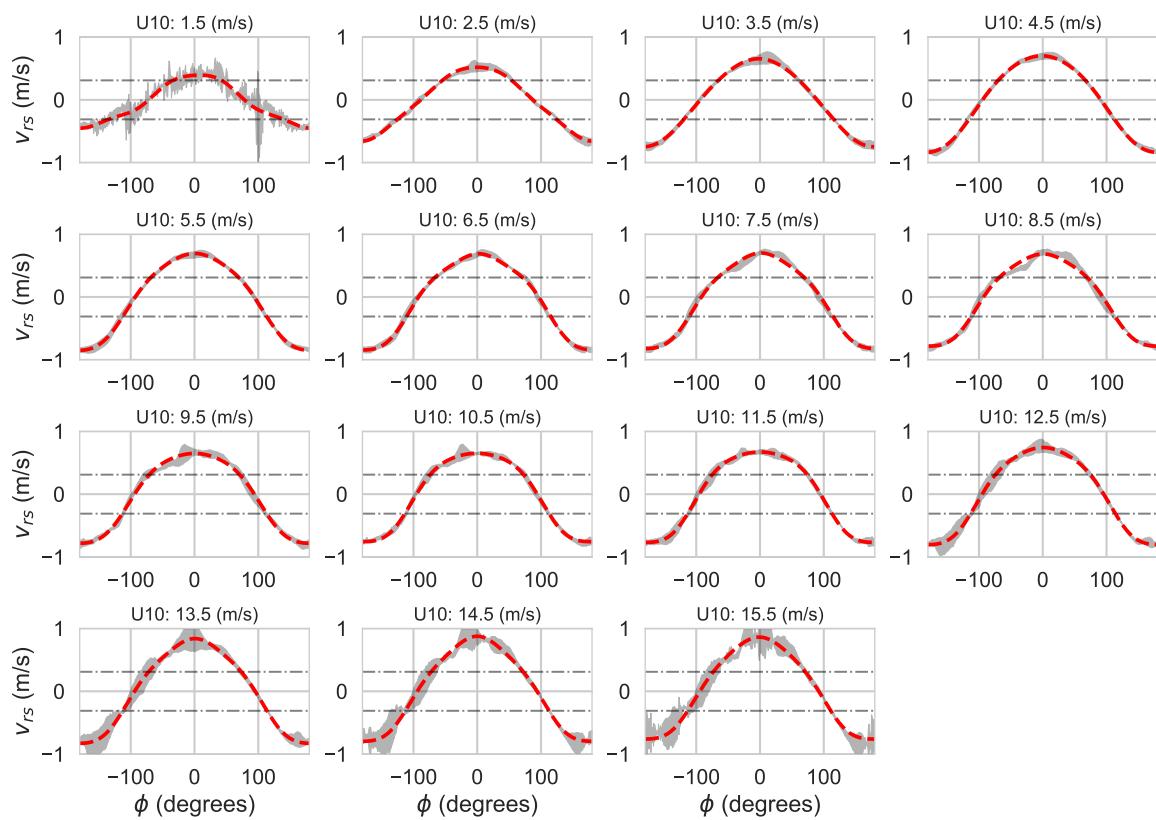


Figure 26. Mean surface current GMF binned by wind speed and direction relative to the net wind/surface current direction (red dashed lines). The grey shaded areas correspond to GMF standard deviation estimated using jackknife resampling. The dot-dash grey lines correspond to the Bragg resonant speeds for freely propagating waves. The relative azimuth for the current GMF follows oceanographic convention and is taken with the origin in the *downwind* direction.

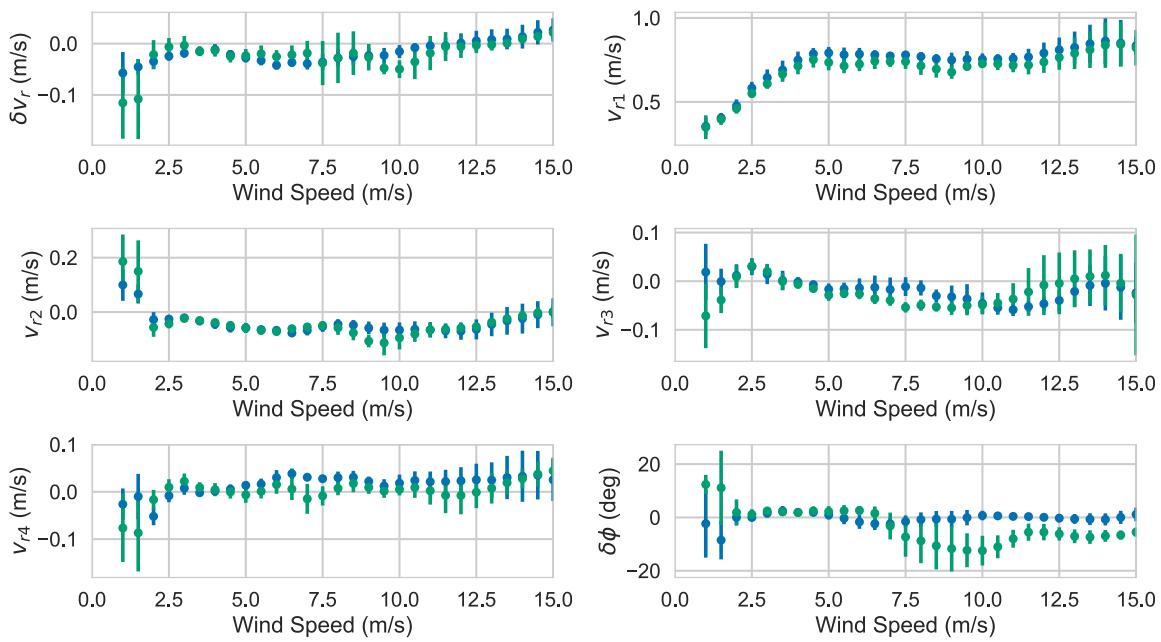


Figure 27. Geophysical model function parameters, equation (33), for speed bias (upper left); bias relative to the raw surface current direction (lower right); and harmonic coefficients for the first four harmonics, v_{r1} to v_{r4} . Error bars are obtained using jackknife resampling.

942 the first harmonic (i.e., pure velocity vector), which increases linearly from the free wave Bragg velocity
 943 to about 75 cm/s at a wind speed of 4.5 m/s, and remains approximately constant thereafter, with a
 944 small increase at higher wind speeds. It is also clear from this figure that the parameters derived by
 945 binning with the wind direction (green) are significantly noisier than those that use the total Doppler
 946 direction (blue)⁵. The term $\delta\phi_U$ (lower right panel) shows the systematic difference in direction relative
 947 to the wind direction observed in the buoy comparisons, for the wind directions not heavily weighted
 948 by the total Doppler current direction.

949 The δv_r and v_{r2} parameters will introduce an upwind-downwind difference in F_S and we plot the
 950 magnitude of this difference in Figure 28, which is small for low winds, but increases to about 10 cm/s
 951 for medium winds, while decreasing for higher winds. Since there is no reason for the true wind
 952 driven currents to be different in the upwind and downwind directions, we ascribe this difference to
 953 the effect of large-scale wave modulation of the scatterers. The third and fourth order harmonics are
 954 generally small, and not nearly as significant as the other parameters. Additional discussion of the
 955 behavior of F_S and its relation with observations at other bands will be presented in Section 4.

956 3.5. Ocean Current Retrieval Results

957 The comparison of synoptic surface current fields against *in situ* data is not easy since the radar
 958 measured surface velocity is effectively at the surface, but *in situ* instrumentation typically measures
 959 the current at some depth. HF radars measure at a depth dependent on the radar wavelength [45,51],

5 Recall from Section 2.6 that for wind speeds less than about 6 m/s, the directions are mostly determined by the total Doppler direction.

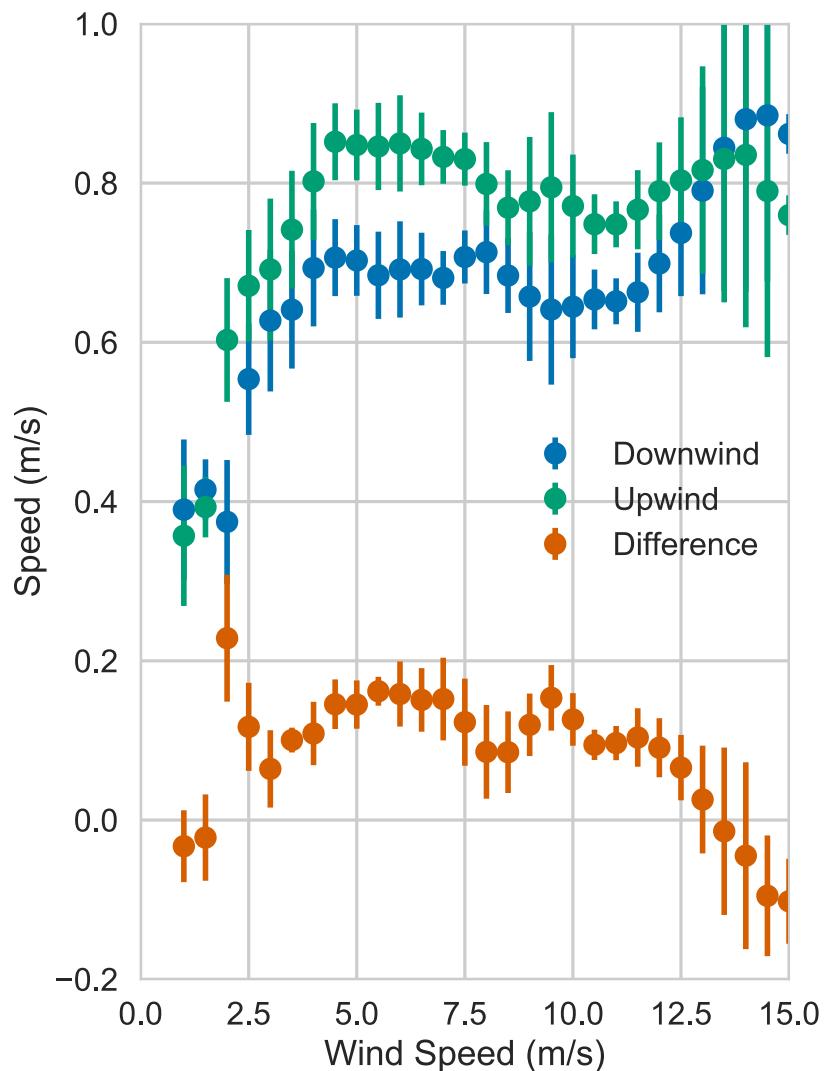


Figure 28. Magnitude of F_S in the upwind (green) and downwind (blue) directions, with the difference plotted in orange. Error bars are obtained using jackknife resampling.

which can be on the order of a meter, while surface drifters will measure currents at the depth they were drogued. For our flights, we only had limited HF radar coverage and, although a large number of drifters were deployed for SPLASH, they quickly converged along fronts and did not provide a synoptic measurement of the total area covered by DopplerScatt. The detailed comparison of DopplerScatt currents against these data is beyond the scope of this paper and will be addressed in a subsequent publication.

To assess how reasonable the DopplerScatt synoptic measurements were, we will compare our current retrievals against forecasts from the Navy Coastal Ocean Model (NCOM) [53] ocean model running within the Coupled Ocean/Atmosphere Mesoscale Prediction Systems (COAMPS) system produced by the NRL Ocean Dynamics and Prediction group, which were provided to us courtesy of Dr. G. Jacobs (NRL) and the CARTHE/SPLASH team. Though the COAMPS system contains ocean, wave, and atmospheric models, only the ocean model was run with external atmospheric forcing as input. For the forecasts available to us, the main outflow of the Mississippi was routed to a different mouth than the one the river actually used, so that the representation of the Mississippi plume was not realistic (G. Jacobs, private communication), but the model, which was run at 250 m resolution, gave a fair representation of the general submesoscale features in the area.

Figure 29 presents the comparison of the DopplerScatt retrieved current components against their NCOM equivalents for data collected on April 18, 2017, as in the wind retrievals shown previously. The DopplerScatt data have been masked along the nadir track and the outer swaths where the estimated errors were greater than 20 cm/s (cf., Figure 10), leading to gaps in the coverage, which are greater for the *V* (north) current component than for the *U* (east) component. The figure shows As can be seen from this figure, DopplerScatt captured well the general clockwise recirculation of the Mississippi plume and westward current into Barataria Bay. Both the model and the DopplerScatt measurements show a strong submesoscale front developing in the north-east quadrant of the Bay, but the exact location of the front is a bit further west in the NCOM data. An additional source of comparison that is helpful in the location of the plume, circulation, and the submesoscale front are provided by optical data obtained by the Sentinel-3 satellite (Courtesy of Copernicus Sentinel, processed by ESA), which is compared against the DopplerScatt surface current *U*-component in Figure 30. The figure shows close agreement with DopplerScatt in the location of both the river plume and the submesoscale front.

Although not definitive, we conclude that DopplerScatt data seems to have a good overall agreement with NCOM and optical data, given model forecast limitations, in both in the features present and in the magnitudes of the currents. A more detailed comparison with both NCOM and *in situ* measurements will be presented elsewhere.

