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Abstract：Environmental monitoring plays a central role in diagnosing climate and management 44 
impacts on natural and agricultural systems, enhancing the understanding hydrological processes, 45 
optimizing the allocation and distribution of water resources, and assessing, forecasting and even 46 
preventing natural disasters. Nowadays, most monitoring and data collection systems are based 47 
upon a combination of ground-based measurements, manned airborne sensors or satellite 48 
observations. These data are utilized in describing both small and large scale processes, but have 49 
spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial 50 
and temporal divides that limit current monitoring platforms is key to improving our 51 
understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have 52 
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considerable potential to radically evolve environmental monitoring. UAS-mounted sensors offer 53 
an extraordinary opportunity to bridge the existing gap between field observations and traditional 54 
air- and space-borne remote sensing, by providing not just high spatial detail over relatively large 55 
areas in a cost-effective way, but as importantly providing an entirely new capacity for enhanced 56 
temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify 57 
and understand the potential limitations of UAS technology. For these platforms to reach their 58 
monitoring potential, a wide spectrum of unresolved issues and applications specific challenges 59 
require focused community attention. Indeed, to leverage the full potential of UAS-based 60 
approaches, sensing technologies, measurement protocols, post-processing techniques, retrieval 61 
algorithms and evaluations techniques need to be harmonized. The aim of this paper is to provide 62 
a comprehensive general overview of the existing research on studies and applications of UAS in 63 
environmental monitoring in order to suggest users and researchers on future research directions, 64 
applications, developments and challenges. 65 

Keywords: UAS; remote sensing; environmental monitoring; precision agriculture; vegetation 66 
indices; soil moisture; river monitoring. 67 

 68 

1. Introduction 69 

Despite the recent and rapid increase in the number and range of Earth observing satellites (e.g., 70 
Drusch et al, 2012; Hand, 2015), current high spatial resolution satellite sensors are generally too 71 
coarse in temporal resolution for many quantitative remote sensing applications, and are thus of 72 
limited use in detecting and monitoring dynamics of environmental processes. Recent advances in 73 
earth observation are opening new opportunities for environmental monitoring at finer scales. For 74 
instance, CubeSat platforms represent a promising satellite technology operating predominantly in 75 
the visible to near-infrared portion of the electromagnetic spectrum, but with very high temporal 76 
resolution (e.g., McCabe et al., 2017a, 2017b). Nevertheless, most of these satellites are operated by 77 
commercial organizations, so that, if short revisit times are required (i.e. for high frequency 78 
monitoring), the cost of image acquisition can become a limiting factor. While manned airborne 79 
platforms can in principle provide both high spatial resolution and rapid revisit times, in practice 80 
their use is routinely limited by operational complexity and cost. Their use becomes feasible only 81 
over medium-size areas and it is currently adopted by several commercial operators. Recent advances 82 
in Unmanned Aerial Systems (UAS) technology present an alternative monitoring platform that 83 
provides a low-cost opportunity to capture the spatial, spectral, and temporal requirements across a 84 
range of applications (Berni et al., 2008). They offer high versatility and flexibility compared to 85 
airborne systems or satellites, and the potential to be rapidly and repeatedly deployed to acquire high 86 
spatial and temporal resolution data (Pajares, 2015).  87 

While UAS systems cannot compete with satellite imagery in terms of spatial coverage, they 88 
provide unprecedented spatial and temporal resolutions unmatched by satellite alternatives. 89 
Furthermore, they do so at a fraction of the satellite acquisition cost. For example, a newly tasked 90 
high resolution natural colour image (50 cm/pixel) from a satellite (e.g., GeoEye-1) can cost up to 91 
3,000 USD. On the other hand, the initial outlay to acquire a UAS with a natural colour camera can 92 
be purchased for less than 1,000 USD, delivering datasets of high spatial resolution (several cm/pixel) 93 
and a temporal resolution limited only by the number of flights (and power supply). The costs for 94 
acquiring UAS imagery are usually derived from the initial investment, the processing software and 95 
the cost of fieldwork. However, after the initial investment, datasets can be delivered more often and 96 
at a higher resolution than any other earth observing system. 97 

Beyond allowing the high spatial and temporal resolutions needed for many applications, UAS-98 
mounted sensors have several additional advantages, which are key across a range of applications. 99 
First, they provide rapid access to environmental data, offering the near real-time capabilities 100 
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required in many applications. The most mature of these is the capacity to share orthomosaic and 101 
elevation data, using both commercial and open-source alternatives (Schuetz, 2016). Second, UAS 102 
satisfy also safety requirements and accessibility issues for inspection of inaccessible sites or hazard 103 
monitoring (Watts et al., 2012). Third, the great advantage of UAS is their capacity to collect data in 104 
under the cloud conditions that would otherwise obscure remote retrieval. Analysis of 105 
meteorological data has shown that, even with daily re-visits of earth observation satellites, the 106 
probability of operating a monitoring service based on optical satellite imagery in rainy regions is 107 
about 20%, while the probability of obtaining a usable image with UAS is between the 45% and 70% 108 
(Wal et al., 2013). Finally, operations with UAS are not limited to specific hours (as with sun-109 
synchronous satellite sensor), and thus UAS can be used for round-the-clock environmental 110 
monitoring.  111 

Mentioned capabilities, together with the increasing variety and affordability of both UAS and 112 
sensor technologies, have stimulated an explosion of interest from researchers across numerous 113 
domains (Anderson and Gaston, 2013; Whitehead and Hugenholtz, 2014; Whitehead et al., 2014; 114 
Adão et al., 2017). Among others, Singh and Frazier (2018) provided a detailed meta-analysis on 115 
published articles highlighting the diversity of processing procedures used in UAS applications 116 
clearly identifying the critical need for a harmonization among the many possible strategy to derive 117 
UAS-based products.  118 

Dynamic nature and spatial variability of environmental processes that are often happening at 119 
very fine scales generate need for high spatial and temporal resolution data. For successful and 120 
efficient monitoring, timely data are necessary, and high flexibility makes the UAS imagery ideal for 121 
the task. Specific timing and frequent acquisition of data at very fine scales enable targeted 122 
monitoring of rapid (inter-annual) changes of environmental features, among others plant phenology 123 
and growth, extreme events, and hydrological processes. For these reasons, environmental studies 124 
were among the first civil applications of the technology in 1990’s. Thanks to the significant cost 125 
reduction of both vehicles and sensors, and recent developments in data processing software, the 126 
UAS applications expanded rapidly in last decade, stimulating a number of additional and 127 
complementary topics spanning full automation of a single or multiple vehicles, tracking and flight 128 
control systems, hardware and software innovations, tracking of moving targets, and image 129 
correction and mapping performance assessment. This growing interest in UAS applications is 130 
reflected in the number of UAS-based research papers published in the last 27 years, with a special 131 
interest to those using UAS technology for environmental monitoring (based on a search of the ISI-132 
web of knowledge using the keywords “UAS” or “UAV”, and “environment”), with a particularly 133 
prominent increase during the last five years (Figure 1).  134 

