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Abstract: Atomic structure of N-electron atoms is often determined using the Hartree-Fock method,1

which is an integro-differential equation. The exchange term of the Hartree-Fock equations is usually2

treated as an inhomogeneous term of a differential equation, or with a local density approximation.3

This work uses matrix methods to solve for the Hartree-Fock equations, rather than the more4

commonly-used shooting method to integrate an inhomogeneous differential equation. It is well5

known that a derivative operator can be expressed as a matrix made of finite-difference coefficients;6

energy eigenvalues and eigenvectors can be obtained by using computer linear-algebra packages.7

We extend the same technique to integro-differential equations, where a discretized integral can be8

written as a sum in matrix form. This method is compared against experiment and standard atomic9

structure calculations. We also can use this method for free-electron wavefunctions. This technique is10

important for spectral line broadening in two ways: improving the atomic structure calculations, and11

improving the motion of the plasma electrons that collide with the atom.12

Keywords: atomic structure; hartree fock; exchange; line broadening; scattering13

0. Introduction14

Calculation of atomic structure (energy eigenvalues and wavefunctions) of multi-electron atoms15

or molecules is complicated because no exact analytical solution exsists. There are a variety of methods16

that were introduced to solve for multi-electron systems. The most-studied system being helium-like17

atoms [See survey in 1]. Probably the most far-reaching method is that of Hartree [2], who used an18

iterative-refinement method1. The two-electron (non-relativistic) Hamiltonian is19

H(r1, r2) = H0(r1) + H0(r2) + V(r1, r2) (1)

H0(r1) = −1
2
∇2

1 −
Z
r1

V(r1, r2) =
1

|~r1 −~r2|
. (2)

1 This method fails to capture some correlation effects because the potential in which the electron is moving is defined to be a
mean field of the other electrons; which is to say that it does not account for the additional repulsion when the two electrons
are close to each other.
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Hartree can solve for the motion of one of the electrons by calculating average fields due to the second
electron. The average field due to the second electron is defined as∫ ∞

0
d3~r2ψ∗2 (r2)

1
|~r1 −~r2|

ψ2(r2).

The Hartree method uses an iterative procedure to solve for the atomic structure by solving for the20

motion of individual electrons with fields due to the other electrons. Each iteration improves the21

wavefunction; this procedure is repeated until a desired convergence is reached. The steps of the22

Hartree method can be summarized as23

1) Assume a wavefunction for the state of interest (hydrogenic is good enough for this step)24

25

2) Determine a mean-Coulomb field acting on electron i based on the wavefunctions of the other26

N − 1 electrons.27

3) Solve the one-electron Schrödinger equation for electron i in its mean-Coulomb field to generate28

a new set of wavefunctions.29

4) Repeat steps 2)-3) until convergence is achieved.30

Hartree’s method however, neglected the physical indistinguishability of identical particles;31

this resulted in poor results in matching the helium spectrum. The two-electron Hamiltonian (Eq32

1) is unchanged upon exchange of the positions of electron 1 and electron 2. The wavefunction33

eigensolution, therefore must also have this property, such that34

Ψ(~r1,~r2) = ±Ψ(~r2,~r1), (3)

=
1√
2
[ψ1(~r1)ψ2(~r2)± ψ2(~r1)ψ1(~r2)] , (4)

where ψ1 and ψ2 are the one-electron wavefunctions for electrons 1 and 2, respectively. For the case of35

the non-relativisitc helium atom, the positive symmetry sign is interpreted as the spin-anti-aligned36

case, while the anti-symmetry is the spin-aligned case.37

The Hartree-Fock equations [1,3,4] are based on a variational method to minimize the energy38

of the system using the fully symmetrized wavefunctions in Eq (4), resulting in the following set of39

differential equations for ψ1 and ψ2,40 [
− 1

2
∇2

1 −
Z
r1

+ VC(r1)− E
]

ψ1(~r1) ≈ ∓
{ ∫

d3~r2ψ1(~r2)
1

r12
ψ2(~r2)

}
ψ2(~r1) (5)[

− 1
2
∇2

2 −
Z
r2

+ VC(r2)− E
]

ψ2(~r2) ≈ ∓
{ ∫

d3~r1ψ1(~r1)
1

r12
ψ2(~r1)

}
ψ1(~r2) (6)

for a two electron system; VC is the average direct Coulomb potential from the other electron,

Vc(r1) =
∫ ∞

0
d3~r2ψ2(~r2)

1
r12

ψ2(~r2),

and the terms in curly brackets on the right-hand side are the exchange terms. Here we have omitted41

some of the overlap integrals, which are often approximated with Lagrangian multipliers [4]2. The42