4. Discussion

Our results in the previous sections show that, although initially the effective wind-driven surface currents vary linearly with wind speed, this effects saturates after wind speeds ~ 4.5 m/s. This is in contrast with the C-band results [8,13], which exhibit a strong dependence on wind speed for most of the observed wind speed range. In Appendix E, we present the theory behind the wind-driven surface current component, and show that it can be written as the sum of a free (equation (A58)) and bound (equation (A60)) Bragg waves propagating along or opposite the azimuth look direction, and a term due to the uneven weighting of the large-scale wave orbital motion due to fluctuations of the Bragg spectrum:

$$\delta v_{rs} = \left\langle \frac{\delta \sigma_0}{\sigma_0} \frac{\hat{\ell} \cdot \delta \mathbf{v}_W}{\sin \theta} \right\rangle = \cos \phi_r \left(-\frac{\partial \log \sigma_0}{\partial \theta} \cot \theta U_S + \left\langle u \frac{\delta B}{B} \right\rangle \right) - \cot \theta \left\langle w \frac{\delta B}{B} \right\rangle \quad (49)$$

where $\delta B/B$ are the normalized fluctuations of the Bragg wave (saturation) spectrum; U_S (equation (A65)) is the deep-water Stokes drift current; ϕ_r is the look direction azimuth angle measured relative to the down-wind direction; and u and w are the horizontal and vertical orbital velocities, respectively. There are several mechanisms for local Bragg spectrum variations, including

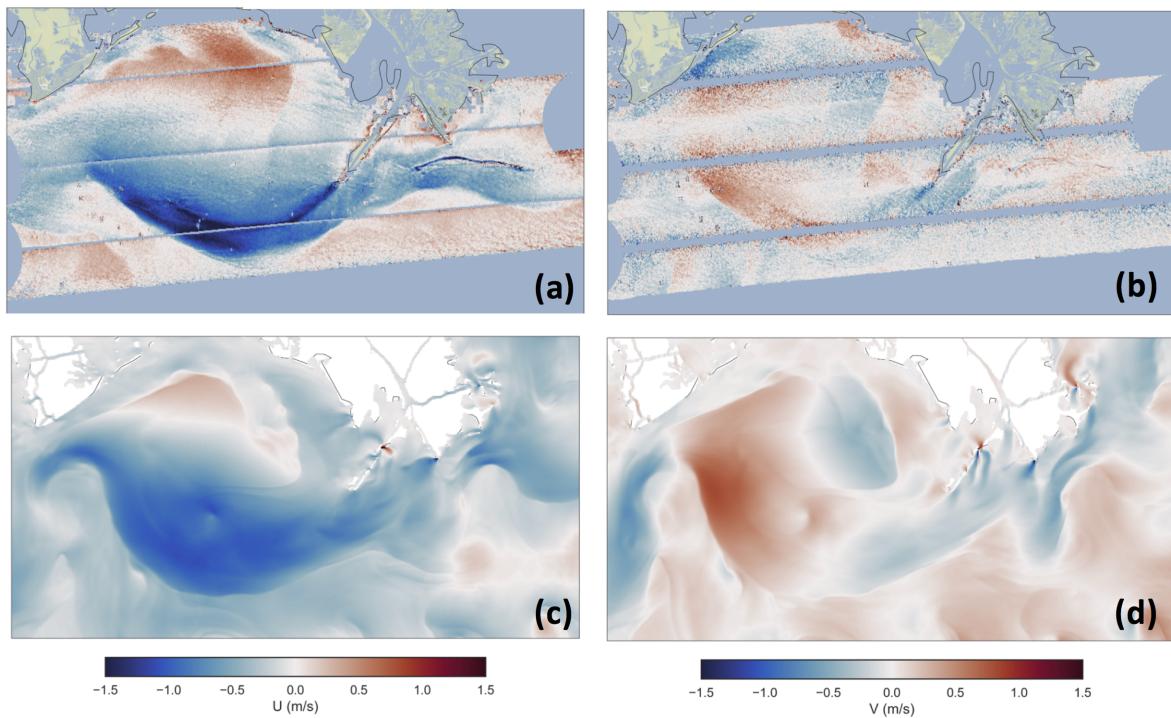


Figure 29. DopplerScatt (upper panels) and NCOM (lower panels) surface current components for the Mississippi River plume and Barataria Bay on April 18, 2017. (NCOM data courtesy of Dr. G. Jacobs (NRL) and the NRL and CARTHE/SPLASH teams.) The U (V)-components are shown in the left(right) columns.

modulation of small waves by winds and larger wave orbital velocities [54]; enhanced roughness due to wave breaking [55]; or generation of Bragg waves due to wave straining [29]. Rather than select among these mechanisms, several of which will likely apply at any given time and that still not fully understood theoretically, we assume that, to lowest order, the spectral modulation can be captured as a linear effect through a Modulation Transfer Function (MTF) [56], as defined in equation (A66). In that case, we obtain a simple equation for δv_{rS}

$$\delta v_{rS} = U_S \left[\cos \phi_r \left(-\frac{\partial \log \sigma_0}{\partial \theta} \cot \theta + \bar{m}_r \right) - \cot \theta \bar{m}_i \right] \quad (50)$$

where \bar{m}_r and \bar{m}_i are the averages of the MTF real and imaginary parts, weighted by the Stokes drift for each wavenumber (see equation (A68)). This result shows that the orbital velocity bias is proportional to the Stokes drift current, and consists of two terms: The first term, proportional to $\cos \phi_r$, behaves as a horizontal current and is due to coupling of the u -component of the orbital velocity and spectral modulations, as well as brightness modulation due to changes in radar brightness due to the large-scale wave slope. This first term changes sign when the look direction changes from downwind to upwind. The second term, due to coupling of the vertical component of the orbital velocity with spectral modulation, is independent of azimuth direction, and is responsible for the difference in upwind and downwind speeds that is shown in Figure 28. Using the results shown in this figure, we can estimate the imaginary part of the modulation function as

$$\bar{m}_i = \tan \theta \frac{\delta v_{rS}(\phi_r = \pi) - \delta v_{rS}(\phi_r = 0)}{U_S} \quad (51)$$

To obtain an estimate as a function of wind speed, we assume that the Stokes drift can be linearly related to wind speed, $U_S = \beta U_{10}$. To compare against other experimental data, we take $\beta = 0.01$,

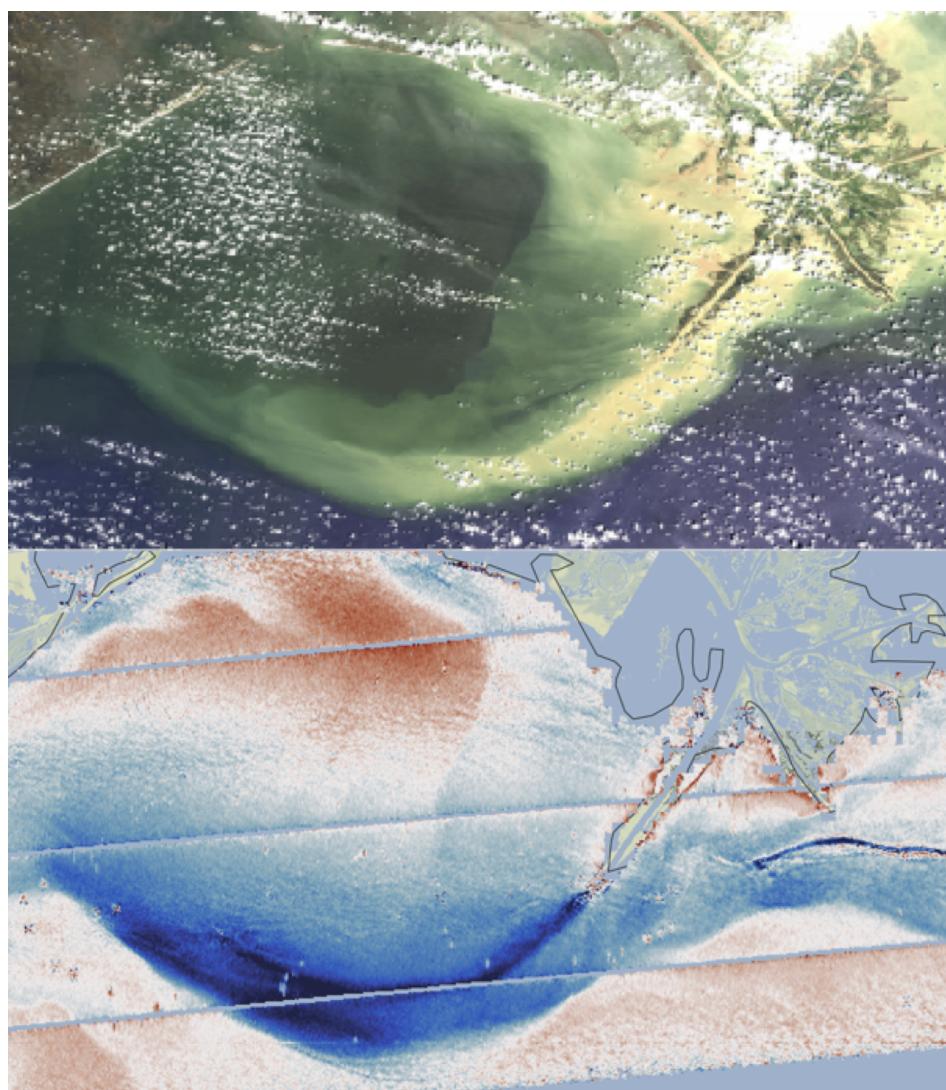


Figure 30. Sentinel-3 optical data (upper) and DopplerScatt U -component of surface velocity for the same region as in Figure 29. Notice that the location of the plume and frontal features agree well between the two. (Sentinel-3 data courtesy of Copernicus Sentinel, processed by ESA.)

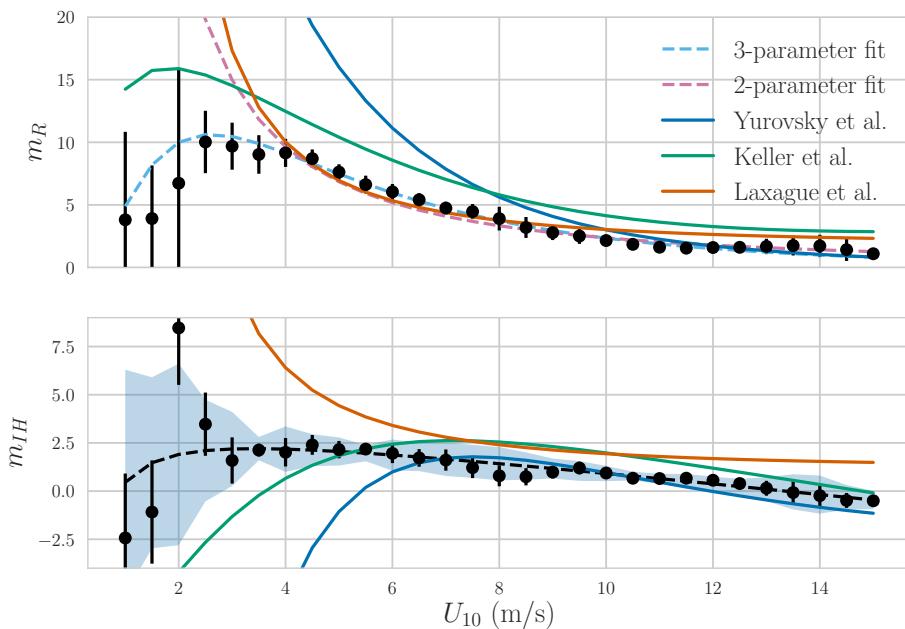


Figure 31. (upper) Effective real (\tilde{m}_r) and (lower) imaginary (m_i) hydrodynamic MTF coefficients obtained by solving equations (51) and (52) using the data in Figure 28. For comparison, MTF reported in the literature [58][55] [59] are plotted as solid lines. Also shown (dashed lines) are 1st (magenta) and 2nd (green) order polynomial fits of $\ln m_r$ as a function of $\ln U_{10}$.

which lies in the mid-range of values given in [45] (although β might itself some wind speed variation), and present the results in Figure 31. We note in this figure the change of sign in m_i , which implies $\langle w\delta B \rangle < 0$, which implies that at high wind speeds, capillary wave roughness is enhanced in the windward, rather than leeward, wave crest. This consistent with past Ka-band observations and with the hypothesis proposed by Yurovsky et al. [55] that this enhanced roughness may be due to the residual roughness due to wave breaking, which travels at a velocity slower than the larger breaking wave.

Once we have solved for \overline{m}_i , it is possible to model the F_S data (Figure 26) as

$$F_S(\phi_r) = \overline{c_{pF}}(\phi_r) + U_S \cos \phi_r \left[\left(\overline{m}_r + \frac{U_D}{2U_S} \right) - \cot \theta \frac{\partial \log \sigma_0}{\partial \theta} \right] - U_S \cot \theta \overline{m}_i \quad (52)$$

where we have ignored the Bragg bound wave contribution, assuming that under most open ocean conditions at moderate winds and above free waves dominate; $\overline{c_{pF}}$ (equation (A58)) is the free Bragg wave contribution, such that $\overline{c_{pF}}(0) = -\overline{c_{pF}}(\pi) \approx 0.31$ m/s; finally, $U_D/2$ is the total wind drift speed at a given horizontal position averaged over wave motion, which introduces the factor of 1/2 [57]. Due to the limited angular angular extent of our data collection, calculating $\partial \log \sigma_0 / \partial \theta$ from the data itself, but we can estimate it from the theoretical Bragg cross section (equation (A56)), the Ku-band NSCAT GMF, or the results from Yurovsky et al. [21], which all give similar results and we use the NSCAT result as the one with the greatest empirical data at high winds. Without *a priori* knowledge of U_D , we can only solve for an effective real part of the MTF, $\tilde{m}_r \equiv (\overline{m}_r + U_D/2U_S)$, which includes not only wave modulation for total surface drift as well. Given these assumptions, we solve for \tilde{m}_r using the upwind and downwind data shown in Figure 28, and present the average of the upwind and downwind results in Figure 31.

1044 We compare these results against Ka-band results reported by by Keller et al. [58] in the
1045 SAXON-FPN experiment in the North Sea; by Yurovsky et al., [55], acquired using a tower mounted
1046 radar in the Black Sea; and by Laxague et al. [59] using an optical set up that allowed for the resolution
1047 of Bragg-resonant waves in the high-frequency regime corresponding to Ka-band. Yurovsky et al.
1048 reported the MTF values averaged over frequency and fit with single power-law fit with respect to
1049 wind speed, which we present in as the blue line in the figure. Keller et al. ([58], Figure 4) present the
1050 mean and variance of the Ka-band MTF averaged over the frequency range 0.25 to 0.3125 Hz, and we
1051 have fit a smooth polynomial through the means, which, after subtracting the tilt MTF appropriate
1052 for their 45° incidence angle, we show as the green line in the figure. Laxague et al. subdivide the
1053 spectral variability obtained by optical means into a region appropriate for Ka-band, and derive an
1054 MTF, at a number of wind speed points, which we digitized and fit with a power-law, as with the
1055 other MTF's, and the results are shown in orange. The agreement between the estimated MTF and the
1056 one in the literature is fairly close for wind speeds above 6 m/s. The largest disagreement is with the
1057 results of [55] for m_r , but this may be partly an artifact of their modeling of m_r as a simple power-law
1058 in U_{10} , since when we model our data in the same way, we also get large disagreements at lower wind
1059 speeds, as shown in Figure 31. At speeds below 4 m/s, the agreement is not as good between any of
1060 the models, perhaps reflecting the lack of data or the influence of non-wind-driven swell in generation
1061 brightness modulations. Note that improved agreement with the other models could be obtained by
1062 varying β and/or making it wind dependent. Given the scatter between the different measurements,
1063 probably due to real-world variability, this is not a necessary refinement.

1064 The main point of this discussion is to show that the wind speed behavior of F_S is consistent
1065 with biases due to σ_0 variations along the large-scale wave via a linear modulation mechanism, and
1066 that the magnitude of this modulation is consistent with previous Ka-band results. To get a better
1067 understanding of the operating mechanisms, we present in Figure 32 the decomposition of the upwind
1068 and downwind wind-driven surface velocities into contributions due to free Bragg waves and tilt
1069 modulation, σ_0 coupling to u through m_r , and σ_0 coupling to w through m_i . We see that the free Bragg
1070 wave contribution accounts for the behavior at low winds, and the addition of tilt modulation, which
1071 is proportional to the Stokes drift, accounts for a slow increase with wind speed in the upwind and
1072 downwind biases. The rapid increase in F_S at wind speeds smaller than about 4 m/s and be attributed
1073 to the rapid increase in the coupling to the u component through m_r . We speculate that this rapid
1074 increase may be due to the presence of bound waves in the leeward side of the wave crests that may be
1075 more noticeable at low wind speeds due to the smaller fraction of the area covered by free Bragg-wave
1076 patches. The relative stability between 4 m/s and 12 m/s is attributed to the fact that in this range
1077 m_r decays with wind speed faster than U_S^{-1} and this decay is sufficient to compensate the linear
1078 increase due to tilt modulation. Coupling to the vertical velocity component has a relatively small
1079 effect in the magnitude of upwind and downwind components, but is responsible for the asymmetry
1080 in the response, sine the other mechanisms are have the same magnitude and opposite sign, while
1081 the sign of m_i does not depend on the look direction. We note that wind speeds greater than about
1082 12 m/s, the data scatter increases, but there is a small increase in the the velocity magnitude, that could
1083 be attributed to m_r decreasing more slowly at higher winds, potentially due to the effects of wave
1084 breaking. The bulk of the difference in the behavior of F_S at Ka and C-bands [8,13] can be attributed to
1085 the fact that the C-band data was acquired at lower incidence angles, so that the tilt modulation factor
1086 $\partial \ln \sigma_0 / \partial \theta$, which is ~ 3 at our incidence angles, can be as much as ~ 15 for the lower incidence angles
1087 of the C-band SAR data. However, we note that the empirically observed fast decay of m_r with wind
1088 speed plays an additional role, as using the theoretical value [18] for m_r results in greater wind speed
1089 dependence than we observe (F. Nougier, B. Chapron, personal communication).

