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Abstract: Linear regression is a basic tool in mobile robotics, since it enables accurate estimation of1

straight lines from range-bearing scans or in digital images, which is a prerequisite for reliable data2

association and sensor fusing in the context of feature-based SLAM. This paper discusses, extends and3

compares existing algorithms for line fitting applicable also in case of strong covariances between the4

coordinates at each single data point, which must not be neglected if range-bearing sensors are used.5

Besides, particularly the determination of the covariance matrix is considered, which is required for6

stochastic modeling. The main contribution is a new error model of straight lines in closed form7

for calculating fast and reliably the covariance matrix dependent on just a few comprehensible and8

easily obtainable parameters. The model can be applied widely in any case when a line is fitted from9

a number of distinct points also without a-priori knowledge of the specific measurement noise. By10

means of extensive simulations the performance and robustness of the new model in comparison to11

existing approaches is shown.12
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1. Introduction14

Contour points acquired by active sensors using sonar, radar or lidar [1], or extracted from image15

data [2][3], are a key source of information for mobile robots in order to detect obstacles or to localize16

themselves in known or unknown environment [4][5]. For this purpose, often geometric features are17

extracted from raw data since in contrast to detailed contours, features are uniquely described just18

by a limited set of parameters and their extraction works as additional filtering in order to improve19

reliability when dealing with sensor noise and masking [6]. However, the performance of feature based20

localization or SLAM strongly depends on exact determination of a feature vector y from measured21

raw data. Moreover, especially for data association as well as for sensor fusing not only the feature22

parameters are needed, but also a reliable estimation of their covariance matrix R is required, which23

encapsulates the variances of the single elements in y and their dependencies.24

This will be obvious if one looks at the standard algorithm for updating an estimated system state25

x̂ typically by means of EKF, compare [7][8][9]: New measurements y are plausible if their deviations26

from expected measurements ŷ = h(x̂) dependent on the in general non-linear measurement model27

h(x̂) is within a limited range. For exact calculation of this limit usually the Mahalanobis-metric28

is applied, see [8][10], which considers the covariance matrix S of the innovation ν = y − ŷ with29

S=R + H · P̂ · HT dependent on R, the covariance matrix P̂ of the system state and using H = ∇h(x̂).30

A new measurement y will be considered to relate to an already known feature vector ŷ if its distance31

is below a given threshold rth with νTS−1ν < r2
th. Only in this case, the system state vector x̂ can32

be updated by means of ∆x̂ = K · ν using the Kalman-gain K = P̂ · HT · S , again depending on the33

covariance matrix R of the measurements, while otherwise x̂ and P̂ are expanded by the new feature.34

Particularly in artificial environments straight lines in a plane are frequently used as features, since35

these are defined by just two parameters and can be clearly and uniquely determined. In contrast to36

point features, lines in images are almost independent of illumination and perspective, and a number37
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Figure 1. Parameters of measured raw data and fitted straight line

of measurements can be taken along their length to localise them accurately and to distinguish them38

from artifacts [11]. Moreover, already a single line enables a robot to determine its orientation and39

perpendicular distance, which clearly improves localization accuracy. Thus, many tracking systems40

have been proposed based on line features, either using range-bearing scans [12][13] or applying visual41

servoing, see [14][15], and also recently this approach has been successfully implemented [16][17][18].42

However, due to missing knowledge of the covariance matrix, for data association often suboptimal43

solutions like the Euclidian distance in Hough space [12] or other heuristics are used [19].44

Obviously, fitting data to a straight line is a well-known technique, addressed in a large number45

of papers [20][21][22] and textbooks [23][24][25]. In [26], a recent overview of algorithms in this field46

is outlined. As shown in [27] and [28], if linear regression is applied to data with uncertainties in x-47

and y-direction, always both coordinates must be considered as random variables. In [29], Arras and48

Siegwart suggest an error model for range-bearing sensors including a covariance matrix, affected49

exclusively by noise in radial direction. Pfister et al. introduce weights into the regression algorithm50

in order to determine the planar displacement of a robot from range bearing scans [30]. In [31], a51

maximum likelihood approach is used to formulate a general strategy for estimating the best fitted line52

from a set of non-uniformly weighted range measurements. Also merging of lines and approximating53

the covariance matrix from an iterative approach is considered. In [27] Krystek and Anton point out54

that the weighting factors of the single measurements depend on the orientation of a line, which55

therefore can only be determined numerically. This concept has been later extended to the general case56

with covariances existing between the coordinates of each data point [32].57

Since linear regression is sensitive with respect to outliers, split-and-merge algorithms must be58

applied in advance, if a contour consists of several parts, see [33,34]. In cases of strong interference,59

straight lines can still be identified by Hough-transformation, compare [35–37], or alternatively60

RANSAC algorithms can be applied, see [38,39]. Although these algorithms work reliably, exact61

determination of line parameters and estimating their uncertainties still requires linear regression [40].62

In spite of a variety of contributions in this field, there is missing a straightforward but yet63

accurate algorithm for determining the covariance matrix of lines reliably, fast and independently of64

the a-priori mostly unknown measurement noise. In chapter 4 such a model in closed-form is proposed65

depending on just a few clearly interpretable and easily obtainable parameters. Beforehand, in the next66

two paragraphs existing methods for linear regression and calculation of the covariance matrix are67

reviewed with certain extensions focussing on the usage of range-bearing sensors, which cause strong68

covariances between x- and y-coordinates. Based on these theoretical foundations paragraph 5 exhibits69

detailed simulation results in order to compare precision and robustness of the presented algorithms.70
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2. Determination of accurate line parameters71

