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Abstract: Ocean surface currents and winds are tightly coupled essential climate variables, and,1

given their short time scales, observing them at the same time and resolution is of great interest.2

DopplerScatt is an airborne Ka-band scatterometer that has been developed under NASA’s Instrument3

Incubator Program (IIP) to provide a proof of concept of the feasability of measuring these variables4

using pencil-beam scanning Doppler scatterometry. In the first half of this paper, we present5

the Doppler scatterometer measurement and processing principles, paying particular attention6

to deriving a complete measurement error budget. Although Doppler radars have been used for the7

estimation of surface currents, pencil-beam Doppler Scatterometry offers challenges and opportunities8

that require separate treatment. The calibration of the Doppler measurement to remove platform and9

instrument biases has been a traditional challenge for Doppler systems, and we introduce several new10

techniques to mitigate these errors when conical scanning is used. The use of Ka-band for airborne11

Doppler scatterometry measurements is also new, and, in the second half of the paper, we examine the12

phenomenology of the mapping from radar cross section and radial velocity measurements to winds13

and surface currents. To this end, we present new Ka-band Geophysical Model Functions (GMF’s)14

for winds and surface currents obtained from multiple airborne campaigns. We find that the wind15

Ka-band GMF exhibits similar dependence to wind speed as that for Ku-band scatterometers, such as16

QuikSCAT, albeit with much greater upwind-crosswind modulation. The surface current GMF at17

Ka-band is significantly different from that at C-band, and, above 4.5 m/s has a weak dependence18

on wind speed, although still dependent on wind direction. We examine the effects of Bragg-wave19

modulation by long waves through a Modululation Transfer Function (MTF), and show that the20

observed surface current dependence on winds is consistent with past Ka-band MTF observations.21

Finally, we provide a preliminary validation of our geophysical retrievals, which will be expanded in22

subsequent publications. Our results indicate that Ka-band Doppler scatterometry could be a feasible23

method for wide-swath simultaneous measurements of winds and currents from space.24

Keywords: surface currents; ocean vector winds; scatterometry; Doppler.25

1. Introduction26

The two-way interaction between ocean surface currents and ocean winds is an important27

component of the ocean-atmosphere system. Surface winds drive currents, but are, in their turn,28

modulated by currents since the forcing wind stress is relative to the current’s moving reference29

frame [1]. In addition, surface currents advect warm or cold water, and the resulting temperature30

gradients modulate the winds (e.g., [2]), possibly causing a change in the structure of mesoscale and31

sub-mesoscale circulation (e.g., [3]). At small space and time scales, the interaction of winds and32

surface currents becomes tighter as winds can drive inertial oscillations or aid in the formation of33

mesoscale fronts (e.g., [4]), where significant vertical ocean motion can occur, leading to enhanced34

mixing. For these reasons, it is very desirable to be able to obtain simultaneous synoptic measurements35

of ocean surface currents and winds.36
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Measurements of ocean vector winds have a long heritage with radar scatterometers using either37

Ku-band rotating pencil beam scatterometry (e.g. NASA’s QuikSCAT and RapidScat, ISRO’s OSCAT38

and ScatSat) or multiple beam C-band scatterometry (e.g., EUMETSAT’s ASCAT series). The possibility39

of measuring surface currents using radar along-track interferometry was first suggested by Goldstein40

et al. [5,6] and an airborne vector measurement was demonstrated by [7]. Implementing a dual41

beam along-track interferometer from space is challenging. Chapron et al. [8], with colleagues from42

IFREMER and elsewhere, suggested that single-antenna SAR Doppler centroid measurements could43

be used instead, albeit potentially at lower resolution and accuracy. Rodríguez (Ocean Vector Winds44

Science Team Meeting, 2012) suggested that a slight modification of the pencil beam scatterometer45

to include Doppler measurements could produce wide-swath vector surface current measurements,46

and Bao et al. [9] subsequently published an analysis of the performance of a Doppler scatterometer47

spaceborne system. Fois et al. [10] showed that a Doppler system amenable to the ASCAT architecture48

could also be implemented by correlating the Doppler shift from opposite sense chirps.49

Given the scientific potential for simultaneous measurements of winds and currents, NASA50

funded the development of a Ka-band Doppler scatterometer system, called DopplerScatt, under51

the NASA Instrument Incubator Program (IIP). Here, we present the Ka-band measurement52

phenomenology, the processing and calibration algorithms, and the detailed detailed measurement53

error budget for the DopplerScatt wind and current measurements. These measurements are then54

validated using data collected in several field campaigns.55

The DopplerScatt instrument design is presented in Section 2.1. We then present a review of the56

measurement principles and an overview of the processing in Section 2.2. The measurement principles57

are examined further in Appendix A, which extends the work of Bao et al. [9] to include several58

additional effects. One aspect where pencil-beam Doppler centroid systems differ from side-looking59

SAR systems is in the variation of Doppler bandwidth with scan angle [11]. This variation allows the60

estimation of the Doppler centroid using phases from multiple bursts in order to reduce the noise of61

the estimate. We present detailed algorithms for the estimation of the Doppler centroid that extend the62

classical work of Madsen [12] to multiple bursts in Section 2.5. We derive a new analytical estimate for63

the radial velocity and validate it using DopplerScatt field measurements.64

In Sections 2.4-2.6, we present the description of the end-to-end processing algorithms. Given65

the novelty of the pencil-bean Doppler measurements, we pay attention to the sensitivity equations66

for the velocity, and validate the DopplerScatt random error performance by comparing theoretical67

predictions and estimates obtained from campaign data.68

DopplerScatt also differs from spaceborne scatterometers in having only one polarization and69

one antenna beam. In traditional scatterometry, this limitation would lead to unacceptable azimuth70

ambiguities, but we show in Section 2.6 that, following the spirit of Mouche et al. [13], the surface71

current radial velocity information can be used to obtain unambiguous wind directions.72

A critical part of the radial velocity measurement (and one of the primary limitations for73

spaceborne SAR systems to date) is calibrating the antenna position so that the look vector is known74

to sufficient accuracy. In Section 2.8, we show that it is possible to use measurements over multiple75

scan cycles of the pencil-beam antenna to determine angular biases and illustrate with results from76

DopplerScatt. These results illustrate the system’s stability over multile campaigns.77

After laying down the theoretical and processing framework, we examine in Section 3 the78

geophysical results obtained during multiple flights conducted by the DopplerScatt instrument during79

2016 and 2017. These results include estimates of the ocean correlation times at Ka-band (Section 3.1);80

estimates of the geophysical model function (GMF) relating σ0 and winds for vertical-polarization,81

moderate incidence angle Ka-band data (Section 3.2); the separation of the ocean surface currents into82

two components: one directly proportional to the local wind, representing the sum of Bragg wave83

motion, Stokes and wind drift, and coupling of surface waves orbital velocities; and another one84

corresponding to the deeper current that does not respond immedialte to the local wind (Section 3.4).85

In Sections 3.3-3.5 we present some preliminary comparisons of the final DopplerScatt data products86
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against available in situ data. Given the complexity of comparing radar surface velocities with in87

situ measurements conducted by various methods, we will give a more detailed accounting of this88

subject elsewhere. The mechanims that generate the surface current GMF through modulation of89

Bragg waves by long ocean waves is discussed in Section 4. Finally, in Sections 4-5, we compare our90

findings with similar findings obtained at different frequencies or by different measurements, and91

assess the prospects for Ka-band Doppler scatterometry.92

2. Materials and Methods93

2.1. The DopplerScatt Instrument94

DopplerScatt is a vertically polarized single-beam Ka-band coherent scatterometer using a rotating95

pencil-beam antenna to illuminate circular regions that can be built into a continuous swath, similar96

to the principle of the NASA’s Seawinds Instrument on QuikSCAT [14]. The 12 RPM rotation rate of97

the antenna is set so that, for a given range, every point in the swath is observed from at least two98

different directions, resulting in the observation geometry shown in Figure 1. The data are recorded99

coherently onboard and processed on the ground to estimate radial velocities, by using pulse-pair100

phase differences, and normalized radar backscatter cross sections, σ0. The azimuth diversity of the101

measurements allows for inversion of both vector surface velocities and winds, as will be explained102

below. The antenna beam boresight is set at a nominal incidence angle of 56◦, which, at a nominal103

flight altitude of 8.53 km, results in a ground scan radius, R, of approximately 12.5 km, for a total104

observation swath of about 25 km. The system is highly configurable in terms of the inter-pulse period,105

the burst repetition interval, and the system bandwidth, allowing for operation at multiple altitudes.106

Table 1 presents the configuration that was used to obtain the results used in this paper.107

f
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R ˆ̀+ R ˆ̀�
'�

'+

Figure 1. Geometry, viewed from above, for the inversion of vector surface velocities and winds. The
platform flies along the x-direction, and the cross-track distance is given by y. For a given range, the
footprint scans along a circle of radius R centered at the radar position (indicated by a dark circle). For
this simple geometry, any given point in the swath is mapped twice, with a plane-projected look vector
in the forward (backward) direction given by ˆ̀+

‖ (ˆ̀−
‖ ). The angle φ = arctan(2y/D) = ϕ+ is the angle

between the forward look and platform directions and D is the platform separation. It is related to the
backward look angle by ϕ− = π − φ.

A 3D model of DopplerScatt is presented in Figure 2. A 5 MHz chirp signal is generated digitally,108

upconverted, and amplified using a commercial Ka-band solid state amplifier (SSPA), built by QuinStar109

Technology, to achieve a peak transmit power of 100 W. The signal is transmitted and received by a110

rotating, 3◦ one-way beamwidth, vertically-polarized, waveguide slotted array antenna, base-banded111

by the RF receiver, and digitized at high rate by a commercial digital receiver built by Remote Sensing112

Solutions. The processing of the complex data from the digital receiver will be described below. For113

the nominal system parameters in Table 1, the system achieves a noise-equivalent σ0 of about -37 dB,114

which is sufficient for sampling scenes for even very low winds (O(2 m/s)).115
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Figure 2. 3D model of the DopplerScatt system prior to integration into the radome and mounting
plate installed in the belly of a King Air B200 airplane.

Although the system pulse repetition frequency allows for SAR processing, the achievable azimuth116

resolution using SAR will vary significantly with azimuth angle, and, at this point, we have decided117

to process the data in real-aperture mode to obtain more uniform sampling characteristics. This118

leads to a two-way azimuth footprint size of approximately 600 m. In the range direction, the chirp119

bandwidth results in a ground sample spacing of 36 m. The achievable ground resolution when120

combining multiple looks for different directions will vary across the swath, but can lead to significant121

improvements in the resolution cell size, especially in the swath “sweet-spots” between the nadir track122

and the far-swath [15].123

Pulsed pair Doppler processing is achieved by cross-correlating bursts which are transmitted at a124

burst repetition frequency of 4.5 kHz, Nyquist oversampling the Doppler bandwidth for all azimuth125

angles. The system’s phase and power stability is monitored a using an internal calibration loop which126

includes the transmit and receive paths, excluding the rotating antenna. Intensive laboratory testing127

prior to deployment, and subsequent calibration field data, showed that the pulse-pair difference128

timing stability is insensitive to temperature and introduces radial velocity errors much smaller than129

1 cm/s. The system delay showed some sensitivity to temperature, but drifts were much smaller than130

the inverse bandwidth of the system. The system gain exhibited variations with temperature and these131

were calibrated using loop-back calibration and corrected during the processing to obtain σ0.132

The instrument position and attitude are obtained using a GPS receiver coupled with an133

Applanix POS AV-610 Internal Motion Unit (IMU). The IMU manufacturer specifications1 relevant to134

DopplerScatt’s performance are given in Table 2, assuming Precise Point Positioning (PPP)2 processing.135

The rotation angle is obtained by means of an encoder, which has a nominal resolution of 88 mdeg, but136

has an unknown mounting offset that needs to be obtained from calibration. The nominal antenna137

pattern was obtained using near-range field measurements. The nominal boresight was obtained by138

combining mechanical measurements of the antenna location together with IMU attitudes and the139

azimuth encoder measurement.140

2.2. Current Measurement Principle141

DopplerScatt measures two basic quantities, pulse-pair phase differences and return power, which142

are then converted to surface radial velocities, vrS, and normalized backscatter cross section, σ0. The143

use of σ0 for vector wind retrieval using a pencil-beam scatterometer is well known (e.g., [16]), and we144

1 https://www.applanix.com/downloads/products/specs/POSAV_DS_feb_2017_yw.pdf
2 http://www.navipedia.net/index.php/Precise_Point_Positioning
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Table 1. DopplerScatt nominal parameters.

Parameter Value
Peak Power 100 W

3 dB Azimuth Beamwidth 3◦

3 dB Azimuth Footprint 600 m
3 dB Elevation Beamwidth 3◦

3 dB Elevation Footprint 1.4 km
Nominal boresight angle 56◦

Burst Repetition Frequency 4.5 kHz
Inter-pulse Period 18.4 µsec

Chirp length 6.4 µsec
Pulses per burst 4
Pulse Bandwidth 5 MHz
Azimuth Looks 100

Range Resolution 30 m
Resolution in Elevation 36.2 m
Resolution in Azimuth 485 m

Nominal Platform Altitude 8.53 km
Nominal Swath 25 km

Scan Rate 12 RPM
Noise Equivalent σ0 -37 dB

Table 2. Applanix POS AV 610 performance specifications.

Parameter Accuracy
True Heading 5 mdeg
Roll & Pitch 2.5 mdeg

Attitude Drift <0.01 deg/hr
Velocity 0.5 cm/s

Horizontal Position <10 cm
Vertical Position <20 cm

refer the reader to the literature for a review of the principles. The principles of using a pencil-beam145

system to measure surface currents was presented by Bao et al. [9]. In this paper, we extend their146

derivation to include various effects not accounted for in their first order approximation and also147

examine the algorithm for radial velocity in detail.148

In Appendix A, we present a detailed measurement model and find that the complex correlation149

coefficient, γ(τ), for a pulse pair separated by a time τ is given by150

〈E1E∗2 〉√〈
|E1|2

〉 〈
|E2|2

〉 ≡ γ (τ) = exp [−iΦ(τ)] γNγT (τ) |γD(τ)| (1)

Φ
2kτ

= ˆ̀ ·
(

vp −
(

vW +

〈
δσ0

σ0
ˆ̀ · δvW

〉
W

))
− vrG − vrA (2)

where Ei is the complex return signal, Φ is the pulse-pair phase difference, 2kτ = 4πτ/λ, ˆ̀ is151

the look vector from the platform to the scattering cell3, vp is the platform velocity vector, and vW152

is the velocity vector for the surface scatterers averaged over the resolution cell. Equation (2) shows153

that the normalized pulse-pair phase is proportional to the radial velocity along the look direction,154

ˆ̀ ·
(
vp − vW

)
, as in [9], but also includes three additional terms.155

3 We drop the C subscript and overbars of Appendix A in the main text to simplify notation.
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The first term,
〈

δσ0
σ0

ˆ̀ · δvW

〉
W

, represents the correlation between σ0 and vW fluctuations within156

the resolution cell, reflects the modulation of the resolution cell Doppler centroid by changes in157

σ0. Thus, if velocity and back scatter modulations are correlated (by hydrodynamic, tilt, or other158

modulations), the radial velocity contributing to the Doppler will not be ˆ̀ · vW , but will be shifted159

towards the velocities in the brighter parts of the long waves and may cause a net Doppler shift even160

when the average wave orbital velocity is negligible. The presence of this coupling was first shown by161

Chapron et al. [8], and has been incorporated subsequently into the DopRIM model [17–19]. This type162

of modulation has been shown to be important at C-band [8,18] and X-band [20], and to introduce a163

significant wind component which is a function of both wind speed and direction, with theory being164

in general good agreement with observations. At Ka-band, there is a much smaller literature, although165

recently Yurovsky and colleagues [21,22] have shown empirical and theoretical evidence for a wind166

induced component, which will be discussed in greater detail below.167

The second term, vrG, is due to shifts in the Doppler centroid caused by non-random (i.e.,168

non-wave-related) variations in the backscatter cross section over the resolution cell, such as those169

due to a gradient in wind speed, or a σ0 variation due to surfactants. A detailed derivation of the170

magnitude of this term is given in Appendix A. When the antenna pattern is well approximated by a171

Gaussian, as is the case for DopplerScatt, the term is well approximated by172

vrG =

(
∆σ0

σ0
σφa

)
vp sin φ (3)

where ∆σ0 is the change in σ0 over the footprint, σφa ≈ 0.02 is the standard deviation of the173

azimuth beamwidth, and φ is the azimuth angle relative to the velocity direction. For a 0.1 dB variation174

over the ∼ 600 m azimuth footprint, corresponding roughly to a 10 cm/s change, and a nominal175

platform velocity of 130 m/s, this corresponds to a maximum error of about 6 cm/s at broadside, while176

the average error over the swath is significantly smaller. This error can increase substantially in the177

presence of sharp σ0 discontinuities, and must be corrected in the processing if the discontinuity is178

large enough using the measured σ0 data.179

The final term, vrA, is due to shifts in Doppler centroid due to asymmetry in the antenna180

pattern, and, if large enough, must be corrected in the processing by using antenna pattern calibration181

measurements.182

The magnitude of the pulse-pair correlation, γ, determines the noise in the estimated pulse-pair183

phase difference and contains contributions from three distinct mechanisms. The first term, γN =184

SNR/(1+ SNR), where SNR is the system signal to noise ratio, is the use term induced by the presence185

of random thermal noise. Given the small noise-equivalent σ0 for DopplerScatt, it only plays a role186

for very low wind speeds. The next term, γT , is due to changes in scatterer phase due to surface187

motion between the pulses used to form the pulse-pair phase. This temporal correlation is the product188

of γTS, due to the finite lifetime of surface scatterers, and γTW , due to scatterer motion induced by189

long-wavelength surface waves190

γTW (τ) = exp

[
−
(

τ

TW

)2
]

(4)

TW =
(√

2kσWr

)−1
(5)

where TW is the correlation time due to wave motion, and σWr is the standard deviation of the191

wave orbital velocity along the radial direction. Although an upgrade is planned, DopplerScatt does192

not have the capability to resolve surfaces waves currently, so an estimate of the orbital radial velocity193

variance cannot be obtained from the data itself, but it can be obtained using in situ knowledge of the194

surface wave spectrum or by assuming that its is purely wind-driven and has reached equilibrium195

with the wind. The term γTS is due to non-linear dissipation of resonant scatterers or wave breaking,196
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Figure 3. Observed (solid lines) and modeled (dashed lines) pulse-pair correlations for pulse-pair
separations τ = nτ0, τ0 = 0.22 msec, as a function of φ, the azimuth angle relative to the platform
velocity.

for which we do not have appropriate models at this time. However, the temporal correlation term can197

be estimated from the data itself, as we will show below.198

The final term contribution to signal decorrelation, γD, is due to the variation of the Doppler shifts199

within the resolution cell, and is given by the Fourier transform of the resolution cell illumination200

at the Doppler shift spatial fringe rate, equation (A27). For a Gaussian antenna pattern and range201

resolution that is small compared to the changes in Doppler in the range direction, this term can be202

approximated by203

γD ≈ exp

[
−
(

τ

TD

)2
sin2 φ

]
(6)