1090 In the previous discussion, we dealt only with modulation effects due to waves traveling along
1091 the wind direction. To see how this one-dimensional assumption fits the data, we subtract the MTF
1092 modeled wind driven surface velocities from the observed velocities, and present the results in
1093 Figure 33. If the one-dimensional wave modulation accounted for all of the effects, the difference

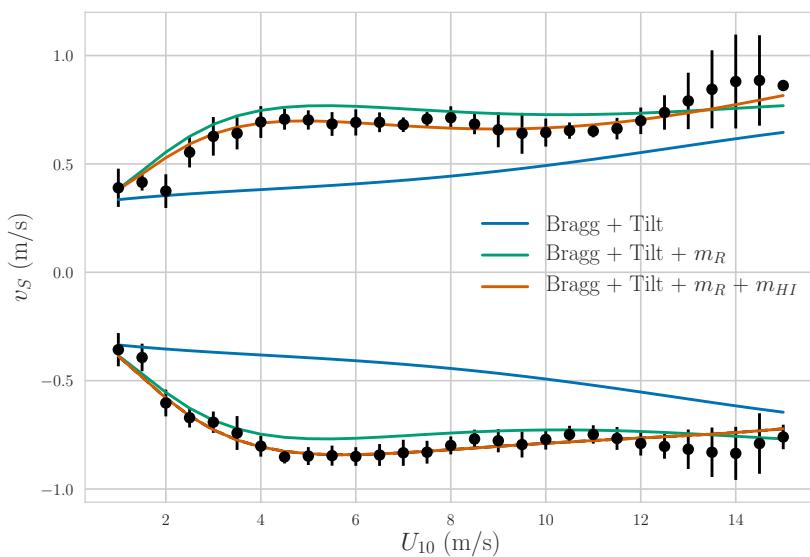


Figure 32. Decomposition of upwind and downwind values of F_S into contributing scattering components. The MTF coefficients used are the low-order polynomial fits in log-domain shown in Figure 31.

1094 between these two lines should be \bar{c}_{pF} , which, according to equation (A58), should vary in the
 1095 range ± 0.31 m/s with a top that reflects the broad capillary wave spectrum, as has been observed
 1096 experimentally for narrow beam radars as reported by, e.g. Moller et al. [46]. This is indeed what is
 1097 observed in Figure 33, where the \bar{c}_{pF} results are quite similar to the ones obtained in [46]. The main
 1098 discrepancy we observe is the fact that the zero-crossing of this function does not occur exactly at
 1099 $\phi_r = \pm\pi/2$, but is slightly broader in the downwind direction than downwind. We speculate that
 1100 this difference is due to the fact that, due to the angular spreading of the large-scale wave spectrum,
 1101 there will be a resulting asymmetry in the up and downwind directions. Nevertheless, we find that the
 1102 simple MTF model provides a reasonable explanation of the F_S features observed in the DopplerScatt
 1103 data, although we selected to use the empirical version of F_S when removing the wind-driven currents
 1104 to account for the small disparities with the MTF model.

1105 5. Conclusions

1106 This paper has presented DopplerScatt, a new instrument that provides simultaneous
 1107 measurements of winds and currents using a Ka-band pencil-beam scanning Doppler scatterometer.
 1108 With the development of DopplerScatt, we have extended the theory and calibration of these
 1109 instruments beyond the existing literature [9]. Among the innovations presented in the system
 1110 understanding, algorithms, and calibration, we note:

- 1111 1. Development of an end-to-end measurement model including several effects, such as quantifying
 1112 the impact of cross-section variations, not previously reported.
- 1113 2. Detailed examination of the pulse-pair estimation algorithm, including deriving an error
 1114 estimator for the Doppler velocity and validating it with experimental data.
- 1115 3. Development of an end-to-end error budget including both random and systematic errors. The
 1116 error model was validated against measurements and showed that the DopplerScatt instrument
 1117 had good stability and noise performance for both σ_0 and Doppler velocities.
- 1118 4. Development of new calibration techniques to remove errors caused by uncertainties in the
 1119 antenna pointing and other systematic (e.g., model function) errors.

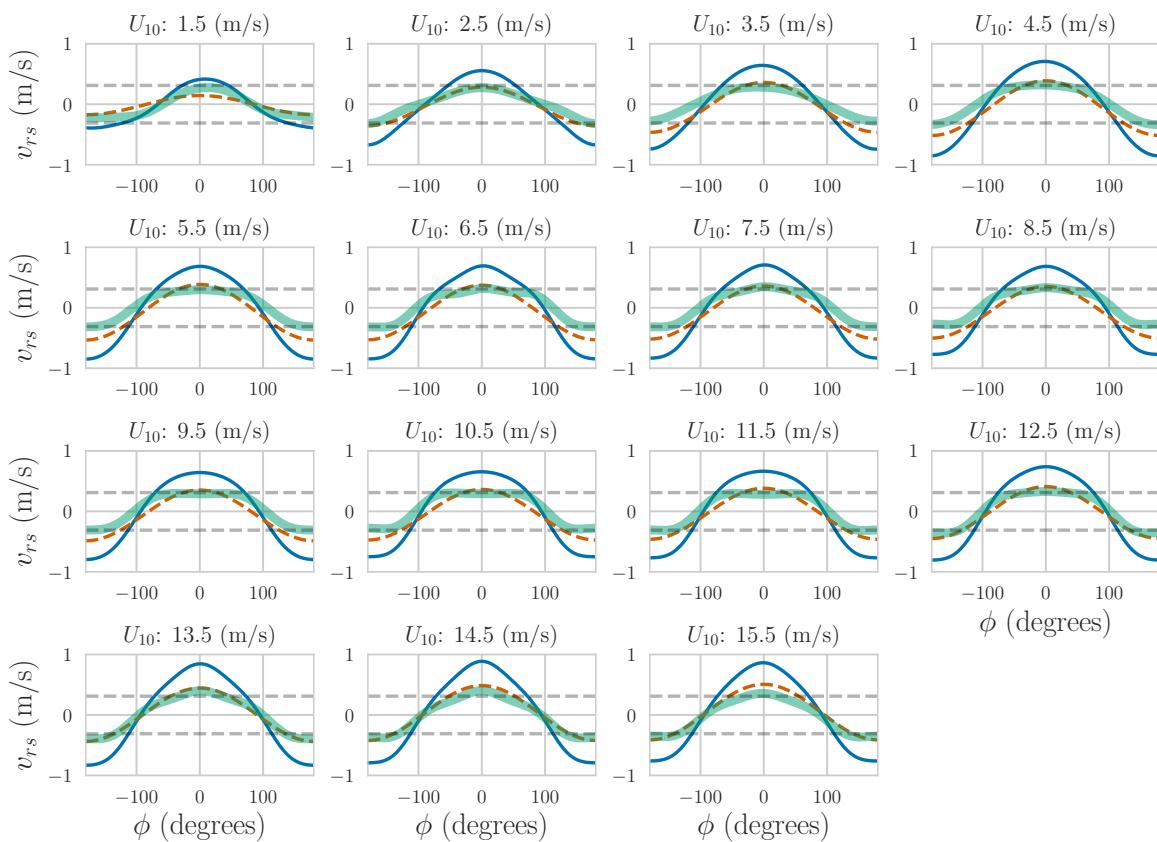


Figure 33. (blue line) Mean of F_S from Figure 26; (orange dashed line) modeled wind-driven velocity bias, using the fit MTF coefficients; (green line) residual after subtracting orange from green lines, which should be nominally the Bragg $\overline{c_p F}$. The upwind and downwind free Bragg velocities are indicated by dashed gray lines.

1120 5. Development of a wind estimation algorithm that uses backscatter and Doppler velocities in
1121 an innovative way so that winds vectors can be estimated using a single beam, rather than the
1122 traditional two-beam architecture.

1123 In addition to these technical innovations, we have collected an extensive data set of Ka-band V-pol σ_0
1124 and Doppler velocities. Using these data, we have:

1125 1. Determined the ocean correlation time at Ka-band as a function of wind speed. The correlation
1126 times observed (> 2 msec) indicate that this measurement is scalable to spaceborne applications
1127 with reasonable performance.

1128 2. Developed a Ka-band V-pol GMF which shows an overall sensitivity to wind speed similar to
1129 the one predicted by the Ku-band NSCAT GMF. The main difference between the two GMF's is
1130 in the much greater upwind cross-wind modulation seen at Ka-band, which will improve wind
1131 direction estimation. The observed modulation also exceeds the one observed at Ka-band from a
1132 platform in the Black Sea by Yurovsky et al. [21], but, due to platform geometry, the cross-wind
1133 sampling may not have been optimal for these incidence angles. Yurovsky et al., also have a global
1134 analytic form for their GMF that may constrain the modulation somewhat, and comparisons
1135 against actual data points (Yurovsky, personal communication) shows better agreement with
1136 DopplerScatt observations than the analytic formula. Resolving these discrepancies will require
1137 additional data, but the current results, as well as those of Yurovsky et al., show that there is
1138 sufficient wind speed and direction sensitivity at Ka-band to obtain wind estimation performance
1139 similar to that of Ku-band scatterometers, such as QuikSCAT. Formal errors in the estimated
1140 wind speed and direction indicate performance better than spaceborne scatterometers, but the
1141 limited comparison against buoy data shows similar performance, possibly pointing to needed
1142 improvements in the GMF, possibly including current effects.

1143 3. Examined the local wind dependent part of the Doppler velocity signature. While the signature
1144 is roughly aligned with the wind direction, as for other frequencies, it deviates slightly from the
1145 true wind direction, in a fashion consistent with expected direction differences consistent with
1146 those expected for the sum of Lagrangian and Eulerian wind-driven currents [45]. However,
1147 the wind speed dependence of the Doppler currents is quite different from the one observed
1148 at C-band [8,13], where the Doppler velocity is nearly linearly dependent on wind speed. By
1149 contrast, at Ka-band there is only a linear dependence for low winds, and the magnitude of
1150 the dependence stabilizes after a wind speed of about 4.5 m/s. In addition, the shape of the
1151 wind-dependent response is close to a sinusoid with azimuth angle; i.e., the expected response
1152 of a constant velocity vector, albeit, one that seems to propagate at a small angle wind speed,
1153 consistent with wind-drift measurements with HF radars [45]. This behavior was explained as
1154 due to the modulation of the backscatter cross section through a modulation transfer function
1155 (MTF) consistent with those previously observed at Ka-band. The lack of dependence of the
1156 wind correction with respect to wind speed makes the estimation of the non-wind driven part
1157 of the surface current much less sensitive to wind speed variations, although still sensitive to
1158 wind direction errors. Given that the wind-dependent correction can be made with the same
1159 instrument as the Doppler velocities, this combination is scalable to a spaceborne instrument.

1160 **Acknowledgments:** The research presented in the paper was carried out at the Jet Propulsion Laboratory,
1161 California Institute of Technology, under contract with the National Aeronautics and Space Administration.
1162 Copyright 2018 California Institute of Technology. U.S. Government sponsorship acknowledged. The authors
1163 would like to thank Y. Yurovsky, S. Grodsky, B. Chapron, and V. Kudryavtsev for discussions and comparisons
1164 with their unpublished results. They would also like to thank J. Molemaker, T. Ozgokmen, G. Jacobs and others in
1165 the SPLASH team for their collaboration and discussions. They would like to thank A. Thompson, Caltech, for
1166 collaboration during the Monterey Bay campaign. E. Rodríguez would like to thank T. Farrar and A. Clarke for
1167 useful discussions regarding Stokes drift. Finally, they would like to acknowledge the contribution of others in
1168 the DopplerScatt team that made this work possible.

1169 **Author Contributions:** E. Rodríguez derived the measurement principle and designed the end-to-end processing
1170 architecture. He was responsible for the end-to-end processing of the velocity data, including error budget,

1171 processing and calibration algorithms, analysis of the surface velocity data and current GMF, as well as the
 1172 paper organization and discussion. He also led the design of the experimental flight campaigns. A. Wineteer
 1173 led the development of the wind GMF, the wind estimation algorithm, and validation of the wind results. D.
 1174 Perkovic-Martin was the PI for the DopplerScatt IIP and managed the instrument team and the deployment
 1175 campaigns. T. Gál analyzed the instrument test data, developed the end-to-end signal processing framework,
 1176 and implemented the ground processor and calibration algorithms to range compression. B. Stiles led the wind
 1177 calibration algorithms and collaborated in the wind estimation algorithms. N. Niamsuwan was responsible for
 1178 backscatter and antenna processing algorithms. R. Rodriguez Monje led the hardware implementation and testing
 1179 of the instrument.

1180 **Conflicts of Interest:** The authors declare no conflict of interest.

1181 Appendix A

1182 The DopplerScatt concept relies on using the phase difference between pulse pairs to estimate
 1183 radial velocity components. In this section, we derive the expected characteristics of this quantity as a
 1184 function of the viewing geometry, surface and platform motion.

1185 The return complex amplitude, E_i , for the i th pulse ($i = 1, 2$) in a pulse pair is given by

$$1186 E_i(t_i, r') \sim n(t_i, r') + \int dS G(\mathbf{x}, t_i) \chi(r' - r(t_i, \mathbf{x})) \exp[-2ikr(t_i, \mathbf{x})] s(t_i, \mathbf{x}) \quad (A1)$$

1187 where \sim means equality up to a constant unimportant for our results; $G(\mathbf{x})$ is the one-way
 1188 antenna pattern; $\chi(r)$ is the range point target response; r' is the nominal pixel range in the time
 1189 sampled signal; $k = 2\pi/\lambda$ is the radar wavenumber; $r_i(t_i, \mathbf{x})$ is the range from the radar to the location
 1190 \mathbf{x} at time t_i ; n_i is the thermal noise contribution. Finally, $s(t_i, \mathbf{x})$ is the complex reflection coefficient,
 1191 defined such that averaging over speckle realizations, it satisfies the equation

$$1192 \langle s(\mathbf{x}) s^*(\mathbf{x}') \rangle_S = \delta(\mathbf{x} - \mathbf{x}') \sigma_0(\mathbf{x}) \gamma_{TS}(|\tau|) \quad (A2)$$

1193 where $\langle \rangle_S$ denotes averaging over speckle realizations; $\sigma_0(\mathbf{x})$ is the normalized radar cross section
 1194 for the desired transmit/receive polarization combination; $\tau = t_1 - t_2$ is the pulse-pair temporal
 1195 separation; and, finally, $\gamma_{TS}(|\tau|)$ represents the temporal correlation due to scattering patch velocity
 1196 deformation or lifetime, but does not include decorrelation due to resolved large wave motion. Over
 1197 the period of observations, we assume the radar cross section statistics remains homogeneous in time,
 1198 although σ_0 varies in space. At this time we do not have a good model for the patch decorrelation time,
 1199 but in Section 3 we show that it does not seem to be a major contributor to pulse to pulse correlation.