In addition to the increasing availability of UAS, recent advances in sensor technologies and 135 
analytical capabilities are rapidly expanding the number of potential UAS applications. Increasing 136 
miniaturization allows multispectral, hyperspectral and thermal imaging, as well as Synthetic 137 
Aperture Radar (SAR) and LiDAR sensing to be conducted from UAS (e.g., Anderson and Gaston, 138 
2013). As examples of recent UAS-based environmental monitoring applications, work has focused 139 
on: a) land cover mapping (e.g., Bryson et al., 2010; Akar, 2017); b) vegetation state, phenology and 140 
health (e.g., Bueren et al., 2015; Ludovisi et al., 2017), c) precision farming/agriculture (e.g., Zhu et al., 141 
2009; Urbahs, 2013; Jeunnette and Hart, 2016), d) monitoring crop growth, and invasive species 142 
infestation (e.g., Samseemoung et al., 2012; Alvarez-Taboada et al., 2017), e) atmospheric observations 143 
(e.g., Witte et al., 2017), f) disaster mapping (e.g., Stone et al., 2017), g) soil erosion (e.g., Frankenberger 144 
et al., 2008; d’Oleire-Oltmanns, 2012; ), h) mapping soil surface characteristics (e.g., Quiquerez et al., 145 
2014; Aldana-Jague et al., 2016) and i) change detection (e.g., Niethammer et al., 2012). 146 

The aim of this paper is to depict the state-of-the-art in the field of UAS applications for 147 
environmental monitoring, with a particular focus on hydrological variables, such as vegetation 148 
conditions, soil properties and moisture, overland flow and streamflow. This review provides a 149 
common shared knowledge framework useful to guide and address the future activities of the 150 
international research network being promoted by the recently funded HARMONIOUS COST 151 
Action. The Action is funded by the European Cooperation in Science and Technology (COST) 152 
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programme, that supports networking activities to improve our current knowledge and disseminate 153 
research outcomes. The aim of the HARMONIOUS COST Action is to channel all competencies, 154 
knowledge, and technologies of a wide international network involving more than 90 scientists from 155 
different parts of the world. This challenge will be achieved by sharing and further developing the 156 
experience, data, tools and technology possessed by the numerous institutions involved in this 157 
Action. Using a common strategy and a continuous interaction, the HARMONIOUS Action will 158 
enhance the actual capabilities of environmental analysis and support the definition of optimized and 159 
standardized procedures for UAS-based applications.  160 

We divide our review into three sections that focus on different aspects of UAS-based 161 
environmental monitoring: 1) data collection and processing; 2) monitoring natural and agricultural 162 
ecosystems; 3) monitoring river systems. We finish by summarizing issues, roadblocks and 163 
challenges in advancing the application of UAS in environmental monitoring. 164 

 165 

 166 

Figure 1. Number of articles extracted from the database ISI web of knowledge published from 1990 167 
up to 2017 (last access 15/01/2018). 168 

2. Data Collection, Processing and Limitations 169 

While offering an unprecedented platform to advance spatiotemporal insights across the earth 170 
and environmental sciences, UAS are not without their own operational, processing and retrieval 171 
problems (Gay et al., 2009). These range from image blur due to the forward motion of the platform 172 
(Sieberth et al., 2016), resolution impacts due to variable flying height, orthorectification issues and 173 
geometric distortion associated with inadequate image overlap (Colomina and Molina, 2014), and the 174 
spectral effects induced by variable illumination during flight. These and other factors can all affect 175 
the subsequent quality of any orthorectified image and subsequently the derived products, as well 176 
described in a recent review paper by Whitehead and Hugenholtz (2014). As such, it is essential to 177 
consider best practice in the context of a) mission and flight planning; b) pre-flight camera/sensor 178 
configuration; c) in-flight data collection; d) ground control/ radiometric calibration and correction; 179 
e) geometric and atmospheric corrections; f) orthorectification and image mosaicking; and g) 180 
extracting relevant products/metrics for remote sensing application. Items a) and b) are pre-flight 181 
tasks, c) and d) are conducted in the field at the time of survey, and e) – g) are post-survey tasks. 182 
Together, these aspects can be considered as fundamentals of data acquisition and post-processing, 183 
which deliver the necessary starting point for subsequent application-specific analysis. However, 184 
despite the existence of well-established workflows in photogrammetry, manned aircraft, and 185 
satellite-based remote sensing to address such fundamental aspects, UAS systems introduce various 186 
additional complexities, which to date have not been thoroughly addressed. Consequently, best 187 
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practice workflows for producing high quality remote sensing products from UAS are still lacking, 188 
and further studies that focus on validating UAS-collected measurements with robust processing 189 
methods are important for improving the final quality of the processed data (Rieke et al., 2011; Mesas-190 
Carrascosa et al., 2014; Ai et al., 2015). 191 

2.1. Pre-flight planning 192 

Flight or mission planning is the first essential step for UAS data acquisition and has a profound 193 
impact on the data acquired and the processing workflow. Similar to other remote sensing 194 
approaches, a host of parameters must be considered before the actual flight, such as platform 195 
specifications, the extent of the study site (area-of-interest), ground sampling distance, payload 196 
characteristics, topography of the study site, goals of the study, meteorological forecasts and local 197 
flight regulations. UAS have additional aspects that require further consideration, including the skill 198 
level of the pilot, platform characteristics and actual environmental flight conditions: all of which 199 
affect the data characteristics and subsequent phases of processing. 200 

Due to the proliferation of low-cost, off-the-shelf digital cameras, photogrammetry has been the 201 
primary implementation of UAS. James and Robson (2014) highlighted how unresolved elements of 202 
the camera model (lens distortion) can propagate as errors in UAS-derived DEMs, and how this can 203 
be addressed by incorporating oblique images. Other studies have highlighted the importance of 204 
flight line configurations (Peppa et al., 2014), as well as minimising image blur (Sieberth et al., 2016). 205 
There is a need to consolidate this evidence to develop best practice guidance for optimizing UAS 206 
SfM measurement quality, whilst maintaining ease of use and accessibility.  207 

Accurate absolute orientation (georeferencing) is an important element for UAS surveys, and is 208 
fundamental for any multi-tempoal monitoring or comparison to other datasets. This task is often 209 
referred to as registration, and is conventionally dependent on establishing ground control points 210 
(GCPs) which are fixed by a higher order control method (usually Global Navigation Satellite System 211 
- GNSS survey). A number of studies have examined the effect of GCP networks (number and 212 
distribution) in UAS surveys, showing that significant errors are expected in SfM-based products 213 
where GCPs are not adopted (Eltner and Schneider, 2015; Peppa et al., 2016). Nevertheless, systematic 214 
DEM error can be significantly reduced by including properly defined GCPs (James et al., 2017a) or 215 
incorporating oblique images in the absence of GCP (James et al., 2014).  216 

Best practice can also be drawn from manned aerial photogrammetry. Direct-georeferencing is 217 
standard practice in aerial photogrammetry, where the position and orientation of the platform is 218 
precisely determined using on-board survey-grade differential GNSS and inertial measurement unit 219 
(IMU) data combined through an inertial navigation system (INS) (Toth and Jóźków, 2016). This 220 
allows the camera station (exposure) position and orientation to be derived directly, thus eliminating 221 
or minimizing the need for ground control points. Therefore, as discussed by Colomina and Molina 222 
(2014), there is an increasing drive towards achieving cm-level direct-georeferencing for UAS using 223 
alternative GNSS/IMU configurations, precise point positioning (PPP) and dual frequency GNSS. 224 