In 2d-space each straight line is uniquely described by its perpendicular distance d from origin72

and by the angle φ between positive x-axis and this normal line, see fig. 1. In order to determine73

these two parameters, the mean squared error MSE considering the perpendicular distances of N74

measurement points from the fitted line needs to be minimized. For this purpose, each perpendicular75

distance ρi of point i is calculated either from polar or with xi = ri cos θi and yi = ri sin θi alternatively76

in cartesian coordinates as:77

ρi = di − d = ri cos(θi − φ)− d = xi cos φ + yi sin φ− d (1)

Then, MSE is defined as follows dependent on φ and d:78

MSE(φ, d) =
N

∑
i=1

(siρi)
2 (2)

In (2) optional scaling values si are included in order to consider an individual reliability of each79

measurement point. By calculating the derivatives of (2) with respect to φ and d and setting both to80

zero, the optimum values of these parameters can be analytically derived assuming all si to be constant,81

i.e. independent of φ and d. The solution has been published elsewhere, compare [29], yielding for φ82

and d:83

φ =
1
2
· atan2

(
−2σxy, σ2

y − σ2
x

)
(3)

d = x̄ cos φ + ȳ sin φ (4)

The function atan2() means the four quadrant arc tangent, which calculates φ always in the84

correct range. If d becomes negative, its modulus must be taken and the corresponding φ has to be85

altered by plus or minus π. In these equations, x̄ and ȳ denote the mean values of all N measurements86

xi and yi, while σ2
x , σ2

y and σxy denote the variances and the covariance:87

σ2
x =

1
N

N

∑
i=1

wi (xi − x̄)2 (5)

σ2
y =

1
N

N

∑
i=1

wi (yi − ȳ)2 (6)

σxy =
1
N

N

∑
i=1

wi (xi − x̄) (yi − ȳ) (7)

x̄ =
1
N

N

∑
i=1

wixi (8)

ȳ =
1
N

N

∑
i=1

wiyi (9)

In (5) - (9), normalized weighting factors wi are used with 1
N ∑N

i=1 wi = 1 and 0 ≤ wi ≤ 1,88

calculated dependent on the chosen scaling values si:89

wi =
s2

i
1
N ∑N

i=1 s2
i

(10)

For convenience, in the attachment a straightforward derivation of d and φ according to (3) and90

(4) is sketched.91
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Figure 2. Optimum setting of weighting parameter for each data point

As pointed out in [32], for accurate line matching the scaling values si must not be assumed to92

be constant since in general they depend on φ. This can be understood from fig. 2, which shows for93

one measurement point i the error ellipse spanned by the standard deviations σx,i and σy,i, while the94

rotation of the ellipse is caused by the covariance σxy,i.95

Apparently, as a measure of confidence only the deviation σρ,i perpendicular to the line is relevant,96

while the variance of any data point in parallel to the fitted line does not influence its reliability. Thus,97

the angle φ given in (3) will only be exact, if the error ellipse equals a circle, which means that all98

measurements exhibit the same standard deviations in x− as in y−direction and no covariance exist.99

Generally, in order to determine optimum line parameters with arbitrary variances and covariance of100

each measurement i, in equation (2) the inverse of σρ,i dependent on φ has to be used as scaling factor101

si, yielding:102

MSE(φ) =
N

∑
i=1

ρ2
i (φ)

σ2
ρ,i(φ)

(11)

In this formula, which can only be solved numerically, the variance σ2
ρ,i needs to be calculated103

dependent on the covariance matrix of each measurement point i. In case of line fitting from104

range-bearing scans, the covariance matrix Rrθ,i can be modeled as a diagonal matrix since both105

parameters ri and θi are measured independently and thus their covariance σrθ,i equals zero:106

Rrθ,i =

(
σ2

r,i 0
0 σ2

θ,i

)
(12)

Typically, this matrix may also be considered as constant, thus independent of index i, assuming107

that all measured radii and angles are affected by the same noise, i.e. Rrθ,i ≈ Rrθ .108

With known variances σ2
r,i and σ2

θ,i and for a certain φ, now σ2
ρ,i is determined by evaluating the109

relation between ρi and the distances di of each data point with 1 ≤ i ≤ N. According to (1) and with110

the distance d written as mean of all di it follows:111

ρi = di −
1
N

N

∑
j=1

dj =

(
N − 1

N

)
di −

1
N

N

∑
j=1
(j 6=i)

dj (13)

Since noise induced variations of all distances di are uncorrelated to each other, now the variance112

σ2
ρ,i is calculated by means of summing over all variances σ2

d,i:113

σ2
ρ,i =

(
N − 1

N

)2
σ2

d,i +
1

N2

N

∑
j=1
(j 6=i)

σ2
d,j (14)
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In order to derive σ2
d,i, changes of di with respect to small deviations of ri and θi from their114

expected values r̄i and θ̄i are considered with di = d̄i + ∆di, ri = r̄i + ∆ri and with θi = θ̄i + ∆θi:115