1200 Similarly, the thermal noise contribution is assumed to satisfy

$$1201 \langle n_1 n_2^* \rangle_S = \delta_{1,2} N \quad (A3)$$

1202 where N is, up to a constant, the thermal noise power.

1203 The expected value of the pulse-pair complex product averaged over speckle realizations, $\langle E_1 E_2^* \rangle_S$,
 1204 is given by

$$1205 \langle E_1 E_2^* \rangle_S \sim \int dS G^2(\mathbf{x}) \chi^2(r' - r_i(t, \mathbf{x})) \sigma_0(\mathbf{x}) \exp[-2ik(r(t_1, \mathbf{x}) - r(t_2, \mathbf{x}))] \quad (A4)$$

1206 Assume that over the period of observation $\mathbf{r}_P(t)$, is given by $\mathbf{r}_P(t) = \mathbf{r}_P(0) + \mathbf{v}_P t$, where the
 1207 time origin is chosen to lie at the mid-point of the burst of pulses used for observation. The position
 1208 of a small (i.e., on the order of a few wavelengths) patch of moving surface scatterers, $\mathbf{r}_S(t)$, is
 1209 given by $\mathbf{r}_S(t) = \mathbf{r}_S(0) + (\mathbf{v}_E + \mathbf{v}_W(\mathbf{x})) t$, where \mathbf{v}_E is the Earth's velocity in the inertial coordinate
 1210 system, and \mathbf{v}_W is the velocity of the water patch of scatterers. We do not make any assumptions
 1211 about the velocity of the scatterers, aside from the fact that their total velocity will consist of an
 1212 intrinsic velocity (which may, but need not be, be the Bragg velocity) superimposed on the wave
 1213 orbital velocity and additional current terms, possibly including wind drift and surface current
 1214 components. The vector pointing between the platform to the target patch of scatterers is then given by

1211 $\mathbf{r}(t) = \mathbf{r}_S(t) - \mathbf{r}_P(t) = \mathbf{r}(0) + (\mathbf{v}_W - \mathbf{v}_p)t$, where $\mathbf{v}_p = \mathbf{v}_P - \mathbf{v}_E$ is the platform velocity vector relative
 1212 to the moving Earth, and Earth motion is assumed to be constant over the radar footprint. With these
 1213 conventions, the range between platform and target can be approximated by

$$r(t, \mathbf{x}) \approx r(0, \mathbf{x}) \left[1 + \frac{\hat{\ell}(\mathbf{x}) \cdot (\mathbf{v}_W(\mathbf{x}) - \mathbf{v}_p) t}{r(0, \mathbf{x})} + \mathcal{O}\left(\left(\frac{v_p t}{r(0)}\right)^2\right) \right] \quad (\text{A5})$$

1214 where $\hat{\ell} = \mathbf{r}/r$, and we can write the range difference as

$$r(t_1, \mathbf{x}) - r(t_2, \mathbf{x}) \approx \hat{\ell}(\mathbf{x}) \cdot (\mathbf{v}_W(\mathbf{x}) - \mathbf{v}_p) \tau \quad (\text{A6})$$

1215 where $\tau = t_1 - t_2$.

1216 To make further progress, we introduce the system spatial weighting function $f(x, y)$ defined by

$$f(x, y) = \frac{G^2(\mathbf{x}) \chi^2(r' - r_i(t, \mathbf{x}))}{\int dS G^2(\mathbf{x}) \chi^2(r' - r_i(t, \mathbf{x}))} \quad (\text{A7})$$

1217 and define the power weighted centroid of any quantity $\eta = \eta_C + \eta'$ as

$$\eta_C = \int dS f(x, y) \eta(x, y) \quad (\text{A8})$$

1218 where a prime denotes the variation of the variable relative to the centroid value. We evaluate
 1219 the integral in a horizontal coordinate system defined on the tangent plane, choosing the origin
 1220 of the coordinate system as (x_C, y_C) and writing the horizontal coordinate vector as $\mathbf{x} = (x, y) =$
 1221 $(x_C + x', y_C + y') = \mathbf{x}_C + \mathbf{x}'$. If $\hat{\ell}_C$ is the look vector from the platform to (x_C, y_C) the look vector will
 1222 be $\hat{\ell} = \hat{\ell}_C + \delta\hat{\ell}(x', y')$.

1223 We decompose the water surface velocity into a constant component, $\bar{\mathbf{v}}_W$, a gradient over the
 1224 resolution cell, and a “random” component, $\delta\mathbf{v}_W(\mathbf{x}')$, due to unresolved wave motion and current
 1225 variability inside the resolution cell:

$$\mathbf{v}_W(\mathbf{x}) = \bar{\mathbf{v}}_W + (\mathbf{x}' \cdot \nabla_H) \mathbf{v}_W(\mathbf{x}_C) + \delta\mathbf{v}_W(\mathbf{x}') \quad (\text{A9})$$

1226 where ∇_H is the gradient in the tangent plane coordinates.

1227 The σ_0 is decomposed in a similar fashion

$$\sigma_0(\mathbf{x}) = \bar{\sigma}_0 + (\mathbf{x}' \cdot \nabla_H) \sigma_0(\mathbf{x}_C) + \delta\sigma_0(\mathbf{x}') \quad (\text{A10})$$

1228 The mean and gradients of σ_0 are mostly due to the mean wind speed and its spatial gradient,
 1229 while the random variations, $\delta\sigma_0$, are due to cross section variations within the resolution cell caused
 1230 by changes in the incidence angle by large-wave tilts and by hydrodynamic modulation of small waves
 1231 by large waves. In general, it will be assumed that the fluctuations of the cross section across the
 1232 footprint, $\delta\sigma_0$, relative to the mean value, $\bar{\sigma}_0$, are small, and we can discard quadratic and higher terms
 1233 in $\delta\sigma_0/\sigma_0$.

1234 After making these replacements, we can rewrite the total complex coherence, γ , as

$$\gamma(\tau) = \gamma_N \gamma_{TS}(\tau) \gamma_D(\tau) \quad (\text{A11})$$

1235 where the noise correlation term is given by $\gamma_N = (1 + \text{SNR}^{-1})^{-1}$, where SNR is the
 1236 signal-to-noise ratio. The Doppler correlation term is given by

$$\gamma_D(\tau) = \exp[-i\Phi_C] \int dS f(\mathbf{x}') I_D(\mathbf{x}') I_G(\mathbf{x}') I_R(\mathbf{x}') \quad (\text{A12})$$

1237 where Φ_C is the phase contribution due to the Doppler shift between the platform and the mean
 1238 current over the footprint $\Phi_C = 2k\hat{\ell}_C \cdot (\mathbf{v}_p - \bar{\mathbf{v}}_W) \tau$.

1239 The terms in the integrand are: I_D , the variations of the Doppler over the footprint; I_G , the
 1240 contributions due to gradients in the current and σ_0 ; and I_R , random contributions from sub-resolution
 1241 cell variations in the wave velocities and hydrodynamic modulations of σ_0 . They are explicitly given
 1242 by

$$I_D = \exp \left[-2ik\delta\hat{\ell}(\mathbf{x}') \cdot (\mathbf{v}_p - \bar{\mathbf{v}_W}) \tau \right] \quad (\text{A13})$$

$$I_G \approx \exp \left[2ik(\mathbf{x}' \cdot \nabla_H) (\hat{\ell}_C \cdot \bar{\mathbf{v}_W}) \tau \right] \left(1 + \frac{(\mathbf{x}' \cdot \nabla_H) \sigma_0}{\bar{\sigma}_0} \right) \quad (\text{A14})$$

$$I_R = \exp \left[2ik\hat{\ell}_C \cdot \delta\mathbf{v}\tau \right] \left(1 + \frac{\delta\sigma_0}{\bar{\sigma}_0} \right) \quad (\text{A15})$$

1243 where we have neglected cross terms between the gradient and random variations of σ_0 , where
 1244 we expect little correlation due to the different generation mechanisms, and will disappear when
 1245 averaging over the random components, as described below.

1246 Since it is not possible to resolve phenomena smaller than the resolution cell, we calculate the
 1247 expected value of the random term by performing averaging over unresolved wave and brightness
 1248 modulations, caused by waves. Note that for small enough range resolutions, some of the wave
 1249 motions may be resolved and part of the observed Doppler shift. The average over unresolved waves,
 1250 which will be denoted by $\langle \rangle_W$, results in

$$\langle I_R \rangle_W \approx \exp \left[2ik \left\langle \frac{\delta\sigma_0}{\bar{\sigma}_0} \hat{\ell}_C \cdot \delta\mathbf{v}_W \right\rangle_W \tau \right] \gamma_{TW}(\tau) \quad (\text{A16})$$

$$\gamma_{TW}(\tau) = \exp \left[-\frac{1}{2} (2k\tau)^2 \left\langle (\hat{\ell}_C \cdot \delta\mathbf{v}_W)^2 \right\rangle_W \right] \quad (\text{A17})$$

1251 After averaging, neither of these terms depends on \mathbf{x}' and they can be extracted from the integral.
 1252 The phase term contributes a bias term which modifies Φ_C with a shift due to correlation between
 1253 wave motion and σ_0 modulations

$$\Phi' = 2k\hat{\ell}_C \cdot \left(\mathbf{v}_p - \left(\bar{\mathbf{v}_W} + \left\langle \frac{\delta\sigma_0}{\bar{\sigma}_0} \delta\mathbf{v}_W \right\rangle_W \right) \right) \tau \quad (\text{A18})$$

1254 Note that the surface current part in the inner parenthesis can be written as

$$\frac{\left\langle \hat{\ell}_C \cdot (\bar{\mathbf{v}_W} + \delta\mathbf{v}_W) (\bar{\sigma}_0 + \delta\sigma_0) \right\rangle_W}{\langle \bar{\sigma}_0 + \delta\sigma_0 \rangle_W} \quad (\text{A19})$$

1255 which is equal to the Doppler current term proposed by Chapron and collaborators [8] based on a
 1256 heuristic model that weighted the Doppler contribution for each surface patch by the local brightness.
 1257 This model has been subsequently been refined into the DopRIM model to include various scattering
 1258 mechanisms, and we refer the reader to this literature for a detailed discussion of this term [17–19].

1259 The γ_{TW} term is a temporal correlation term due to the Doppler bandwidth of the surface
 1260 waves. It can be combined with the patch correlation term to give a total temporal correlation,
 1261 $\gamma_T(\tau) = \gamma_{TS}(\tau) \gamma_{TW}(\tau)$.

1262 To perform the integral in equation (A12), write the look vector as a function of the look angle, θ ,
 1263 relative to the local vertical at the platform, $\hat{\mathbf{z}}_P$, and the azimuth angle, ϕ , defined as the angle relative
 1264 to $\hat{\mathbf{x}}_P = (\mathbf{v}_p - \hat{\mathbf{z}}_P \cdot \mathbf{v}_p \hat{\mathbf{z}}_P) / |\mathbf{v}_p - \hat{\mathbf{z}}_P \cdot \mathbf{v}_p \hat{\mathbf{z}}_P|$, the component of the Earth relative velocity vector in the
 1265 plane perpendicular to the local normal, which is assumed to be the plane of rotation of the antenna.
 1266 The look vector can then be written as $\hat{\ell} = (\cos \phi \hat{\mathbf{x}}_P + \sin \phi \hat{\mathbf{y}}_P) \sin \theta - \cos \theta \hat{\mathbf{z}}_P$, where $\hat{\mathbf{y}}_P = \hat{\mathbf{z}}_P \times \hat{\mathbf{x}}_P$.
 1267 Expanding $\phi = \phi_C + \phi'$, $\theta = \theta_C + \theta'$, and aligning the tangent plane coordinate system so that the y'

1268 coordinate is along the plane of incidence, one can write $\phi' = x' / (r_C \sin \theta_C)$ and $\theta' = y' \cos \theta_C^{(i)} / r_C$,
 1269 where $\theta_C^{(i)}$ is the local incidence angle at the resolution cell center. It is given by $\theta_C^{(i)} = \theta_C + \alpha$, where α
 1270 is the angle between the platform and the resolution cell center, as measured from the Earth's center:
 1271 $\sin \alpha = (r_C / R_E) \sin \theta_C$, where R_E is the local Earth radius. With these definitions, we can write

$$\delta\hat{\ell}(\mathbf{x}') = [(-\hat{\mathbf{x}}_P \sin \phi_C + \hat{\mathbf{y}}_P \cos \phi_C)] \frac{x'}{r_C} + [\cos \theta_C (\hat{\mathbf{x}}_P \cos \phi_C + \hat{\mathbf{y}}_P \sin \phi_C) + \hat{\mathbf{z}}_P \sin \theta_C] \frac{y' \cos \theta_C^{(i)}}{r_C} \quad (\text{A20})$$

1272 Collecting terms in x', y' , the integral for γ_D (after removing the wave components) becomes

$$\gamma_D = \int d^2\mathbf{x}' f(\mathbf{x}') \exp [-i(\boldsymbol{\kappa} \cdot \mathbf{x}')] \left(1 + \frac{\mathbf{x}' \cdot \nabla_H \sigma_0}{\bar{\sigma}_0} \right) \quad (\text{A21})$$

$$\kappa_{x'}(\tau) = 2k\tau \left[(-\hat{\mathbf{x}}_P \sin \phi_C + \hat{\mathbf{y}}_P \cos \phi_C) \frac{(\mathbf{v}_p - \bar{\mathbf{v}}_W)}{r_C} - \partial_x (\hat{\ell}_C \cdot \bar{\mathbf{v}}_W) \right] \quad (\text{A22})$$

$$\kappa_{y'}(\tau) = 2k\tau \left[(\cos \theta_C (\hat{\mathbf{x}}_P \cos \phi_C + \hat{\mathbf{y}}_P \sin \phi_C) + \hat{\mathbf{z}}_P \sin \theta_C) \frac{(\mathbf{v}_p - \bar{\mathbf{v}}_W) \cos \theta_C^{(i)}}{r_C} - \partial_y (\hat{\ell}_C \cdot \bar{\mathbf{v}}_W) \right] \quad (\text{A23})$$

1273 We can rewrite the γ_D terms as

$$\gamma_D = \left(1 + i \left(\frac{\nabla_H \sigma_0}{\bar{\sigma}_0} \right) \cdot \nabla_{\boldsymbol{\kappa}} \right) \int d^2\mathbf{x}' f(\mathbf{x}') \exp [-i(\boldsymbol{\kappa} \cdot \mathbf{x}')] \quad (\text{A24})$$

1274 The integral is recognized as a Fourier transform, and we can write

$$\gamma_D \approx \exp [i2k\tau v_{rG}] \cdot \frac{\nabla_{\boldsymbol{\kappa}} \tilde{f}(\boldsymbol{\kappa}(\tau))}{|\tilde{f}(\boldsymbol{\kappa}(\tau))|} \quad (\text{A25})$$

$$v_{rG} = \frac{1}{2k\tau} \left(\frac{\nabla_H \sigma_0}{\bar{\sigma}_0} \right) \cdot \frac{\Re(\nabla_{\boldsymbol{\kappa}} \tilde{f}(\boldsymbol{\kappa}(\tau)))}{|\tilde{f}(\boldsymbol{\kappa}(\tau))|} \quad (\text{A26})$$

1275 where $\tilde{f}(\boldsymbol{\kappa})$ denotes the Fourier transform coefficient of $f(\mathbf{x}')$ evaluated at k_x, k_y . We assume that
 1276 the change in cross section due to the long-wavelength σ_0 gradient is small compared to the mean cross
 1277 section, and $\Re(z)$ represents the real part of z . v_{rG} is the error in the estimated radial velocity caused
 1278 by gradients in σ_0 over the footprint. If the function $f(\mathbf{x})$ is asymmetric about the origin (e.g., due to
 1279 the antenna pattern not being symmetric in range or azimuth along the observed range slice), $\tilde{f}(\boldsymbol{\kappa}(\tau))$
 1280 can be complex and we write it as $\tilde{f}(\boldsymbol{\kappa}(\tau)) = |\tilde{f}(\boldsymbol{\kappa}(\tau))| \exp [i\Phi_A]$, where the subscript A stands for
 1281 "asymmetric" or "antenna". The phase term, if uncompensated through calibration, will induce a bias
 1282 in the estimated radial velocity, v_{rA} , whose magnitude can be determined by rewriting the phase as
 1283 $\Phi_A = 2k\tau v_{rA}$.