TD =
(√

2kvpσφa

)−1
(7)

where TD is the Doppler decorrelation time at broadside, which is on the order of 0.35 msec. γD204

reaches a maximum in the fore and aft directions, and a minimum at broadside. Notice that TD/TW =205

σWr/vpσφa � 1, since we find in Section 3 that the typical ocean correlation time TW & 2 msec. The206

Doppler term dominates the correlation for about 80% of the swath, but, due to the sin2 φ term, the207

surface temporal correlation is dominant for the inner 20%.208

To test the validity of the correlation model, we estimate the pulse-pair correlations as a function209

of τ and φ from collected data correlations and compare against predictions for the DopplerScatt210

parameters assuming a Gaussian antenna pattern. A typical result is shown in Figure 3, where observed211

correlations (solid lines) estimated using 100 pulse pairs for a 200 km line of data are plotted against212

the theoretical prediction in equation (6) for three different pulse-pair separations given by τ = nτ0 for213

n = 1, 2, 3 and burst-repetition interval τ0 = (4.5 kHz)−1 ≈ 0.22 msec. Since the temporal correlation214

is unknown, it is fit for each pulse-pair interval by making the theoretical and observed curves match215

in the aft direction, φ = 0. These estimates will be used to estimate ocean correlation times in the216

results section below.217

Several features of the DopplerScatt signal are apparent from Figure 3, in addition to the good218

agreement between theory and observations (the deviations for low correlation values are due to biases219

in the correlation estimator, and the two curves agree for moderate to large values of γ). As expected,220

the correlation is inversely proportional to the Doppler bandwidth, with γD ≈ 1 in the fore (φ = π)221

and aft (φ = 0), while the correlation is minimized at broadside (φ = ±π/2). Thus, it is expected222

that the radial velocity errors will be at a maximum in the broadside direction, and at a minimum223

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2018                   doi:10.20944/preprints201803.0104.v1

Peer-reviewed version available at Remote Sens. 2018, 10, 576; doi:10.3390/rs10040576

http://dx.doi.org/10.20944/preprints201803.0104.v1
http://dx.doi.org/10.3390/rs10040576


8 of 67

fore and aft. The second lesson from this figure is that temporal correlation of the signal can be a224

significant contributor to signal decorrelation. The variability of the ocean temporal correlation times225

as a function of environmental conditions will be examined below.226

2.3. Estimation of Pulse-Pair Phase227

Traditionally, the estimation of phase differences for Doppler centroids [12] and radar228

interferometry [23], for pulses separated by jτB (j ≥ 1 is an integer), where τB is the burst repetition229

interval, has been done by using the phase of the pulse-pair interferogram230

Φ̂j =
1
j

arg

[ Np

∑
n=1

〈
En(t)E∗n+j(t + jτB)

〉]
(8)

where the index n labels subsequent pulses in the received pulse train. Following Madsen [12],231

in SAR applications j = 1, since typically pulses separated by more than one can be regarded as232

uncorrelated. This can be shown to be the maximum likelihood estimator (MLE) for the interferometric233

phase when using independent pulse pairs, but not when the pulses are not independent. As can be seen234

from Figure 3, pulses in the DopplerScatt return may have significant correlation across many transmit235

events and a natural question arises on what the best combination of pulse pairs should be used to236

estimate the pulse-pair phase. In Appendix B, we present the derivation of the MLE estimator for237

the pulse-pair phase difference, as well as the Crámer-Rao asymptotic lower bound for the estimator238

variance [24]. Unfortunately, unlike for the independent pulse-pair samples, the MLE equation (A42)239

does not have an analytic solution, bust must be solved numerically by a one-dimensional search,240

or by iteration, which has a computational cost. In the low-correlation limit, the estimator can be241

approximated by the weighted average of the MLE estimator242

Φ̂ =

Nj

∑
j=1

wjΦ̂j (9)

where wj is an approximate inverse variance weight given by equation (A53).243

For independent pulse pairs with the same correlation γ, the Cramér-Rao bound is given by [23]244

σ2
Φ =

1
2NL

1− γ2

γ2 (10)

where NL is the number of independent pulse pairs used in the estimate. When the pulses are245

correlated, the Cramér-Rao bound is given by equation (A47), which can be calculated analytically246

but does not lend itself to a simple expression, except in the low-correlation limit when it is given by247

equation (A50), which represents a weighted combination of equation (10) accounting for changes in248

the number of samples and correlations.249

To assess the relative performances of the estimation algorithms we generated correlated250

circular-Gaussian samples with the correlation coefficient given by equation (1), using a Gaussian251

antenna pattern. The temporal correlation function was assumed to be of the form γT =252

exp[−(τ/Tsc)2] and Tsc was varied between 0.5 msec to 4.0 msec, consistent with ocean observations253

presented below. We examine three estimators: the MLE estimator; and the two estimators obtained254

by taking Nj = 1, 3 in equation (9). The Nj = 1 case corresponds to the Doppler centroid estimator255

given by Madsen [12] and has correlations similar to the n = 1 line in Figure 3 (although with varying256

temporal correlation). The Nj = 3 estimator uses the three pulses shown in Figure 3. For this simulation,257

we use 100 pulses (as in the processor) and the nominal system parameters in Table 1. The results for258

phase are converted into radial velocity error by dividing by 2kτ and are presented in Figure 4.259
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Figure 4. Performance of three pulse-pair estimators described in the text as a function of cross-track
distance divided by the swath radius = | sin φ|. Solid lines correspond to the Cramér-Rao bound given
by equation (A47). Circles correspond to the simulation results as a function of correlation time for Tc

of 0.5 msec (blue), 1.0 msec (green), 2.0 msec (red), and 4.0 msec (purple).

Figure 4 shows the radial velocity error increasing with cross-track distance for all estimators, and260

decreasing with increasing correlation time. Surprisingly, the best estimator is the Madsen estimator261

(Nj = 1), while taking additional samples (Nj = 3) increases the noise, as does using the MLE solution262

(possibly due to errors in the numerical search). These characteristics hold for high SNR data where263

reducing thermal noise variability is not important, while lower SNR results (not shown), that will be264

more representative of spaceborne data, do show the benefit of using multiple samples in the retrievals.265

The reason the Madsen-type estimators do not conform to the approximate Cramér-Rao bounds is266

that they utilize the number of pulses used to form the interferogram, Np, as the number of independent267

looks, NL, in equation (10). This is appropriate only in the limit when pulse-to-pulse correlation is268

low, as derived in Appendix B. However, when pulse-to-pulse correlation is high, NL � Np. A better269

estimator for the number of looks is given by the total interferogram observation time divided by the270
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total correlation time, NL = NpτB/Tc, Tc is determined by solving |γ(Tc)| = 1/e. From equations (4)271

and (6), Tc is given by272

Tc = T
√

1 + log (γN) (11)

T−2 =
[

T−2
W + T−2

D sin2 φ
]

(12)

Since TD � TW , for about 80% of the swath T−1 varies sinusoidally with azimuth angle (or273

linearly with cross-track distance), but approaches a fixed value determined by the ocean correlation274

time in the nadir portion of the swath. For log γN > −1, the equivalent number of looks can be written275

as276

NL = min

NpτB

√
T−2

W + T−2
D sin2 φ√

1 + log (γN)
, Np

 (13)

In the high-correlation limit, 1− γ� 1, which applies in most situations for DopplerScatt, one277

can use the Cramér-Rao bound to derive a simple formula for the radial velocity error variance278

σ2
vr =

(
1

2kτB

)2 1
2NL

1− γ2

γ2 (14)

≈
(

1
2kτB

)2 τB
Np

√
T−2

W + T−2
D sin2 φ (15)

which shows that for about 80% of the swath, the radial velocity variance will vary linearly with279

cross-track distance and approach a fixed value for the center swath. If the effect of the equivalent280

number of looks were not taken into account, the prediction would be that the radial velocity variance281

would exhibit a quadratic behavior with cross-track distance, in the high correlation limit. This equation282

also shows that σ2
vr ∼ τ−1

B , rather than the τ−2
B behavior that would be expected if the phase variance283

were independent of the pulse-pair separation.284

In Figure 5, we show the expected random error performance as a function of SNR and ocean285

temporal correlation using the exact correlations and estimated number of looks. For SNR greater286

than 20 dB, the high correlation behavior described above applies, but the performance across the287

swath flattens out significantly as the SNR becomes smaller, since the performance is dominated by288

the thermal noise and not the Doppler correlation. The impact of ocean correlation time is only evident289

in the nadir part of the swath and for lower SNRs.290

In Figure 6, we compare the estimated noise in the radial velocity (blue), against predictions using291

equation (10) with the estimated γ using either the naïve Cramér-Rao bound (NL = Np) (green), or292

the version where NL is estimated from the total correlation time (orange). The estimates of the radial293

velocity random error (blue) were obtained for each pulse-pair by removing a trend in range for the294

radial velocity and computing the standard deviation of the resulting signal: this is a conservative295

estimate since there will be some natural variability due to waves and currents. Since the ocean296

surface correlation time is unknown a priori, we estimate the γN and Tc by fitting a quadratic in297

time for multiple pulse separations to the logarithm of the correlation function and averaging the298

estimates for each range line for the same samples used to estimate the random error (additional results299

regarding the temporal correlation function are given in Section 3.1). Both measured and predicted300

random errors show periodic variations with azimuth due to the changes to predicted the Doppler301

correlation in equation (6), with minimum errors occurring in the fore and aft directions, and maxima302

at broadside. The figure shows that the naïve estimator underestimates the observed error significantly,303

while the Cramér-Rao bound with NL determined by the correlation time is in good agreement with304
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Figure 5. Random component of the radial velocity for SNRs of 5 dB (blue), 10 dB (orange), 20 dB
(green) and 30 dB (red) and radial velocity standard deviations (0.2 m/s (solid), 0.4 m/s (dashed), and
0.6 m/s (dot-dashed) for a platform velocity of 130 m/s and assuming that Np = 100 and τ ≈ 0.2 msec.
The cross-track distance is divided by the distance from the nadir track to the outer swath.

the observations. The fact that the naïve estimator underestimates the error significantly explains305

the degraded performance when multiple pulses are used in combination using equation (9): the306

estimation weights wj are too large for the larger pulse-pair separations, resulting in the introduction307

of additional noise. One can improve the multi-pulse estimator in equation (9) by using the predicted308

variances which incorporate the effective number of looks into the weights, wj, but we have found that309

this modification has only small effect on the estimation, due to the larger errors for greater pulse-pair310

separation. At this point, we do not have a simple explanation why the MLE estimator performs so311

poorly against the pulse-pair interferogram phase.312

2.4. Processing to σ0 and radial velocities313

Figure 7 presents an overview of the DopplerScatt data processing, which, following the usual314

NASA conventions, produces data at three different levels: Level-0 (L0) data transformed from315

raw digital subsystem (DAQ) and IMU data into quality-assessed engineering radar and IMU316

data in physical units; Level-1 (L1) data produces geolocated estimates of σ0 and residual radial317

velocity, after subtracting platform motion effects, obtained by combining 100 transmit pulses;318

Level-2 (L2) data contains geolocated estimates for surface vector winds and currents sampled along319

individual observations swaths. Level-3 gridded data is obtained by combining multiple swaths320

and requires accounting for temporal differences between different swaths, which typically requires321

some assumption about dynamics, and is not an official product at this point given uncertainties in322

the dynamics at DopplerScatt resolution scales. Below, we describe the general interest L1 and L2323

processing algorithms, as L0 processing is hardware specific.324

The DopplerScatt instrument uses four different coordinate systems to go from raw measurements325

to geolocated data: a system intrinsic to the antenna; a system fixed relative to the instrument mounting326

plate; a system relative to the aircraft; and, finally, the East-North-Up (ENU) geolocated coordinate327

system. In the early part of L1 processing, GPS/IMU data are merged with the time-tagged radar328

data and transformation matrices between the coordinate systems are derived. The down-converted329

IQ radar data, including cal-loop and surface returns, are range compressed using time domain330
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Figure 6. Estimates of radial velocity random error obtained from observations (blue), using
equation (10) (divided by 2kτ) with NL = Np (green), and using the same equation but estimating NL

from the correlation time Tc (orange). The data shown corresponds to 4.5 revolutions of the antenna.
Note the variations in random error as a function of azimuth due to the variations in γD(φ), with error
maxima appearing at broadside, as predicted by equation (6).

convolution using a weighted reference chirp, to reduce range sidelobes. Estimates of both the phase331

and amplitude of the loop-back chirps are calculated and stored for data processing.332

A critical part of the processing is in the estimation of ˆ̀, the vector along the look direction, which333

is given in the ENU system by334

ˆ̀ = sin θ [n̂ cos α + ê sin α]− û cos θ (16)

where n̂, ê, û are unit vectors pointing north, east and up, respectively; θ is the look angle; and α335

is the azimuth angle measured clock-wise relative to north.336

Assuming a local spherical Earth approximation with radius of curvature RE, the look angle to337

the center of the range pixel can be written in terms of the range, r, the height of the platform above338

the WGS84 ellipsoid from the GPS measurements, h, and the surface height, η, which is assumed to be339

constant over the resolution cell:340

cos θ =
h− η

r
+

(r/ (RE + η))2 − ((h− η) / (RE + η))2

2 (r/ (RE + η)) (1 + ((h− η) / (RE + η)))
(17)

The range term has precision comparable to the system timing, which is much better than the341

precision in the height above the surface η, obtained using the CNES-CLS11 mean sea surface [25].342

Neglecting curvature terms, the error in the look angle is given by343

δθ ≈ δ (h− η)

r sin θ
(18)

Using the nominal DopplerScatt parameters, and assuming that the coupled IMU-GPS and344

knowledge of the ocean surface are known to within 10 cm, the error in the look angle will be on345

the order of 6.6µrad ∼ 4× 10−4deg, which will cause minimal errors on velocity estimation and346

geolocation.347
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Figure 7. End-to-end flow of the DopplerScatt processor.

Following Appendix A, the azimuth angle must be estimated as the mean value over the footprint348

weighted by the antenna pattern and brightness. We assume constant brightness over the footprint349

and compute the mean value as350

α =

∫
dα′ G2 (θ, α′) α′∫

dα′ G2 (θ, α′)
(19)

where G2 is the two-way gain mapped into elevation and azimuth coordinates, and, given the351

small angular size of the range pixel, integrate along an iso-θ cut in the elevation direction. α can352

be in error due to errors in the measured antenna pattern or due to coupling between the odd parts353

of the antenna pattern and brightness gradients. These effects are much smaller in practice than the354

errors that can be caused by a systematic offset, δα, between the antenna azimuth encoder and the355

IMU. Below, we discuss how this mounting offset can be estimated during the calibration process.356

Once the look vector is estimated, the scatterer position, S, is determined in the ENU coordinate357

system using S = P + r ˆ̀, where P is the nominal radar phase center position from the GPS/IMU.358

Geolocation into latitude and longitude from ENU is then performed for each pulse.359

To estimate the surface velocity, pulse-pair phase differences are computed using 100 contiguous360

bursts, and the platform motion effects are removed by multiplying by a term exp
[
2ikjτ ˆ̀′ · v′p

]
,361

where ˆ̀′ and v′p are the estimated look vector and IMU/GPS platform velocity, respectively. This362

process of interferogram flattening also ensures that the residual phase does not suffer from phase-wrap363

ambiguities. After estimating the flattened interferometric phase, δΦ̂, using the estimator in equation (9)364

(Nj = 1 or 3 are both kept), the raw surface-projected radial velocity, v′rS, is estimated using the equation365

v′rS =
1

sin θ

δΦ̂
2kτ

=
1

sin θ

[
Φ̂

2kτ
− ˆ̀′ · v′p

]
(20)

At this point, the radial velocity contains potential calibration errors, as well as contributions from366

not only surface currents but also the velocity of the scatterers due to Bragg wave motion, differential367

brightness due to long-wave modulation, Stokes and wind drift effects. The final radial velocity,368

vrS, removes these effects by subtracting a calibration term, FC, and (optionally) a surface current369

geophysical model function (GMF) term FS370

vrS = v′rS − FC − FS (21)
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Section 2.7 discusses FC, while FS is discussed in Section 3. We refer to the radial velocity without371

FS correction as the uncorrected radial velocity.372

The backscatter cross section σ0 is computed from the multi-looked received power, Pr, by using373

the equation374

Pr = Ptσ0LX (22)

X(r) =
λ2

(4π)3
∆r
r3

∫
dα′ G2 (θ, α′

)
(23)

where Pt is the transmit power, L is the system loss outside the calibration loop, and ∆r is the375

range resolution. In the equation for the X−factor, we have assumed that the integral along the range376

direction of the range point target response, χ2, is given by ∆r =
∫

dr′ χ2(r′ − r). The same 100 pulses377

are used for computing the multi-looked power as the for the interferograms.378

2.5. Estimating the Surface Velocities and Errors379

The DopplerScatt rotating pencil-beam illuminates a swath of width 2R = 2h sin θ (see Figure 1),380

where h is the platform height above the surface and θ is the look angle. For a given range (or381

look angle), every point in the swath is imaged twice, looking forward and back, respectively. Using382

equation (21), estimates for v+/−
rS , the radial velocities projected on the horizontal plane can be obtained383

after removing the platform velocity contribution to the pulse pair phase. The radial velocities are384

defined by385

v+/−
rS = vS · ˆ̀+/−

‖ =
vS · ˆ̀+/−

sin θ
(24)

where ˆ̀+/− is the look vector from the radar to the scattering point; they are related to vx/y, the386

surface velocities along the x/y directions, respectively, by387

(
cos φ sin φ

− cos φ sin φ

)(
vx

vy

)
=

(
v+rS
v−rS

)
sin φ =

y
R

where φ = ϕ+ is the forward-look azimuth angle shown in Figure 1. It is related to ϕ−, the388

back-look azimuth angle, by ϕ− = π − φ.389

Separating explicitly the measured radial velocities and the velocity GMF, this equation can be390

inverted391 (
vx

vy

)
=

1
sin 2φ

(
sin φ − sin φ

cos φ cos φ

)(
v
′+
rS − F+

S
v
′−
rS − F−S

)
(25)

so that the surface components can be retrieved everywhere, with the exception of along the nadir392

path (φ=0) for the y-component, or at the edge of the swath (φ = π/2) for the x-component, when the393

inverse matrix is singular.394

In practice, due to the finite beamwidth of the antenna and finite cell size of the retrieval, a given395

point in the ground can be imaged multiple times, and the surface currents are inverted by weighted396

least-squares inversion. However, for the purpose of calculating the measurement sensitivities, these397

simplified equations are sufficient to illustrate the nature and magnitude of the errors, provided random398

measurement errors are adjusted for the appropriate number of looks. The sensitivity equations are399

then given by400
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δvx =
δv
′+
rS − δv

′−
rS

2 cos φ
− δ

(
F+

S − F−S
)

2 cos φ
(26)