∆di = ∆d r
i + ∆d θ

i (15)

The terms on the right side of (15) can be determined independently of each other, since ∆ri and116

∆θi are assumed to be uncorrelated. With di = ri · cos(θi − φ) it follows117

∆d r
i = ∆ri · cos(θ̄i − φ) (16)

and118

∆d θ
i = r̄i

[
cos(θ̄i − φ + ∆θi)− cos(θ̄i − φ)

]
≈ −r̄i

[
∆θ2

i
2

cos(θ̄i − φ) + ∆θi sin(θ̄i − φ)

]
(17)

In the last line the addition theorem was applied for cos(θ̄i − φ + ∆θi), and for small variations119

the approximations cos(∆θi)≈1− ∆θ2
i

2 and sin(∆θi)≈∆θi are valid.120

The random variables ∆ri and ∆θi are assumed to be normally distributed with variances σ2
r,i121

and σ2
θ,i. Thus, the random variable ∆θ2

i exhibits a χ2-distribution with variance 2(σ2
θ,i)

2, see [41], and122

the variance of di is calculated from (15), (16) and (17) as weighted sum with r̄i and θ̄i approximately123

replaced by ri and θi, respectively:124

σ2
d,i =

(
σ2

r,i +
(σ2

θ,i)
2

2

)
cos2(θi − φ) + σ2

θ,i sin2(θi − φ) (18)

When applying this algorithm, a one-dimensional minimum search of MSE according to (11)125

needs to be executed, yielding the optimum φ of the straight line. For this purpose, σ2
ρ,i is inserted126

from (14) considering (18), and ρi is determined according to (1) by calculating d from (4), (8), (9) and127

(10) with si = 1/σρ,i.128

Obviously, numerical line fitting can also be accomplished if measurements are available in129

cartesian coordinates xi and yi. In this case, the covariance matrix Rxy,i of each measurement point130

must be known, defined as:131

Rxy,i =

(
σ2

x,i σxy,i

σxy,i σ2
y,i

)
(19)

Furthermore, the partial derivatives of di according to (1) with respect to xi and yi need to be132

calculated:133

Jd,i =
(

∂di
∂xi

∂di
∂yi

)
=
(

cos φ sin φ
)

(20)

Then, σ2
d,i follows dependent on Rxy,i and Jd,i:134

σ2
d,i = Jd,i · Rxy,i · (Jd,i)

T = σ2
x,i cos2 φ + σxy,i sin φ cos φ + σ2

y,i sin2 φ (21)

If raw data stems from a range-bearing scan, Rxy,i can be calculated from Rrθ,i by exploiting the135

known dependencies between the polar- and cartesian plane. For this purpose the Jacobian matrix136

Jxy,i is determined:137

Jxy,i =

 ∂xi
∂ri

∂xi
∂θi

∂yi
∂ri

∂yi
∂θi

 =

(
cos θi −ri sin θi
sin θi ri cos θi

)
(22)
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Then, the covariance matrix Rxy,i will depends on Rrθ,i, if small deviations from the mean value138

of the random variables ri and θi and a linear model are assumed:139

Rxy,i = Jxy,i · Rrθ,i · (Jxy,i)
T (23)

According to (23) generally a strong covariance σxy,i in Rxy,i must be considered, if measurements140

are taken by range-bearing sensors.141

By means of applying (21) to (23) instead of (18) for searching the minimum of MSE dependent on142

φ, the second order effect regarding ∆θi is neglected. This yields almost the same formula as given143

in [32], though the derivation differs and in [32] additionally the variance of d is ignored assuming144

σ2
ρ,i = σ2

d,i, which according to (14) is only asymptotically correct for large N.145

Finally, it should be noted that the numerical determination of φ according to (11) means clearly146

more complexity compared to the straightforward solution according to equation (3). Later, in chapter147

5 it will be analyzed under which conditions this additional computational effort actually is required.148

3. Analytic error models of straight lines149

In literature several methods are described to estimate errors of φ and d and their mutual150

dependency. Thus, the covariance matrix Rdφ must be known, defined as:151

Rdφ =

(
σ2

d σdφ

σdφ σ2
φ

)
(24)

For this purpose, a general method in nonlinear parameter estimation is the calculation of the152

inverse Hessian matrix at the minimum of MSE. Details can be found in [27] and [32], while in [42] it153

is shown that this procedure may exhibit numerical instability. In section 5, results using this method154

are compared with other approaches.155

Alternatively, in [29] and [43] an analytic error model is proposed based on fault analysis of the156

line parameters. In this approach, the effect of variations of each single measurement point defined by157

Rxy,i with respect to the covariance matrix of the line parameters Rdφ is considered, based on (3) and158

(4). Thereto, the Jacobian matrix Jdφ,i with respect to xi and yi is determined, defined as:159

Jdφ,i =

 ∂d
∂xi

∂d
∂yi

∂φ
∂xi

∂φ
∂yi

 (25)

With this matrix the contribution of a single data point i to the covariance matrix between d and φ160

can be written as:161

Rdφ,i = Jdφ,i · Rxy,i · JT
dφ,i (26)

For determining the partial derivatives of d in (25), equation (4) is differentiated after expanding162

it by (8) and (9), yielding:163

∂d
∂xi

= wi
cos φ

N
+ (ȳ cos φ− x̄ sin φ)