1284 The correlation term γ_D captures the effect of the variation of the Doppler over the footprint, with
 1285 the greater variability resulting in reduced correlation and higher phase noise. The typical variation
 1286 over the footprint is given by $\kappa_x \Delta x$ and $\kappa_y \Delta y$, where ΔX and ΔY are the azimuth and range footprint
 1287 sizes, respectively. Typical range resolutions are small enough that $\kappa_y \Delta Y \ll 1$ and the Doppler range
 1288 variations can be ignored, so that the correlation will be determined by the Doppler variations in the
 1289 azimuth direction. For a stationary target, this will be proportional to $4\pi \mathbf{v}_p \cdot \delta\hat{\ell}_C \tau / \lambda$, the ratio of
 1290 the Doppler bandwidth to the pulse-repetition-frequency (PRF) $1/\tau$. However, a linear azimuthal
 1291 variation of the radial current can also cause a Doppler phase ramp. The maximum value of the ratio
 1292 between the aircraft to surface current Doppler variations will be proportional to $\sin \phi_C v_p \Delta \phi / \delta v_{ry}$,
 1293 where δv_{ry} is the total variation of the y -radial velocity across ΔX and $\Delta \phi$ is the antenna azimuth

beamwidth. For the DopplerScatt parameters, the surface velocity variations will only be important in exactly the forward or aft directions, when the Doppler bandwidth vanishes, but deviation by just 1° from these directions would require a 10 cm/s variation in the linear part of the current over the footprint, which is extremely unlikely. Therefore, we neglect the current contributions to the Doppler variations and approximate $\kappa_{x'}(\tau) \approx -2kv_p\tau \sin \phi_C / r_C$.

We summarize the final result for the complex correlations as

$$\begin{aligned} \gamma(\tau) &= \exp[-i\Phi] \gamma_N \gamma_T(\tau) |\gamma_D(\tau)| \\ |\gamma_D(\tau)| &= |\tilde{f}(\kappa(\tau))| \end{aligned} \quad (\text{A27})$$

$$\begin{aligned} \Phi &= 2k\tau \left[\hat{\ell}_C \cdot \left(\mathbf{v}_p - \left(\overline{\mathbf{v}_W} + \left\langle \frac{\delta\sigma_0}{\overline{\sigma_0}} \delta\mathbf{v}_W \right\rangle_W \right) \right) \right. \\ &\quad \left. - v_{rG} - v_{rA} \right] \\ &\equiv 2k\tau [v_{rp} - (v_{rW} + v_{rR} + v_{rG} + v_{rA})] \end{aligned} \quad (\text{A28})$$

Φ is the expected value of the pulse-pair phase difference, and forms the basis for the estimation of the surface current. Equation (A28) shows that if one desires to estimate the mean radial velocity over the footprint, $v_{rW} = \hat{\ell}_C \cdot \overline{\mathbf{v}_W}$, one must take into account and properly remove the platform motion, $v_{rp} = \hat{\ell}_C \cdot \mathbf{v}_p$, the wave contribution, $v_{rR} = \hat{\ell}_C \cdot \left\langle \frac{\delta\sigma_0}{\overline{\sigma_0}} \delta\mathbf{v}_W \right\rangle_W$, the contribution due to cross-section gradients, v_{rG} , and, finally the contribution due to system illumination asymmetries, v_{rA} .

As an example applicable to DopplerScatt, consider the effects of a σ_0 gradient when the range resolution is fine enough compared to the velocity variations, and the weighting function, after a change of variables to angular coordinates, can be approximated by

$$f \approx \delta(\theta - \theta_C) g(\phi_a) \quad (\text{A29})$$

where $g(\phi_a)$ represents an iso-range cut of the two-way antenna pattern azimuth plane, normalized to unit area. Using $x = r_C \phi_a$, the Fourier transform can then be written as

$$\tilde{f}(\kappa_x) = \int d\phi_a g(\phi_a) \exp[-i\kappa_x r_C \phi_a] \quad (\text{A30})$$

where $\phi_a = \phi' \sin \theta_C$ has been used. The DopplerScatt antenna pattern can be approximated by a Gaussian

$$g(\phi_a) \approx \frac{\exp\left[-\frac{\phi_a^2}{2\sigma_{\phi_a}^2}\right]}{\sqrt{2\pi}\sigma_{\phi_a}} \quad (\text{A31})$$

with $\sigma_{\phi_a} \approx 0.02 \approx 1.163^\circ$ and we have that

$$\tilde{f}(\kappa_x) = \exp\left[-2(kv_p\tau)^2 \sigma_{\phi_a}^2 \sin^2 \phi_C\right] \quad (\text{A32})$$

$$\gamma_D = \exp[i2k\tau v_{rG}] \tilde{f}(\kappa_x) \quad (\text{A33})$$

$$v_{rG} = \left(\frac{\Delta\sigma_0}{\overline{\sigma_0}} \sigma_\phi \right) v_p \sin \theta_C \sin \phi_C \quad (\text{A34})$$

where $\Delta\sigma_0$ is the σ_0 change over a distance $\Delta X = r_C \sigma_{\phi_a}$ and $\Delta\phi = \sigma_{\phi_a} / \sin \theta_C$ is the magnitude of the change in the azimuth angle. A simple calculation shows that the radial velocity bias is equivalent to an azimuth pointing error, where the azimuth shift corresponds to the shift in the illumination centroid due to the σ_0 gradient. Examining this result shows that a gradient in the along-track x -direction will always lead to a positive δv_r , but cross-track gradients will lead to a complicated angular dependence

1318 that vanishes at broadside and the fore and aft directions, is maximum at mid-swath, but has opposite
 1319 signs in the fore ($|\phi| \leq \pi/2$) and aft ($|\phi| > \pi/2$) directions.

1320 **Appendix B**

1321 *Appendix B.1 Estimator Derivation*

1322 Assume that the complex signal can be characterized as a set of N_p uniformly spaced, correlated,
 1323 circular-Gaussian pulses [24,60] E_n ($1 \leq n \leq N_p$), with the elements of Σ , the Toeplitz Hermitian
 1324 covariance matrix given by

$$\Sigma_{mn} = \langle E_m E_n^* \rangle = P \gamma_{|m-n|} \exp [i (n - m) \Phi] \quad (A35)$$

1325 where angular brackets denote the expectation value, $P = S + N$ is the total return power,
 1326 $0 \leq \gamma_{|m-n|} \leq 1$ is the correlation coefficient between pulses separated by $j = |m - n|$ sampling
 1327 intervals ($\gamma_0 = 1$), and $\Phi = 2\pi f_D \tau$ is the pulse-to-pulse phase which is the product of the Doppler
 1328 centroid, f_D , and the inter-pulse period, τ . Since it is an arbitrary positive multiplicative constant and
 1329 the results do not depend on it, P will be set to 1 henceforth.

1330 The negative log-likelihood function is then given (up to a constant) by [24]

$$\mathcal{L}(\Phi) = -\ln (L) = \ln (|\Sigma|) + \mathbf{E}^\dagger \Sigma^{-1} \mathbf{E} \quad (A36)$$

1331 where $|\Sigma|$ is the determinant of $\Sigma(\Phi)$, \mathbf{E} is the vector containing the circular-Gaussian measured
 1332 samples, and \dagger denotes the conjugate transpose.

1333 In the following derivation, it will be assumed that γ_j is known *a priori*, so that the
 1334 maximum-likelihood estimate for Φ can be done independently of estimating γ_j . For the radar
 1335 case, this is reasonable since the pulse-to-pulse correlation is dominated by the signal-to-noise ratio
 1336 and illuminated area decorrelation factor from the van Cittert-Zernike theorem [60], which can be
 1337 calculated *a priori*. Making these assumptions, the maximum likelihood estimate for Φ can be obtained
 1338 by minimizing \mathcal{L} with respect to Φ , or, equivalently, by solving the following equation for Φ :

$$\frac{\partial \mathcal{L}}{\partial \Phi} = 0 \quad (A37)$$

1339 Solving the minimization can be helped substantially by noticing that the determinant of the
 1340 covariance matrix is independent of Φ , which, after some algebra, follows from the exponential form
 1341 of the matrix elements. This fact then implies that to obtain the maximum likelihood estimator, it is
 1342 sufficient to minimize $\mathbf{E}^\dagger \Sigma^{-1} \mathbf{E}$, or, equivalently, to solve the maximum likelihood equation

$$\mathbf{E}^\dagger (\partial_\Phi \Sigma^{-1}) \mathbf{E} = 0 \quad (A38)$$

1343 There is no simple closed form solution to compute the inverse of Σ , although there are recursive
 1344 formulas to calculate its elements, since it is a Toeplitz matrix. Taking the derivative of $\Sigma \Sigma^{-1} = 1$,
 1345 one obtains that $\partial_\Phi \Sigma^{-1} = -\Sigma^{-1} (\partial_\Phi \Sigma) \Sigma^{-1}$. Notice that from the Hermitian property, it follows that
 1346 $\Sigma^{-1\dagger} = \Sigma^{-1}$ and the maximum likelihood equation can be written as

$$0 = \mathbf{u}^\dagger (\partial_\Phi \Sigma) \mathbf{u} \quad (A39)$$

$$\mathbf{u} = \Sigma^{-1} \mathbf{E} \quad (A40)$$

1347

1348 and we refer to \mathbf{u} as the transformed pulse sequence. The derivative of element m, n of the
 1349 covariance matrix is easily computed to be $\partial_\Phi \Sigma_{m,n} = i(n - m) \Sigma_{m,n}$. Defining \mathbf{U}_j and \mathbf{L}_j to be matrices
 1350 containing ones in the k th upper or lower diagonal, respectively, or 0 otherwise, one can write

$$-i\partial_{\Phi}\Sigma = \sum_{j=1}^{N_p-1} j\gamma_j \left[e^{ij\Phi} \mathbf{U}_j - e^{-ij\Phi} \mathbf{L}_j \right] \quad (\text{A41})$$

1351 Define $\mathbf{u}^{\dagger} \mathbf{U}_j \mathbf{u} = I_j^*$, so that $I_j = \sum_i u_i u_{i+j}^*$ is the interferogram for transformed pulse pairs
 1352 separated by j pulses. Taking the complex conjugate, $I_j = \mathbf{u}^T \mathbf{U}_j \mathbf{u}^*$, and the transpose $I_j = \mathbf{u}^{\dagger} \mathbf{U}_j^T \mathbf{u} =$
 1353 $\mathbf{u}^{\dagger} \mathbf{L}_j \mathbf{u}$, one can write the maximum likelihood equation as

$$\sum_{j=1}^{N_p-1} j\gamma_j e^{-ij\Phi} I_j - \text{CC} = 0 \quad (\text{A42})$$

1354 where CC stands for complex conjugate. Notice that this equation depends on Φ both explicitly
 1355 through the exponential, and implicitly through I_j , which depends on the inverse covariance matrix, a
 1356 function of Φ .

1357 It is instructive to see the form taken by the maximum likelihood equation in the case considered
 1358 by Madsen [12] when $\gamma_j \neq 0$ only for one value of j . In that, it is clear that a solution to the equation is
 1359 given by

$$\hat{\Phi}_j = \frac{1}{j} \arg I_j \quad (\text{A43})$$

1360 where $I_j = |I_j| e^{i \arg I_j}$. This solution is quite similar to the maximum likelihood solution derived
 1361 in [23] for interferometric pairs, with the exception that in that case I_j is the interferogram of the
 1362 original pulse pairs, not the transformed ones. This difference is due to the fact the pulse pairs for
 1363 interferometry come from uncorrelated looks, whereas there is pulse to pulse correlation in the Doppler
 1364 centroid case. Equation (A43) is still not a solution for Φ , since it is contained implicitly in the right
 1365 hand side of the equation. Given a good enough guess, the equation can be solved by iteration

$$\Phi_j^{(n+1)} = \frac{1}{j} \arg I_j(\Phi_j^{(n)}) \quad (\text{A44})$$

1366 As a starting guess, note that if the off-diagonal correlation elements can be neglected (i.e., $\gamma_j \ll 1$),
 1367 one has the Madsen j th estimator given by

$$\Phi_{Mj}^{(0)} = \frac{1}{j} \arg I_j^{(0)} \quad (\text{A45})$$

1368 where $I_j^{(0)}$ is the interferogram of the original pulse-pair sequence. In practice, we find that a
 1369 one-dimensional numerical search around the Madsen estimator provides a reliable solution of the
 1370 MLE equations.