2.2 Sensors 225 

The large availability of UAS equipped with visible (VIS) commercial camera (see Table 1) has 226 
been the main driver for several researches exploring the potential use of low cost sensors for 227 
vegetation monitoring (Geipel et al., 2014; Torres-Sanchez et al., 2014; Saberioon et al., 2014; Jannoura 228 
et al., 2015). Among the many available visible spectral indices, the Normalized Green-Red Difference 229 
Index - NGRDI, Excessive Green - ExG and VEG indices achieved the good accuracy in the vegetation 230 
mapping. Such vegetation indices may be a cost-effective tool for biomass estimation and establishing 231 
yield variation maps for site-specific agricultural decision-making. 232 

Over the last five to eight years, near-infrared (NIR) multi and hyperspectral sensors have 233 
become more widely available for UAS. Modified off-the-shelf RGB cameras - initially very popular 234 
(e.g., Hunt et al, 2010) - have now started to be replaced by dedicated multispectral or hyperspectral 235 
cameras, as the latter have reduced in cost and weight. For instance, light weight hyperspectral 236 
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sensors for UAS are now available from different vendors (e.g., SPECIM; HYSPEX; HeadWall). This 237 
progress offers more defined and discrete spectral responses than the modified RGB or multi-band 238 
camera. Multispectral cameras commonly employ multiple lenses, which introduces band-to-band 239 
offsets that should be adequately corrected in order to avoid artefacts introduced into the combined 240 
multi-band product (Laliberte et al., 2011; Jhan et al., 2017). Furthermore, radiometric calibration and 241 
atmospheric corrections are needed to convert the recorded digital numbers (DN) to surface 242 
reflectance values to enable reliable assessment of ground features, comparison of repeated 243 
measurements and reliable determination of spectral indices (Lu and He, 2017). Although DN are 244 
frequently utilized directly to derive vegetation indices (e.g., NDVI), illumination differences 245 
between (and within) surveys, and differing (and unknown) spectral responses between sensors 246 
make it difficult to utilize such data.  247 

Radiometric calibration normally involves in-field measurement of reference natural or artificial 248 
targets with a field spectroradiometer (e.g., Brook and Ben-Dor, 2011; Zarco-Tejada et al., 2012; Lu 249 
and He, 2017) and requires significant additional effort. Some current multispectral cameras (e.g., 250 
Parrot Sequoia, MicaSense RedEdge) include a downwelling irradiance sensor and calibrated 251 
reflectance panel in order to address some of the requirements of radiometric calibration. This is 252 
beneficial, but it does not address the full complexity of radiometric calibration and artefacts will 253 
remain. Other aspects, such as bidirectional reflectance (modelled through the bidirectional 254 
reflectance distribution function (BRDF)) and image vignetting, introduce further uncertainties for 255 
image classification. While the most appropriate workflow for dealing with multispectral imagery to 256 
some extent depends on the complexity of the subsequent application (e.g., basic vegetation indices 257 
or reflectance-based image classification), the growing body of literature and recent sensor 258 
developments support the development of best practice guidelines for the environmental UAS 259 
community. 260 

Hyperspectral sensors (Table 3) can be briefly mentioned as extensions of the discussion 261 
surrounding multispectral sensors above, and related considerations of radiometric calibration and 262 
atmospheric correction. Over the last five years, there has been increasing interest in hyperspectral 263 
imaging sensors (e.g., Lucieer et al., 2014; Honkavaara et al., 2017). While these are still more 264 
expensive than multispectral systems, they offer significant potential for quantitative soil vegetation 265 
and crop studies. UAS hyperspectral imagers typically offer contiguous narrow bands in the VIS- 266 
NIR portion of the spectrum. Existing cameras include pushbroom and more recently frame capture 267 
technology. Depending on the capture mechanism, there are typically artefacts related to non-268 
instantaneous (time delay) capture across bands, or physical offsets between bands (Honkavaara et 269 
al., 2017). There has also been interest in (non-imaging) UAS-mounted (hyperspectral) spectrometers 270 
(e.g. Burkart et al., 2015). 271 

In the hyperspectral domains, high radiometric accuracy and accurate reflectance retrieval are 272 
key factors to further exploit this technology (Ben-Dor et al., 2009). Accordingly, practices from the 273 
manned hyperspectral sensor can be adopted in UAS applications, such as the new super-vicarious 274 
calibration method suggested by Brook and Ben-Dor (2011, 2015). To this end, they used artificial 275 
targets to account for the radiometric accuracy and further to generate a high quality reflectance data-276 
cube. Technology have recently introduced also light sensors in the SWIR region for UAS applications 277 
(HeadWall).  278 

UAS broadband thermal imaging sensors (see Table 4) measure brightness temperature of the 279 
Earth’s surface typically between 7.5–13.5 μm. Key considerations relate to spatial resolution and 280 
thermal sensitivity, with the latter now achieving 40-50 mK. Thermal UAS remote sensing also 281 
requires consideration of radiometric calibration and accounting for vignetting and other systematic 282 
effects, as discussed by Smigaj et al. (2017). An example of thermal image providing the surface 283 
temperature in Celsius degree obtained over a vineyard of Aglianico is given in Figure 2. Here, one 284 
can appreciate the high level of details offered by this technology in the description of a patchy 285 
vegetation cover. 286 

LiDAR sensors (see Table 5) are also becoming more commonplace on UAS platforms, as 287 
increasingly lightweight systems become achievable (although <3 kg maximum take-off weight is 288 
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still challenging). There is of particular interest in UAS LiDAR for forestry applications, particularly 289 
in relation to classifying and quantifying structural parameters (e.g., forest height, crown dimensions; 290 
Sankey et al., 2017).  291 

A comprehensive review of the available cameras and sensors is given in the appendix to guide 292 
future studies and activities in this field.  293 

 294 

Figure 2. A thermal survey over an Aglianico vineyard in the Basilicata region (southern Italy) overlaying 295 
an RGB orthophoto obtained by a multicopter mounting both an optical and a FLIR Tau 2 camera. 296 
Insets A and B provides a magnified portion of the thermal map where is possible to distinguish 297 
pattern of vegetation and distribution of the surface temperature.  298 

2.3. Softwares  299 

Finally, alongside sensor technological developments, low cost and particularly open source 300 
software has been vital in enabling the growth in UAS for environmental and other applications. This 301 
includes proprietary structure-from-motion (SfM) software such as Agisoft Photoscan and Pix4D, 302 
which is significantly more affordable than most conventional photogrammetric software. In 303 
particular, photogrammetry has been the primary implementation of UAS. 304 

UAS-based photogrammetry can produce products of a similar accuracy to those achievable 305 
through manned airborne systems (Colomina and Molina, 2014). This has been underpinned by the 306 
development of SfM software, which offers a user-friendly and low-cost alternative to conventional 307 
digital photogrammetric processing. While this has made photogrammetry more accessible to non-308 
experts, quantification of uncertainty remains an ongoing challenge (James et al., 2017b). This is 309 
because SfM relaxes some of the conventional expectations in terms of image block geometry and 310 
data acquisition.  311 