∂φ

∂xi
(27)

∂d
∂yi

= wi
sin φ

N
+ (ȳ cos φ− x̄ sin φ)

∂φ

∂yi
(28)

Differentiating φ according to (3) with respect to xi gives the following expression with u = −2σxy164

and v = σ2
y − σ2

x :165

∂φ

∂xi
=

1
2(u2 + v2)

(
∂u
∂xi

v− ∂v
∂xi

u
)

(29)
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The partial derivation of u in (29) is calculated after expanding it with (7) and (8) as:166

∂u
∂xi

= − 2
N
· ∂

∂xi

(
N

∑
i=1

wixiyi − ȳ
N

∑
i=1

wixi

)
= −2wi

N
(yi − ȳ) (30)

while partial derivation of v with (5), (6) and (8) yields:167

∂v
∂xi

= − 1
N
· ∂

∂xi

 N

∑
i=1

wix2
i −

1
N

(
N

∑
i=1

wixi

)2
 = −2wi

N
(xi − x̄) (31)

Finally, after substituting all terms with u and v in (29) it follows:168

∂φ

∂xi
= wi

(
σ2

x − σ2
y

)
(yi − ȳ)− 2σxy (xi − x̄)

N
((

σ2
x − σ2

y

)2
+ 4σ2

xy

) (32)

Correspondingly, for the partial derivative of φ with respect to yi the following result is obtained:169

∂φ

∂yi
= wi

(
σ2

x − σ2
y

)
(xi − x̄) + 2σxy (yi − ȳ)

N
((

σ2
x − σ2

y

)2
+ 4σ2

xy

) (33)

Now, after inserting (27), (28), (32) and (33) into (25) the covariance matrix of d and φ (24) is170

calculated by summing over all N data points since the noise contributions of the single measurements171

can be assumed to be stochastically independent of each other:172

Rdφ =
N

∑
i=1

Rdφ,i =
N

∑
i=1

Jdφ,i · Rxy,i · JT
dφ,i (34)

Equation (34) enables an exact calculation of the variances σ2
d , σ2

φ and of the covariance σdφ as173

long as the deviations of the measurements stay within the range of a linear approach, and as long as174

equations (3) and (4) are valid. In contrast to the method proposed in [32] no second derivatives and175

no inversion of the Hessian matrix are needed and thus more stable results can be expected.176

However, both algorithms need some computational effort especially for a large number of177

measurement points. Moreover, they do not allow to understand the effect of changing parameters178

on Rdφ, and these models can only be applied, if for each data point the covariance matrix Rxy,i is179

available. Unfortunately, for lines extracted from images this information is unknown, and also in180

case of using range-bearing sensors just a worst case estimate of σr is given in data sheet while σθ is181

ignored.182

4. Closed-form error model of a straight line183

In this section a simplified error model in closed form is deduced, which enables a fast, clear and184

yet for most applications sufficiently accurate calculation of the covariance matrix Rdφ in any case185

when line parameters d and φ have been determined from a number of discrete data points.186

Thereto, first the expected values of the line parameters d and φ, denoted as d̄ and φ̄, are assumed187

to be known according to the methods proposed in section 2 with d̄ ≈ d and φ̄ ≈ φ. Besides, for188

modeling the small deviation of d and φ, the random variables ∆d and ∆φ are introduced. Thus, with189

d = d̄ + ∆d and φ = φ̄ + ∆φ it follows for the variances and the covariance:190

σ2
d = σ2

∆d σ2
φ = σ2

∆φ σdφ = σ∆d∆φ (35)
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Figure 4. Details of fig. 3 with the deviation of data points along the axis x̃

Next, ∆d and ∆φ shall be determined dependent on a random variation of any of the N measured191

data points. For this purpose, fig. 3 is considered, which shows the expected line parameters and the192

random variables ∆d and ∆φ.193

In order to derive expressions for ∆d and ∆φ depending on the random variables ρi, fig. 4 shows194

an enlargement of the rectangular box depicted in fig. 3 along the direction of the line x̃.195

First, the effect of variations of any ρi on ∆φ is considered. Since ∆φ is very small, this angle may196

be replaced by its tangent, which defines the slope ∆m of the line with respect to the direction x̃. Here,197

only ρi is considered as a random variable but not x̃i. Thus, the standard formula for the slope of a198

regression line can be applied, which will minimize the mean squared distance in the direction of ρ, if199

all x̃i are assumed to be exactly known:200

∆φ ≈ tan (∆φ) = ∆m =
σρx̃

σ2
x̃

=

∑
i

ρi · x̃i

∑
i

x̃2
i

(36)

Now, in order to calculate the variance of ∆φ, a linear relation between ∆φ and each ρi is required,201

which is provided by the first derivation of (36) with respect to ρi:202

∂∆φ

∂ρi
=

x̃i

∑
i

x̃2
i

(37)

Then, the variance of ∆φ dependent on the variance of ρi can be specified. From (37) it follows:203
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σ2
∆φ,i = σ2

ρ,i ·
(

∂∆φ

∂ρi

)2
= σ2

ρ,i ·
x̃2

i(
∑
i

x̃2
i

)2 (38)