δvy =
δv
′+
rS + δv

′−
rS

2 sin φ
− δ

(
F+

S + F−S
)

2 sin φ
(27)

These equations show that the surface velocity errors are a function of cross-track distance, y,401

but not of the along-track coordinate, x, with unbounded errors at the nadir and far swath. They402

also indicate that we can expect the along-track error to be large at the edges of the swath, while the403

cross-track errors will grow in the nadir direction. Finally, they show that, if the radial velocity errors404

are symmetric with respect to look direction (i.e., δv+rS = δv−rS), then the along-track velocity errors405

cancel, whereas, if they are antisymmetric (i.e., δv+rS = −δv−rS), the cross-track errors cancel.406

Aside from geophysical effects in FS, the DopplerScatt surface velocity error budget is dominated407

by two types of errors: random noise which is caused by thermal noise, speckle, and temporal408

decorrelation; and errors due to incorrect removal of the platform Doppler velocity from the radial409

velocity. Assuming that the fore and aft random velocity errors are not correlated, the random error410

standard deviations will be given by411

σvx =

√
σ2

vrS+ + σ2
vrS−

2 cos φ
≈ σvrS√

2 cos φ
(28)

σvy =

√
σ2

vrS+ + σ2
vrS−

2 sin φ
≈ σvrS√

2 sin φ
(29)

where σ2
vrS+/− is the radial velocity random variance for the fore/aft directions using412

equations (14). The last approximation follows in the high SNR limit, when the σ0 variations due to413

different azimuth look angles can be ignored as a contributor to the total pulse to pulse correlation, so414

that σ2
vrS+ ≈ σ2

vrS−.415

The previous formulas apply for estimates obtained by combining pairs of radial velocity416

measurements. In practice, we combine all fore and aft radial velocity measurements whose centers417

lie in a finite resolution cell small enough so that the azimuth angle can be taken to be constant. This418

allows us to reduce the random measurement noise by the square root of the number of independent419

fore and aft measurements that lie within the resolution cell. Figure 8 shows the theoretical predicted420

random error performance as a function of SNR and correlation time for a 200 m resolution cell, which421

corresponds to approximately 25 independent fore and aft radial velocity estimates. Combining422

multiple radial velocities from similar look directions also allows for an independent estimate of the423

random component of the error and the associated estimated standard error, as shown in Figure 9.424

Using equations (28) and (29), these standard errors can be propagated to the along and cross-track425

error estimates (see Figure 10), which show good agreement with the theoretical results in Figure 8.426

In addition to the random measurement error, the other major source of instrument-related errors427

is the subtraction of the platform radial velocity contribution, which can suffer from errors in the428

estimated platform velocity, as well as look and azimuth angle estimation. Of these, the azimuth angle429

estimation is dominant for a mechanically scanned antenna, since knowledge of the azimuth angle is430

dependent on the encoder accuracy of the reported the antenna scan angle. In this case, the associated431

radial velocity error will be given by432

δvrS ≈ vp‖ sin ϕδϕ (30)
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Figure 8. Along-track (left) and cross-track (right) surface velocity errors for the same cases as shown
in Figure 5: SNRs of 5 dB (blue), 10 dB (orange), 20 dB (green) and 30 dB (red) and radial velocity
standard deviations (0.2 m/s (solid), 0.4 m/s (dashed), and 0.6 m/s (dot-dashed) for a platform velocity
of 130 m/s and assuming that Np = 100 and τ ≈ 0.2 msec.
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Figure 9. Estimated standard error of the radial velocity for fore-looking angles (aft-looking results are
similar) obtained by dividing the standard deviation of fore-looking radial velocities in 200 m boxes,
divided the square root of the number of independent samples (∼ 25).

where, as shown in Figure 1, ϕ is the relative angle between the platform velocity and the look433

direction. Since ϕ− = π− ϕ+, one will have δv+rS = δv−rS as long as the azimuth error remains constant434

between fore and aft observations. Replacing this in equations (26) and (27), one sees that a constant435

azimuth bias will affect the cross-track surface current, but will have little impact on the along-track436

component. An error in the along-track component due to a constant azimuth bias will introduce a437

constant cross-track bias438

δvy = vp‖δϕ (31)

This equation shows the great sensitivity of the cross-track component to azimuth errors. For439

example, to get to a velocity error of 10 cm/s assuming a platform velocity of 100 m/s, one must440

require that δφ ≤ 10−4 ≈ 0.006◦, which can present a significant installation challenge.441

In practice, we expect errors in the azimuth angle to have two main sources: 1) a constant bias442

due to a mismatch between the antenna spin mechanism coordinate system; and, 2) periodic changes443

in rotation speed due to changes in friction as the antenna spins. This leads us to assume that azimuth444

estimation error will be of the form445

δϕ(η) = δϕ0 +
Nh

∑
n=1

[an cos (nη) + bn sin (nη)] (32)

where η is the antenna encoder angle, which, for nominal flight conditions will be approximately446

ϕ, but will be offset by a constant when cross-winds induce a difference between the flight direction447

and the airplane forward direction. Following the previous argument, the cross-track surface velocity448

component will be most sensitive to terms in δϕ which do not change sign when η+ → η−, while the449

along-track component will be sensitive to those harmonics that do change sign.450

The final source of surface velocity errors is due to errors in the wind-driven radial velocity451

contribution, FS. In Section 3.4, we show that FS is well represented by a low-order harmonic expansion452

FS(ϕ, U10, ϕU) = δvr(U10) +
NS

∑
n=1

vrn(U10) cos (n (ϕ− ϕU + δϕ (U10))) (33)

where U10 is the neutral wind speed measured at 10 m; ϕU is the wind azimuth direction; and δvr,453

vrn, and δϕ are the wind speed dependent model parameters up to order NS. In practice, the dominant454

terms are the first harmonic (n = 1) and, to a lesser extent, the constant term. The FS associated errors,455

up to order n = 2, are then456
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Figure 10. Estimated along-track (upper) and cross-track (lower) surface velocity component errors,
obtained by propagating radial velocity standard errors, as in Figure 9. Note the agreement with
theoretical estimates shown in Figure 8 for high SNR situations.

δvx = −δ (vr1 cos ϕU + 2vr2 sin φ sin ϕU) (34)

δvy = − δ (δvr + vr2 cos 2ϕU)

sin φ
− δ (vr1 sin ϕU − 2vr2 sin φ cos 2ϕU) (35)

The n = 1 term in FS is equivalent to a current along the wind direction, and errors result in457

a two-dimensional current error vector, −δ (vr1 cos ϕU , vr1 sin ϕU). As shown in Section 3.4, vr1 is458

relatively constant for most of the wind speed range and is about 0.75 m/s, so that, in practice, the459

major error contribution from the first order term will be through errors in the estimated wind direction,460

resulting in an error vector vr1 (sin ϕU ,− cos ϕU) δϕU , whose magnitude is vr1δϕU . The effect of a461

wind direction error will be to add an approximately constant magnitude surface current vector in the462

direction orthogonal to the wind direction, whose scale of variability will be the spatial scale of wind463

direction change. Given the magnitude of vr1, the wind azimuth angle estimation will play a dominant464

role in the subtraction of the wind-driven surface current components, but not in their derivatives,465

since the wind direction varies much more slowly than the ocean circulation direction. The vr1 error466

will introduce a current of magnitude δvr1 parallel to the wind direction. Given the Ka-band FS relative467

insensitivity to wind speed, this error is expected to be an order of magnitude smaller than the wind468

direction error. This situation should be contrasted to that found a C-band [8,13,26], where vr1 ∼ aU10469

(0.05 . a . 0.15), and a 1 m/s wind speed error can lead to significant additional surface velocity470

errors.471

It is important to note that errors in the even harmonics of FS (especially the constant term) lead to472

an error in the cross-track surface velocity component that is inversely proportional to the cross-track473

distance, switches sign depending on whether the return is from the left or right swaths, and can474

become significant near the nadir track. These types of errors (which could also be introduced by475

an instrument pulse-pair phase bias) must be calibrated from the data itself. Note that higher order476

harmonics will introduce distortions that can be expressed as low-order polynomials in the cross-track477
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distance; e.g., errors in the n = 2 term result in linear distortions across the swath. Given sufficient478

variability in the current data, so that the mean current contribution is small, these systematic terms479

can also be calibrated out.480

2.6. Estimating the Wind Speed and Direction481

Remote sensing of ocean winds takes advantage of the interaction between the ocean surface482

and the wind. As wind blows across the surface of the ocean, it promotes the growth of capillary and483

gravity-capillary waves that scatter energy back to a radar dominantly through the Bragg mechanism484

(at vertical polarization), wherein only surface waves that have the appropriate wavelength for485

constructive interference (given the electromagnetic wavelength and local incidence angle) contribute486

to the scattering [27]. For Ka-band and 56◦ incidence, the resonant Bragg waves have a wavelength of487

∼ 5 mm, and lie in the part of the spectrum directly responsive to wind inputs. However, resonant488

Bragg waves can also be generated by straining of longer waves [28,29], and not directly by the wind.489

Although there is a good general understanding of the mechanisms responsible for generating490

Bragg waves (see [28,29] [30]), current theory cannot yet predict the high wavenumber spectrum491

required to predict radar backscatter given the wind and observation vectors. The traditional approach492

to wind estimation is to use an empirical wind GMF, FW(U10, φU), that maps winds to backscatter. In493

Section 3.2, we see that Ka-band wind GMF, like the Ku-band QuikSCAT GMF, exhibits a power-law494

dependence on wind speed, U10, and a low-order harmonic dependence on the wind relative azimuth,495

φU . By observing from different fore and aft azimuth directions (Figure 1), one can use traditional496

scatterometer techniques to estimate the wind speed and azimuth. The first step the wind processor497

takes is to turn a group of σ0 (and other) measurements into fore and aft looks for each wind vector498

cell (200x200 meter ground cells in this case). To do this, a k-means centroid estimator is used to find499

two optimal centroids in antenna azimuth and group (median or mean) measurements into fore and500

aft looks based on those centroids. With fore and aft measurements, the wind processor performs an501

optimization of the likelihood function, J(U10, φU), in each wind vector cell to find the wind speed502

and direction that best match observed σ0 for both fore and aft looks.503

J(U10, φU) =
n

∑
i

(
σ0i − FWi(U10, φU)

σi

)2

, (36)

where σ0i is the observed backscatter, and index i represents fore/aft looks. FWi(U10, φU) is504

the calculated backscatter from the GMF based on trial wind speeds and directions. σi represents505

the measured variance in observed σ0. In contrast to QuikSCAT, where vertically and horizontally506

polarized beams were used to make up to four independent measurements of each ground cell507

[14], DopplerScatt operates a single vertically polarized beam, making only two independent508

measurements of each ground cell. Two independent measurements is the theoretical minimum509

number of measurements required to solve for wind speed and direction, making wind retrieval510

difficult in the presence of noise since wind direction ambiguities will occur.511

To overcome this limitation, we use the fact that the Doppler measurement reflects the surface512

velocity of small waves, which propagate mainly along the wind direction, with (usually) relatively513

small changes in direction due to refraction by the non-wind driven surface current. As a first guess514

to the wind direction, we use φdop, the direction of propagation of the total Doppler inferred surface515

current, uncorrected by FS. A peak finder is used to find optimal wind direction selections along a best516

speed ridge (the selection of wind speeds for each possible wind direction that optimizes the objective517

function), and the likelihood peak nearest to φdop is selected. We refer to this direction as the initially518

selected σ0 direction, φσ0 , and note that φσ0 6= φdop in general. An initially selected speed, Uσ0 , is then519

selected by selecting the wind speed along the best speed ridge where φ = φσ0 .520

With φσ0 and Uσ0 selected, the wind processor begins to improve wind estimates in areas of521

reduced wind retrieval skill. An important consideration in scatterometry is that some measurement522

geometries offer better wind retrieval skill (less noise) than others. With a spinning antenna, a "sweet523
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spot" exists on either side of center-swath, sometimes called "mid-swath" [31]. Conversely, the center524

and far edges of the swath offer reduced variation between measurements, allowing noise to become525

a significant issue during wind retrieval. QuikSCAT overcame these issues with spatial filtering of526

ambiguities using DIRTH [32]. Another consideration is that scatterometers typically receive weak527

return signal at low wind speeds, often corrupting measurements below a few m/s [33].528

First, regions of low wind speeds (and low SNR) are improved by introducing φdop and a spatial529

median of φσ0 . A weighting function based on wind speed smoothly folds in φdop and φ̃σ0 using,530

φσ0,dop = w1φσ0 + w2φ̃σ0 + w3φdop, (37)

where,531

w1 = 1− 1
1 + eUσ0−4 , (38)

w3 = w2 =
1−W1

2
, (39)

These logistic weightings result in almost no contribution from φdop and φ̃σ0 where wind speeds532

are greater than 7 m/s, and about half weighting on w1 at 4 m/s. These weightings were chosen to533

ensure sufficient weighting at low wind speeds while allowing φσ0 to dominate at moderate and high534

wind speeds.535

The second area where scatterometer, φσ0 , winds require improvement is at the center of the536

swath, where measurement geometry does not offer enough variation in azimuth to compute directions537

accurately. Again, a logistic weighting function is used to fold φdop and φ̃σ0 into the φσ0,dop estimate538

made above.539

φU = w4φσ0,dop + w5φ̃σ0 + w6φdop, (40)

where w5 and w6 are again equally split in the remainder of 1− w4. A logistic function is used to540

determine w4 such that w4 is nearly 0 at the center of the swath, and increases to about 0.75 near the541

sweet spot. This allows for a smooth transition across the swath while creating usable wind directions542

near the center. With the final wind direction, φ selected, the original best speed ridge is used to select543

the wind speed at φ.544

The technique proposed here should be contrasted to that proposed at C-band by Mouche et545

al. [13], which uses both the direction and the magnitude of the Doppler currents to improve wind546

retrievals from SAR data. This approach makes sense at C-band, where the magnitude of the Doppler547

current is a strong function of wind speed. This is not the case at Ka-band, as we will see in Section 3.4,548

and we do not use the magnitude of the Doppler current in wind estimation. Another major difference549

is that, except for regions of low skill, we only use the Doppler current direction to help resolve azimuth550

ambiguities. This allows us to examine the relative direction between the wind and the wind-driven551

current, which not the same.552

Formal error on DopplerScatt winds must consider both the contribution from σ0 variance and553

Doppler determined surface current error. Due to measurement geometry, we can expect larger errors554

near the center of the swath and the edges of the swath, which is typical to heritage scatterometers.555

A formal error propagation was conducted for DopplerScatt using a method similar to the bootstrap556

method. A randomly selected Gaussian noise was added to σ0 and surface current inputs using557

estimated σ0 variance and Doppler determined surface current variance, before running the wind558

processor many times. Results indicate sweet-spot RMS errors of about 0.25 m/s in wind speed and 3◦559

in wind direction. Along the center of the swath, RMS errors are about 0.5 m/s in wind speed and 7◦560

in direction. These errors are fairly consistent with QuikSCAT simulated errors [32]. While we expect561

DopplerScatt errors to vary over wind speed, proximity to coast and a relatively small amount of data562

make breaking out this dependence an exercise for a later time.563
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The wind processor produces two wind versions, both run on the same 200 m grid that surface564

currents are retrieved on. The first version uses the uncorrected surface current directions as a strong565

weighting prior, favoring smoothed uncorrected surface current directions over those computed by566

the wind processor. This first version retrieves wind speeds based on σ0 from the GMF and direction567

heavily weighted towards the surface current direction. The second processing version is that presented568

above, and blends uncorrected surface current directions into σ0 retrieved directions only at low wind569

speeds and/or near the center of the swath, where scatterometer σ0 based directional skill is typically570

low. While the second of the two versions is the wind product we present as the DopplerScatt winds,571

the first wind product produces scientifically interesting results and is worth investigating for that572

reason.573

2.7. σ0 Calibration574

DopplerScatt implements an internal calibration loop to measure and remove system instabilities575

from the majority of the transmit and receive paths. Additionally, temperature sensors throughout the576

radar are used to help remove component loss characteristics as the instrument heats and cools during577

operation; however, a heater is used to help maintain the temperature of radar components, which578

largely negates temperature changes during level flight. The resulting losses typically vary by less579

than 0.05 dB during operation and are thus not included during processing.580

The σ0 estimation requires good knowledge of attitude and pointing for accurate calibration,581

largely due to its dependence on the two-way antenna gain pattern, G2, in equation (23). If σ0 is582

to be correctly calculated, the gain pattern of the antenna must be removed from σ0 using X-factor583

computation. Here, we refer to elevation angle, Θ, as the elevation angle from the center of the antenna584

bore-sight. This is distinct from the incidence angle, θ. Prior to flight calibration, we found that σ0585

was sloped by about -2.5 dB/degree of elevation, indicating a bias in elevation angle knowledge. By586

adding an empirically derived constant bias of 0.042◦ to the elevation angle and re-computing X-factor,587

the non-physical slope of σ0 was removed. Figure 11 shows the average return power, σ0 and X-factor588

after correction and averaging over a large area. We find that, post-correction, σ0 remains flat over the589

main lobe of the antenna, with no significant slope after the initial 0.042◦ adjustment.590

2.8. Radial Velocity Calibration591

To achieve an error of 10 cm/s, one would require 7.7× 10−4 rad, or 4.4× 10−2 degree azimuth592

angle accuracy, which is not achievable with the DopplerScatt encoder. Thus, it is necessary to calibrate593

systematic errors in azimuth pointing during flight using the data themselves. In the past, some594

researchers have used stationary land targets for calibration, but, in the presence of topography, the595

accuracy of the look angle θ is determined by knowledge of the topography, atmospheric delays, and596

knowledge of the platform position. We do not have access to digital elevation models that meet the597

accuracy requirements needed for calibration, and so must look for alternate approaches. We have598

found that a novel approach that involving flying the same calibration lines over the ocean in opposite599

directions provides a feasible means for azimuth angle calibration.600

The main challenge when using the ocean as a calibration target is the ocean Doppler induced by601

surface currents. In the presence of a surface current and an azimuth bias, one has602

vrS = − sin(α− αp)vp‖δϕ + vW cos (α− αW) (41)

= − sin(α− αp)vp‖

[
δϕ +

vWx
vp‖

]
+ vWa cos

(
α− αp

)
(42)

where αp and αW are the azimuth directions of the platform and surface current, respectively;603

vp‖ is the platform horizontal velocity divided by sin θ; and vWa and vWx are the surface current604

components along and across the platform velocity velocity vector, respectively. It is clear from the last605
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Figure 11. Normalized return power (blue), X-factor (black) and relative σ0 (i.e., the difference in dB
between Power and X-factor) after averaging over many measurements. The σ0 shows no trend over
the antenna main lobe. There is a slight bias in the X-factor, but this introduces negligible wind speed
errors.
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Figure 12. Estimates of the azimuth bias obtained by fitting opposite direction flight lines over a period
of 4 hours. Flight lines 1 and 3 are in the same direction and opposite to lines 2 and 4. The impact of
cross-track currents is clearly visible as geolocated differences around a mean bias of ≈ 0.8◦, where the
sign of the difference depends on the flight direction.