1371 *Appendix B.2 Cramér-Rao Bound*

1372 The Cramér-Rao bound [24] σ_{Φ}^2 , which is the inverse of the Fisher information J , sets a limit on
 1373 the minimum variance of any unbiased estimator. In our case, the Fisher information is given by

$$J = - \left\langle \frac{\partial^2 \mathcal{L}}{\partial \Phi^2} \right\rangle = - \left\langle \mathbf{E}^{\dagger} \frac{\partial^2 \Sigma^{-1}}{\partial \Phi^2} \mathbf{E} \right\rangle = \left\langle \left(\mathbf{E}^{\dagger} \frac{\partial \Sigma^{-1}}{\partial \Phi} \mathbf{E} \right)^2 \right\rangle \quad (\text{A46})$$

1374 Generalizing the derivation in [24] to circular Gaussian variables, taking the expectation value
 1375 results in

$$\sigma_{\Phi}^2 = J^{-1} = \left(\text{tr} \left[\Sigma^{-1} \frac{\partial \Sigma}{\partial \Phi} \Sigma^{-1} \frac{\partial \Sigma}{\partial \Phi} \right] \right)^{-1} \quad (\text{A47})$$

1376 where the derivative of the correlation matrix is given by equation (A41) and the inverse of the
 1377 covariance matrix can be calculated numerically or symbolically.

1378 Although useful for computational purposes, the exact expression for the Cramér-Rao bound is
 1379 complex and does not lead to easy understanding of the orders of magnitude or parametric dependence
 1380 on the various factors. To improve our understanding, one can obtain a simple expression accurate to
 1381 second order in the correlations γ , which is suitable for many practical circumstances.

1382 Using $\Sigma^{-1} \approx \mathbf{1} - \mathbf{A} + \mathbf{A}^2 + \mathcal{O}(\gamma^3)$, the Fisher information is readily calculated by using

$$\langle \mathbf{E}^\dagger \mathbf{L}_j \mathbf{E} \rangle = (N_p - j) \gamma_j e^{ij\Phi} \quad (\text{A48})$$

$$\langle \mathbf{E}^\dagger \mathbf{U}_j \mathbf{E} \rangle = (N_p - j) \gamma_j e^{-ij\Phi} \quad (\text{A49})$$

1383 so that, using $\langle \mathbf{E}^\dagger (\partial^2 \mathbf{A}^2 / \partial \Phi^2) \mathbf{E} \rangle \approx 0$,

$$\begin{aligned} - \left\langle \mathbf{E}^\dagger \frac{\partial^2 \Sigma^{-1}}{\partial \Phi^2} \mathbf{E} \right\rangle &= \left\langle \mathbf{E}^\dagger \frac{\partial^2 \mathbf{A}}{\partial \Phi^2} \mathbf{E} \right\rangle \\ &= \sum_{j=1}^{N_p-1} 2(N_p - j) j^2 \gamma_j^2 \end{aligned}$$

1385 The final result for the Cramér-Rao bound is given by

$$\begin{aligned} \sigma_\Phi^2 &\geq \left[\sum_{j=1}^{N_p-1} \sigma_{\Phi j}^{-2} \right]^{-1} \\ \sigma_{\Phi j}^2 &= \frac{1}{2(N_p - j) j^2 \gamma_j^2} \end{aligned} \quad (\text{A50})$$

1386 where $\sigma_{\Phi j}^2$ is the phase variance when all γ_j 's are 0, except the j th one. The special case of $j = 1$
 1387 corresponds to Madsen's recommendation for SAR Doppler centroid estimation. Also note that this
 1388 bound is similar to the one derived by Rodríguez and Martin [23] for independent pulse pairs, which
 1389 in our case could be written as

$$\tilde{\sigma}_{\Phi j}^2 = \frac{1 - \gamma_j^2}{2(N_p - j) j^2 \gamma_j^2} \quad (\text{A51})$$

1390 which predicts a lower variance by a constant factor of $(2(N_p - j) j^2)^{-1}$.
 1391 This first order formula suggests that the weighted estimator for Φ , defined as

$$\hat{\Phi}_W = \sum_{j=1}^{N_p-1} w_j \Phi_j \quad (\text{A52})$$

$$w_j = \frac{\sigma_{\Phi j}^{-2}}{\sum_{j=1}^{N_p-1} \sigma_{\Phi j}^{-2}} \quad (\text{A53})$$

1392 would approach the Cramér-Rao bound if the estimated phases, Φ_j , given by either equation (A43)
 1393 or (A45) could be considered independent variables.

1394 Appendix C

1395 The coefficients for the DopplerScatt geophysical model function are shown in Table A1 along
1396 with their formal fit standard errors. These coefficients correspond to those given in Equation A54,
1397 below, which is the expanded form of equation (46).

$$10 \log_{10} (\sigma_0) = C_0 + C_1 \theta + C_2 \cos (\phi') + C_3 \cos (\phi') \theta + C_4 \cos (2\phi') + C_5 \cos (2\phi') \theta + C_6 \log_{10} (U) + C_7 \theta \log_{10} (U_{10}) + C_8 \cos \phi' \log_{10} (U_{10}) + C_9 \cos (\phi') \log_{10} (U_{10}) \theta + C_{10} \cos (2\phi') \log_{10} (U_{10}) + C_{11} \cos (2\phi') \log_{10} (U_{10}) \theta \quad (\text{A54})$$

Table A1. Table of wind GMF coefficients.

Coefficient	Value	Standard Error
C_0	-54.278	6.527
C_1	0.259	0.117
C_2	16.361	8.442
C_3	-0.267	0.152
C_4	15.753	9.122
C_5	-0.236	0.164
C_6	39.533	6.892
C_7	-0.318	0.125
C_8	-25.563	8.779
C_9	0.456	0.159
C_{10}	-6.636	9.679
C_{11}	0.127	0.175

1398 **Appendix D****Table A2.** Table of wind GMF coefficients.

U_{10}	δv_r	v_{r1}	v_{r2}	v_{r3}	v_{r4}	$\delta \varphi$
1.5	-0.06 ± 0.04	$+0.35 \pm 0.05$	$+0.10 \pm 0.06$	$+0.02 \pm 0.06$	-0.03 ± 0.03	-0.04 ± 0.22
2.0	-0.05 ± 0.02	$+0.40 \pm 0.03$	$+0.07 \pm 0.03$	-0.00 ± 0.03	-0.01 ± 0.05	-0.15 ± 0.13
2.5	-0.03 ± 0.02	$+0.48 \pm 0.04$	-0.03 ± 0.03	$+0.01 \pm 0.02$	-0.05 ± 0.02	$+0.00 \pm 0.05$
3.0	-0.02 ± 0.01	$+0.58 \pm 0.04$	-0.03 ± 0.01	$+0.03 \pm 0.02$	-0.01 ± 0.01	-0.00 ± 0.02
3.5	-0.02 ± 0.01	$+0.65 \pm 0.05$	-0.02 ± 0.01	$+0.01 \pm 0.02$	$+0.01 \pm 0.01$	$+0.03 \pm 0.03$
4.0	-0.02 ± 0.01	$+0.69 \pm 0.06$	-0.03 ± 0.01	$+0.00 \pm 0.02$	-0.00 ± 0.00	$+0.04 \pm 0.03$
4.5	-0.01 ± 0.01	$+0.75 \pm 0.05$	-0.04 ± 0.02	-0.00 ± 0.01	$+0.00 \pm 0.01$	$+0.03 \pm 0.02$
5.0	-0.02 ± 0.01	$+0.79 \pm 0.03$	-0.06 ± 0.02	-0.01 ± 0.01	$+0.01 \pm 0.01$	$+0.03 \pm 0.02$
5.5	-0.03 ± 0.01	$+0.79 \pm 0.03$	-0.06 ± 0.02	-0.02 ± 0.01	$+0.01 \pm 0.01$	$+0.02 \pm 0.03$
6.0	-0.03 ± 0.01	$+0.78 \pm 0.04$	-0.06 ± 0.01	-0.02 ± 0.01	$+0.02 \pm 0.01$	-0.01 ± 0.04
6.5	-0.04 ± 0.01	$+0.78 \pm 0.04$	-0.07 ± 0.01	-0.01 ± 0.02	$+0.03 \pm 0.02$	-0.03 ± 0.05
7.0	-0.04 ± 0.01	$+0.78 \pm 0.03$	-0.08 ± 0.01	-0.01 ± 0.02	$+0.04 \pm 0.01$	-0.04 ± 0.04
7.5	-0.04 ± 0.01	$+0.77 \pm 0.02$	-0.07 ± 0.02	-0.02 ± 0.02	$+0.03 \pm 0.01$	-0.04 ± 0.04
8.0	-0.04 ± 0.02	$+0.78 \pm 0.02$	-0.05 ± 0.02	-0.01 ± 0.02	$+0.03 \pm 0.01$	-0.03 ± 0.04
8.5	-0.03 ± 0.02	$+0.77 \pm 0.03$	-0.04 ± 0.02	-0.01 ± 0.02	$+0.03 \pm 0.01$	-0.01 ± 0.05
9.0	-0.03 ± 0.02	$+0.76 \pm 0.03$	-0.05 ± 0.02	-0.03 ± 0.01	$+0.03 \pm 0.01$	-0.01 ± 0.05
9.5	-0.02 ± 0.01	$+0.75 \pm 0.04$	-0.06 ± 0.02	-0.03 ± 0.02	$+0.02 \pm 0.01$	-0.01 ± 0.05
10.0	-0.02 ± 0.01	$+0.75 \pm 0.05$	-0.07 ± 0.03	-0.04 ± 0.03	$+0.01 \pm 0.01$	-0.00 ± 0.05
10.5	-0.02 ± 0.01	$+0.75 \pm 0.03$	-0.07 ± 0.03	-0.05 ± 0.02	$+0.02 \pm 0.02$	$+0.01 \pm 0.03$
11.0	-0.01 ± 0.01	$+0.76 \pm 0.03$	-0.06 ± 0.03	-0.05 ± 0.01	$+0.02 \pm 0.02$	$+0.01 \pm 0.02$
11.5	-0.00 ± 0.01	$+0.76 \pm 0.03$	-0.07 ± 0.03	-0.06 ± 0.01	$+0.02 \pm 0.02$	$+0.01 \pm 0.01$
12.0	-0.00 ± 0.02	$+0.77 \pm 0.05$	-0.07 ± 0.03	-0.05 ± 0.01	$+0.02 \pm 0.02$	$+0.01 \pm 0.02$
12.5	$+0.00 \pm 0.02$	$+0.79 \pm 0.06$	-0.07 ± 0.03	-0.05 ± 0.02	$+0.02 \pm 0.03$	$+0.00 \pm 0.02$
13.0	$+0.01 \pm 0.02$	$+0.81 \pm 0.07$	-0.06 ± 0.04	-0.04 ± 0.02	$+0.03 \pm 0.03$	-0.00 ± 0.03
13.5	$+0.01 \pm 0.02$	$+0.82 \pm 0.09$	-0.05 ± 0.04	-0.02 ± 0.03	$+0.02 \pm 0.04$	-0.01 ± 0.03
14.0	$+0.01 \pm 0.02$	$+0.85 \pm 0.11$	-0.03 ± 0.05	-0.01 ± 0.04	$+0.03 \pm 0.05$	-0.01 ± 0.04
14.5	$+0.01 \pm 0.02$	$+0.86 \pm 0.14$	-0.02 ± 0.05	-0.00 ± 0.06	$+0.03 \pm 0.05$	-0.01 ± 0.04
15.0	$+0.02 \pm 0.02$	$+0.85 \pm 0.14$	-0.01 ± 0.05	-0.01 ± 0.07	$+0.04 \pm 0.05$	$+0.00 \pm 0.04$
15.5	$+0.03 \pm 0.02$	$+0.83 \pm 0.05$	-0.00 ± 0.05	-0.02 ± 0.06	$+0.03 \pm 0.04$	$+0.02 \pm 0.04$

1399 **Appendix E**

1400 In this appendix, we derive the expected joint behavior of σ_0 and measured radial velocity
 1401 following and approach similar to [8,17,21,30,55], but without making any explicit assumption
 1402 regarding the spectral and wind dependence of the modulation coefficients. We assume that two-scale
 1403 Bragg scattering dominates for V-pol, σ_0 for a patch tilted such that the local incidence angle is given
 1404 by $\theta' = \theta + \Delta\theta$, where $\Delta\theta$ is due to the long waves. This model can accommodate the effects of
 1405 wave breaking, as long as it is not caused by scattering through double-bounce wedge scattering, but
 1406 through an increase in surface roughness; this effect of breaking waves has recently been observed
 1407 experimentally by Yurovsky et al. [55], where they show that the effects breaking events do not
 1408 generally propagate with the speed of the breaking wave facet, but at a lower speed. It can also
 1409 accommodate bound waves, as described below.

1410 Since Bragg waves traveling along or opposite to the look direction have opposite-sign Doppler
 1411 signatures and may have different brightness, we introduce the *directional* backscatter cross section,
 1412 $\sigma_{0D}(\theta, \phi_r)$, where $-\pi < \phi_r < \pi$ is the Bragg wave propagation direction relative to the wind, and in
 1413 general $\sigma_{0D}(\theta, \phi_r) \neq \sigma_{0D}(\theta, \phi_r + \pi)$. The usual normalized cross section, due to Bragg waves traveling
 1414 in both directions, is then given by $\sigma_0(\theta, \phi_r) = \sigma_{0D}(\theta, \phi_r) + \sigma_{0D}(\theta, \phi_r + \pi)$. (In our convention, $\phi_r = 0$
 1415 when looking *downwind*). Assuming two-scale scattering, the V-pol $\sigma_{0D}(\theta, \phi_r)$ due to Bragg waves
 1416 traveling on an azimuth of ϕ_r riding on a large scale wave tilted by $\Delta\theta$ is given by [27,30]

$$\sigma_{0D}(\theta', \phi_r) = A(\theta')B(\phi_r, k_B) \quad (\text{A55})$$

$$A(\theta') = \pi \frac{(1 + \sin^2 \theta')^2}{\tan^4 \theta' (\cos \theta' + 0.1111)^4} \left(1 + \frac{1}{B} \frac{\partial B}{\partial k} \Big|_{k=k_B} 2k_B \cos \theta \Delta \theta \right) \quad (\text{A56})$$

where $k_B = 2k_r \sin \theta$ is the Bragg wavenumber, k_r the radar wavenumber, and $B(\phi, k) = k^4 F(\phi, k)$ is the *directional* saturation (or curvature) spectrum [30,61] when $F(\phi, k)$ is *directional* wave height spectrum. The total cross section is $\sigma_0 = A(\theta')B_r(\phi_r, k_B)$, where $B_r(\phi, k) = B(\phi, k) + B(\phi + \pi, k) \equiv k^4 F_r(\phi, k)$ is the *folded* saturation spectrum used in [27,30]. The Bragg wavenumber changes little with small changes in the incidence angle, and we assume that the saturation spectrum can be evaluated at the nominal incidence angle, and its angular variation included into the A term as a linear term. If the surface elevation is given by η , to first order in the surface slope, one will have that $\Delta\theta = -(\cos \phi_r \eta_x + \sin \phi_r \eta_y)$ and, assuming that the large-scale waves have a narrow spectral distribution and they travel along the x -direction, we can neglect the slope in the orthogonal direction, $\eta_y \approx 0$.