If σ2
ρ,i is assumed to be approximately independent of i, it may be replaced by σ2

ρ and can be204

estimated from (2) with ρi taken from (1) and setting all si to 1/N:205

σ2
ρ,i ≈ σ2

ρ =
1
N

N

∑
i=1

ρi(φ, d)2 (39)

It should be noted, that for a bias-free estimation of σ2
ρ with (39), the exact line parameters φ and d206

must be used in (1), which obviously are not available. If instead estimated line parameters according207

to chapter 2 are taken, e. g. by applying (3) and (4), calculated from the same data as used in (39),208

an underestimation of σ2
ρ especially for small N can be expected, since φ and d are determined by209

minimizing the variance of ρ of these N data points. This is referred to later.210

Next, from (38) the variance of ∆φ results as sum over all N data points, since all ρi are independent211

of each other:212

σ2
∆φ = ∑

i
σ2

∆φ,i ≈ σ2
ρ ·

∑
i

x̃2
i(

∑
i

x̃2
i

)2 = σ2
ρ ·

1
∑
i

x̃2
i

(40)

Equation (40) with (35) and (39) enables an exact calculation of σ2
φ dependent on the N data points213

of the line.214

However, from (40) a straightforward expression can be derived, which is sufficiently accurate in215

most cases and enables a clear understanding of the influencing parameters on σ2
φ, compare section 5.216

For this purpose, according to fig. 3 the length L of a line segment is determined from the perpendicular217

distance d and from the angles θ1 and θN of the 1st and Nth data point, respectively:218

L = d · |tan(φ− θN)− tan(φ− θ1)| (41)

Furthermore, a constant spacing ∆x̃ between adjacent data points is assumed:219

∆x̃ ≈ L
N − 1

. (42)

Applying this approximation, the sum over all squared x̃i can be rewritten, yielding for even N as220

depicted in fig. 4:221

∑
i

x̃2
i ≈ 2 ·

N/2

∑
i=1

[
∆x̃
2
(2i− 1)

]2
= ∆x̃2 ·

N/2

∑
i=1

(2i− 1)2

2
(43)

The last sum can be transformed into closed form as:222

N/2

∑
i=1

(2i− 1)2

2
=

N
2

(
4
(

N
2

)2
− 1
)

6
=

N(N2 − 1)
12

(44)

With N odd, the sum must be taken twice from 1 to N−1
2 since in this case the central measurement223

point has no effect on σ2
∆φ,i, yielding:224

∑
i

x̃2
i ≈ 2 ·

(N−1)
2

∑
i=1

[∆x̃ · i]2 = ∆x̃2 ·
(N−1)

2

∑
i=1

2 · i2 (45)
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Again, the last sum can be written in closed form, which gives the same result as in (44):225

(N−1)
2

∑
i=1

2 · i2 =

N−1
2

(
N−1

2 + 1
) (

2 · N−1
2 + 1

)
3

=
N(N2 − 1)

12
(46)

Finally, by substituting (43) with (44), or (45) with (46) into (40) and regarding (35) as well as (42),226

a simple analytic formula for calculating the variance of φ is obtained, just depending on L, N and the227

variance of ρ:228

σ2
φ ≈ σ2

ρ ·
12

L2 · N ·
N − 1
N + 1

N�1≈ σ2
ρ ·

12
L2 · N (47)

The last simplification in (47) overestimates σ2
φ a little bit for small N. Interestingly, this error229

compensates quite well for a certain underestimation of σ2
ρ according to (39), assuming that the line230

parameters φ and d are determined from the same data as σ2
ρ , see chapter 5.231

Next, in order to deduce the variance σ2
d , again fig. 3 is considered. Apparently, a first part of232

the random variable ∆d is strongly correlated to ∆φ since any mismatch in φ is transformed into a233

deviation ∆d by means of the geometric offset xo f f with:234

∆d φ = −xo f f · ∆φ (48)

Actually, with a positive value for xo f f as depicted in fig. 3 the correlation between ∆d and ∆φ235

becomes negative, since positive values of ∆φ correspond to negative values of ∆d. According to fig. 3,236

xo f f is determined from φ and d as well as from θ1 and θN :237

xo f f =
d
2
· [tan(φ− θN) + tan(φ− θ1)] (49)

Alternatively, xo f f can be taken as mean value from all N data points of the line segment:238

xo f f =
d
N
·

N

∑
i=1

tan(φ− θi) (50)

Nevertheless, it should be noted that ∆d is not completely correlated with ∆φ, since also in the239

case xo f f = 0 the error ∆d will not be zero.240

Indeed, as a second effect each single ρi has a direct linear impact on the variable ∆d. For this purpose,241

in fig. 4 the random variable ∆d ρ is depicted, which describes a parallel shift of the regression line due242

to variation in ρi, calculated as mean value over all ρi:243

∆d ρ =
1
N
·∑

i
ρi (51)

Combining both effects, variations in d can be described as the sum of two uncorrelated terms,244

∆dφ and ∆dρ:245

∆d = ∆d φ + ∆d ρ = −xo f f · ∆φ +
1
N
·∑

i
ρi (52)

This missing correlation between ∆φ and the sum over all ρi is also intuitively accessible: If the246

latter takes a positive number it will not be possible to deduce the sign or the modulus of ∆φ. From247