equation that using the radial velocity to estimate the azimuth offset by fitting to a sinusoidal signature606

over all azimuths will yield a bias in the estimated azimuth offset607

δϕB =
vWx
vp‖

(43)

which is proportional to the cross-track component of the current, and will result in an error that608

is of the same magnitude as this component.609

For the DopplerScatt swath, constant cross-track velocity components will certainly occur, and610

one needs another approach. We propose an approach where data with different (ideally, opposite)611

headings is collected. In that case, the surface current for the same azimuth look direction will remain612

constant, while the contribution from the azimuth bias will change. In the simplest case, where the two613

headings are in opposite directions, αp and αp + π, the sign of the current relative in the coordinate614

system defined by the platform velocity vector flips between passes, and the estimated azimuth bias,615

δ̂ϕ, will have the form616

δ̂ϕ
+/−

= δφ± δϕB (44)

and one can estimate the bias term as δϕ =
(

δ̂ϕ
+
+ δ̂ϕ

−)
/2. An example of this process is617

shown in Figure 12, which clearly demonstrates both the impact of the cross-track currents and the618

feasibility of estimating a bias. We find that the bias estimated using this procedure is stable over619

multiple calibration runs separated by as much as six months.620

After an initial estimate and removal of the phase bias using this simple method, we find that621

residual cross-track dependent biases due to errors in the estimated azimuth over the antenna rotation622

period remain in the estimated radial velocity (see Figure 13, upper panel). To estimate these encoder623

angle dependent biases, we take the radial velocity differences for opposite direction flight lines624

looking in the same direction at the same pixel. Given the change of sign in the relative direction with625
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respect to the flight direction, the surface current motion cancels (provided it can be considered as626

static over the data collection time) and we fit the harmonic coefficients in equation (32). We note that627

some coefficients will be better defined than others, depending on the aircraft crab angle. In general,628

coefficients for even harmonics that do not flip sign when the azimuth encoder changes by π, are well629

determined, whereas those for odd harmonics are not, and we do not fit for them. Figure 13, upper630

panel, shows the harmonic fit for two independent flight line pairs, wile the lower panel shows the631

radial velocity error signature after calibrating for the harmonics. This signature has proven to be632

stable during a continuous installation of the instrument on the aicraft.633

The opposite-direction, repeat pass technique is not sensitive to harmonics that have a periodicity634

such that the resulting error is identical for fore and aft viewing geometries; i.e., odd/even harmonics635

in equations (32)/(45). These terms are especially important for the component of the cross-track636

velocity component, where the error can be proportional to the inverse of the cross-track distance.637

To calibrate these error terms, we average the velocity components in the along track direction and638

accumulate the results over multiple flight lines taken at different locations, to minimize aliasing by639

the true surface velocity. The resulting data are fit with low-order polynomials and an inverse distance640

term, and the resulting fit assessed for significance. We have not found any systematic effects in the641

along-track velocity component, but there are significant (sin φ)−1 terms in the cross-track component642

that persist across many days and which must be removed, as shown in Figure 15.643

3. Results644

The results presented in this section were acquired over four separate campaigns in 2016 and645

2017. The first set of calibration flights were collected along the Big Sur coast, California, from646

Point Conception to Monterey Bay (∼ 300 × 25 km2) and consisted of two northbound and two647

southbound passes along the same nadir track (Figure 13). In September, 2016, six 4-hour sorties (each648

∼ 200× 100 km) were collected flying west from the Oregon coast into the California current. In April649

2017, DopplerScatt participated in the CARTHE Submesoscale Processes and Lagrangian Analysis on650

the Shelf (SPLASH) campaign4, covering the Mississippi River plume and Barataria Bay, Louisiana,651

(see Figure 23) for 8 days of data collection. Finally, DopplerScatt collected 4 days of data west of652

Monterey, California, in May 2017. During the data collections, a wide variety of wind conditions were653

encountered (Figures 16 and 17). No buoy wave spectral measurements were available, but, for the654

most part, little swell was present and most of the waves were wind driven. Models for winds and655

currents existed for some of the sites, and are described below.656

3.1. Ocean Temporal Correlation657

The correlation time of the ocean backscatter cross section is the ultimate limitation on the658

accuracy that can be obtained from the Doppler method, since both signal-to-noise ratio or the Doppler659

bandwidth of the footprint can be reduced by transmitting more power or using a larger antenna. In660

the absence of temporal decorrelation, very long pulse separation could be used to improve radial661

velocity estimates. Given the importance of the surface temporal correlation time in determining and662

predicting the accuracy of the estimated radial velocity, it is important to note that the DopplerScatt663

spinning configuration can be used to estimate it directly. The Doppler bandwidth contribution664

vanishes in the fore and aft directions, so that the only contributions to the correlation are the constant665

noise correlation factor, γN , and the ocean temporal correlation (4). We fit the correlation time by666

calculating the average correlation in the forward direction by averaging over 25 km along-track. The667

logarithm of the resulting value is fit with a quadratic, from which the correlation time can be derived.668

Figure 16 presents the results for the estimated correlation time as a function of wind speed. The data669

used spanned all of the data collections and had 25 km mean winds ranging between about 4 m/s670

4 http://carthe.org/splash/
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Figure 13. (upper panels) Radial velocity differences for two passes prior to calibration using harmonic
expansion. (lower panels) Radial velocity differences for the same two passes after calibration using
harmonic expansion. The left/right panels show radial velocities looking north/south, respectively.
Note the cross track error signature evident in the upper panels is not evident in the lower panels.
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Figure 14. (Upper panel) Azimuth bias as a function of encoder angle obtained by fitting opposite
direction flight line radial velocity differences assuming only two even harmonics are fit. (Lower panel)
Radial velocity error corresponding to the harmonic fit in the upper panel. The two different color
represent estimates from two different flight line pairs collected approximately 2 hours apart, showing
good stability in the retrieved biases at the ∼ 1 cm/s scale.
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Figure 15. (blue dots) Along-track average of the cross-track velocity component vy for one day data
collection, plotted as a function of sin φ. The grey area indicates the standard deviation of the data
around the sample mean. The dashed line is a fit containing a (sin φ)−1 term, and polynomials to
second order in the cross-track distance. This signature is consistent across data collections.

to about 18 m/s. The mean temporal correlation time decreases with wind speed and ranges from a671

little over 3 msec to about 1 msec. Equation (4) predicts that the correlation time should be inversely672

proportional to the radial orbital velocity of ocean waves inside the radar footprint. Given the fine673

range resolution and relatively coarse azimuth resolutions, we expect that the total variance will be674

maximized when the waves are perpendicular to the look direction and minimized when traveling in675

the range direction. In Figure 16, we use the wind-driven Pierson-Moskowitz spectrum to compute676

the predicted correlation for both wave direction cases. The predicted results agree well with the677

simple Pierson-Moskowitz estimate, although the correlation time is shorter than expected at low678

wind speeds, probably due to the fact that in the wave radial velocity in those situations probably679

contains non-wind-driven swell contributions, which cannot be neglected.680

3.2. Wind Geophysical Model Function681

With the launch of AltiKa in 2013 [34], a shift has begun towards higher frequency682

wind-observation instruments, but Ka-Band Geophysical Model Functions (GMFs) are rare. The683

majority of well validated scatterometer GMFs were developed using C or Ku-band data [35–37],684

owing to the large number of past scatterometers operating in those frequency bands. For years, a685

study by Masuko et al. using platform-measured backscatter from a Ka-band radar was the only686

available Ka-band GMF [38], although studies at near-nadir have shown a 6 dB offset from that model687

is necessary, likely due to calibration issues [39–41]. More recently, Yurovsky et al. [21]have derived688

a Ka-band wind GMF over a wide range of incidence angles using platform data called KaDPMod.689

This GMF more closely matches Ku-band GMFs and agrees fairly well with a 6 dB offset from Masuko.690

However, due to the nature of platform measurements, the data set used for training KaDPMod is691

sparse over azimuth, causing some potential uncertainties in the azimuth modulation.692

We have developed a V-pol Ka-band GMF for incidence angles around 56◦ using airborne data693

taken during the four DopplerScatt campaigns. Wind speeds and directions interpolated and collocated694

to DopplerScatt L1B data were taken from the highest resolution models available for each deployment.695
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Figure 16. (Upper panel) Estimated ocean correlation time mean and standard deviation (blue error
bars) and predictions from the Pierson-Moskowitz spectrum when waves are traveling in the azimuth
(green) or range (orange) directions. (Lower panel) Number of observations as a function 25 km mean
wind speed.
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Figure 17. Collocated DopplerScatt and model data histograms after filtering. From left to right,
relative frequency of: backscatter, incidence angle, relative azimuth to model direction, and model
wind speed. In total there are about 7.2 million data points. Zero degrees relative azimuth corresponds
to the upwind direction. In spite of conical scanning, the azimuth angles are not uniformly distributed
because we have discarded pixels very near the coast, which lie predominantly in one direction.

In the case of data taken near the Monterey Bay, the North American Mesoscale Forecast (NAM)696

model was used with a 3 km spatial resolution and time steps of 1 hour. For data taken off the coast of697

Mississippi, a 250 m spatial resolution University of Miami Unified Wave INterface-Coupled Model698

(UWIN-CM) was used with time steps of 1 hour. In total, about 7.2 million data points were collected699

from incidence angles between 53◦ and 59◦ degrees, wind speeds between 3 m/s and 20 m/s, and all700

relative wind directions (thanks to DopplerScatt’s spinning antenna).701

Prior to building a model function, data more than 3 dB from the peak of the antenna pattern was702

removed, as were data within 2 km of the coast (to avoid wind shadowing) or data flagged by quality703

control in the processing. Rain was not present in any of the data taken. Histograms of the training704

data set are shown in Figure 17, including the model winds used for training. Bins were populated705

with mean backscatter in a 3-dimensional incidence, relative wind direction, and wind speed space.706

To remove outliers, an iterative binning approach was used during which backscatter measurements707

more than 2 standard deviations from the bin mean were removed. All binning was done in linear708

(non-dB) space. After binning, there were a total of about 18 thousand data points. Due to flight paths,709

coastlines tended to flag out data in the positive region of relative azimuth, resulting in the skewed710

distribution across relative azimuth. During the course of these data collections, we tended to fly over711

either high winds or low winds, with very few moderate wind speeds predicted by the models used.712

Radar backscatter depends on the three variables considered here in different ways. With wind713

speed, backscatter follows a power law akin to log σ0 = A + B log U10. This functional form matches714

the saturation typically experienced by scatterometers at high wind speeds. For DopplerScatt, we’ve715

found the value of B to be about 2. This predicts a saturation of somewhere around 20 m/s, consistent716

with other scatterometers. [42] A cosine expansion is typically used to represent the variation in717

backscatter over relative wind direction. [43]718

σ◦ = A0(θ, U10) + A1(θ, U10) cos (φ′) + ... + AN(θ, U10) cos (Nφ′), (45)

where A0 through AN are fitting parameters that depend on both incidence, (θ), and wind speed,719

(U), and φ′ is the relative wind direction (the azimuth angle between DopplerScatt’s look and the720

wind). Traditionally, the harmonic expansion is taken in real (not dB) space, but fitting in dB space721

offers some advantage for noisy data and, and will aid in comparison with Yurovsky et al. [21]722

who take this approach. We fit a harmonic series in dB space: the two fitting approaches are very723

similar if An/A0 � 1, but fitting in dB space may introduce higher harmonics in real space. Note724

that, due to tradition, for the wind GMF we take φ′ = 0 when looking in the upwind direction; i.e.,725

in a direction opposite the wind direction. Following the oceanographic convention , we take the726

downwind direction as the reference (e.g., for the current GMF relative direction). The AN dependence727

on temperature is not considered here. Often, equation (45) is fit separately for multiple incidence728

angles and wind speed regimes to break out the wind speed/incidence behavior; however, in order to729
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Figure 18. A histogram of model-calculated σ0 versus observed σ0 for the binned training data. A
histogram at the top right represents the distribution of samples on either side of the x = y line.

fit a single model function over all wind speeds and incidence angles, an integrated model was used,730

similar to Yurovsky et al. [21]. This helps to interpolate the data set we are fitting over data-sparse731

parts of parameter space, but also introduces the possibility of incorrectly biasing the fit (e.g., only a732

single power law in speed is assumed for the entire speed range). We believe our data set has enough733

data to use an integrated model while still benefiting from this technique.734

The functional form shown in equation (46) was chosen to include a cosine expansion in relative735

azimuth, a logarithmic speed dependence, and a linear dependence on incidence angle. The form is736

the same as the Yurovsky et al. KaDPMod functional form, besides the linear incidence dependence,737

which was reduced from a fourth order to a first order polynomial because DopplerScatt only views a738

relatively small range of incidence.739

10 log10 σ0 =
2

∑
n=0

1

∑
m=0

1

∑
k=0

Cnmk cos nφ′θm(log10 U10)
k. (46)

Equation (46) expands to a 12 coefficient model function, for which least squares optimization was740

done to determine the coefficients shown in Appendix C. The least squares fit results in a root mean741

square error of about 2 dB. Comparing actual to predicted backscatter in Figure 18 finds no significant742

bias or unaccounted model shape. Over the range of incidence angles measured, this model function743

appears to be a good fit, but we cannot recommend its use outside of the trained range of 54◦ − 59◦744

incidence.745

Figure 19 shows the DopplerScatt GMF shape at 56◦ incidence and various wind speeds and746

relative azimuths, along with the corresponding binned data used for fitting. The fit again appears to747

be a good representation of the underlying data. Beyond the goodness of fit, the GMF shape saturates748
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Figure 19. A comparison between the DopplerScatt Ka-Band GMF and the binned data set it was fit to
at 56◦ incidence. Shaded error bars represent 95% confidence intervals for the fit. The relative azimuth
for the wind GMF is taken with the origin in the upwind direction.

as wind speed increases and modulates from highest return at upwind to low return at cross wind. Fit749

error is shaded behind wind speed curves and represents 95% confidence intervals.750

The wind speed dependence of the azimuth-averaged GMF, the underlying binned data variability,751

and the Ku-band GMF for 56◦ incidence from NSCAT/QuikSCAT are shown in Figure 20. Simulated752

backscatter data from the GMF and binned training data was averaged into wind speed bins for both753

55 and 56 degrees incidence. The GMF follows observations and the theoretical power law well, with754

saturation somewhere above 15-20 m/s. This is consistent with Yurovsky et. al., where they found755

saturation beginning at 15 m/s. Variations with incidence angle are small, as might be expected756

for 1 degree variation, but consistent across wind speed. Figure 21 considers the relative-azimuthal757

dependence of σ0 over wind speed by separating between down-wind (φ′ = 180◦), up-wind (φ′ = 0◦)758

and cross-wind (φ′ = 90◦). Here, we again see the expected power law dependence of both the759

observations and the simulated GMF data. As we might expect, we see a consistent difference between760

the three wind direction regimes, with upwind consistently presenting the largest return signal,761

followed by downwind and finally cross-wind. While this plot seems to indicate some saturation at762

wind speeds above 15 m/s, we have not found that to be the case during wind retrieval compared763

to buoy measurements. We have found that the model wind estimates used to bin against were low764

relative to the actual winds, which could incorrectly lead to saturation. Compared to the previous plot,765

Figure 20, we see smaller error bars since we are no longer averaging over all relative azimuths. Unlike766

Figure 20, the fits for the azimuth cuts do not follow the data as well for the highest wind speeds,767

possibly pointing to limitations in the fitting model over the full set of azimuth angles. Additional768

high wind speed data is required to resolve this issue.769

The DopplerScatt GMF is similar to the KaDPMod GMF but with some important distinctions.770

The most obvious difference between the two GMFs is that there is significantly more modulation771
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Figure 20. The DopplerScatt σ0 data set over wind speed and the GMF in the same range. Shaded
error regions around the GMF represent 1 standard deviation in the data used to make this plot.
We can expect variation solely from modulation across wind direction in the GMF. Individual data
points show error bars that also represent 1 standard deviation, but include both contributions from
directional modulation and measurement noise. The black line shows the V-pol NSCAT/QuikSCAT
GMF extrapolated to 56◦ incidence angle.
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Figure 21. The DopplerScatt σ0 data set over wind speed and the GMF in the same range, split by up,
down, and cross wind. Similar data from the NSCAT/QuikSCAT GMF are plotted as dashed lines.
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Figure 22. comparison between the KaDPMod wind GMF (dashed lines), NSCAT (lines and o signs),
and the DopplerScat Ka-band wind GMF (solid lines). Shaded regions again represent 95% confidence
intervals for the DopplerScatt wGMF. The relative azimuth for the wind GMF is taken with the origin
in the upwind direction.

between upwind and downwind in the DopplerScatt GMF than in the KaDPMod GMF. We believe772

this difference stems from the data sets used for fitting. KaDPMod has a sparse data set across relative773

azimuth (by nature of platform measurements), while the DopplerScatt GMF benefits from relatively774

even sampling across relative azimuths. The sparsity of the KaDPMod training data set (particularly775

in our incidence range) could effectively lead to interpolation across relative azimuth and incidence776

when fitting, leading to a smoother objective function across relative azimuth. This is the danger777

when fitting an integrated model function, as we discussed earlier. Based on private communications778

with the KaDPMod team, we found that the platform data collected in the DopplerScatt incidence779

range corresponds well with the DopplerScatt GMF. Despite the differences between the two fit GMFs,780

the correspondence of the underlying data sets is a good indicator of calibration between the two781

experiments.782

3.3. Wind Retrieval Results783

Results from a particularly interesting DopplerScatt deployment off the coast of Louisiana during784

the SPLASH campaign are shown here. On April 18, 2017, DopplerScatt flew over the area containing785

the Mississippi River plume and Barataria Bay. Looking at DopplerScatt σ0 data in Figure 23, there786

are distinctive features, potentially due to a combination of local flows and surface characteristics.787

Just right of the center in Figure 23, the Mississippi river plume is clearly visible as a low backscatter788

feature. The river outflow and coastal currents move towards the West (left) in the south, but curve789

north at the edge of Barataria Bay and recirculate to the East (right) near the coast (see models and790

results in Section 3.5). Since water viscosity plays an important role in determining how the wind791

forces capillary waves, we can expect a complex behavior in σ0 due to cool, fresh water with potential792

sediments and surfactants exiting from the river and mixing with the salty, clear, warmer ocean water.793

Additionally, scatterometers measure the wind speed relative to the moving surface current frame [1],794
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Figure 23. DopplerScatt aft looking measured backscatter on April 18, 2017, near the outlet of the
Mississippi river, at 200 m resolution. Interesting features are apparent and will affect wind retrieval.
Strong point sources are due to a large number of ships and oil platforms in the area.

so, since winds were mainly in North-West direction (Figure 24), we can also expect the changes in795

direction in the current to show up as decreased backscatter when the current moves with the wind,796

while backscatter is expected to increase when the current moves against the wind. Both of these797

changes are observed, although changes due to cooler plume waters, or current divergence, could be798

responsible for some of the decrease in the plume region. This flight area also includes a large number799

of highly reflective oil platforms, one of which was leaking oil at the time. Near the leaking platform,800

at 28.9◦N latitude and 89◦W longitude, what is likely an oil trail is visible as low backscatter.801