Cloud-based platforms such as DroneDeploy or DroneMapper offer the possibility to integrate 312 
and share aerial data, but also to derive orthomosaics with light processing workloads. Moreover, 313 
there has also been development of open source SfM software, including VisualSfM, Bundler, Apero-314 
MicMac, OpenDroneMap, etc. Many open source GIS and image processing software (e.g. QGIS, 315 
GRASS, SAGA GIS, Orfeo Toolbox, ImageJ) support the subsequent exploitation of this data, 316 
including applications such as image classification and terrain analysis. All these offers the 317 
opportunity to develop high quality measures with low cost sensors and software that emphasized 318 
even more the potential number of applications of the available tools (Sona et al. 2014, Ouédraogo et 319 
al., 2014, Kaiser et al., 2014.) 320 

3. Monitoring Agricultural and Natural Ecosystems 321 

Natural and agricultural ecosystems are influenced by climatic forcing, physical characteristics 322 
and management practices that are highly variable in both time and space. Moreover, vegetation state 323 
changes may occur within short time (Manfreda and Caylor, 2013; Manfreda et al., 2017), due to 324 
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unfavourable growing conditions or climatic extremes (e.g., heat waves, heavy storms, etc.). 325 
Therefore, in order to capture such features, monitoring systems need to provide accurate 326 
information over large areas with a high revisit frequency (Atzberger, 2013). UAS is one such 327 
technology that is enabling new horizons in vegetation monitoring. For instance, the high resolution 328 
of UAS-imagery has led to a significant increase in the overall accuracy in species-level vegetation 329 
classification, monitoring vegetation status, monitoring weed infestations, estimating biomass, 330 
predicting yields, detecting crop water stress and/senescent leaves, reviewing herbicide applications, 331 
and pesticide control.  332 

3.1. Vegetation Monitoring and Precision Agriculture 333 

Precision agriculture (Zhang and Kovacs, 2012) has been the most common environmental 334 
monitoring application of UAS. High spatial resolution UAS imagery enables much earlier and cost-335 
effective detection, diagnosis, and corrective action of agricultural management problems compared 336 
to low resolution satellite imagery. Therefore, UAS may provide the required information to address 337 
farmers’ needs at the field scale, enabling them to take better management decisions with minimal 338 
costs and environmental impact (Huang et al., 2013; Link et al., 2013; Zhang, 2014). 339 

Vegetation state can be evaluated and quantified through different vegetation indices from 340 
images acquired in the visible, red edge and near-infrared spectral bands that display a strong 341 
correlation with soil coverage and Leaf and Green Area Index (LAI and GAI), Crop Nitrogen Uptake 342 
(QN), chlorophyll content, water stress detection, canopy structure, photosynthesis, yield, and/or 343 
growing conditions (e.g., soil moisture) (e.g., Shahbazi, 2014; Helman et al., 2015; Gago et al., 2015; 344 
Helman et al., 2017). These vegetation indices can be exploited to monitor biophysical parameters as 345 
an alternative to destructive in situ measurements. 346 

Among the many available vegetation indices, the normalized difference vegetation index 347 
(NDVI) is one that is most widely used (Lacaze et al., 1996; Gigante et al., 2009; Helman 2018). UAS-348 
NDVI maps can be at least comparable to those obtained from satellite visible observations, which is 349 
highly relevant for a timely assessment of crop health status with capacity to provide immediate 350 
feedback to the farmer. NDVI surveys performed with UAS, aircraft, and satellite demonstrated that 351 
low resolution images would fail in representing intra-field variability and patterns in fields 352 
characterized by small vegetation gradients and high vegetation patchiness (Matese et al., 2015). 353 
Moreover, UAS-derived NDVI showed a better agreement with ground-based NDVI observations 354 
compared to satellite-derived NDVI in several crop and natural vegetation types (Gay et al., 2009; 355 
Primicerio et al., 2012; McGwire et al., 2013; Hmimina et al., 2013). The significant difference between 356 
vegetation patterns observed by satellite and UAS can be observed in Figure 3 where a date-palm 357 
field is described. In particular, UAS-based observation can be considered comparable to field 358 
observations.  359 

 360 

Figure 3. Comparison between a CubeSat NDVI map of a date-palm plantation at 3m of resolution 361 
(A) and a UAS-derived NDVI at 3cm of resolution (B). 362 

In the last decade, particular attention has been given to the monitoring of vineyards with UAS 363 
because of their high economic value. Johnson et al. (2003) proposed one of the first applications 364 
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where different sensors are used for determining measures related to: chlorophyll function and 365 
photosynthetic activity, LAI, and plant health status (among others variables) to map vigour 366 
differences within fields. More recently, Zarco-Tejada et al. (2012, 2013a, 2013b, 2013c) demonstrated 367 
the potential for monitoring specific variables such as crop water stress index, photosynthetic activity 368 
and carotenoid content in vineyards the using multispectral, hyperspectral camera and thermal 369 
camera. 370 

Based upon the authors’ experiences, farmers have expressed particular interest in monitoring 371 
crop conditions for the quantification of water demand, nitrogen status or infestation treatments. 372 
Several of the variables or indices described above may be used for rapid detection of crop pest 373 
outbreaks or to map the status of crops. 374 

Monitoring soil water content is critical for determining efficient irrigation scheduling. Hassan-375 
Esfahani et al. (2015) derived topsoil moisture content using RGB, NIR and thermal bands. The 376 
effective amount of water stored in the subsurface can be obtained by exploiting mathematical 377 
relationships between surface measurements and the root-zone soil moisture, such as the SMAR 378 
(Manfreda et al. 2014; Baldwin et al. 2017).  379 

As an example, Sullivan et al. (2007) observed that the thermal infrared (TIR) emittance was 380 
highly sensitive to canopy response and can be used for monitoring soil water content, stomatal 381 
conductance, and canopy cover. TIR has similarly been used for the monitoring and estimation of soil 382 
surface characteristics such as microrelief and rill morphology (de Lima and Abrantes, 2014a), soil 383 
water repellency (Abrantes et al., 2017), soil surface macropores (de Lima et al., 2014b) and skin 384 
surface soil permeability (de Lima et al. 2014a). Another application is the use of TIR in surface 385 
hydrology for estimating overland and rill flow velocities by using thermal tracers (de Lima and 386 
Abrantes, 2014b; Abrantes et al., 2018).  387 

More specifically, the TIR emittance displayed a negative co-relation with stomatal conductance 388 
and canopy closure, indicating increasing canopy stress as stomatal conductance and canopy closure 389 
decreased. An additional strategy is represented by the use of the crop water stress index (CWSI - 390 
Jackson et al., 1981; Cohen et al., 2017) calculated from leaf water potential that can be used to 391 
determine the required frequency, timing and duration of watering. In this regard, the CWSI, derived 392 
with a UAS equipped with a thermal camera, is frequently adopted to quantify the physiological 393 
status of plants, and more specifically leaf water potential in experimental vineyards (Zarco-Tejada 394 
et al., 2012; Baluja et al., 2012; Tejada et al. 2013b; Gago et al., 2014; Bellvert et al., 2014) and orchards 395 
(Gonzalez-Dugo et al., 2013; 2014). The derived CWSI maps can serve as important inputs for 396 
precision irrigation. Time-series of thermal images can also be used to determine the variation in 397 
water status (Santesteban et al, 2017). 398 