(52) and with E(∆d φ ·∆d ρ) = 0, E(∆d φ) = 0 and E(∆d ρ) = 0 the variance σ2
d can be calculated as248

σ2
d = E([∆d]2) = E([∆d φ]2) + E([∆d ρ]2) = x2

o f f · E([∆φ]2) +
1

N2 · E

[∑
i

ρi

]2
 (53)
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Figure 5. Simulation Results for equidistant measurement points superimposing normal distributed
and uncorrelated noise in x- and y-direction

≈ x2
o f f · σ

2
φ +

1
N
· σ2

ρ (54)

In the last step from (53) to (54) again the independence of the single measurements from each249

other is used, thus the variance of the sum of the N data points approximates N-times the variance σ2
ρ .250

Finally, the covariance between φ and d needs to be determined. Based on the definition it follows251

with σdφ = σ∆d∆φ252

σdφ = E(∆d · ∆φ) = E(∆d φ · ∆φ) + E(∆d ρ · ∆φ) = −xo f f · E([∆φ]2) = −xo f f · σ2
φ (55)

By means of (47), (54) and (55), now the complete error model in closed form is known, represented253

by the covariance matrix Rdφ given as:254

Rdφ ≈ σ2
ρ ·

 12·x2
o f f

L2·N + 1
N

−12·xo f f
L2·N

−12·xo f f
L2·N

12
L2·N

 (56)

Applying this error model is easy since no knowledge of the variances and covariance for each255

single measurement is needed, which in practice is difficult to acquire. Instead, just the number N of256

preferably equally spaced points used for line fitting, the length L of the line segment, its offset xo f f257

and the variance σ2
ρ according to (41), (49) and (39) must be inserted.258

5. Simulation results259

The scope of this section is to compare the presented algorithms for linear regression and260

error modeling based on statistical evaluation of the results. Segmentation of raw data is not261

considered; if necessary this must be performed beforehand by means of well-known methods262
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like Hough-Transformation or RANSAC, compare section 1. Thus, for studying the performance263

reliably and repeatably, a large number of computer simulations was performed, applying a systematic264

variation of parameters within a wide range, which would not be feasible if real measurement are265

used.266

For this purpose, straight lines with a certain perpendicular distance d from origin and within267

a varying range of normal angles φ have been specified. Each of these lines is numerical described268

by a number of N points either given in cartesian (xi, yi) or in polar (ri θi) coordinates. In order to269

simulate the outcome of a real range-bearing sensor as close as possible, the angular coordinate was270

varied between θ1 and θN . To each measurement a certain amount of normally distributed noise with271

σx, σy and σxy or alternatively with σr and σθ was added. Further, for each φ a number of Ns = 1000272

sets of samples was generated, in order to allow statistical evaluation of the results. A first simulation273

was performed with N = 40 equally spaced points affected each by uncorrelated noise in x− and274

y−direction with standard deviations σx =σy =5 cm. This is a typical situation when a line is calculated275

from binary pixels, and in subfigure (a) of fig. 5 a bundle of the simulated line segments is shown.276

The deviations ∆φ and ∆d taken as mean value over all Ns samples of the estimated φ and d from277

their true values, respectively, are depicted in subfigures (b) and (c) comparing four algorithms as278

presented in section 2: The triangles mark the outcome of equations (3) and (4) with all weights set to279

one, whereas the squares are calculated according to the same analytic formulas but using individual280

weighting factors applying (10) with si = 1/σρ,i. The perpendicular deviations σρ,i are determined281

according to (14) and (21) with φ taken from (3) without weights. Obviously, in this example all282

triangles coincide with the squares since each measurement i is affected by the same noise and thus283

for any φ all weighting factors are always identical. The dashed lines in (b) and (c) show the results284

when applying the iterative method according to (11) with the minimum of MSE found numerically.285

For this purpose, σ2
ρ,i is inserted from (14) considering (21), ρi is taken from (1) and d is calculated from286

(4), (8), (9) and (10) with si = 1/σρ,i. The dotted lines (KA) depict the deviations of d and φ obtained287

according to Krystek and Anton in [32]. Both numerical algorithm yield the same results, which is288

not surprising, since the variances σ2
ρ,i used as weighting factors are all identical. Further, here the289

analytical algorithms provide exactly the same performance as the numerical ones, since for σx = σy290

the weighting factors show no dependency on φ and for that case the analytical formulas are optimal.291

The lower subfigures depict the parameters of the covariance matrix Rdφ again as a function292

of φ comparing different methods. Here, the circles represent numerical results obtained from the293

definitions of variance and covariance by summing over all Ns passes with 1≤ k≤Ns, yielding dk and294

φk, respectively:295

σ2
d =

1
Ns

Ns

∑
k=1

(dk − d)2 (57)

σ2
φ =

1
Ns

Ns

∑
k=1

(φk − φ)2 (58)

σdφ =
1

Ns

Ns

∑
k=1

(dk − d) (φk − φ) (59)