Figure 24 shows the retrieved vector winds as estimated by DopplerScatt on April 18, 2017.802

Stepping back from the features, DopplerScatt estimated winds blowing towards the North-West at803

about 6.5 m/s. Data from the UWIN-CM model and data from NOAA’s Real Time Mesoscale Analysis804

(RTMA) indicate winds blowing towards the North-West at about 6 m/s, but without any of the805

smaller features evident in the DopplerScatt data. Comparing the RTMA model to DopplerScatt results806

in a direction RMS of 25 degrees and a speed RMS of 2.7 degrees, quite good considering the strong807

features picked up by DopplerScatt but not the models.808

As expected, retrieved winds from April 18th display prominent wind speed features in the areas809

where the Mississippi river flows through the bay. Currents and winds are generally aligned in the area810

where currents flow out of the Mississippi river and towards the left (West), resulting in a reduction811

in measured wind speed. The opposite is true where the river outflow currents wrap back around812

and flow against the wind. Based on data from the Advanced Very High Resolution Radiometer813

(AVHRR), there is about a 2◦ Celsius difference in temperature between the Mississippi river outflow814

and the surrounding ocean water. Studies have found a 0.25 m/s to 0.5 m/s decrease in wind speed815

when sea surface temperatures quickly drop by 1◦ Celsius [44]. We believe the combination of surface816

currents and temperature changes are both apparent in the nearly 3 m/s drop in wind speed across817

the Mississippi river outflow. It is likely that additional modulation due to surfactants, salinity and818

dissolved solids play a part in the river outflow, too, through viscosity effects.819

Just to the right of the Mississippi river outflow, the signature of a leaking oil platform is apparent820

as a distinct line of low wind speeds. When viewing from the airplane and during ship investigations,821

this line appeared to be a convergence zone that had trapped leaking oil.822
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Shifting now to the overall DopplerScatt winds dataset, Figure 25 compares collocated buoy823

wind measurements with DopplerScatt wind estimates. For our flights, we only found 5 buoys that824

were close enough to DopplerScatt swaths for use. Median DopplerScatt data was taken over a 1 km825

grid and plotted against hourly buoy data within 15 minutes and 200 meters (one grid cell) from826

buoy measurements. In total, about 100 buoy measurements were available and close enough to827

DopplerScatt data for use. Stability effects were not considered when comparing buoy winds to828

DopplerScatt winds, since the temperature differences between air and water were less than 0.5◦829

Celsius, indicating relatively stable conditions. Since DopplerScatt measures wind speeds relative to830

the moving ocean surface, we can also expect larger differences in wind speed between DopplerScatt831

and buoys in areas of strong surface currents. No correction was made for this effect.832

DopplerScatt wind directions compare favorably with Buoy measurements, with the majority833

of points lying close to the y = x line. Overall RMS direction difference versus buoys is about 18◦.834

DopplerScatt wind speeds also compare well with buoy wind speeds, with 1.5 m/s RMS difference.835

April 18th and April 20th each observed strong surface currents in the Mississippi river plume that,836

in the area of buoy measurements, caused a decrease in DopplerScatt estimated wind speeds. This837

decrease is apparent in the buoy comparisons. Another comparison was made using two models838

collocated to the DopplerScatt swath: a high resolution UWIN-CM model run for the Gulf of Mexico,839

and the NOAA’s RTMA, an hourly 3 km scale global assimilation. Compared to the same buoys, the840

UWIN-CM model finds an RMS wind speed difference of 2.6 m/s and RMS wind direction difference841

of 57◦. The RTMA model finds an RMS wind speed difference of 5.1 m/s and RMS wind direction842

difference of 61◦. DopplerScatt winds offer a significant improvement over these two models in the843

areas studied, probably due to the proximity to the coast and the fact that the model was not able to844

assimilate high resolution SST measurements (M. Curcic, private communication).845

Consider now the DopplerScatt winds estimated using a heavy weighting on uncorrected surface846

current directions. We find that the buoy comparisons are again good (the two bottom panes in847

Figure 25). This time, however, there appears to be a 10 degree bias between DopplerScatt wind848

directions and Buoy wind directions. Since the "wind directions" estimated in this version of the849

processor are essentially uncorrected surface current directions, we can expect a positive bias between850

buoy winds and this version DopplerScatt winds based drift angles observed by HF radars [45],851

although the exact angle of the difference will depend on the upper layer current structure. The852

σ0-based directions do not consistently find this direction bias relative to the collocated buoys.853

3.4. Surface Current Geophysical Model Function854

The DopplerScatt polarization and incidence angles were chosen to simplify the interpretation of855

measured Doppler as surface currents. By choosing a moderate to high incidence angle, ∼ 56◦, one856

minimizes the tilt modulation effects present at lower incidence angles, while also minimizing wave857

breaking contamination that is common at higher incidence angles [29,30]. Using vertical polarization858

further minimizes breaking wave contamination, since double-bounce scattering only dominates for859

horizontal polarization [29,30]. For the incidence angles and polarization chosen, it is well known860

that radar backscatter, and therefore, the associated Doppler velocities, will be dominated by resonant861

Bragg scattering from capillary waves of wavelength∼ 5.1 mm [27–30]. The exact resonant wavelength862

and reflection coefficient are modulated by the local large wave slope. Since the Bragg wavelength863

∼ 1/ sin (θ − ζ), where ζ is the large-wave slope in the look direction, the range of Bragg wavelengths,864

assuming large-scale wave slopes ±10◦, will only vary between ∼ 4.6 mm to ∼ 5.9 mm, so that the865

Bragg waves are always capillary waves. In the absence of currents or large-scale waves, these capillary866

waves (if not phase bound to other waves) will propagate with a nominal phase speed of 31 cm/s.867

which only varies between 32 cm/s and 29 cm/s for the range of large scale slopes considered before.868

If the Doppler velocities were due only to the Bragg waves modulated by surface current, vS, the869

surface-projected radial velocity would be of the form870
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Figure 24. DopplerScatt retrieved wind vectors on April 18, 2017, near the outlet of the Mississippi
river, at 200 m resolution. Direction vectors have been down-sampled for plotting but speeds have
not. Currents, surface surfactants, temperature, and dissolved solids combine to create high resolution
features visible in wind retrievals.

vrS(ϕ, ϕU , θ) =
vS · ˆ̀ (θ, ϕ)

sin θ
+ (α+ (ϕ− ϕW)− α− (ϕ− ϕW))

cB(θ)

sin θ
(47)

where α+(α− ) is the fraction of Bragg waves moving along(against) the direction defined by871

the look vector ˆ̀, and ϕ and ϕW are the look vector and wind direction azimuth angles, respectively.872

Thus, the surface-projected Doppler velocity should have a surface current term that is proportional873

to the cosine of the angle between the look vector and the surface velocity, and a term that depends874

on the difference in azimuth angles between the look and wind directions. Using a small footprint,875

vertically polarized X-band data at high incidence angle, Moller et al. [46] observed this behavior, after876

subtracting an along-wind wind-drift surface velocity component equal to 3.5% of the wind speed.877

This simple relationship can break down for two reasons. First, there is significant evidence that878

a significant fraction of the Bragg waves can be bound to longer waves and will travel at the longer879

wave phase velocity [28,29,47]. In that case, the waves will be mostly concentrated on the leeward face880

of the larger wave, near the crest. It is expected that in the field, bound waves might have a significant881

contribution at lower wind speeds, while higher wind speeds might exhibit a larger proportion of free882

waves. There is no clear data at this point to determine the exact proportion and contributions to the883

Doppler for different ocean surface conditions, although Plant and Irisov [29] have made a start for the884

backscatter cross section.885

Another effect appears when the radar footprint is not small compared to the large-wave886

wavelength [8]. Because the large-scale waves modulate the amplitude (and, hence, σ0) of the Bragg887

waves in a way that is correlated with the large wave phase, the large-wave radial velocity contribution888

to the Doppler will not cancel, since the Doppler measured at the radar is the σ0-weighted average889

of the Doppler velocities over the waves (see Appendix A for details). Chapron and co-workers890

[8,13,17–19] have shown that for C-band data at moderate incidence angles, there is a strong and891

quasi-linear dependence between the measured Doppler velocities and the wind speed. They attribute892

this to the effects of large-scale surface tilt and hydrodynamic modulation, which result in an effective893

amplification factor G to the wave Stokes drift (see Section 4 for additional details).894
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Figure 25. A comparison between DopplerScatt and buoy wind speeds for data taken near Oregon,
Monterey CA, and Louisiana. Due to the limited coverage area, relatively few buoy collocations are
available. Data is color coded by DopplerScatt flight (date). Dates in May/June are near Monterey,
dates in April are near Louisiana, and dates in September are near Oregon. a: DopplerScatt wind
speeds vs buoy wind speeds. b: DopplerScatt wind directions vs buoy wind directions. c: DopplerScatt
wind speeds vs buoy wind speeds. (heavy surface current weighting) d: DopplerScatt wind directions
vs buoy wind directions. (heavy surface current weighting)
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Without wanting to prejudge the mechanisms operating at Ka-band, we assume that the measured895

Doppler surface velocity is given by896

vrS =
vSE · ˆ̀ (θ, ϕ)

sin θ
+ FS (U10, ϕ− ϕU) (48)

where vSE is the Eulerian part of the surface current that is not responsive to the local wind,897

and FS represents the contribution of the local wind to the surface current. The wind contribution898

to the current will not only be composed of the wave modulation effects discussed above, but will899

include surface currents due to Stokes drift, surface drift Lagrangian (∼ 0.01− 0.03U10) and Eulerian900

(∼< 0.01U10) components [45,48–50]. This wind-driven surface current sensed by the radar will901

represent the depth averaged current over a fraction of the Bragg wavelength [51], which will be on902

the order of a millimeter. Given the large shears expected very near the surface [47], it is not clear that903

the earlier estimates used for HF or C-band radars will apply, and, considering also the presence of904

bound waves, we do not assume a linear (or near-linear) model for the dependence on wind speed.905

Similarly, the Stokes drift, Lagrangian, and Eulerian wind driven components are known to have906

different directions relative to the wind direction. In what follows, we only assume that the net effect907

of all these contributions will have a systematic dependence on the the wind direction (which might908

vary with speed), but do not assume that the peak of the response will be along the wind direction.909

To estimate FS, we only assume that, over our data set, vSE is independent of the current910

components driven by the local wind, which given the variety of wind conditions and locations911

that we sampled in our data collections, is a reasonable assumption. To make a non-parametric912

estimate of FS, we bin our data with respect to the local wind speed and relative wind azimuth913

direction observed by DopplerScatt. To explore the directional dependence of FS, we used both the914

wind direction derived with slight nudging from the total Doppler current direction, and the direction915

heavily weighted by the total Doppler current direction, which reflects the net direction of wind and916

local currents. The results of this binning process are shown in Figure 26 for directions weighted917

heavily by the total Doppler direction, which have about a 10◦ offset to the right relative to the buoy918

wind direction, cf. Figure 25(d). To estimate the variability around the mean for each histogram,919

we assumed that data sets collected on different days were independent (consistent with our wind920

variability) and used the jackknife resampling method [52] to estimate the standard deviations (shown921

in grey shading) corresponding to the mean values (shown as dashed red line). The result for lightly922

nudged directions (not shown), which are unbiased relative to buoy directions, is very similar, but923

shows greater variability, especially at higher winds.924

Examination the resuts of binning with the two wind directions shows very similar behavior925

with respect to the wind speed dependence. For very low wind speeds (upper-left panel), where few926

long-wavelength waves are assumed to be present, the surface scatterers propagate at (or near) the927

phase velocity of the free Bragg-resonant capillary waves (∼ 31 cm/s), and the shape of the flat-topped928

wide response is similar to that observed by Moller et al. [46]. However, as the wind speed increases929

to about 4.5 m/s, the peak velocity increases and the shape of the distribution begins to approximate a930

sinusoid. For wind speeds greater than 4.5 m/s, the peak of the distribution remains approximately931

constant, up to higher wind speeds (∼ 13 m/s), where a slight increase seems to occur, although there932

is significant scatter around the mean, making this trend less certain. Even though the shape is roughly933

sinusoidal, some bias and kurtosis are apparent. Examining the variability around the mean, it is also934

clear that the scatter around the mean is significantly less when the total Doppler directions are used,935

indicating that the direction of the wind-driven Doppler currents are not along the wind direction, but936

offset to the right, as expected for a mixture of Lagrangian and Eulerian wind drift currents. However,937

the magnitude of the current is significantly higher than that expected for the wind drift currents.938

To get a more quantitative assessment, we fit the histograms with the 4th-order harmonic939

expansion given in equation (33). The results for both wind directions are presented in Figure 27940

and tabulated in Appendix C. It is clear from this figure that the dominant behavior of FS is given by941
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Figure 26. Mean surface current GMF binned by wind speed and direction relative to the net
wind/surface current direction (red dashed lines). The grey shaded areas correspond to GMF standard
deviation estimated using jackknife resampling. The dot-dash grey lines correspond to the Bragg
resonant speeds for freely propagating waves. The relative azimuth for the current GMF follows
oceanographic convention and is taken with the origin in the downwind direction.
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Figure 27. Geophysical model function parameters, equation (33), for speed bias (upper left); bias
relative to the raw surface current direction (lower right); and harmonic coefficients for the first four
harmonics, vr1 to vr4. Error bars are obtained using jackknife resampling.

the first harmonic (i.e., pure velocity vector), which increases linearly from the free wave Bragg velocity942

to about 75 cm/s at a wind speed of 4.5 m/s, and remains approximately constant thereafter, with a943

small increase at higher wind speeds. It is also clear from this figure that the parameters derived by944

binning with the wind direction (green) are significantly noisier than those that use the total Doppler945

direction (blue)5. The term δϕU (lower right panel) shows the systematic difference in direction relative946

to the wind direction observed in the buoy comparisons, for the wind directions not heavily weighted947

by the total Doppler current direction.948

The δvr and vr2 parameters will introduce an upwind-downwind difference in FS and we plot the949

magnitude of this difference in Figure 28, which is small for low winds, but increases to about 10 cm/s950

for medium winds, while decreasing for higher winds. Since there is no reason for the true wind951

driven currents to be different in the upwind and downwind directions, we ascribe this difference to952

the effect of large-scale wave modulation of the scatterers. The third and fourth order harmonics are953

generally small, and not nearly as significant as the other parameters. Additional discussion of the954

behavior of FS and its relation with observations at other bands will be presented in Section 4.955

3.5. Ocean Current Retrieval Results956

The comparison of synoptic surface current fields against in situ data is not easy since the radar957

measured surface velocity is effectively at the surface, but in situ instrumentation typically measures958

the current at some depth. HF radars measure at a depth dependent on the radar wavelength [45,51],959

5 Recall from Section 2.6that for wind speeds less than about 6 m/s, the directions are mostly determined by the total Doppler
direction.
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Figure 28. Magnitude of FS in the upwind (green) and downwind (blue) directions, with the difference
plotted in orange. Error bars are obtained using jackknife resampling.
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which can be on the order of a meter, while surface drifters will measure currents at the depth they960

were drogued. For our flights, we only had limited HF radar coverage and, although a large number961

of drifters were deployed for SPLASH, they quickly converged along fronts and did not provide962

a synoptic measurement of the total area covered by DopplerScatt. The detailed comparison of963

DoplerScatt currents against these data is beyond the scope of this paper and will be addressed in a964

subsequent publication.965

To assess how reasonable the DopplerScatt synoptic measurements were, we will compare our966

current retrievals against forecasts from the Navy Coastal Ocean Model (NCOM) [53] ocean model967

running within the Coupled Ocean/Atmosphere Mesoscale Prediction Systems (COAMPS) system968

produced by the NRL Ocean Dynamics and Prediction group, which were provided to us courtesy of969

Dr. G. Jacobs (NRL) and the CARTHE/SPLASH team. Though the COAMPS system contains ocean,970

wave, and atmospheric models, only the ocean model was run with external atmospheric forcing as971

input. For the forecasts available to us, the main outflow of the Mississippi was routed to a different972

mouth than the one the river actually used, so that the representation of the Mississippi plume was not973

realistic (G. Jacobs, private communication), but the model, which was run at 250 m resolution, gave a974

fair representation of the general submesoscale features in the area.975

Figure 29 presents the comparison of the DopplerScatt retrieved current components against their976

NCOM equivalents for data collected on April 18, 2017, as in the wind retrievals shown previously. The977

DopplerScatt data have been masked along the nadir track and the outer swaths where the estimated978

errors were greater than 20 cm/s (cf., Figure 10), leading to gaps in the coverage, which are greater979

for the V (north) current component than for the U (east) component. The figure shows As can be980

seen from this figure, DopplerScatt captured well the general clockwise recirculation of the Mississippi981

plume and westward current into Barataria Bay. Both the model and the DopplerScatt measurements982

show a strong submesoscale front developing in the north-east quadrant of the Bay, but the exact983

location of the front is a bit further west in the NCOM data. An additional source of comparison that is984

helpful in the location of the plume, circulation, and the submesoscale front are provided by optical985

data obtained by the Sentinel-3 satellite (Courtesy of Copernicus Sentinel, processed by ESA), which is986

compared against the DopplerScatt surface current U-component in Figure 30. The figure shows close987

agreement with DopplerScatt in the location of both the river plume and the submesoscale front.988

Although not definitive, we conclude that DopplerScatt data seems to have a good overall989

agreement with NCOM and optical data, given model forecast limitations, in both in the features990

present and in the magnitudes of the currents. A more detailed comparison with both NCOM and in991

situ measurements will be presented elsewhere.992

4. Discussion993

Our results in the previous sections show that, although initially the effective wind-driven surface994

currents vary linearly with wind speed, this effects saturates after wind speeds ∼ 4.5 m/s. This is in995

contrast withe the C-band results [8,13], which exhibit a strong dependence on wind speed for most of996

the observed wind speed range. In Appendix E, we present the theory behind the wind-driven surface997

current component, and show that it can be written as the sum of a free (equation (A58)) and bound998

(equation (A60)) Bragg waves propagating along or opposite the azimuth look direction, and a term999

due to the uneven weighting of the large-scale wave orbital motion due to fluctuations of the Bragg1000

spectrum:1001

δvrS =

〈
δσ0

σ0

ˆ̀ · δvW
sin θ

〉
= cos φr

(
−∂ log σ0

∂θ
cot θUS +

〈
u

δB
B

〉)
− cot θ

〈
w

δB
B

〉
(49)

where δB/B are the normalized fluctuations of the Bragg wave (saturation) spectrum;1002

US(equation (A65)) is the deep-water Stokes drift current; φr is the look direction azimuth angle1003

measured relative to the down-wind direction; and u and w are the horizontal and vertical orbital1004

velocities, respectively. There are several mechanisms for local Bragg spectrum variations, including1005
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Figure 29. DopplerScatt (upper panels) and NCOM (lower panels) surface current components for the
Mississippi River plume and Barataria Bay on April 18, 2017. (NCOM data courtesy of Dr. G. Jacobs
(NRL) and the NRL and CARTHE/SPLASH teams.) The U(V)-components are shown in the left(right)
columns.