Using the VIS-NIR (0.4-1.0m) hyper spectral and multispectral analyses of simulated data have 399 
shown that soil attributes can be extracted from these spectral regions, particularly those most 400 
commonly used by the current UAS platforms (Ben-Dor and Banin, 1994, 1996; Soriano-Disla et al., 401 
2014). These studies demonstrated that the VIS-NIR spectral region alone can open up new frontiers 402 
in soil mapping (as well as soil moisture content retrieval) using on-board multi and hyper spectral 403 
UAS sensors without using heavy-weight sensors of the SWIR (1-2.5m) region. Aldana-Jague et al. 404 
(2016) mapped soil surface organic carbon content (<0.5 cm) at 12 cm resolution exploiting six bands 405 
between 450 and 1050 nm of low-altitude multi-spectral imaging. D’Oleire-Oltmanns et al. (2012) 406 
showed the applicability of UAS for measuring, mapping and monitoring soil erosion at 5 cm 407 
resolution with an accuracy between 0.009 and 0.027 m in the horizontal directions and 0.007 m in 408 
the vertical direction. Detailed information about soil erosion can enhance proper soil management 409 
at the plot scale (Quiquerez et al., 2014). 410 

Such tools were further explored by Zhu et al. (2009), who investigated the ability to quantify 411 
the differences in-soil nitrogen application rates using digital images taken from an UAS in 412 
comparison with ground-based hyperspectral reflectance and chlorophyll content data. They 413 
suggested that aerial photography from UAS has the potential to provide input in support of crop 414 
decision-making processes minimizing field sampling efforts, saving both time and money, and 415 
enabling accurate assessment of different nitrogen application rates. Therefore, such information may 416 
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serve as inputs to other agricultural systems, such as tractors or specific drones, that optimise 417 
fertilizer management.  418 

Besides monitoring, UAS can also improve agronomical practices. Costa et al. (2012) described 419 
an architecture that can be employed to implement a control loop for agricultural applications where 420 
UAS are responsible for spraying chemicals on crops. Application of chemicals is controlled by the 421 
feedback obtained from the wireless sensor network (WSN) deployed on the crop field. They 422 
evaluated an algorithm to adjust the UAS route under changes in wind (intensity and direction) to 423 
minimize the waste of pesticides. Pena et al. (2013; 2015) explored the optimization of herbicide 424 
applications in weed-crop systems using a series of UAS multispectral images. The authors compute 425 
multiple data, which permits calculation of herbicide requirements and estimation of the overall cost 426 
of weed management operations in advance. They showed that the ability to discriminate weeds was 427 
significantly affected by the imagery spectral (type of camera) used as well as the spatial (flight 428 
altitude) and temporal (the date of the study) resolutions. 429 

Among these technical advantages and constrains, the importance of the limitation of 430 
operational rules in using UAS in several countries needs to be highlighted. As an example, Jeunnette 431 
and Hart (2016) developed a parametric numerical model to compare aerial platform options to 432 
support agriculture in developing countries characterized by highly fragmented fields, but manned 433 
systems are still more competitive from an operational and cost/efficiency point of view because of 434 
the present limitations in altitude, distance and speed of UAS. In particular, UAS becomes cost-435 
competitive when they are allowed to fly higher than 300m AGL. Nevertheless, all the applications 436 
described highlight the potential use of UAS in developing advanced tools for precision agriculture 437 
applications and for vegetation monitoring in general. With time, both technological advances and 438 
legislation will evolve and likely converge, further advancing the efficient use of such technologies. 439 

3.2.Monitoring of Natural Ecosystems 440 

As with agricultural ecosystems, the proliferation of UAS-based remote sensing techniques have 441 
opened also new opportunities for monitoring and managing natural ecosystems (Anderson and 442 
Gaston, 2013; Tang and Shao, 2015; Torresan et al., 2017; Ventura et al., 2017). In fact, drones provide 443 
options and opportunities to collect data at appropriate spatial and temporal resolutions to describe 444 
ecological processes and allow better surveying of natural ecosystems placed in remote, inaccessible 445 
or difficult and/or dangerous to access sites. As examples, some habitats (e.g., peat bogs) can be 446 
damaged through on-ground surveys, while drones positioned several meters above the surface can 447 
provide a near comparable level of information as that obtained through plot-based measurements 448 
(e.g., canopy cover by species). Drones are also useful for undertaking rapid surveys of habitats such 449 
as mangroves, where access is often difficult and plot-based surveys take far longer to complete (see 450 
Figure 4).   451 

UAS therefore offer the potential to overcome these limitations and have been applied to 452 
monitor a disparate range of habitats and locations, including tropical forests (Paneque-Gálvez et al., 453 
2014), riparian forests (Dunford et al., 2009; Dufour et al. 2013), dryland ecosystems (Cunliffe et al., 454 
2016), boreal forests, and peatlands (Puliti et al., 2015). Pioneering researchers have been using UAS 455 
to monitor attributes such as plant population (e.g., Jones et al., 2006; Chabot and Bird, 2012); 456 
biodiversity and species richness (e.g., Getzin et al., 2012; Koh and Wich, 2012); plant species invasion 457 
(e.g., Michez et al., 2016; Müllerová et al., 2017a); restoration ecology (e.g., Reif and Theel, 2017); 458 
disturbances (e.g., Gonçalves et al., 2016; McKenna et al., 2017); phenology (e.g., Klosterman and 459 
Richardson, 2017; Müllerová et al., 2017b); pest infestation in forests (Lehmann et al., 2015; Minarik 460 
and Langhammer, 2016), and land cover change (e.g., Ahmed et al., 2017).  461 

Many studies have focused on the retrieval of vegetation structural information to support forest 462 
assessment and management (e.g., Dandois and Ellis, 2013; Puliti et al., 2015). Information on the 463 
plant and canopy height can also be obtained from stereo images (Dittmann et al., 2017; Otero et al., 464 
2018), which can be further used to estimate above ground biomass (see for example Figure 4). 3D 465 
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maps of canopy can also be used to distinguish between trunks, branches and foliage and can be used 466 
by logging companies and farmers (Sankey et al., 2017).  467 

a) 

 
 

b) 

 
 

c) 

 

 

Figure 4. a) RGB image of mangrove forest clearances, Matang Mangrove Forest Reserve, Malaysia, as 468 
observed using an RGB digital camera mounted on a DJI Phantom 3, b) RGB orthoimage from which 469 
individual (upper canopy) tree crowns can be identified as well as different mangrove species and c) the 470 
Canopy Height Model (CHM) derived from stereo RGB imagery, with darker green colours representing 471 
tall mangroves (typically > 15 m).  472 

UAS represents a promising option enabling timely, fast and precise monitoring important for 473 
many plant species, invasive ones in particular (Calviño-Cancela et al., 2014; Michez et al., 2016; Hill 474 
et al., 2017; Müllerová et al. 2017a). Flexibility of the data acquisition enabled by the UAS mean is 475 
very important since plants are often more distinct from the surrounding vegetation in certain time 476 
of their growing season (Müllerová et al. 2017b). Besides fast monitoring of newly invaded areas, the 477 
UAS methodology enables prediction/modelling of invasion spread that is driven by combination of 478 
many factors, such as habitat and species characteristics, human dispersal, and disturbances 479 
(Rocchini et al., 2015). Legal constrains limiting use of UAS to unpopulated areas can be especially 480 
problematic for invasive species that tend to prefer urban areas, still the UAS technology can greatly 481 
reduce costs of extensive field campaigns and eradication measures (Lehmann et al., 2017). 482 