Since these numerical results serve just as reference for judging the accuracy of the error models,296

in the formulas above the true values for d and φ have been used. The required line parameters dk297

and φk in (57) - (59) can be estimated with any of the described four methods, since minor differences298

in dk and φk have almost no effect on the resulting variances and the covariance. The dashed lines299

in subfigures (d) - (f) show the results of the analytic error model as described in section 3, and300

the dotted lines represent the outcomes of the algorithm from Krystek and Anton [32], while the301

continuous line corresponds to the model in closed-form according to (56) in section 4 with L and302

xo f f taken from (41) and (49), respectively. Interestingly, although the theoretical derivations differ303
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Figure 6. Variance of ρ dependent on the number N of measured data points, using the same simulation
parameters as indicated in figure 5(a)

substantially, the results match very well, which especially proves the correctness of the simplified304

model in closed-form. Since this model explicitly considers the effect of the line length L and of the305

geometric offset xo f f , the behavior of the curves can be clearly understood: The minimum of L will306

occur if φ equals the mean value of θmin and θmax, i.e. at φ = 55◦, and exactly at this angle the maximum307

standard deviation σφ occurs. Further, since L linearly depends on φ, a quadratic dependence of σφ308

on φ according to (47) can be observed. With respect to fig. 5(e) the minimum of σd also appears at309

φ = 55◦ corresponding to xo f f = 0. At this angle according to (54) the standard deviation of d is given310

as σd ≈ σρ/
√

N = 5/
√

40 = 0.79, while the covariance σρd calculated according to (55) and with it the311

correlation coefficient shown in fig. 5(f) vanishes.312

When comparing the results, one should be aware that in the simulations of the analytic error313

models the exact variances σ2
xi

, σ2
yi

and σxyi are used, thus in practice achievable accuracies will be314

worse. On the other hand, when applying the new error model in closed-form, the variance σ2
ρ is315

calculated as mean value of all ρ2
i from the actual set of N data points according to (39) and hence is316

always available.317

Nevertheless, if in this equation the estimated line parameters φ and d are used, which are318

calculated e. g. according to (3) and (4) using the same measurements as in (39), no unbiased σ2
ρ can319

be expected. This is reasoned from the fact that for each set of N data points, the mean quadratic320

distance over all ρ2
i is minimized in order to estimate φ and d. Thus, the numeric value of σ2

ρ will321

always be smaller than its correct value calculated with the exact line parameters. This effect can be322

clearly observed from fig. 6, which shows for the same simulation parameters as depicted in fig. 5(a)323

the dependency of σ2
ρ on the number of points on the line N, averaged over Ns sets of samples: Only324

in case of using the exact line parameters in (39), which obviously are only available in a simulation,325

actually the correct σ2
ρ = 25 cm2 is obtained as shown by the triangles. If however at each run σ2

ρ is326

calculated with the estimated φ and d as indicated by the squares, a clear deviation especially at low N327

occurs. Only asymptotically for large N when φ converges to its exact value the correct σ2
ρ is reached.328

Fortunately, this error can be compensated quite well by means of multiplying σ2
ρ with a correction329

factor c = N+1
N−1 as shown by the dashed line in fig. 6. Due to the strongly non-linear relation between φ330

and any ρi, this correction works much better than simply exchanging in (39) the divisor N by N − 1331

as often used in statistics. Since c is the inverse of the term neglected in the approximation of σ2
φ in332
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Figure 7. Results from simulated range-bearing scans superimposing low noise in r- and θ-direction

(47), the closed-form of the covariance matrix Rdφ according to (56) yields almost unbiased results also333

for small N if σ2
ρ is calculated according to (39) with estimated line parameters φ and d. Although not334

shown here, the proposed bias compensation works well for a large range of measurement parameters.335

For a reliable determination of σ2
ρ from N data points of a line segment, N should be at least in the336

order of 10.337

Figure 7 shows the results when simulating a range-bearing scan with a constant angular offset338

∆θ = (θmax − θmin)/(N−1) between adjacent measurements. Each measurement is distorted by339

adding normally distributed noise with standard deviations σr =5 cm and σθ = 0.1◦. This is a more340

challenging situation, since now the measurements are not equispaced, each data point exhibits341

individual variances σx,i, σy,i dependent on φ, and moreover a covariance σxy,i exists. As can be seen,342

the errors of the estimated φ and d as depicted in subfigure (b) and (c) exhibit the same order of343

magnitude as before, yet, both analytic results differ slightly from each other and are less accurate344

compared to the numerical solutions. Both numerical methods yield quasi identical results, since for345

the chosen small noise amplitudes the differences between both algorithms have no impact on the346

resulting accuracy.347

Regarding the error models, subfigures (d) to (f) reveal, that in spite of unequal distances between348

the measurement points and varying σρ,i the results of the closed-form model match well with the349

analytic and numeric results. Only σd shows a certain deviation at steep and flat lines with φ below 30◦350

or above 80◦. This is related to errors in xo f f , since in this range of φ the points on the lines measured351

with constant ∆θ have clearly varying distances and thus (49) yields just an approximation of the352

effective offset of the straight line.353

The next figure 8 shows the results with the models applied to short lines measured in the angular354

range of 30◦≤ θ≤ 40◦ with N = 20, while all other parameters are identical to those depicted in fig.355