modulation of small waves by winds and larger wave orbital velocities [54]; enhanced roughness due1006

to wave breaking [55]; or generation of Bragg waves due to wave straining [29]. Rather than select1007

among these mechanisms, several of which will likely apply at any given time and that still not fully1008

understood theoretically, we assume that, to lowest order, the spectral modulation can be captured as1009

a linear effect through a Modulation Transfer Function (MTF) [56], as defined in equation (A66). In1010

that case, we obtain a simple equation for δvrS1011

δvrS = US

[
cos φr

(
−∂ log σ0

∂θ
cot θ + mr

)
− cot θmi

]
(50)

where mr and mi are the averages of the MTF real and imaginary parts, weighted by the Stokes1012

drift for each wavenumber (see equation (A68)). This result shows that the orbital velocity bias is1013

proportional to the Stokes drift current, and consists of two terms: The first term, proportional to cos φr,1014

behaves as a horizontal current and is due to coupling of the u-component of the orbital velocity and1015

spectral modulations, as well as brightness modulation due to changes in radar brightness due to the1016

large-scale wave slope. This first term changes sign when the look direction changes from downwind1017

to upwind. The second term, due to coupling of the vertical component of the orbital velocity with1018

spectral modulation, is independent of azimuth direction, and is responsible for the difference in1019

upwind and downwind speeds that is shown in Figure 28. Using the results shown in this figure, we1020

can estimate the imaginary part of the modulation function as1021

mi = tan θ
δvrS(φr = π)− δvrS(φr = 0)

US
(51)

To obtain an estimate as a function of wind speed, we assume that the Stokes drift can be linearly1022

related to wind speed, US = βU10. To compare against other experimental data, we take β = 0.01,1023
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Figure 30. Sentinel-3 optical data (upper) and DopplerScatt U-component of surface velocity for the
same region as in Figure 29. Notice that the location of the plume and frontal features agree well
between the two. (Sentinel-3 data courtesy of Copernicus Sentinel, processed by ESA.)
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Figure 31. (upper) Effective real (m̃r) and (lower) imaginary (mi) hydrodynamic MTF coefficients
obtained by solving equations (51) and (52) using the data in Figure 28. For comparison, MTF reported
in the literature [58][55] [59] are plotted as solid lines. Also shown (dashed lines) are 1st (magenta) and
2nd (green) order polynomial fits of ln mr as a function of ln U10.

which lies in the mid-range of values given in [45] (although β might itself some wind speed variation),1024

and present the results in Figure 31. We note in this figure the change of sign in mi, which implies1025

〈wδB〉 < 0, which implies that at high wind speeds, capillary wave roughness is inhanced in the1026

windward, rather than leeward, wave crest. This consistent with past Ka-band observations and with1027

the hypothesis proposed by Yurovsky et al. [55] that this enhanced roughness may be due to the1028

residual roughness due to wave breaking, which travels at a velocity slower than the larger breaking1029

wave.1030

Once we have solved for mi, it is possible to model the FS data (Figure 26) as1031

FS(φr) = cpF(φr) + US cos φr

[(
mr +

UD
2US

)
− cot θ

∂ log σ0

∂θ

]
−US cot θmi (52)

where we have ignored the Bragg bound wave contribution, assuming that under most open1032

ocean conditions at moderate winds and above free waves dominate; cpF (equation (A58)) is the free1033

Bragg wave contribution, such that cpF(0) = −cpF(π) ≈ 0.31 m/s; finally, UD/2 is the total wind drift1034

speed at a given horizontal position averaged over wave motion, which introduces the factor of 1/21035

[57]. Due to the limited angular angular extent of our data collection, calculating ∂ log σ0/∂θ from the1036

data itself, but we can estimate it from the theoretical Bragg cross section (equation (A56)), the Ku-band1037

NSCAT GMF, or the results from Yurovsky et al. [21], which all give similar results and we use the1038

NSCAT result as the one with the greatest empirical data at high winds. Without a priori knowledge1039

of UD, we can only solve for an effective real part of the MTF, m̃r ≡ (mr + UD/2US), which includes1040

not only wave modulation for total surface drift as well. Given these assumptions, we solve for m̃r1041

using the upwind and downwind data shown in Figure 28, and present the average of the upwind and1042

downwind results in Figure 31.1043
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We compare these results against Ka-band results reported by by Keller et al. [58] in the1044

SAXON-FPN experiment in the North Sea; by Yurovsky et al., [55], acquired using a tower mounted1045

radar in the Black Sea; and by Laxague et al. [59] using an optical set up that allowed for the resolution1046

of Bragg-resonant waves in the high-frequency regime corresponding to Ka-band. Yurovsky et al.1047

reported the MTF values averaged over frequency and fit with single power-law fit with respect to1048

wind speed, which we present in as the blue line in the figure. Keller et al. ([58], Figure 4) present the1049

mean and variance of the Ka-band MTF averaged over the frequency range 0.25 to 0.3125 Hz, and we1050

have fit a smooth polynomial through the means, which, after subtracting the tilt MTF appropriate1051

for their 45◦ incidence angle, we show as the green line in the figure. Laxague et al. subdivide the1052

spectral variability obtained by optical means into a region appropriate for Ka-band, and derive an1053

MTF, at a number of wind speed points, which we digitized and fit with a power-law, as with the1054

other MTF’s, and the results are shown in orange. The agreement between the estimated MTF and the1055

one in the literature is fairly close for wind speeds above 6 m/s. The largest disagreement is with the1056

results of [55] for mr, but this may be partly an artifact of their modeling of mr as a simple power-law1057

in U10, since when we model our data in the same way, we also get large disagreements at lower wind1058

speeds, as shown in Figure 31. At speeds below 4 m/s, the agreement is not as good between any of1059

the models, perhaps reflecting the lack of data or the influence of non-wind-driven swell in generation1060

brightness modulations. Note that improved agreement with the other models could be obtained by1061

varying β and/or making it wind dependent. Given the scatter between the different measurements,1062

probably due to real-world variability, this is not a necessary refinement.1063

The main point of this discussion is to show that the wind speed behavior of FS is consistent1064

with biases due to σ0 variations along the large-scale wave via a linear modulation mechanism, and1065

that the magnitude of this modulation is consistent with previous Ka-band results. To get a better1066

understanding of the operating mechanisms, we present in Figure 32 the decomposition of the upwind1067

and downwind wind-driven surface velocities into contributions due to free Bragg waves and tilt1068

modulation, σ0 coupling to u through mr, and σ0 coupling to w through mi. We see that the free Bragg1069

wave contribution accounts for the behavior at low winds, and the addition of tilt modulation, which1070

is proportional to the Stokes drift, accounts for a slow increase with wind speed in the upwind and1071

downwind biases. The rapid increase in FS at wind speeds smaller than about 4 m/s and be attributed1072

to the rapid increase in the coupling to the u component through mr. We speculate that this rapid1073

increase may be due to the presence of bound waves in the leeward side of the wave crests that may be1074

more noticeable at low wind speeds due to the smaller fraction of the area covered by free Bragg-wave1075

patches. The relative stability between 4 m/s and 12 m/s is attributed to the fact that in this range1076

mr decays with wind speed faster than U−1
S and this decay is sufficient to compensate the linear1077

increase due to tilt modulation. Coupling to the vertical velocity component has a relatively small1078

effect in the magnitude of upwind and downwind components, but is responsible for the asymmetry1079

in the response, sine the other mechanisms are have the same magnitude and opposite sign, while1080

the sign of mi does not depend on the look direction. We note that wind speeds greater than about1081

12 m/s, the data scatter increases, but there is a small increase in the the velocity magnitude, that could1082

be attributed to mr decreasing more slowly at higher winds, potentially due to the effects of wave1083

breaking. The bulk of the difference in the behavior of FS at Ka and C-bands [8,13] can be attributed to1084

the fact that the C-band data was acquired at lower incidence angles, so that the tilt modulation factor1085

∂ ln σ0/∂θ, which is ∼ 3 at our incidence angles, can be as much as ∼ 15 for the lower incidence angles1086

of the C-band SAR data. However, we note that the empirically observed fast decay of mr with wind1087

speed plays an additional role, as using the theoretical value [18] for mr results in greater wind speed1088

dependence than we observe (F. Nouguier, B. Chapron, personal communication).1089

In the previous discussion, we dealt only with modulation effects due to waves traveling along1090

the wind direction. To see how this one-dimensional assumption fits the data, we subtract the MTF1091

modeled wind driven surface velocities from the observed velocities, and present the results in1092

Figure 33. If the one-dimensional wave modulation accounted for all of the effects, the difference1093
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Figure 32. Decomposition of upwind and downwind values of FS into contributing scattering
components. The MTF coefficients used are the low-order polynomial fits in log-domain shown
in Figure 31.

between these two lines should be cpF, which, according to equation (A58), should vary in the1094

range ±0.31 m/s with a top that reflects the broad capillary wave spectrum, as has been observed1095

experimentally for narrow beam radars as reported by, e.g. Moller et al. [46]. This is indeed what is1096

observed in Figure 33, where the cpF results are quite similar to the ones obtained in [46]. The main1097

discrepancy we observe is the fact that the zero-crossing of this function does not occur exactly at1098

φr = ±π/2, but is slightly broader in the downwind direction than downwind. We speculate that1099

this difference is due to the fact that, due to the angular spreading of the large-scale wave spectrum,1100

there will be a resulting asymmetry in the up and downwind directions. Nevertheless, we find that the1101

simple MTF model provides a reasonable explanation of the FS features observed in the DopplerScatt1102

data, although we selected to use the empirical version of FS when removing the wind-driven currents1103

to account for the small disparities with the MTF model.1104

5. Conclusions1105

This paper has presented DopplerScatt, a new instrument that provides simultaneous1106

measurements of winds and currents using a Ka-band pencil-beam scanning Doppler scatterometer.1107

With the development of DopplerScatt, we have extended the theory and calibration of these1108

instruments beyond the existing literature [9]. Among the innovations presented in the system1109

understanding, algorithms, and calibration, we note:1110

1. Development of an end-to-end measurement model including several effects, such as quantifying1111

the impact of cross-section variations, not previously reported.1112

2. Detailed examination of the pulse-pair estimation algorithm, including deriving an error1113

estimator for the Doppler velocity and validating it with experimental data.1114

3. Development of an end-to-end error budget including both random and systematic errors. The1115

error model was validated against measurements and showed that the DopplerScatt instrument1116

had good stability and noise performance for both σ0 and Doppler velocities.1117

4. Development of new calibration techniques to remove errors caused by uncertainties in the1118

antenna pointing and other systematic (e.g., model function) errors.1119
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Figure 33. (blue line) Mean of FS from Figure 26; (orange dashed line) modeled wind-driven velocity
bias, using the fit MTF coefficients; (green line) residual after subtracting orange from green lines, which
should be nominally the Bragg cpF. The upwind and downwind free Bragg velocities are indicated by
dashed gray lines.
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5. Development of a wind estimation algorithm that uses backscatter and Doppler velocities in1120

an innovative way so that winds vectors can be estimated using a single beam, rather than the1121

traditional two-beam architecture.1122

In addition to these technical innovations, we have collected an extensive data set of Ka-band V-pol σ01123

and Doppler velocities. Using these data, we have:1124

1. Determined the ocean correlation time at Ka-band as a function of wind speed. The correlation1125

times observed (> 2 msec) indicate that this measurement is scalable to spaceborne applications1126

with reasonable performance.1127

2. Developed a Ka-band V-pol GMF which shows an overall sensitivity to wind speed similar to1128

the one predicted by the Ku-band NSCAT GMF. The main difference between the two GMF’s is1129

in the much greater upwind cross-wind modulation seen at Ka-band, which will improve wind1130

direction estimation. The observed modulation also exceeds the one observed at Ka-band from a1131

platform in the Black Sea by Yurovsky et al. [21], but, due to platform geometry, the cross-wind1132

sampling may not have been optimal for these incidence angles. Yurovsky et al., also have a global1133

analytic form for their GMF that may constrain the modulation somewhat, and comparisons1134

against actual data points (Yurovsky, personal communication) shows better agreement with1135

DopplerScatt observations than the analytic formula. Resolving these discrepancies will require1136

additional data, but the current results, as well as those of Yurovsky et al., show that there is1137

sufficient wind speed and direction sensitivity at Ka-band to obtain wind estimation performance1138

similar to that of Ku-band scatterometers, such as QuikSCAT. Formal errors in the estimated1139

wind speed and direction indicate performance better than spaceborne scatterometers, but the1140

limited comparison against buoy data shows similar performance, possibly pointing to needed1141

improvements in the GMF, possibly including current effects.1142

3. Examined the local wind dependent part of the Doppler velocity signature. While the signature1143

is roughly aligned with the wind direction, as for other frequencies, it deviates slightly from the1144

true wind direction, in a fashion consistent with expected direction differences consistent with1145

those expected for the sum of Lagrangian and Eulerian wind-driven currents [45]. However,1146

the wind speed dependence of the Doppler currents is quite different from the one observed1147

at C-band [8,13], where the Doppler velocity is nearly linearly dependent on wind speed. By1148

contrast, at Ka-band there is only a linear dependence for low winds, and the magnitude of1149

the dependence stabilizes after a wind speed of about 4.5 m/s. In addition, the shape of the1150

wind-dependent response is close to a sinusoid with azimuth angle; i.e., the expected response1151

of a constant velocity vector, albeit, one that seems to propagate at a small angle wind speed,1152

consistent with wind-drift measurements with HF radars [45]. This behavior was explained as1153

due to the modulation of the backscatter cross section through a modulation transfer function1154

(MTF) consistent with those previously observed at Ka-band. The lack of dependence of the1155

wind correction with respect to wind speed makes the estimation of the non-wind driven part1156

of the surface current much less sensitive to wind speed variations, although still sensitive to1157

wind direction errors. Given that the wind-dependent correction can be made with the same1158

instrument as the Doppler velocities, this combination is scalable to a spaceborne instrument.1159
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Appendix A1181

The DopplerScatt concept relies on using the phase difference between pulse pairs to estimate1182

radial velocity components. In this section, we derive the expected characteristics of this quantity as a1183

function of the viewing geometry, surface and platform motion.1184

The return complex amplitude, Ei, for the ith pulse (i = 1, 2) in a pulse pair is given by1185

Ei(ti, r′) ∼ n
(
ti, r′

)
+
∫

dS G(x, ti)χ(r′ − r (ti, x)) exp [−2ikr (ti, x)] s (ti, x) (A1)

where ∼ means equality up to a constant unimportant for our results; G (x) is the one-way1186

antenna pattern; χ (r) is the range point target response; r′ is the nominal pixel range in the time1187

sampled signal; k = 2π/λ is the radar wavenumber; ri(ti, x) is the range from the radar to the location1188

x at time ti; ni is the thermal noise contribution. Finally, s (ti, x) is the complex reflection coefficient,1189

defined such that averaging over speckle realizations, it satisfies the equation1190

〈
s (x) s∗

(
x′
)〉

S = δ
(
x− x′

)
σ0 (x) γTS (|τ|) (A2)

where 〈〉S denotes averaging over speckle realizations; σ0(x) is the normalized radar cross section1191

for the desired transmit/receive polarization combination; τ = t1 − t2 is the pulse-pair temporal1192

separation; and, finally, γTS (|τ|) represents the temporal correlation due to scattering patch velocity1193

deformation or lifetime, but does not include decorrelation due to resolved large wave motion. Over1194

the period of observations, we assume the radar cross section statistics remains homogeneous in time,1195

although σ0 varies in space. At this time we do not have a good model for the patch decorrelation time,1196

but in Section 3 we show that it does not seem to be a major contributor to pulse to pulse correlation.1197

Similarly, the thermal noise contribution is assumed to satisfy1198

〈n1n∗2〉S = δ1,2N (A3)

where N is, up to a constant, the thermal noise power.1199

The expected value of the pulse-pair complex product averaged over speckle realizations, 〈E1E∗2 〉S,1200

is given by1201

〈E1E∗2 〉S ∼
∫

dS G2 (x) χ2 (r′ − ri (t, x)
)

σ0 (x) exp [−2ik (r (t1, x)− r (t2, x))] (A4)

Assume that over the period of observationrP(t), is given by rP(t) = rP(0) + vPt, where the1202

time origin is chosen to lie at the mid-point of the burst of pulses used for observation. The position1203

of a small (i.e., on the order of a few wavelengths) patch of moving surface scatterers, rS(t), is1204

given by rS(t) = rS(0) + (vE + vW(x)) t, where vE is the Earth’s velocity in the inertial coordinate1205

system, and vW is the velocity of the water patch of scatterers. We do not make any assumptions1206

about the velocity of the scatterers, aside from the fact that their total velocity will consist of an1207

intrinsic velocity (which may, but need not be, be the Bragg velocity) superimposed on the wave1208

orbital velocity and additional current terms, possibly including wind drift and surface current1209

components. The vector pointing between the platform to the target patch of scatterers is then given by1210
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r(t) = rS(t)− rP(t) = r(0) +
(
vW − vp

)
t, where vp = vP − vE is the platform velocity vector relative1211

to the moving Earth, and Earth motion is assumed to be constant over the radar footprint. With these1212

conventions, the range between platform and target can be approximated by1213

r(t, x) ≈ r(0, x)

[
1 +

ˆ̀ (x) ·
(
vW (x)− vp

)
t

r(0, x)
+ +O

((
vpt
r(0)

)2
)]

(A5)

where ˆ̀ = r/r, and we can write the range difference as1214

r (t1, x)− r (t2, x) ≈ ˆ̀ (x) ·
(
vW (x)− vp

)
τ (A6)

where τ = t1 − t2.1215

To make further progress, we introduce the system spatial weighting function f (x, y) defined by1216

f (x, y) =
G2 (x) χ2 (r′ − ri (t, x))∫

dS G2 (x) χ2 (r′ − ri (t, x))
(A7)

and define the power weighted centroid of any quantity η = ηC + η′ as1217

ηC =
∫

dS f (x, y)η(x, y) (A8)

where a prime denotes the variation of the variable relative to the centroid value. We evaluate1218

the integral in a horizontal coordinate system defined on the tangent plane, choosing the origin1219

of the coordinate system as (xC, yC) and writing the horizontal coordinate vector as x = (x, y) =1220

(xC + x′, yC + y′) = xC + x′. If ˆ̀C is the look vector from the platform to (xC, yC) the look vector will1221

be ˆ̀ = ˆ̀C + δ ˆ̀(x′, y′).1222

We decompose the water surface velocity into a constant component, vW , a gradient over the1223

resolution cell, and a “random” component, δvW (x′), due to unresolved wave motion and current1224

variability inside the resolution cell:1225

vW(x) = vW +
(
x′ · ∇H

)
vW (xC) + δvW

(
x′
)