UAS are also revolutionizing the management of quasi-natural ecosystems such as restored 483 
habitats and managed forests. They have been used to quantify spatial gap pattern in forests in order 484 
to support planning common forest management practices such as thinning (Getzin et al., 2014) or to 485 
support restoration monitoring in uneven habitats at risk. For example, Quilter et al. (2000) used UAS 486 
for monitoring streams and riparian restoration projects in inaccessible areas on Chalk Creek (Utah). 487 
Knoth et al. (2013) applied a new mapping technique to support the monitoring of restored cut-over 488 
bogs using a UAS-based NIR remote sensing approach. TIR data were also used by Ludovisi et al. 489 
(2017) to determine the response of forest to drought in relation to forest-tree breeding programs and 490 
genetic improvement. 491 

4. River Systems and Floods  492 

Satellite data are widely used to monitor natural hazards (e.g. floods, earthquakes, volcanic 493 
eruptions, wildfire, etc.) at national and international scales (Tralli et al. 2005). This popularity is due 494 
to their wide coverage, spectral resolution, safety, and rate of update (Gillespie et al. 2007; Joyce et al. 495 
2009). Nevertheless, UAS have also been widely used for rapid assessment following natural extreme 496 
events and in the context of humanitarian relief and infrastructure assessment (Stone et al., 2017). 497 
According to Quaritsch et al. (2010), UAS should be utilized as a component of a network of sensors 498 
for natural disaster management. Although, there are a number of technological barriers, which must 499 
be overcome before UAS can be utilized in a more automated and coordinated manner, their potential 500 
for disaster response is significant (Erdelj et al., 2017).  501 
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An interesting example is given by the Hurricane and Severe Storm Sentinel (HS3) program 502 
launched by NASA (2015) that deployed different high-tech UAS to monitor hurricane formation and 503 
evolution. UAS “catch” data inside the storm (winds and precipitation) and in the surrounding 504 
environment using multiple sensors that include a radar scanner and wind LiDAR, multi-frequency 505 
radiometer, and a microwave sounder. Such technology may provide information never measured 506 
before on hurricanes. 507 

Given UAS potentials, we expect significant advances in fields of hydrology and hydraulics 508 
where there is a significant potential for the use of UAS for monitoring river systems, overland flows 509 
or even urban floods. 510 

2.1. Flow monitoring 511 

River systems and stream flow can be monitored by remotely integrating the techniques of water 512 
body observation, vegetation mapping, DEM generation, and hydrological modelling. Satellite 513 
sensors in the visible, infrared, and microwave range are currently used to monitor rivers and to 514 
delineate flood zones (Syvitski et al. 2012; Yilmaz et al. 2010; D’Addabbo et al., 2016). These methods 515 
are generally used only over large rivers or areas of inundation in order  to detect changes at the 516 
pixel level. UAS can describe river dynamics, but with a level of detail that is several orders of 517 
magnitude greater and can enable distributed flow measurements over any river system and in 518 
difficult-to-access environments. 519 

In this context, the integration of UAS imagery and optical velocimetry techniques has enabled 520 
full remote kinematic characterization of water bodies. Optical techniques, such as Large Scale 521 
Particle Image Velocimetry (LSPIV, Fujita et al., 1997) and Particle Tracking Velocimetry (PTV, Brevis 522 
et al., 2011), are efficient yet non-intrusive flow visualization methods that yield spatially distributed 523 
estimations of the surface flow velocity field based on the similarity of image sequences. Proof-of-524 
concept experiments have demonstrated the feasibility of applying LSPIV from manned aerial 525 
systems to monitor flood events (Fujita and Hino, 2003; Fujita and Kunita, 2011). More recently, 526 
videos recorded from UAS have been analysed with LSPIV to reconstruct the surface flow velocity 527 
field of natural stream reaches (Detert and Weitbrecht, 2015; Tauro et al., 2015). This allow to gain a 528 
detailed Lagrangian insight into river dynamics that is valuable in calibrating numerical models.   529 

Most of these experimental observations entail a low-cost UAS hovering above the region of 530 
interest for a few seconds (the observation time should be adjusted to the flow velocity and camera 531 
acquisition frequency). An RGB camera is typically mounted on-board and installed with its optical 532 
axis perpendicular to the captured field of view to circumvent orthorectification (Tauro et al., 2016a). 533 
To facilitate remote photometric calibration, Tauro et al. (2016a) adopted a UAS equipped with a 534 
system of four lasers that focus points at known distances in the field of view. In several experimental 535 
settings, the accuracy of surface flow velocity estimations from UAS was found to be comparable to 536 
(or even better than) traditional ground-based LSPIV configurations (Tauro et al., 2016b). In fact, 537 
compared to fixed implementations, UAS enable capture of larger fields of view with a diffused 538 
rather than direct illumination. Such optical image velocimetry techniques can measure flow velocity 539 
fields over extended regions rather than pointwise, and at temporal resolutions comparable to or 540 
even better than ADV (Acoustic Doppler Velocimetry) based on the presence of detectable features 541 
on the water surface (Tauro et al., 2017).  542 

Most platforms offer both piloted and GPS waypoint navigation up to 10 km range (even if this 543 
may be subject to national regulations) and are quite stable in windy conditions. In this context, UAS 544 
technology is expected to considerably aid in flood monitoring and mapping. In fact, flood 545 
observation is a considerable challenge for space-borne passive imagery mostly due to the presence 546 
of dense cloud cover, closed vegetation canopies, and the satellite revisit time and viewing angle 547 
(Joyce et al. 2009; Sanyal and Lu 2004). Although synthetic aperture radar (SAR) satellite sensors (e.g. 548 
Sentinel-1, TerraSAR-X, RADARSAT-2) can overcome these visibility limitations, they are unable to 549 
provide sub-metre level spatial resolution necessary for detailed understanding of flood routing and 550 
susceptibility. Applying UASs with an appropriate flight mode may overcome some of these issues 551 
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allowing for rapid and safe monitoring of inundations and measurement of flood hydrological 552 
parameters (Perks et al., 2016). Moreover, hyperspectral sensor can also be used to extend the range 553 
of water monitoring applications. Examples are: sediment concentration, chlorophyll distribution, 554 
blooming algae status, submerged vegetation mapping, bathymetry and chemical and organic waste 555 
contaminations (Flynn and Chapra, 2014; Klemas, 2015). 556 

4. Final remarks and challenges 557 

UAS-based remote sensing provides new advanced procedures to monitor key variables, 558 
including vegetation status, soil moisture content and stream flow. A detailed description of such 559 
variables may increase our capacity to describe water resources availability and helping agricultural 560 
and ecosystem management. The present manuscript provides an overview of some of the recent 561 
applications in the field UAS-based environmental monitoring. The wide range of applications 562 
testifies the great potential of these techniques, but at the same time the variety of methodologies 563 
adopted is an evidence that there is still room for significant improvement. The variety of vehicles, 564 
sensors and specificity of the case study have stimulated the proliferations of a huge number of 565 
specific algorithms addressing flight planning, image registration, calibration and correction, 566 
derivation of specific indices or variables: but there is no evidence of comprehensive comparative 567 
studies able to selected the appropriate procedure for a specific need.  568 