To lowest order, observed Doppler shifts will be due to either free Bragg waves, generated by the wind or wave breaking, or bound Bragg waves generated by wave straining. The free Bragg waves have a phase speed which is independent of azimuth angle: $c_{pF} = \sqrt{g (1 + \gamma k_B^2 / g) / k_B} \approx 0.31 \text{ m/s}$ ($\gamma \approx 7.14 \times 10^{-5} \text{ m}^3 \text{s}^{-2}$ is the surface tension divided by the density of seawater). Since any footprint will have Bragg waves traveling with and against the radial direction, \bar{c}_{pF} , the net surface-projected radial velocity, will correspond to the power-weighted average of the two velocities:

$$\bar{c}_{pF}(\phi_r) = c_{pF} \frac{\sigma_{0DB}(\theta, \phi_r) - \sigma_{0DB}(\theta, \phi_r + \pi)}{\sigma_{0DB}(\theta, \phi_r) + \sigma_{0DB}(\theta, \phi_r + \pi)} \quad (\text{A57})$$

$$= c_{pF} \frac{\Phi(k_B, \phi_r) - \Phi(k_B, \phi_r + \pi)}{\Phi(k_B, \phi_r) + \Phi(k_B, \phi_r + \pi)} \quad (\text{A58})$$

where we have used the Bragg scattering approximation in the second line, and define the spectral spreading function [61], $\Phi(k, \phi) = B(k, \phi) / \int dk B(k, \phi)$, which has previously been parametrized as either $\sim \cos(\phi_r/2)^{2s}$ [46] or $[1 + \Delta(k) \cos(2\phi_r)]$ [61]. Notice that $\bar{c}_{pF}(\phi_r) = -\bar{c}_{pF}(\phi_r + \pi)$ and, if the spreading function is symmetric about the wind direction, one must have $\bar{c}_{pF}(\pm\pi/2) = 0$.

Resonant Bragg bound waves generated by straining waves give rise to a net effective speed, $c_{pS}(\phi_r)$

$$c_{pS}(\phi_r) = \frac{\int dk c_p(k) \sigma_{0S}(k, \phi_r)}{\bar{\sigma}_{0S}(\phi_r)} \quad (\text{A59})$$

where the integral is taken over the range of wavenumbers for straining waves, $\sigma_{0S}(k, \phi_r)$ is the normalized backscatter cross section of the bound resonant Bragg waves given a straining wavenumber k , and $\bar{\sigma}_{0S}(\phi) = \int dk \sigma_{0S}(k, \phi)$ is the total bound wave cross section. Presently, we do not have a good prediction for $\sigma_{0S}(k, \phi_r)$, but it is expected to be concentrated about short ($\mathcal{O}(20 \text{ cm})$) steep gravity waves, which have a much narrower spectral width than of the Ka-band capillary free waves. In analogy to equation (A57), the bound wave net surface-projected radial velocity will be

$$\bar{c}_{pS}(\phi_r) = \frac{c_{pS}(\phi_r) \bar{\sigma}_{0S}(\phi_r) - c_{pS}(\phi_r + \pi) \bar{\sigma}_{0S}(\phi_r + \pi)}{\bar{\sigma}_{0S}(\phi_r) + \bar{\sigma}_{0S}(\phi_r + \pi)} \quad (\text{A60})$$

The total lowest order surface projected radial velocity will be given by $\bar{c}_p(\phi_r) = f_B \bar{c}_{pF} + (1 - f_B) \bar{c}_{pS}$, where f_B is the fraction of the surface dominated by free waves, which will change as function of wave development.

1448 The next order effect is due to the local modulation of the saturation spectrum $B(\phi_r, k'_B)$ due to
 1449 Bragg wave amplitude modulation by the large wave orbital velocity, or generation of new capillary
 1450 waves by either breaking or starining. We model it as $\delta B(\psi)$, where ψ is the Hilbert phase of the
 1451 large-scale waves [62]. The waves will have maxima when $\psi = 0$, minima when $\psi = \pm\pi$, and
 1452 zero-crossings when $\psi = \pm\pi/2$. With these approximations, to second order the $\delta\sigma_0/\sigma_0$ term in
 1453 equation (2) will be

$$\frac{\delta\sigma_0}{\sigma_0} \approx -\frac{\partial \log \sigma_0}{\partial \theta} \cos \phi_r \eta_x + \frac{\cos^2 \phi_r}{2A} \frac{\partial^2 A}{\partial \theta^2} \eta_x^2 + \frac{\delta B(\psi)}{B} - \frac{1}{2} \frac{\partial \log \sigma_0}{\partial \theta} \frac{\delta B(\psi)}{B} \cos \phi_r \eta_x \quad (\text{A61})$$

$$\left\langle \frac{\delta\sigma_0}{\sigma_0} \right\rangle \approx \frac{1}{2A} \frac{\partial^2 A}{\partial \theta^2} \left\langle \eta_x^2 + \eta_y^2 \right\rangle - \frac{1}{2} \frac{\partial \log \sigma_0}{\partial \theta} \left\langle \frac{\delta B(\psi)}{B} \cos \phi_r \eta_x \right\rangle \quad (\text{A62})$$

1454 where we have averaged over the long waves in the second equation to obtain a term showing a
 1455 reduction in the mean cross section and a second term that produces the mean upwind-downwind
 1456 modulation, in agreement with [27,30]. The normalized upwind-downwind asymmetry, $\Delta\sigma_{0UD}/\sigma_0$,
 1457 will be proportional to the cross-correlation between surface slope and hydrodynamic modulation,
 1458 and will be given by

$$\frac{\Delta\sigma_{0UD}}{\sigma_0} = \frac{\partial \log \sigma_0}{\partial \theta} \left\langle \frac{\delta B(\psi)}{B} \eta_x \right\rangle \quad (\text{A63})$$

1459 Since σ_0 decreases with angle, and we know that in general $\Delta\sigma_{0UD} > 0$, we must have $\langle \delta B(\psi) \eta_x \rangle <$
 1460 0; i.e., the net maximum change in the spectrum will generally occur when $\eta_x < 0$, or in the leeward
 1461 side of the waves. This conclusion does not depend much on the details of the scattering model
 1462 assumed.

1463 To assess the effects of σ_0 modulation on the Doppler, we must look at the correlation between
 1464 equation (A61) and orbital velocity fluctuations. The fluctuating orbital velocity components will be
 1465 assumed to be dominated by deep-water gravity waves in the linear approximation

$$\begin{aligned} \eta &= \sum_n a_n \cos \Theta_n \\ \eta_x &= - \sum_n a_n k_{xn} \sin \Theta_n \\ u &= \sum_n a_n \omega_n \cos \Theta_n \\ w &= \sum_n a_n \omega_n \sin \Theta_n \end{aligned}$$

1466 where $\Theta_n = k_{xn}x - \omega_n t + \delta\Theta_n$, $\omega_n = \sqrt{gk_{xn}}$, $\delta\Theta_n$ is a uniformly distributed random phase, and
 1467 $\langle a_n \cos \Theta_n a_m \cos \Theta_m \rangle = \delta_{mn} F(k_{xn}) dk$ such that $\langle \eta^2 \rangle = \sum_n F(k_{xn}) dk \rightarrow \int dk F(k)$. The Hilbert phase,
 1468 ψ , and amplitude, H , are defined by [62] $H \exp [i\psi] = \eta + i\check{\eta}$, where $\check{\eta}$ is the Hilbert transform of
 1469 η , $\check{\eta} = \sum_n a_n \sin \Theta_n$. The ground-projected radial velocity due to the wave orbital velocity will be
 1470 $\hat{\ell} \cdot \delta \mathbf{v}_W / \sin \theta = u \cos \phi_r - w \cot \theta$. With these results, we can compute δv_{rs} , the ground-projected
 1471 radial velocity bias caused by large scale waves in equation (2) as

$$\delta v_{rs} = \left\langle \frac{\delta\sigma_0}{\sigma_0} \frac{\hat{\ell} \cdot \delta \mathbf{v}_W}{\sin \theta} \right\rangle = \cos \phi_r \left(-\frac{\partial \log \sigma_0}{\partial \theta} \cot \theta U_S + \left\langle u \frac{\delta B(\psi)}{B} \right\rangle \right) - \cot \theta \left\langle w \frac{\delta B(\psi)}{B} \right\rangle \quad (\text{A64})$$

1472 We have used

$$-\langle \eta_x w \rangle = U_S = \int dk k_x \omega F(k_x) \quad (\text{A65})$$

1473 where $U_S > 0$ is the deep-water Stokes drift current [8]. The first term inside the parenthesis in
 1474 equation (A64) is due to the increase in backscatter with decreasing incidence angle (tilt modulation),
 1475 while the next two terms are purely due to hydrodynamic modulation of the scatterers. Since σ_0
 1476 generally decreases with incidence angle, the sign of the first term will be determined by $\cos \phi_r$, so that
 1477 it behaves like a current traveling in the x -direction.

1478 The presence of the $\cos \phi_r$ factor multiplying the parenthesis in equation () indicates that the terms
 1479 in the parenthesis will behave as a horizontal current and result in a bias that is equal in magnitude
 1480 but opposite in sign in the upwind and downwind directions. On the other hand, the last term in
 1481 equation (A64) is independent of the azimuth direction, and behaves as a net vertical velocity term
 1482 which does not disappear when performing weighted averaging over the long wave. Since this term is
 1483 the only one that does not change sign when as the look direction changes from upwind to downwind,
 1484 it is responsible for the upwind/downwind difference in F_S . The upwind radial velocity magnitude
 1485 will be *greater* than the downwind component (as in Figure 28) if $\left\langle w \frac{\delta B(\psi)}{B} \right\rangle > 0$; i.e., if the saturation
 1486 spectrum increases in the leeward side of the wave ($0 \leq \psi \leq \pi$). If $\left\langle w \frac{\delta B(\psi)}{B} \right\rangle < 0$, as can happen due
 1487 to wave breaking roughness in the windward part of the wave [55], the *downwind* velocity magnitude
 1488 will be greater. The difference in magnitudes will be given by $|\Delta v_{rSud}| = \left| 2 \cot \theta \left\langle w \frac{\delta B(\psi)}{B} \right\rangle \right|$.

1489 There are several mechanisms for generating δB : a) changes in local currents and acceleration,
 1490 which can modify the small wave amplitude and wavenumber [30,59]; b) generation of bound capillary
 1491 waves, through wave straining in leeward wave faces by intermediate wavelength waves [28–30,47]; c)
 1492 through increase in surface roughness through wave breaking [30,55]. To lowest order, we assume that
 1493 all of these effects can be captured by a linear effect that can be incorporated in a modulation transfer
 1494 function (MTF) [54,56]. While the MTF theory is well developed for short gravity waves riding on long
 1495 waves under a constant wind, capillary waves have additional complications and their modulation
 1496 can be significantly larger than given by the standard theory, as discussed by Chen et al. [63], or can
 1497 include contributions due to bound waves or breaking. Rather than try to derive the magnitude of the
 1498 MTF, we merely assume a linear effect and deduce features of this modulation by comparing against
 1499 our measurements. The hydrodynamic modulation can be written as

$$\frac{\delta B_H(\psi)}{B} = \sum_n k_{xn} a_n (m_r(k_{xn}) \cos \Theta_n + m_i(k_{xn}) \sin \Theta_n) \quad (\text{A66})$$

1500 where m_r and m_i are the wavenumber dependent real and imaginary components of the MTF,
 1501 respectively. Replacing into equation (A64) and averaging over wave realizations, we find that the

$$\delta v_{rS} = U_S \left[\cos \phi_r \left(-\frac{\partial \log \sigma_0}{\partial \theta} \cot \theta + \bar{m}_r \right) - \cot \theta \bar{m}_i \right] \quad (\text{A67})$$

$$\bar{m}_{r/i} = \frac{\int dk m_{r/i}(k_x) k_x \omega F(k_x)}{U_S} \quad (\text{A68})$$

1502 where \bar{m}_r and \bar{m}_i are the averages of the MTF weighted by the Stokes drift for each wavenumber.
 1503 We note that the wavenumber averaged MTF is sufficient to characterize the effects of large-scale wave
 1504 modulation on the wind-induced Doppler bias. We also note that these average MTF parameters can
 1505 be obtained by fitting the spectrum modulation as a function of the slope, η_x , and its Hilbert transform,
 1506 $\tilde{\eta}_x$; i.e., $\delta B/B = \bar{m}_r \tilde{\eta}_x - \bar{m}_i \eta_x$.

1507 This result is similar to [8,17], but we recognize that the modulation coefficients at Ka-band will
 1508 be inversely proportional to some power of the wind speed, so that they decrease with increasing
 1509 wind speed, rather than remain constant as implicit in [8]. Notice that the sign of \bar{m}_i is the same as
 1510 the sign of $\langle w \delta B_H(\psi) \rangle$, so that, by the previous discussion, generally $\bar{m}_i > 0$, or $\arctan(\bar{m}_i/\bar{m}_r) =$
 1511 $\psi_H > 0$, but the sign can reverse at high winds, leading to the wind dependence results in Figure 28.
 1512 This means that in general the phase of the hydrodynamic modulation must be negative, and the

1513 hydrodynamic modulation will have a maximum on the windward side of the wave; this consistent
1514 with the observations [55,59,64] that Ka-band and for winds above light winds.