(A9)

where ∇H is the gradient in the tangent plane coordinates.1226

The σ0 is decomposed in a similar fashion1227

σ0(x) = σ0 +
(
x′ · ∇H

)
σ0 (xC) + δσ0

(
x′
)

(A10)

The mean and gradients of σ0 are mostly due to the mean wind speed and its spatial gradient,1228

while the random variations, δσ0, are due to cross section variations within the resolution cell caused1229

by changes in the incidence angle by large-wave tilts and by hydrodynamic modulation of small waves1230

by large waves. In general, it will be assumed that the fluctuations of the cross section across the1231

footprint, δσ0 , relative to the mean value, σ0, are small, and we can discard quadratic and higher terms1232

in δσ0/σ0.1233

After making these replacements, we can rewrite the total complex coherence, γ, as1234

γ (τ) = γNγTS (τ) γD (τ) (A11)

where the noise correlation term is given by γN =
(

1 + SNR−1
)−1

, where SNR is the1235

signal-to-noise ratio. The Doppler correlation term is given by1236

γD (τ) = exp [−iΦC]
∫

dS f
(
x′
)

ID
(
x′
)

IG
(
x′
)

IR
(
x′
)

(A12)

where ΦC is the phase contribution due to the Doppler shift between the platform and the mean1237

current over the footprint ΦC = 2k ˆ̀C ·
(
vp − vW

)
τ.1238
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The terms in the integrand are: ID, the variations of the Doppler over the footprint; IG, the1239

contributions due to gradients in the current and σ0; and IR, random contributions from sub-resolution1240

cell variations in the wave velocities and hydrodynamic modulations of σ0. They are explicitly given1241

by1242

ID = exp
[
−2ikδ ˆ̀ (x′) · (vp − vW

)
τ
]

(A13)

IG ≈ exp
[
2ik
(
x′ · ∇H

) ( ˆ̀C · vW

)
τ
] (

1 +
(x′ · ∇H) σ0

σ0

)
(A14)

IR = exp
[
2ik ˆ̀C · δvτ

] (
1 +

δσ0

σ0

)
(A15)

where we have neglected cross terms between the gradient and random variations of σ0, where1243

we expect little correlation due to the different generation mechanisms, and will disappear when1244

averaging over the random components, as described below.1245

Since it is not possible to resolve phenomena smaller than the resolution cell, we calculate the1246

expected value of the random term by performing averaging over unresolved wave and brightness1247

modulations, caused by waves. Note that for small enough range resolutions, some of the wave1248

motions may be resolved and part of the observed Doppler shift. The average over unresolved waves,1249

which will be denoted by〈〉W , results in1250

〈IR〉W ≈ exp
[

2ik
〈

δσ0

σ0
ˆ̀C · δvW

〉
W

τ

]
γTW (τ) (A16)

γTW (τ) = exp
[
−1

2
(2kτ)2

〈(
ˆ̀C · δvW

)2
〉

W

]
(A17)

After averaging, neither of these terms depends on x′ and they can be extracted from the integral.1251

The phase term contributes a bias term which modifies ΦC with a shift due to correlation between1252

wave motion and σ0 modulations1253

Φ′ = 2k ˆ̀C ·
(

vp −
(

vW +

〈
δσ0

σ0
δvW

〉
W

))
τ (A18)

Note that the surface current part in the inner parenthesis can be written as1254 〈
ˆ̀C · (vW + δvW) (σ0 + δσ0)

〉
W

〈σ0 + δσ0〉W
(A19)

which is equal to the Doppler current term proposed by Chapron and collaborators [8]based on a1255

heuristic model that weighted the Doppler contribution for each surface patch by the local brightness.1256

This model has been subsequently been refined into the DopRIM model to include various scattering1257

mechanisms, and we refer the reader to this literature for a detailed discussion of this term [17–19].1258

The γTW term is a temporal correlation term due to the Doppler bandwidth of the surface1259

waves. It can be combined with the patch correlation term to give a total temporal correlation,1260

γT (τ) = γTS (τ) γTW (τ).1261

To perform the integral in equation (A12), write the look vector as a function of the look angle, θ,1262

relative to the local vertical at the platform, ẑP, and the azimuth angle, φ, defined as the angle relative1263

to x̂P =
(
vp − ẑP · vpẑP

)
/
∣∣vp − ẑP · vpẑP

∣∣, the component of the Earth relative velocity vector in the1264

plane perpendicular to the local normal, which is assumed to be the plane of rotation of the antenna.1265

The look vector can then be written as ˆ̀ = (cos φx̂P + sin φŷP) sin θ − cos θẑP,where ŷP = ẑP × x̂P.1266

Expanding φ = φC + φ′, θ = θC + θ′, and aligning the tangent plane coordinate system so that the y′1267

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2018                   doi:10.20944/preprints201803.0104.v1

Peer-reviewed version available at Remote Sens. 2018, 10, 576; doi:10.3390/rs10040576

http://dx.doi.org/10.20944/preprints201803.0104.v1
http://dx.doi.org/10.3390/rs10040576


54 of 67

coordinate is along the plane of incidence, one can write φ′ = x′/(rC sin θC) and θ′ = y′ cos θ
(i)
C /rC,1268

where θ
(i)
C is the local incidence angle at the resolution cell center. It is given by θ

(i)
C = θC + α, where α1269

is the angle between the platform and the resolution cell center, as measured from the Earth’s center:1270

sin α = (rC/RE) sin θC), where RE is the local Earth radius. With these definitions, we can write1271

δ ˆ̀ (x′) = [(−x̂P sin φC + ŷP cos φC)]
x′

rC
+ [cos θC (x̂P cos φC + ŷP sin φC) + ẑP sin θC]

y′ cos θ
(i)
C

rC
(A20)

Collecting terms in x′, y′, the integral for γD (after removing the wave components) becomes1272

γD =
∫

d2x′ f (x′) exp
[
−i
(
κ · x′

)] (
1 +

x′ · ∇Hσ0

σ0

)
(A21)

κx′(τ) = 2kτ

[
(−x̂P sin φC + ŷP cos φC)

(
vp − vW

)
rC

− ∂x

(
ˆ̀C · vW

)]
(A22)

κy′(τ) = 2kτ

[
(cos θC (x̂P cos φC + ŷP sin φC) + ẑP sin θC)

(
vp − vW

)
cos θ

(i)
C

rC
− ∂y

(
ˆ̀C · vW

)]
(A23)

We can rewrite the γD terms as1273

γD =

(
1 + i

(∇Hσ0

σ0

)
· ∇κ

) ∫
d2x′ f (x′) exp

[
−i
(
κ · x′

)]
(A24)

The integral is recognized as a Fourier transform, and we can write1274

γD ≈ exp [i2kτvrG] ·
∇κ f̃ (κ(τ))∣∣ f̃ (κ(τ))∣∣ (A25)

vrG =
1

2kτ

(∇Hσ0

σ0

)
· <
(
∇κ f̃ (κ(τ))

)∣∣ f̃ (κ(τ))∣∣ (A26)

where f̃ (κ) denotes the Fourier transform coefficient of f (x′) evaluated at kx, ky. We assume that1275

the change in cross section due to the long-wavelength σ0 gradient is small compared to the mean cross1276

section, and <(z) represents the real part of z. vrG is the error in the estimated radial velocity caused1277

by gradients in σ0 over the footprint. If the function f (x) is asymmetric about the origin (e.g., due to1278

the antenna pattern not being symmetric in range or azimuth along the observed range slice), f̃ (κ(τ))1279

can be complex and we write it as f̃ (κ(τ)) =
∣∣ f̃ (κ(τ))∣∣ exp [iΦA], where the subscript A stands for1280

“asymmetric” or “antenna”. The phase term, if uncompensated through calibration, will induce a bias1281

in the estimated radial velocity, vrA, whose magnitude can be determined by rewriting the phase as1282

ΦA = 2kτvrA.1283

The correlation term γD captures the effect of the variation of the Doppler over the footprint, with1284

the greater variability resulting in reduced correlation and higher phase noise. The typical variation1285

over the footprint is given by κx∆x and κy∆y, where ∆X and ∆Y are the azimuth and range footprint1286

sizes, respectively. Typical range resolutions are small enough that κy∆Y � 1 and the Doppler range1287

variations can be ignored, so that the correlation will determined by the Doppler variations in the1288

azimuth direction. For a stationary target, this will be proportional to 4πvp · δ ˆ̀Cτ/λ, the ratio of1289

the Doppler bandwidth to the pulse-repetition-frequency (PRF) 1/τ. However, a linear azimuthal1290

variation of the radial current can also cause a Doppler phase ramp. The maximum value of the ratio1291

between the aircraft to surface current Doppler variations will be proportional to sin φCvp∆φ/δvry,1292

where δvry is the total variation of the y-radial velocity across ∆X and ∆φ is the antenna azimuth1293
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beamwidth. For the DopplerScatt parameters, the surface velocity variations will only be important in1294

exactly the forward or aft directions, when the Doppler bandwidth vanishes, but deviation by just1295

1◦ from these directions would require a 10 cm/s variation in the linear part of the current over the1296

footprint, which is extremely unlikely. Therefore, we neglect the current contributions to the Doppler1297

variations and approximate κx′(τ) ≈ −2kvpτ sin φC/rC.1298

We summarize the final result for the complex correlations as1299

γ (τ) = exp [−iΦ] γNγT (τ) |γD(τ)|
|γD(τ)| =

∣∣ f̃ (κ(τ))∣∣ (A27)

Φ = 2kτ

[
ˆ̀C ·

(
vp −

(
vW +

〈
δσ0

σ0
δvW

〉
W

))
−vrG − vrA]

≡ 2kτ
[
vrp − (vrW + vrR + vrG + vrA)

]
(A28)

Φ is the expected value of the pulse-pair phase difference, and forms the basis for the estimation of1300

the surface current. Equation (A28) shows that if one desires to estimate the mean radial velocity over1301

the footprint, vrW = ˆ̀C · vW , one must take into account and properly remove the platform motion,1302

vrp = ˆ̀C · vp, the wave contribution, vrR = ˆ̀C ·
〈

δσ0
σ0

δvW

〉
W

, the contribution due to cross-section1303

gradients, vrG, and, finally the contribution due to system illumination asymmetries, vrA.1304

As an example applicable to DopplerScatt, consider the effects of a σ0 gradient when the range1305

resolution is fine enough compared to the velocity variations, and the weighting function, after a1306

change of variables to angular coordinates, can be approximated by1307

f ≈ δ(θ − θC)g(φa) (A29)

where g(φa) represents an iso-range cut of the two-way antenna pattern azimuth plane,1308

normalized to unit area. Using x = rCφa, the Fourier transform can then be written as1309

f̃ (κx) =
∫

dφa g(φa) exp [−iκx′rCφa] (A30)

where φa = φ′ sin θC has been used. The DopplerScatt antenna pattern can be approximated by a1310

Gaussian1311

g(φa) ≈
exp

[
− φ2

a
2σ2

φa

]
√

2πσφa
(A31)

with σφa ≈ 0.02 ≈ 1.163◦ and we have that1312

f̃ (κx′) = exp
[
−2
(
kvpτ

)2
σ2

φa sin2 φC

]
(A32)

γD = exp [i2kτvrG] f̃ (κx) (A33)

vrG =

(
∆σ0

σ0
σφ

)
vp sin θC sin φC (A34)

where ∆σ0 is the σ0 change over a distance ∆X = rCσφa and ∆φ = σφa/ sin θC is the magnitude of1313

the change in the azimuth angle. A simple calculation shows that the radial velocity bias is equivalent to1314

an azimuth pointing error, where the azimuth shift corresponds to the shift in the illumination centroid1315

due to the σ0 gradient. Examining this result shows that a gradient in the along-track x-direction will1316

always lead to a positive δvr, but cross-track gradients will lead to a complicated angular dependence1317
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that vanishes at broadside and the fore and aft directions, is maximum at mid-swath, but has opposite1318

signs in the fore (|φ| ≤ π/2 ) and aft (|φ| > π/2 ) directions.1319

Appendix B1320

Appendix B.1 Estimator Derivation1321

Assume that the complex signal can be characterized as a set of Np uniformly spaced, correlated,1322

circular-Gaussian pulses [24,60] En (1 ≤ n ≤ Np), with the the elements of Σ, the Toeplitz Hermitian1323

covariance matrix given by1324

Σmn = 〈EmE∗n〉 = Pγ|m−n| exp [i (n−m)Φ] (A35)

where angular brackets denote the expectation value, P = S + N is the total return power,1325

0 ≤ γ|m−n| ≤ 1 is the correlation coefficient between pulses separated by j = |m− n| sampling1326

intervals (γ0 = 1), and Φ = 2π fDτ is the pulse-to-pulse phase which is the product of the Doppler1327

centroid. fD, and the inter-pulse period, τ. Since it is an arbitrary positive multiplicative constant and1328

the results do not depend on it, P will be set to 1 henceforth.1329

The negative log-likelihood function is then given (up to a constant) by [24]1330

L(Φ) = − ln (L) = ln (|Σ|) + E†Σ−1E (A36)

where |Σ| is the determinant of Σ (Φ), E is the vector containing the circular-Gaussian measured1331

samples, and † denotes the conjugate transpose.1332

In the following derivation, it will be assumed that γj is known a priori, so that the1333

maximum-likelihood estimate for Φ can be done independently of estimating γj. For the radar1334

case, this is reasonable since the pulse-to-pulse correlation is dominated by the signal-to-noise ratio1335

and illuminated area decorrelation factor from the van Cittert-Zernike theorem [60], which can be1336

calculated a priori. Making these assumptions, the maximum likelihood estimate for Φ can be obtained1337

by minimizing L with respect to Φ, or, equivalently, by solving the following equation for Φ:1338

∂L
∂Φ

= 0 (A37)

Solving the minimization can be helped substantially by noticing that the determinant of the1339

covariance matrix is independent of Φ, which, after some algebra, follows from the exponential form1340

of the matrix elements. This fact then implies that to obtain the maximum likelihood estimator, it is1341

sufficient to minimize E†Σ−1E, or, equivalently, to solve the maximum likelihood equation1342

E†(∂ΦΣ−1)E = 0 (A38)

There is no simple closed form solution to compute the inverse of Σ, although there are recursive1343

formulas to calculate its elements, since it is a Toeplitz matrix. Taking the derivative of ΣΣ−1 = 1,1344

one obtains that ∂ΦΣ−1 = −Σ−1 (∂ΦΣ)Σ−1. Notice that from the Hermitian property, it follows that1345

Σ−1† = Σ−1 and the maximum likelihood equation can be written as1346

0 = u† (∂ΦΣ) u (A39)

u = Σ−1E (A40)

1347

and we refer to u as the transformed pulse sequence. The derivative of element m, n of the1348

covariance matrix is easily computed to be ∂ΦΣm,n = i(n−m)Σm,n. Defining Uj and Lj to be matrices1349

containing ones in the kth upper or lower diagonal, respectively, or 0 otherwise, one can write1350
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− i∂ΦΣ =
Np−1

∑
j=1

jγj

[
eijΦUj − e−ijΦLj

]
(A41)

Define u†Uju = I∗j , so that Ij = ∑i uiu∗i+j is the interferogram for transformed pulse pairs1351

separated by j pulses. Taking the complex conjugate, Ij = uTUju∗, and the transpose Ij = u†UT
j u =1352

u†Lju, one can write the maximum likelihood equation as1353

Np−1

∑
j=1

jγje−ijΦ Ij −CC = 0 (A42)

where CC stands for complex conjugate. Notice that this equation depends on Φ both explicitly1354

through the exponential, and implicitly through Ij, which depends on the inverse covariance matrix, a1355

function of Φ.1356

It is instructive to see the form taken by the maximum likelihood equation in the case considered1357

by Madsen [12] when γj 6= 0 only for one value of j. In that, it is clear that a solution to the equation is1358

given by1359

Φ̂j =
1
j

arg Ij (A43)

where Ij =
∣∣Ij
∣∣ ei arg Ij . This solution is quite similar to the maximum likelihood solution derived1360

in [23] for interferometric pairs, with the exception that in that case Ij is the interferogram of the1361

original pulse pairs, not the transformed ones. This difference is due to the fact the pulse pairs for1362

interferometry come from uncorrelated looks, whereas there is pulse to pulse correlation in the Doppler1363

centroid case. Equation (A43) is still not a solution for Φ, since it is contained implicitly in the right1364

hand side of the equation. Given a good enough guess, the equation can be solved by iteration1365

Φ(n+1)
j =

1
j

arg Ij(Φ
(n)
j ) (A44)

As a starting guess, note that if the off-diagonal correlation elements can be neglected (i.e., γj � 1),1366

one has the Madsen jth estimator given by1367

Φ(0)
Mj =

1
j

arg I(0)j (A45)

where I(0)j is the interferogram of the original pulse-pair sequence. In practice, we find that a1368

one-dimensional numerical search around the Madsen estimator provides a reliable solution of the1369

MLE equations.1370

Appendix B.2 Cramér-Rao Bound1371

The Cramér-Rao bound [24] σ2
Φ, which is the inverse of the Fisher information J, sets a limit on1372

the minimum variance of any unbiased estimator. In our case, the Fisher information is given by1373

J = −
〈

∂2L
∂Φ2

〉
= −

〈
E† ∂2Σ−1

∂Φ2 E
〉

=

〈(
E† ∂Σ−1

∂Φ
E
)2〉

(A46)

Generalizing the derivation in [24] to circular Gaussian variables, taking the expectation value1374

results in1375

σ2
Φ = J−1 =

(
tr
[

Σ−1 ∂Σ

∂Φ
Σ−1 ∂Σ

∂Φ

])−1
(A47)
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where the derivative of the correlation matrix is given by equation (A41) and the inverse of the1376

covariance matrix can be calculated numerically or symbolically.1377

Although useful for computational purposes, the exact expression for the Cramér-Rao bound is1378

complex and does not lead to easy understanding of the orders of magnitude or parametric dependence1379

on the various factors. To improve our understanding, one can obtain a simple expression accurate to1380

second order in the correlations γ, which is suitable for many practical circumstances.1381

Using Σ−1 ≈ 1−A + A2 +O
(
γ3), the Fisher information is readily calculated by using1382

〈
E†LjE

〉
=

(
Np − j

)
γjeijΦ (A48)〈

E†UjE
〉

=
(

Np − j
)

γje−ijΦ (A49)

1383

so that, using
〈
E† (∂2A2/∂Φ2) E

〉
≈ 0,1384

−
〈

E† ∂2Σ−1

∂Φ2 E
〉

=

〈
E† ∂2A

∂Φ2 E
〉

=
Np−1

∑
j=1

2
(

Np − j
)

j2γ2
j

The final result for the Cramér-Rao bound is given by1385

σ2
Φ ≥

[Np−1

∑
j=1

σ−2
Φj

]−1

(A50)

σ2
Φj =

1
2
(

Np − j
)

j2γ2
j

where σ2
Φj is the phase variance when all γj’s are 0, except the jth one. The special case of j = 11386

corresponds to Madsen’s recommendation for SAR Doppler centroid estimation. Also note that this1387

bound is similar to the one derived by Rodríguez and Martin [23] for independent pulse pairs, which1388

in our case could be written as1389

σ̃2
Φj =

1− γ2
j

2
(

Np − j
)

j2γ2
j

(A51)

which predicts a lower variance by a constant factor of
(
2
(

Np − j
)

j2
)−1.1390

This first order formula suggests that the weighted estimator for Φ, defined as1391

Φ̂W =
Np−1

∑
j=1

wjΦj (A52)

wj =
σ−2

Φj

∑
Np−1
j=1 σ−2

Φj

(A53)

would approach the Cramér-Rao bound if the estimated phases, Φj, given by either equation (A43)1392

or (A45) could be considered independent variables.1393
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Appendix C1394

The coefficients for the DopplerScatt geophysical model function are shown in Table A1 along1395

with their formal fit standard errors. These coefficients correspond to those given in Equation A54,1396

below, which is the expanded form of equation (46).1397

10 log10 (σ0) = C0 + C1θ + C2 cos (φ′) + C3 cos (φ′)θ + C4 cos (2φ′) + C5 cos (2φ′)θ + C6 log10 (U) + C7θ log10 (U10)+

C8 cos φ′ log10 (U10) + C9 cos (φ′) log10 (U10)θ + C10 cos (2φ′) log10 (U10) + C11 cos (2φ′) log10 (U10)θ
(A54)

Table A1. Table of wind GMF coefficients.