Despite the rapid development in software procedures, there is a huge need to standardize the 569 
workflow for operational use of UAS. High spatial resolution of UAS data generates high demands 570 
on data storage and processing capacity. Traditional procedures of collecting ground-truth data or 571 
ground-control points for satellite imagery do not show sufficient positional accuracy, especially in 572 
complex terrain (Müllerová et al. 2017b). Legal constrains restricting the UAS data acquisition can 573 
limit some potential applications, particularly in urban environment. There are also technical limits, 574 
such as weather constrains (wind, rain), high elevations or very hot environment that can be 575 
challenging for most of the devices/sensors (see e.g. Wigmore and Bryan, 2017). 576 

Nevertheless, technology and scientific research have a clear path to follow that have been traced 577 
by manned aerial photogrammetry and earth observation from satellites. Such observational 578 
practices have already addressed several of the problems that UAS-based observations are facing. 579 
Miniaturization of technology and sensors will increase with time the reliability of UAS-observation 580 
reducing several of the limitations related to the use of UAS.   581 
 The first and most critical limitation in the use of UAS is the limited flight time that affect 582 

directly the possible extent of the investigated area. This problem is currently managed by 583 
mission planning able to manage multiple flights, but the technology is offering new solutions 584 
that will extend the flight endurance up to several hours making more and more competitive 585 
the use of UAS. For instance, new development in the battery industry suggests that the 586 
relatively short flying time imposed by battery capacity will be significantly improved in the 587 
future (Langridge and Edwards, 2017). In this context, another innovation introduced in the 588 
most recent vehicles is an integrated energy supply system connected with solar panel on 589 
board that allows to extend typical flight endurance from the maximum of 40-50 minutes up 590 
to 5 hours. 591 

 The second critical issue regards the impact of Ground Sample Distance (GSD) on quality of 592 
the surveys. This limitation can be solved implementing 3D flight paths that follows the relief 593 
in order to maintain uniform the observation’s Ground Sample Distance (GSD). At the present, 594 
only few software (e.g., UgCS, eMotion 3) use digital terrain models to adjust the height path 595 
of the mission to the relief in order to maintain uniform GSD.  596 

 The third critical issue regards the image registration, correction and calibration. Vulnerability 597 
of UAS to weather conditions (wind, rain) and the geometric and radiometric limitations of 598 
current lightweight sensors have stimulated the development of new algorithms for image 599 
mosaicking and correction. In this context, the development of open source and commercial 600 
SfM software allowed to properly address the mosaicking issue, but the radiometric correction 601 
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and calibration is still an open question that may find potential solution in earth observations 602 
experiences.  603 

 Vegetation can be measured in its state and distribution using RGB, multispectral, 604 
hyperspectral and thermal cameras. Each of these sensors allow to derive information with 605 
some sort of drawback. For instance, multispectral, hyperspectral and thermal camera can 606 
provide more appropriate description of the vegetation, but at the expenses of the spatial 607 
resolution and also with additional needs and requirements for the calibration. Also soil 608 
moisture and river flow can be measured using different sensors and algorithms, but a 609 
comprehensive assessment of the performances of each of these methods and procedures is 610 
strongly needed.  611 

 The wide range of experiences described herein highlighted the huge variability in the 612 
strategies, methodologies and sensors adopted for each specific environmental variable 613 
monitored.  614 

 Finally, UAS compared to satellite offer a similar complexity, but this sector has received much 615 
less resources to fill existing gaps in the technology. Nevertheless, this is also the reason why 616 
there is a lot of room for further improvements in the technology and use of such methods. The 617 
first and most important is also connected to the improvement of satellite techniques that may 618 
largely benefit from the use of high detailed UAS-data (see Figure 5).  619 

 620 
There is a growing need to define harmonized approaches able to channel the efforts of all these 621 

studies and identify the optimal strategy for UAS-based monitoring. The aim is to define a clear and 622 
referenced workflow starting from the planning and acquisition of the data and the generation of 623 
maps. In particular, we envisage the need to stimulate a comparative experiment able to assess the 624 
reliability of different procedures and combination of algorithms in order to identify the most 625 
appropriate methodology for environmental monitoring in different hydroclimatic conditions. 626 

 627 

Figure 5. UAS vs satellite monitoring. 628 

The recently funded COST Action entitled HARMONIOUS is aimed at stimulating joint 629 
activities to facilitate a more common strategy in environmental monitoring. This Action should 630 
enhance observational capabilities and also improve model parameterization across a range of fields. 631 
The Action is structured around five working groups (WGs) that will tackle different aspects in the 632 
use of UAS technologies, with the aim to identify the optimal strategy for data processing, monitoring 633 
the vegetation status, monitoring soil water content, monitoring river systems and discharge and 634 
finally harmonize the outcomes of these studies. The structure of the network with the responsible of 635 
each activity are shown in Figure 6. The aim is to stimulate, within the next few years, a number of 636 
field experiments oriented at benchmarking the existing procedures and algorithms for monitoring 637 
the variable of interest mentioned.  638 
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In the coming four years, we will organize workshops and training courses, promote scientific 639 
missions and design cooperative experiments, that should address the following objectives: 640 
 Establish standardized protocols for the necessary pre-processing of UAS (geometric correction 641 

of image orthomosaics, developing and integrating practical measures for radiometric correction 642 
and reflectance retrieval); 643 

 Improve morphological representation of micro-topography, plots/fields, basins, parcels, and 644 
watercourses using UAS-based digital photogrammetry, and LiDAR surveys; 645 

 Improve standard procedures for environmental monitoring to support precision agriculture 646 
and protection of ecosystems; 647 

 Enhance soil property retrieval, with a major emphasis on soil moisture monitoring through 648 
combined use of thermal and VIS/NIR images and spectral based modelling; 649 

 Understand how field measurements of vegetation properties and soil (moisture) scale up 650 
through UAS-based measurements to satellite estimates; 651 

 Define a flow velocity and discharge monitoring procedure that provides stream flow 652 
measurements in open channels, creeks, rivers and floodplains; 653 

 Identify a new standard procedure for hydrological monitoring that allows key river basin 654 
components to be monitored with a high level of detail that may help in the use of the most 655 
recent hydrological models. 656 

 Endorse the UAS utilization chain from mission planning to a final product. 657 

 658 

 659 

Figure 6. Structure and composition of the research network of the COST Action HARMONIOUS. 660 

The integration of different techniques, including traditional instruments, fixed and mobile 661 
camera surveys, satellite observations, and geomorphological analyses, is anticipated to allow better 662 
characterization of river basins with a spatial and temporal coverage higher than that offered by 663 
traditional techniques, improving the knowledge of hydraulic, ecological and hydrological dynamics. 664 
Moreover, the definition of clear and specific procedures may also help the definition of new 665 
legislation at the European scale removing some of the actual restriction that limiting potential use 666 
of UAS in a wider range of contexts.    667 

 668 
 669 
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Appendix A: Available sensors and cameras 670 

Given the variety of sensor available for UAS applications, we consider extremely useful to 671 
provide an overview of the available cameras and sensors and their characteristics. In the following, 672 
we summarized the most common optical cameras (Table 1), multispectral cameras (Table 2), 673 
hyperspectral cameras (Table 3), thermal cameras and laser scanners (Table 5). The present tables 674 
expands the list of sensors provided by Casagrande et al. (2017). 675 

Table 1. List of optical cameras suitable for UAS and their main characteristics. 676 