1515 References

- 1516 1. Kelly, K.; Dickinson, S.; McPhaden, M.; Johnson, G. Ocean Currents Evident in Satellite Wind. *Geophysical*
1517 *Research Letters* **2001**, *28*, 2469–2472.
- 1518 2. Small, R.J.; deSzoeke, S.P.; Xie, S.P.; O'Neill, L.; Seo, H.; Song, Q.; Cornillon, P.; Spall, M.; Minobe, S. Air-sea
1519 interaction over ocean fronts and eddies, 2008. *Dynamics of Atmospheres and Oceans*.
- 1520 3. Chelton, D.; Schlax, M.; Samelson, R. Summertime Coupling Between Sea Surface Temperature and Wind
1521 Stress in the California Current System. *Journal of Physical Oceanography* **2006**.
- 1522 4. D'Asaro, E.; Lee, C.; Rainville, L.; Harcourt, R.; Thomas, L. Enhanced turbulence and energy dissipation at
1523 ocean fronts. *science* **2011**, *332*, 318.
- 1524 5. Goldstein, R.; Zebker, H. Interferometric radar measurement of ocean surface currents. *Nature* **1987**,
1525 *328*, 707–709.
- 1526 6. Goldstein, R.; Barnett, T.; Zebker, H. Remote sensing of ocean currents. *Science* **1989**, *246*, 1282–1285.
- 1527 7. Frasier, S.; Camps, A. Dual-beam interferometry for ocean surface current vector mapping. *Geoscience and*
1528 *Remote Sensing, IEEE Transactions on* **2001**, *39*, 401–414.
- 1529 8. Chapron, B.; Collard, F.; Ardhuin, F. Direct measurements of ocean surface velocity from space:
1530 Interpretation and validation. *Journal of Geophysical Research* **2005**, *110*, C07008.
- 1531 9. Bao, Q.; Dong, X.; Zhu, D.; Lang, S.; Xu, X. The Feasibility of Ocean Surface Current Measurement Using
1532 Pencil-Beam Rotating Scatterometer. *Selected Topics in Applied Earth Observations and Remote Sensing, IEEE*
1533 *Journal of* **2015**, *8*, 3441–3451.
- 1534 10. Fois, F.; Hoogeboom, P.; Le Chevalier, F.; Stoffelen, A.; Mouche, A. DopSCAT: A mission concept for
1535 simultaneous measurements of marine winds and surface currents. *Journal of Geophysical Research: Oceans*
1536 **2015**.
- 1537 11. Freeman, A. On ambiguities in SAR design. EUSAR 2006: 6th European Conference on Synthetic Aperture
1538 Radar; Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2006.:
1539 Dresden, Germany, 2006.
- 1540 12. Madsen, S. Estimating the Doppler centroid of SAR data. *Aerospace and Electronic Systems, IEEE Transactions*
1541 *on* **1989**, *25*, 134–140.
- 1542 13. Mouche, A.A.; Collard, F.; Chapron, B.; Dagestad, K.; Guitton, G.; Johannessen, J.A.; Kerbaol, V.; Hansen,
1543 M.W. On the use of Doppler shift for sea surface wind retrieval from SAR. *Geoscience and Remote Sensing,*
1544 *IEEE Transactions on* **2012**, *50*, 2901–2909.
- 1545 14. Spencer, M.; Wu, C.; Long, D. Improved Resolution Backscatter Measurements with the SeaWinds
1546 Pencil-Beam Scatterometer. *IEEE Transactions on Geoscience and Remote Sensing* **2000**, *38*, 89–104.
- 1547 15. Spencer, M.; Tsai, W.; Long, D. High-Resolution Measurements With a Spaceborne Pencil-Beam
1548 Scatterometer Using Combined Range/Doppler Discrimination Techniques. *IEEE Transactions on Geoscience*
1549 *and Remote Rensing* **2003**, *41*, 567–581.
- 1550 16. Ulaby, F.; Moore, R.; Fung, A. *Microwave Remote Sensing: Active and Passive*, Vol. III—Volume
1551 Scattering and Emission Theory, Advanced Systems and Applications. *Inc., Dedham, Massachusetts* **1986**,
1552 pp. 1797–1848.
- 1553 17. Johannessen, J.; Chapron, B.; Collard, F.; Kudryavtsev, V.; Mouche, A.; Akimov, D.; Dagestad, K.F. Direct
1554 ocean surface velocity measurements from space: Improved quantitative interpretation of Envisat ASAR
1555 observations. *Geophysical Research Letters* **2008**, *35*.
- 1556 18. Mouche, A.A.; Chapron, B.; Reul, N.; Collard, F. Predicted Doppler shifts induced by ocean surface wave
1557 displacements using asymptotic electromagnetic wave scattering theories. *Waves in Random and Complex*
1558 *Media* **2008**, *18*.
- 1559 19. Hansen, M.W.; Kudryavtsev, V.; Chapron, B.; Johannessen, J.A.; Collard, F.; Dagestad, K.F.; Mouche, A.A.
1560 Simulation of radar backscatter and Doppler shifts of wave-current interaction in the presence of strong
1561 tidal current. *Remote Sensing of Environment* **2012**, *120*, 113–122.

1562 20. Martin, A.C.H.; Gommenginger, C.; Marquez, J.; Doody, S.; Navarro, V.; Buck, C. Wind-wave-induced
1563 velocity in ATI SAR ocean surface currents: First experimental evidence from an airborne campaign.
1564 *Journal of Geophysical Research: Oceans* **2016**, *121*, 1640–1653.

1565 21. Yurovsky, Y.Y.; Kudryavtsev, V.N.; Grodsky, S.A.; Chapron, B. Ka-Band Dual Copolarized Empirical
1566 Model for the Sea Surface Radar Cross Section. *IEEE Transactions on Geoscience and Remote Sensing* **2017**,
1567 *55*, 1629–1647.

1568 22. Yurovsky, Y.Y.; Kudryavtsev, V.N.; Chapron, B.; Grodsky, S.A. Normalized Radar Backscattering
1569 Cross-Section and Doppler Shifts of the Sea Surface in Ka-band. PIERS St Petersburg Proceedings,
1570 2017.

1571 23. Rodríguez, E.; Martin, J.M. Theory and design of interferometric synthetic aperture radars. *IEE Proc.-F*
1572 **1992**, *139*, 147–159.

1573 24. Kay, S. *Fundamentals of Statistical Signal Processing: Estimation Theory*; Vol. 1, *Prentice Hall Signal Processing*
1574 Series, Prentice Hall, 1993.

1575 25. Schaeffer, P.; Faugere, Y.; Legeais, J.; Ollivier, A.; Guinle, T.; Picot, N. The CNES_CLS11 global mean sea
1576 surface computed from 16 years of satellite altimeter data. *Marine Geodesy* **2012**, *35*, 3–19.

1577 26. Ardhuin, F.; Aksenov, Y.; Benetazzo, A.; Bertino, L.; Brandt, P.; Caubet, E.; Chapron, B.; Collard, F.; Cravatte,
1578 S.; Dias, F.; Dibarboore, G.; Gaultier, L.; Johannessen, J.; Korosov, A.; Manucharyan, G.; Menemenlis, D.;
1579 Menendez, M.; Monnier, G.; Mouche, A.; Nouguier, F.; Nurser, G.; Rampal, P.; Reniers, A.; Rodriguez, E.;
1580 Stopa, J.; Tison, C.; Tissier, M.; Ubelmann, C.; van Sebille, E.; Vialard, J.; Xie, J. Measuring currents, ice drift,
1581 and waves from space: the Sea Surface KInematics Multiscale monitoring (SKIM) concept. *Ocean Science*
1582 *Discussions* **2017**, *2017*, 1–26.

1583 27. Plant, W.J. A two-scale model of short wind-generated waves and scatterometry. *Journal of Geophysical*
1584 *Research: Oceans* **1986**, *91*, 10735–10749.

1585 28. Plant, W.J. A model for microwave Doppler sea return at high incidence angles: Bragg scattering from
1586 bound, tilted waves. *Journal of Geophysical Research: Oceans (1978–2012)* **1997**, *102*, 21131–21146.

1587 29. Plant, W.J.; Irisov, V. A joint active/passive physical model of sea surface microwave signatures. *Journal of*
1588 *Geophysical Research: Oceans* **2017**, *122*, 3219–3239.

1589 30. Kudryavtsev, V.; Hauser, D.; Caudal, G.; Chapron, B. A semiempirical model of the normalized radar
1590 cross-section of the sea surface 1. Background model. *Journal of Geophysical Research* **2003**, *108*.

1591 31. Draper, D.W.; Long, D.G. An assessment of SeaWinds on QuikSCAT wind retrieval. *Journal of Geophysical*
1592 *Research: Oceans* **2002**, *107*, 5–1–5–14. 3212.

1593 32. Stiles, B.W.; Pollard, B.D.; Dunbar, R.S. Direction interval retrieval with thresholded nudging: a method
1594 for improving the accuracy of QuikSCAT winds. *IEEE Transactions on Geoscience and Remote Sensing* **2002**,
1595 *40*, 79–89.

1596 33. Bourassa, M.A.; Freilich, M.H.; Legler, D.M.; Liu, W.T.; O'Brien, J.J. Wind observations from new satellite
1597 and research vessels agree. *Eos, Transactions American Geophysical Union* **1997**, *78*, 597–602.

1598 34. Verron, J.; Sengenes, P.; Lambin, J.; Noubel, J.; Steunou, N.; Guillot, A.; Picot, N.; Coutin-Faye,
1599 S.; Sharma, R.; Gairola, R.M.; Murthy, D.V.A.R.; Richman, J.G.; Griffin, D.; Pascual, A.; Rémy,
1600 F.; Gupta, P.K. The SARAL/AltiKa Altimetry Satellite Mission. *Marine Geodesy* **2015**, *38*, 2–21,
1601 [<http://dx.doi.org/10.1080/01490419.2014.1000471>].

1602 35. Ricciardulli, L.; Wentz, F.J. A Scatterometer Geophysical Model Function for Climate-Quality
1603 Winds: QuikSCAT Ku-2011. *Journal of Atmospheric and Oceanic Technology* **2015**, *32*, 1829–1846,
1604 [<https://doi.org/10.1175/JTECH-D-15-0008.1>].

1605 36. Wentz, F.J.; Mattox, L.A.; Peteherych, S. New algorithms for microwave measurements of ocean winds:
1606 Applications to Seasat and the special sensor microwave imager. *Journal of Geophysical Research: Oceans*
1607 **1986**, *91*, 2289–2307.

1608 37. Wentz, F.J.; Smith, D.K. A model function for the ocean-normalized radar cross section at 14 GHz derived
1609 from NSCAT observations. *Journal of Geophysical Research: Oceans* **1999**, *104*, 11499–11514.

1610 38. Masuko, H.; Okamoto, K.; Shimada, M.; Niwa, S. Measurement of microwave backscattering signatures
1611 of the ocean surface using X band and Ka band airborne scatterometers. *Journal of Geophysical Research: Oceans* **1986**, *91*, 13065–13083.

1613 39. Walsh, E.J.; Vandemark, D.C.; Friehe, C.A.; Burns, S.P.; Khelif, D.; Swift, R.N.; Scott, J.F. Measuring sea
1614 surface mean square slope with a 36-GHz scanning radar altimeter. *Journal of Geophysical Research: Oceans*
1615 **1998**, *103*, 12587–12601.

1616 40. Tanelli, S.; Durden, S.L.; Im, E. Simultaneous measurements of ku- and ka-band sea surface cross sections
1617 by an airborne Radar. *IEEE Geoscience and Remote Sensing Letters* **2006**, *3*, 359–363.

1618 41. Vandemark, D.; Chapron, B.; Sun, J.; Crescenti, G.H.; Graber, H.C. Ocean Wave Slope Observations
1619 Using Radar Backscatter and Laser Altimeters. *Journal of Physical Oceanography* **2004**, *34*, 2825–2842,
1620 [<https://doi.org/10.1175/JPO2663.1>].

1621 42. Donnelly, W.J.; Carswell, J.R.; McIntosh, R.E.; Chang, P.S.; Wilkerson, J.; Marks, F.; Black, P.G. Revised
1622 ocean backscatter models at C and Ku band under high-wind conditions. *Journal of Geophysical Research: Oceans*
1623 **1999**, *104*, 11485–11497.

1624 43. Ulaby, F.; Moore, R.; Fung, A. Microwave remote sensing: active and passive. Volume I: microwave remote
1625 sensing fundamentals and radiometry. In *Microwave remote sensing: active and passive. Volume I: microwave*
1626 *remote sensing fundamentals and radiometry*; Addison-Wesley; Remote Sensing Series 2, 1981.

1627 44. O'Neill, L.W.; Chelton, D.B.; Esbensen, S.K. The Effects of SST-Induced Surface Wind Speed and
1628 Direction Gradients on Midlatitude Surface Vorticity and Divergence. *Journal of Climate* **2010**, *23*, 255–281,
1629 [<https://doi.org/10.1175/2009JCLI2613.1>].

1630 45. Arduin, F.; Marié, L.; Rasclé, N.; Forget, P.; Roland, A. Observation and estimation of Lagrangian, Stokes,
1631 and Eulerian currents induced by wind and waves at the sea surface. *Journal of Physical Oceanography* **2009**,
1632 *39*, 2820–2838.

1633 46. Moller, D.; Frasier, S.J.; Porter, D.L.; McIntosh, R.E. Radar-derived interferometric surface currents and their
1634 relationship to subsurface current structure. *Journal of Geophysical Research: Oceans* **1998**, *103*, 12839–12852.

1635 47. Laxague, N.J.; Haus, B.K.; Ortiz-Suslow, D.G.; Smith, C.J.; Novelli, G.; Dai, H.; Özgökmen, T.; Graber,
1636 H.C. Passive Optical Sensing of the Near-Surface Wind-Driven Current Profile. *Journal of Atmospheric and*
1637 *Oceanic Technology* **2017**, *34*, 1097–1111.

1638 48. Wu, J. Wind-induced drift currents. *Journal of Fluid Mechanics* **1975**, *68*, 49–70.

1639 49. Jenkins, A.D. Wind and wave induced currents in a rotating sea with depth-varying eddy viscosity. *Journal*
1640 *of Physical Oceanography* **1987**, *17*, 938–951.

1641 50. Broche, P.; Demaistre, J.; Forget, P. Mesure par radar décamétrique cohérent des courants superficiels
1642 engendrés par le vent. *Oceanologica Acta* **1983**, *6*, 43–53.

1643 51. Stewart, R.H.; Joy, J.W. HF radio measurements of surface currents. Deep Sea Research and Oceanographic
1644 Abstracts. Elsevier, 1974, Vol. 21, pp. 1039–1049.

1645 52. Efron, B.; Stein, C. The jackknife estimate of variance. *The Annals of Statistics* **1981**, pp. 586–596.

1646 53. Rowley, C.; Mask, A. Regional and Coastal Prediction with the Relocatable Ocean Nowcast/Forecast
1647 System. *Oceanography* **2014**, *27*.

1648 54. Keller,.; Wright. Microwave scattering and the straining of wind-generated waves. *Radio Science* **1975**,
1649 *10*, 139–147.

1650 55. Yurovsky, Y.Y.; Kudryavtsev, V.N.; Chapron, B.; Grodsky, S.A. Modulation of Ka-band Doppler Radar
1651 Signals Backscattered from Sea Surface. *IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE*
1652 *SENSING (Submitted)* **2017**.

1653 56. Alpers.; Hasselmann. The two-frequency microwave technique for measuring ocean-wave spectra from an
1654 airplane or satellite. *Boundary-Layer Meteorology* **1978**, *13*, 215–230.

1655 57. Santala, M.J.; Terray, E.A. A technique for making unbiased estimates of current shear from a wave-follower.
1656 *Deep Sea Research Part A. Oceanographic Research Papers* **1992**, *39*, 607–622.

1657 58. Keller, W.; Plant, W.; Petitt, R.; Terray, E. Microwave backscatter from the sea: Modulation of received
1658 power and Doppler bandwidth by long waves. *Journal of Geophysical Research: Oceans (1978–2012)* **1994**,
1659 *99*, 9751–9766.

1660 59. Laxague, N.J.; Curcic, M.; Björkqvist, J.V.; Haus, B.K. Gravity-capillary wave spectral modulation by
1661 gravity waves. *IEEE Transactions on Geoscience and Remote Sensing* **2017**, *55*, 2477–2485.

1662 60. Goodman, J. *Statistical Optics*; Wiley-Interscience: New York, 1985.

1663 61. Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D. A unified directional spectrum for long and short
1664 wind-driven waves. *Journal of Geophysical Research: Oceans (1978–2012)* **1997**, *102*, 15781–15796.

1665 62. Tayfun, M.A. On narrow-band representation of ocean waves: 1. Theory. *Journal of Geophysical Research: Oceans* **1986**, *91*, 7743–7752.

1666 63. Chen, P.; Wang, X.; Liu, L.; Chong, J. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation. *Journal of Geophysical Research: Oceans* **2016**, *121*, 4228–4244.

1668 64. Feindt, F.; Schroeter, J.; Alpers, W. Measurement of the ocean wave-radar modulation transfer function at 35 GHz from a sea-based platform in the North Sea. *Journal of Geophysical Research: Oceans (1978-2012)* **1986**, *91*, 9701–9708.

1669

1670

1671

1672