Coefficient Value Standard Error

C0 -54.278 6.527
C1 0.259 0.117
C2 16.361 8.442
C3 -0.267 0.152
C4 15.753 9.122
C5 -0.236 0.164
C6 39.533 6.892
C7 -0.318 0.125
C8 -25.563 8.779
C9 0.456 0.159
C10 -6.636 9.679
C11 0.127 0.175
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Appendix D1398

Table A2. Table of wind GMF coefficients.

U10 δvr vr1 vr2 vr3 vr4 δϕ

1.5 −0.06± 0.04 +0.35± 0.05 +0.10± 0.06 +0.02± 0.06 −0.03± 0.03 −0.04± 0.22
2.0 −0.05± 0.02 +0.40± 0.03 +0.07± 0.03 −0.00± 0.03 −0.01± 0.05 −0.15± 0.13
2.5 −0.03± 0.02 +0.48± 0.04 −0.03± 0.03 +0.01± 0.02 −0.05± 0.02 +0.00± 0.05
3.0 −0.02± 0.01 +0.58± 0.04 −0.03± 0.01 +0.03± 0.02 −0.01± 0.01 −0.00± 0.02
3.5 −0.02± 0.01 +0.65± 0.05 −0.02± 0.01 +0.01± 0.02 +0.01± 0.01 +0.03± 0.03
4.0 −0.02± 0.01 +0.69± 0.06 −0.03± 0.01 +0.00± 0.02 −0.00± 0.00 +0.04± 0.03
4.5 −0.01± 0.01 +0.75± 0.05 −0.04± 0.02 −0.00± 0.01 +0.00± 0.01 +0.03± 0.02
5.0 −0.02± 0.01 +0.79± 0.03 −0.06± 0.02 −0.01± 0.01 +0.01± 0.01 +0.03± 0.02
5.5 −0.03± 0.01 +0.79± 0.03 −0.06± 0.02 −0.02± 0.01 +0.01± 0.01 +0.02± 0.03
6.0 −0.03± 0.01 +0.78± 0.04 −0.06± 0.01 −0.02± 0.01 +0.02± 0.01 −0.01± 0.04
6.5 −0.04± 0.01 +0.78± 0.04 −0.07± 0.01 −0.01± 0.02 +0.03± 0.02 −0.03± 0.05
7.0 −0.04± 0.01 +0.78± 0.03 −0.08± 0.01 −0.01± 0.02 +0.04± 0.01 −0.04± 0.04
7.5 −0.04± 0.01 +0.77± 0.02 −0.07± 0.02 −0.02± 0.02 +0.03± 0.01 −0.04± 0.04
8.0 −0.04± 0.02 +0.78± 0.02 −0.05± 0.02 −0.01± 0.02 +0.03± 0.01 −0.03± 0.04
8.5 −0.03± 0.02 +0.77± 0.03 −0.04± 0.02 −0.01± 0.02 +0.03± 0.01 −0.01± 0.05
9.0 −0.03± 0.02 +0.76± 0.03 −0.05± 0.02 −0.03± 0.01 +0.03± 0.01 −0.01± 0.05
9.5 −0.02± 0.01 +0.75± 0.04 −0.06± 0.02 −0.03± 0.02 +0.02± 0.01 −0.01± 0.05
10.0 −0.02± 0.01 +0.75± 0.05 −0.07± 0.03 −0.04± 0.03 +0.01± 0.01 −0.00± 0.05
10.5 −0.02± 0.01 +0.75± 0.03 −0.07± 0.03 −0.05± 0.02 +0.02± 0.02 +0.01± 0.03
11.0 −0.01± 0.01 +0.76± 0.03 −0.06± 0.03 −0.05± 0.01 +0.02± 0.02 +0.01± 0.02
11.5 −0.00± 0.01 +0.76± 0.03 −0.07± 0.03 −0.06± 0.01 +0.02± 0.02 +0.01± 0.01
12.0 −0.00± 0.02 +0.77± 0.05 −0.07± 0.03 −0.05± 0.01 +0.02± 0.02 +0.01± 0.02
12.5 +0.00± 0.02 +0.79± 0.06 −0.07± 0.03 −0.05± 0.02 +0.02± 0.03 +0.00± 0.02
13.0 +0.01± 0.02 +0.81± 0.07 −0.06± 0.04 −0.04± 0.02 +0.03± 0.03 −0.00± 0.03
13.5 +0.01± 0.02 +0.82± 0.09 −0.05± 0.04 −0.02± 0.03 +0.02± 0.04 −0.01± 0.03
14.0 +0.01± 0.02 +0.85± 0.11 −0.03± 0.05 −0.01± 0.04 +0.03± 0.05 −0.01± 0.04
14.5 +0.01± 0.02 +0.86± 0.14 −0.02± 0.05 −0.00± 0.06 +0.03± 0.05 −0.01± 0.04
15.0 +0.02± 0.02 +0.85± 0.14 −0.01± 0.05 −0.01± 0.07 +0.04± 0.05 +0.00± 0.04
15.5 +0.03± 0.02 +0.83± 0.05 −0.00± 0.05 −0.02± 0.06 +0.03± 0.04 +0.02± 0.04

Appendix E1399

In this appendix, we derive the expected joint behavior of σ0 and measured radial velocity1400

following and approach similar to [8,17,21,30,55], but without making any explicit assumption1401

regarding the spectral and wind dependence of the modulation coefficients. We assume that two-scale1402

Bragg scattering dominates for V-pol, σ0 for a patch tilted such that the local incidence angle is given1403

by θ′ = θ + ∆θ, where ∆θ is due to the long waves. This model can accommodate the effects of1404

wave breaking, as long as it is not caused by scattering through double-bounce wedge scattering, but1405

through an increase in surface roughness; this effect of breaking waves has recently been observed1406

experimentally by Yurovsky et al. [55], where they show that the effects breaking events do not1407

generally propagate with the speed of the breaking wave facet, but at a lower speed. It can also1408

accommodate bound waves, as described below.1409

Since Bragg waves traveling along or opposite to the look direction have opposite-sign Doppler1410

signatures and may have different brightness, we introduce the directional backscatter cross section,1411

σ0D(θ, φr), where −π < φr < π is the Bragg wave propagation direction relative to the wind, and in1412

general σ0D(θ, φr) 6= σ0D(θ, φr + π). The usual normalized cross section, due to Bragg waves traveling1413

in both directions, is then given by σ0(θ, φr) = σ0D(θ, φr) + σ0D(θ, φr + π). (In our convention, φr = 01414

when looking downwind). Assuming two-scale scattering, the V-pol σ0D(θ, φr) due to Bragg waves1415

traveling on an azimuth of φr riding on a large scale wave tilted by ∆θ is given by [27,30]1416
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σ0D(θ
′, φr) = A(θ′)B(φr, kB) (A55)

A(θ′) = π

(
1 + sin2 θ′

)2

tan4 θ′ (cos θ′ + 0.1111)4

(
1 +

1
B

∂B
∂k

∣∣∣∣
k=kB

2kB cos θ∆θ

)
(A56)

where kB = 2kr sin θ is the Bragg wavenumber, kr the radar wavenumber, and B(φ, k) = k4F(φ, k)1417

is the directional saturation (or curvature) spectrum [30,61] when F(φ, k) is directional wave height1418

spectrum. The total cross section is σ0 = A(θ′)Br(φr, kB), where Br(φ, k) = B(φ, k) + B(φ + π, k) ≡1419

k4Fr(φ, k) is the folded saturation spectrum used in [27,30]. The Bragg wavenumber changes little1420

with small changes in the incidence angle, and we assume that the saturation spectrum can be1421

evaluated at the nominal incidence angle, and its angular variation included into the A term as a1422

linear term. If the surface elevation is given by η, to first order in the surface slope, one will have1423

that ∆θ = −
(
cos φrηx + sin φrηy

)
and, assuming that the large-scale waves have a narrow spectral1424

distribution and they travel along the x-direction, we can neglect the slope in the orthogonal direction,1425

ηy ≈ 0.1426

To lowest order, observed Doppler shifts will be due to either free Bragg waves, generated by the1427

wind or wave breaking, or bound Bragg waves generated by wave straining. The free Bragg waves1428

have a phase speed which is independent of azimuth angle: cpF =
√

g
(
1 + γk2

B/g
)

/kB ≈ 0.31 m/s1429

(γ ≈ 7.14× 10−5 m3s−2 is the surface tension divided by the density of seawater). Since any footprint1430

will have Bragg waves traveling with and against the radial direction, cpF, the net surface-projected1431

radial velocity, will correspond to the power-weighted average of the two velocities:1432

cpF(φr) = cpF
σ0DB(θ, φr)− σ0DB(θ, φr + π)

σ0DB(θ, φr) + σ0DB(θ, φr + π)
(A57)

= cpF
Φ(kB, φr)−Φ(kB, φr + π)

Φ(kB, φr) + Φ(kB, φr + π)
(A58)

where we have used the Bragg scattering approximation in the second line, and define the spectral1433

spreading function [61], Φ(k, φ) = B(k, φ)/
∫

dφ B(k, φ), which has previously been parametrized as1434

either ∼ cos (φr/2)2s [46] or [1 + ∆(k) cos (2φr)] [61]. Notice that cpF(φr) = −cpF(φr + π) and, if the1435

spreading function is symmetric about the wind direction, one must have cpF(±π/2) = 0.1436

Resonant Bragg bound waves generated by straining waves give rise to a net effective speed,1437

cpS(φr)1438

cpS(φr) =

∫
dk cp(k)σ0S(k, φr)

σ0S(φr)
(A59)

where the integral is taken over the range of wavenumbers for straining waves, σ0S(k, φr) is the1439

normalized backscatter cross section of the bound resonant Bragg waves given a straining wavenumber1440

k, and σ0S(φ) =
∫

dk σ0S(k, φ) is the total bound wave cross section. Presently, we do not have a good1441

prediction for σ0S(k, φr), but it is expected to be concentrated about short (O(20 cm)) steep gravity1442

waves, which have a much narrower spectral width than of the Ka-band capillary free waves. In1443

analogy to equation (A57), the bound wave net surface-projected radial velocity will be1444

cpS(φr) =
cpS(φr)σ0S(φr)− cpS(φr + π)σ0S(φr + π)

σ0S(φr) + σ0S(φr + π)
(A60)

The total lowest order surface projected radial velocity will be given by cp(φr) = fBcpF + (1−1445

fB)cpS, where fB is the fraction of the surface dominated by free waves, which will change as function1446

of wave development.1447
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The next order effect is due to the local modulation of the saturation spectrum B(φr, k′B) due to1448

Bragg wave amplitude modulation by the large wave orbital velocity, or generation of new capillary1449

waves by either breaking or starining. We model it as δB(ψ), where ψ is the Hilbert phase of the1450

large-scale waves [62]. The waves will have maxima when ψ = 0, minima when ψ = ±π, and1451

zero-crossings when ψ = ±π/2. With these approximations, to second order the δσ0/σ0 term in1452

equation (2) will be1453

δσ0

σ0
≈ −∂ log σ0

∂θ
cos φrηx +

cos2 φr

2A
∂2 A
∂θ2 η2

x +
δB(ψ)

B
− 1

2
∂ log σ0

∂θ

δB(ψ)
B

cos φrηx (A61)〈
δσ0

σ0

〉
≈ 1

2A
∂2 A
∂θ2

〈
η2

x + η2
y

〉
− 1

2
∂ log σ0

∂θ

〈
δB(ψ)

B
cos φrηx

〉
(A62)

where we have averaged over the long waves in the second equation to obtain a term showing a1454

reduction in the mean cross section and a second term that produces the mean upwind-downwind1455

modulation, in agreement with [27,30]. The normalized upwind-downwind asymmetry, ∆σ0UD/σ0,1456

will be proportional to the cross-correlation between surface slope and hydrodynamic modulation,1457

and will be given by1458

∆σ0UD
σ0

=
∂ log σ0

∂θ

〈
δB(ψ)

B
ηx

〉
(A63)

Since σ0 decreases with angle, and we know that in general ∆σ0UD > 0, we must have 〈δB(ψ)ηx〉 <1459

0; i.e., the net maximum change in the spectrum will generally occur when ηx < 0, or in the leeward1460

side of the waves. This conclusion does not depend much on the details of the scattering model1461

assumed.1462

To assess the effects of σ0 modulation on the Doppler, we must look at the correlation between1463

equation (A61) and orbital velocity fluctuations. The fluctuating orbital velocity components will be1464

assumed to be dominated by deep-water gravity waves in the linear approximation1465

η = ∑
n

an cos Θn

ηx = −∑
n

ankxn sin Θn

u = ∑
n

anωn cos Θn

w = ∑
n

anωn sin Θn

where Θn = kxnx−ωnt + δΘn, ωn =
√

gkxn, δΘn is a uniformly distributed random phase, and1466

〈an cos Θnam cos Θm〉 = δmnF(kxn)dk such that
〈
η2〉 = ∑n F(kxn)dk →

∫
dk F(k). The Hilbert phase,1467

ψ, and amplitude, H, are defined by [62]H exp [iψ] = η + iη̌, where η̌ is the Hilbert transform of1468

η, η̌ = ∑n an sin Θn. The ground-projected radial velocity due to the wave orbital velocity will be1469

ˆ̀ · δvW/ sin θ = u cos φr − w cot θ. With these results, we can compute δvrS, the ground-projected1470

radial velocity bias caused by large scale waves in equation (2) as1471

δvrS =

〈
δσ0

σ0

ˆ̀ · δvW
sin θ

〉
= cos φr

(
−∂ log σ0

∂θ
cot θUS +

〈
u

δB(ψ)
B

〉)
− cot θ

〈
w

δB(ψ)
B

〉
(A64)

We have used1472

− 〈ηxw〉 = US =
∫

dk kxωF(kx) (A65)
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where US > 0 is the deep-water Stokes drift current [8].The first term inside the parenthesis in1473

equation (A64) is due to the increase in backscatter with decreasing incidence angle (tilt modulation),1474

while the next two terms are purely due to hydrodynamic modulation of the scatterers. Since σ01475

generally decreases with incidence angle, the sign of the first term will be determined by cos φr, so that1476

it behaves like a current traveling in the x-direction.1477

The presence of the cos φr factor multiplying the parenthesis in equation () indicates that the terms1478

in the parenthesis will behave as a horizontal current and result in a bias that is equal in magnitude1479

but opposite in sign in the upwind and downwind directions. On the other hand, the last term in1480

equation (A64) is independent of the azimuth direction, and behaves as a net vertical velocity term1481

which does not disappear when performing weighted averaging over the long wave. Since this term is1482

the only one that does not change sign when as the look direction changes from upwind to downwind,1483

it is responsible for the upwind/downwind difference in FS. The upwind radial velocity magnitude1484

will be greater than the downwind component (as in Figure 28) if
〈

w δB(ψ)
B

〉
> 0; i.e., if the saturation1485

spectrum increases in the leeward side of the wave (0 ≤ ψ ≤ π). If
〈

w δB(ψ)
B

〉
< 0, as can happen due1486

to wave breaking roughness in the windward part of the wave [55], the downwind velocity magnitude1487

will be greater. The difference in magnitudes will be given by |∆vrSud| =
∣∣∣2 cot θ

〈
w δB(ψ)

B

〉∣∣∣.1488

There are several mechanisms for generating δB: a) changes in local currents and acceleration,1489

which can modify the small wave amplitude and wavenumber [30,59]; b) generation of bound capillary1490

waves, through wave straining in leeward wave faces by intermediate wavelength waves [28–30,47]; c)1491

through increase in surface roughness through wave breaking [30,55]. To lowest order, we assume that1492

all of these effects can be captured by a linear effect that can be incorporated in a modulation transfer1493

function (MTF) [54,56]. While the MTF theory is well developed for short gravity waves riding on long1494

waves under a constant wind, capillary waves have additional complications and their modulation1495

can be significantly larger than given by the standard theory, as discussed by Chen et al. [63], or can1496

include contributions due to bound waves or breaking. Rather than try to derive the magnitude of the1497

MTF, we merely assume a linear effect and deduce features of this modulation by comparing against1498

our measurements. The hydrodynamic modulation can be written as1499

δBH(ψ)

B
= ∑

n
kxnan (mr(kxn) cos Θn + mi(kxn) sin Θn) (A66)

where mr and mi are the wavenumber dependent real and imaginary components of the MTF,1500

respectively. Replacing into equation (A64) and averaging over wave realizations, we find that the1501

δvrS = US

[
cos φr

(
−∂ log σ0

∂θ
cot θ + mr

)
− cot θmi

]
(A67)

mr/i =

∫
dk mr/i(kx) kxωF(kx)

US
(A68)

where mr and mi are the averages of the MTF weighted by the Stokes drift for each wavenumber.1502

We note that the wavenumber averaged MTF is sufficient to characterize the effects of large-scale wave1503

modulation on the wind-induced Doppler bias. We also note that these average MTF parameters can1504

be obtained by fitting the spectrum modulation as a function of the slope, ηx, and it Hilbert transform,1505

η̌x; i.e., δB/B = mr η̌x −miηx.1506

This result is similar to [8,17], but we recognize that the modulation coefficients at Ka-band will1507

be inversely proportional to some power of the wind speed, so that they decrease with increasing1508

wind speed, rather than remain constant as implicit in [8]. Notice that the sign of mi is the same as1509

the sign of 〈wδBH(ψ)〉, so that, by the previous discussion, generally mi > 0, or arctan (mi/mr) =1510

ψH > 0, but the sign can reverse at high winds, leading to the wind dependence results in Figure 28.1511

This means that in general the phase of the hydrodynamic modulation must be negative, and the1512
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hydrodynamic modulation will have a maximum on the windward side of the wave; this consistent1513

with the observations [55,59,64]that Ka-band and for winds above light winds.1514
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