Manufacturer 

and model 

Sensor type 

Resolution 

(MPx) 

Format  

type 

Sensor  

size (mm2) 

Pixel  

pitch  

(μm) 

Weight  

(kg) 

Frame 

rate 

(fps) 

Max 

shutter 

speed (s-1) 

Approx. 

price ($) 

Canon EOS 5DS CMOS 51 FF 36.0 x 24.0 4.1 0.930 5.0 8000 3400 

Sony Alpha 7R II CMOS 42 FF MILC 35.9 x 24.0 4.5 0.625 5.0 8000 3200 

Pentax 645D CCD 40 FF 44.0 x 33.0 6.1 1.480 1.1 4000 3400 

Nikon D750 CMOS 24 FF 35.9 x 24.0 6.0 0.750 6.5 4000 2000 

Nikon D7200 CMOS 24 SF 23.5 x 15.6 3.9 0.675 6.0 8000 1100 

Sony Alpha a6300 CMOS 24 SF MILC 23.5 x 15.6 3.9 0.404 11.0 4000 1000 

Pentax K-3 II CMOS 24 SF 23.5 x 15.6 3.9 0.800 8.3 8000 800 

Canon EOS 7D 

Mark II 

CMOS 20 SF 22.3 x 14.9 4.1 0.910 10.0 8000 1500 

Panasonic Lumix 

DMC GX8 

CMOS 20 SF MILC 17.3 x 13.0 3.3 0.487 10.0 8000 1000 

Ricoh GXR A16 CMOS 16 SF 23.6 x 15.7 4.8 0.550 2.5 3200 650 

Table 2. List of multispectral cameras available on the market for UAS and their main characteristics. 677 

Manufacturer and model Resolution  

(Mpx) 

Size (mm) Pixel  

size  

(μm) 

Weight  

(kg) 

Number  

of spectral  

bands 

Spectral  

range  

(nm) 

Tetracam MiniMCA-6 1.3 131 x 78 x 88 5.2 x 5.2 0.7 6 450-1000 

Tetracam ADC micro 3.2 75 x 59 x 33 3.2 x 3.2 0.9 6 520-920 

Quest Innovations Condor-5 ICX 285 7 150 x 130 x 177 6.45 x 6.45 1.4 5 400-1000 

Parrot Sequoia 1.2 59 x 41 x 28 3.75 x 3.75 0.72 4 550-810 

MicaSense RedEdge  120 x 66 x 46  0.18 5 475-840 

Sentera Quad 1.2 76 x 62 x 48 3.75 0.170 4 400-825 

Sentera High Precision NDVI and 

NDRE 

1.2 25.4 x 33.8x 37.3 3.75 0.030 2 525-890 

Sentera Multispectral Double 4K 12.3 59 x 41 x 44.5  0.080 5 386-860 

SLANTRANGE 3P NDVI  146 x 69 x 57  0.350 4 410 - 950 

Mappir 3.2 34 x 34 x 40  0.045 1-6 405-345 

 678 

  679 
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Table 3. List of hyperspectral cameras for UAS and their main characteristics.  680 

Manufacturer and 

model 

Lens Size  

(mm2) 

Pixel size 

(μm) 

Weight  

(kg) 

Spectral 

range 

(nm) 

Spectral bands  

and resolution 

Rikola Ltd. 

hyperspectral camera 

CMOS 5.6 x 5.6 5.5 0.6 500-900 40- 10 nm 

Headwall Photonics 

Micro-hyperspec X-series 

NIR 

InGaAs 9.6 x 9.6 30 1.025 900-1700 62 - 12.9 nm 

BaySpec's 

OCI-UAV-1000/2000 

C-mount 10x10x10 N/A 0.127/0.218 600-1000 100-5 nm/20-12-15nm 

HySpex Mjolnir V-1240  25x17.5x17 0.27mrad 4.0 400 – 1000 200-3 nm 

HySpex Mjolnir S-620  25.4x17.5x17 0.54 mrad 4.5 970 - 2500 300-5.1 

Specim-AISA KESTREL push-broom 99x215x240  2.3 600 - 1640 Up to 350 bands/3-8nm 

Cornirg microHSI 410 

SHARK 

CCD/CMOS 136x87x70.35 11.7 μm 0.68 400 – 1000 300bands/2nm 

Resonon Pika L  10.0x12.5x5.3 5.86 0.6 400-1000 281 bands/2.1 nm 

Table 4. Representative thermal cameras suitable for UAS. 681 

Manufacturer and model Resolution 

(Px) 

Sensor size 

 (mm2) 

Pixel pitch  

(μm) 

Weight 

 (kg) 

Spectral  

range (μm) 

Thermal  

Sensitivity (mK) 

FLIR Vue Pro 640 640 x 512 10.8 x 8.7 17 <0.115 7.5-13.5 50 

FLIR Vue Pro 336 336 x 256 5.7 x 4.4 17 <0.115 7.5-13.5 50 

FLIR Tau2 640 640 x 512 N/A 17 <0.112 7.5-13.5 50 

FLIR Tau2 336 336 x 256 N/A 17 <0.112 7.5-13.5 50 

Thermoteknix Miricle 307 K 640 x 480 16.0 x 12.0 25 <0.170 8.0-12.0 50 

Thermoteknix Miricle 110 K 384 x 288 9.6 x 7.2 25 <0.170 8.0-12.0 50/70 

Workswell WIRIS 640 640 x 512 16. x 12.8 25 <0.400 7.5-13.5 30/50 

Workswell WIRIS 336 336 x256 8.4 x 6.4 25 <0.400 7.5-13.5 30/50 

YUNCGOETEU  160x120 81 x 108 x 138 12 0.278 8 - 14 < 50 

Table 5. List of laser scanners for UAS and their main characteristics. 682 

Manufacturer and 

model 

Scanning pattern Range  

(m) 

Weight  

 (kg) 

Angular 

res. (deg) 

FOV 

(deg) 

Laser class 

and λ (nm) 

Frequency  

(kp/s) 

ibeo Automotive 

Systems IBEO LUX 

4 Scanning parallel 

lines 

200 1 (H) 0.125 

(V) 0.8 

(H) 110  

(V) 3.2 

Class A 905 22 

Velodyne HDL-32E 32 Laser/detector 

pairs 

100 2 (H)-(V) 

1.33 

(H) 360  

(V)41 

Class A 905 700 

RIEGL VQ-820-GU 1 Scanning line >1000 25.5 (H) 0.01 

(V) N/A 

(H) 60  

(V) N/A 

Class 3B 

532 

200 

Hokuyo 

UTM-30LX-EW 

1,080 distances in a 

plane 

30 0.37 (H) 0.25 

(V) N/A 

(H) 270  

(V) N/A 

Class 1905 200 
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Velodyne Puck Hi-Res Dual Returns 100 0.590 (H)-(V) 

0.1-0.4 

(H) 360  

(V) 20 

Class A-903  

RIEGL VUX-1UAV Parallel scan lines 150 3.5 0.001° 330 Class A-NIR 200 

Routescene – UAV 

LidarPod 

32 Laser/detector 

pairs 

100 1.3 (H)-(V) 

1.33 

(H) 360  

(V) 41 

Class A-905  

Quanergy M8-1 

 

8 laser/detector pairs 150 0.9 0.03-0.2° 

 

(H) 360  

(V) 20 

Class A-905  
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