7(a). As can be seen from subfigures (b) and (c), now the analytical algorithms based on (3) and (4)356

are no longer adequate since these, independent of applying weights or not, yield much higher errors357
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Figure 8. Results from simulated range-bearing scans of short lines superimposing low noise in r- and
θ-direction
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Figure 9. Results from simulated range-bearing scans superimposing high noise only in θ-direction
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Figure 10. Results from simulated range-bearing scans with a low number of data points and only
approximately known noise level of the sensor

than the numerical approaches. All error models however provide still accurate results. Actually, the358

closed-form model even yields better accuracy than before, since the distances of the data points on359

the line between adjacent measurement and also σρ,i are more uniform compared to the simulations360

with long lines.361

In order to check the limits of the models, figure 9 depicts the results when applying large362

angular noise with σθ =2◦. In this extreme case also the numerical algorithms show systematic errors363

dependent on φ since the noise of ρi can no longer be assumed to be normally distributed. However,364

according to subfigures (b) and (c) the iterative method as presented in section 2 shows clear benefits365

in comparison to the KA-algorithm proposed in [32], caused by the more accurate modeling of σρi .366

With respect to the outcome of the noise models in subfigures (d) to (f), now only the analytic367

algorithm as presented in paragraph 3 still yields reliable results, while the KA-method based on368

matrix inversion reveals numerical instability. Due to the clear uneven distribution of measurements369

along the line also the simplified error model in this case shows clear deviations, although at least the370

order of magnitude is yet correct.371

Finally, figure 10 shows typical results, if the sensor noise is not exactly known. In this example,372

the radial standard deviation was assumed to be 10 cm whereas the exact value, applied when373

generating the measurements, was only 5 cm. The simulation parameters correspond to those in figure374

7, only the number of data points has been reduced to N=10. According to subfigures (b) and (c), now375

for calculating φ and d the numerical methods yield no benefit over the analytical formulas with or376

without weights. Due to the only approximately known variance, the analytic error model as well377

as the KA-method in (d) to (f) reveal clear deviations from the reference results. Only the model in378

closed-form is still accurate, since it does not require any a-priori information regarding sensor noise.379

In addition, these results prove the bias-free estimation of σ2
ρ with (39) also if N is low as depicted in380

figure 6.381
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6. Conclusion382

In this study the performance of linear regression is evaluated, assuming both coordinates as383

random variables. It is shown, that especially with range-bearing sensors, frequently used in mobile384

robotics, a distinct covariance of the noise in x- and y-direction at each measurement point exists. In385

this case, analytical formulas assuming identical and uncorrelated noise, will only provide accurate386

line parameters φ and d if the detected line segments are sufficiently long and the noise level stays387

below a certain limit. If this prerequisites are not fulfilled and if the sensor noise is known, numerical388

algorithms should be applied, which consider the reliability of each measurement point as a function389

of φ. At this, the performance of prior art can be improved by means of modeling the independence of390

the single data points exactly and by paying attention also to 2nd order effects of the angular noise.391

The main focus of this paper is on the derivation of the covariance matrix Rdφ of straight lines.392

This information has crucial impact on the performance of SLAM with line features, since for both, data393

association and sensor fusing, Rdφ must be estimated precisely. For this purpose, first analytical error394

models are reviewed, which however need exact knowledge of the measurement noise, although in395

many applications this is not available. In addition, these approaches require high computational effort396

and do not allow to comprehend the effect of measurement parameters on the resulting accuracy of an397

estimated straight line. Thus, a new error model in closed form is proposed, just depending on two398

geometric parameters as well as on the number of points of a line segment. Besides, a single variance399

must be known, which is determined easily and reliably from the same measurements as used for line400

fitting. By means of this model the covariance matrix can be estimated fast and exactly. Moreover,401

it allows to adapt measurement conditions in order to achieve maximum accuracy of detected line402

features.403

Appendix. Analytic derivation of straight line parameters with errors in both coordinates404

For the derivation of the perpendicular distance d, the partial derivative of equation (2) with405

respect to d is taken and set to zero, which directly gives equation (4) using (8), (9) and (10). In order406

to calculate φ, first the partial derivation of (2) with respect to φ must be calculated and set to zero,407

yielding:408

1
N

N

∑
i=1

si

[
xiyi

(
cos2φ− sin2φ

)
+
(

y2
i − x2

i

)
sin φ cos φ

]
+

1
N

N

∑
i=1

sid (xi sin φ− yi cos φ) = 0 (A1)

Now, the distance d can be replaced by (4), and after inserting the definitions of x̄, ȳ, σ2
x , σ2

y and409

σxy according to (5) - (9) considering (10) it follows from (A1) after reordering:410

σxy

(
cos2 φ− sin2 φ

)
+ sin φ cos φ

(
σ2

y − σ2
x

)
= 0 (A2)

Applying the theorem of Pythagoras and the addition theorems of angles, the terms with sine and411

cosine can be rewritten:412

cos2 φ− sin2 φ = 2 cos2 φ− 1 = cos 2φ (A3)

sin φ cos φ =
1
2

sin 2φ (A4)

Inserting these formulas into (A2), finally yields for φ:413

φ =
1
2

arctan

(
−2σxy

σ2
y − σ2

x

)
(A5)
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(A5) calculates φ always in the range −π/4 < φ < π/4, although according to fig. 1 this is414

only correct if σ2
y > σ2

x , while in the case σ2
y < σ2

x an angle π/2 must be added to φ. Thus, as general415

solution (3) should be taken also avoiding a special consideration if σ2
y equals σ2

x .416
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