Hatree-Fock equations are some of the most widely-used equations in atomic structure [1,4,5], often43

providing an accurate set of starting wavefunctions and energies.44

One source of uncertainty with solving the Hartree-Fock equations is the treatment of the exchange
term on the right-hand sides of Eqns (5) and (6). Current calculations which treat exchange explicitly

2 If the two wavefunctions are assumed to be orthogonal, then these terms vanish.
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approximate these terms as if they are an inhomogeneous term of a differential equation [4,6–8], where
the differential equation for electron 1 is approximated as[

− 1
2
∇2

1 −
Z
r1

+ VC(r1)− E
]

ψ1(~r1) ≈ ∓s(r1), (7)

where s(r1) is the inhomogeneous term of the differential equation, which contains the exchange term,45

and its evaluation relies on the previous guess of the new wavefunction for which we are trying to46

solve. In addition, one must be careful with evaluating an inhomogeneous term numerically [4].47

Contrast Eq (7) with Eq (5), where the function that is being solved is inside the integral48

on the right-hand side, therefore the Hartree-Fock equations are integro-differential equations.49

Computing power has now reached a point where integro-differential equations can be solved using50

finite-difference matrices similar to the one used by Beck [8].51

1. Finite Difference Matrix to Solve the Schrödinger Equation52

Before we begin discussing solutions to the Hartree-Fock equations, we would like to introduce the
idea of using matrices to solve the one-electron Schrödinger equation for a problem where the solution
is known. We therefore choose to use finite-difference matrix method to solve for the hydrogen atom.
The non-relativistic hydrogen wavefunction can be separated into a radial and spherical coordinates,

ψ(r, θ, φ) =
1
r

Rnl(r)Ylm(θ, φ),

where the behavior of the angular part is known and well-characterized by the spherical harmonics,
and the radial wavefunction, Rnl(r) is the part that needs to be solved. The radial equation is the
solution to the Schrödinger equation (atomic units used throughout; h̄ = 1, me = 1, and e = 1),[

− d2

dr2 +
l(l + 1)

r2 − 2Z
r

]
Rnl(r) = 2EnRnl (8)

As is shown in Beck [8], the second-order derivative can be represented with finite-difference53

coefficients,54 [
d2

dr2 Rnl(ri)

]
≈ 1

(∆r)2 [Rnl(ri+1) + Rnl(ri−1)− 2Rnl(ri)]

≈ 1
(∆r)2

(
1 −2 1

)Rnl(ri−1)

Rnl(ri)

Rnl(ri+1)


(9)

which can be written more generally as a matrix55

[
d2

dr2 Rnl(r)
]
≈ 1

(∆r)2


−2 1 0 0 · · ·
1 −2 1 0 · · ·
0 1 −2 1 · · ·
0 0 1 −2 · · ·
...

...
...

...
. . .




Rnl(r1)

Rnl(r2)

Rnl(r3)

Rnl(r4)
...

 . (10)
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The potential in which the electron is moving is a diagonal matrix,

V(r)Rnl(r) =


V(r1) 0 0 0 · · ·

0 V(r2) 0 0 · · ·
0 0 V(r3) 0 · · ·
0 0 0 V(r4) · · ·
...

...
...

...
. . .




Rnl(r1)

Rnl(r2)

Rnl(r3)

Rnl(r4)
...

 , (11)

where V(r) is

V(r) =
l(l + 1)

r2 − 2
Z
r

.

The total Hamiltonian will simply be the sum of the differential matrix and the potential matrix.56

These techniques are well established [e.g. 9,10] and could be improved upon by using higher-order57

finite-difference elements, or using the Numerov method in matrix form.58

The advantage of this technique is that any linear-alegebra package, such as LAPACK, can be used59

to diagonalize this Hamiltonian to get energies and wavefunctions. As a result, complications with60

shooting methods, such as trying to match the inner and outer solutions (or having to search for an61

eigenvalue), are avoided—though at a cost: numerically solving for the eigenvalues and eigenvectors62

of a large Hamiltonian can become time-consuming. As with any finite-difference method, smaller63

∆r results in more accurate wavefunctions, but requires a larger matrix to solve, which means the64

calculation will converge more slowly.65

To illustrate the accuracy of the calculations using this method, table 1 shows the energy66

eigenvalues of hydrogen assuming a maximum r of 50 Bohr, and compares the accuracy of different67

∆r; the Hamiltonians are N × N matrices where N = 100, N = 250, N = 500, N = 1000 for ∆r = 0.5,68

∆r = 0.2, ∆r = 0.1, ∆r = 0.05, respectively (all in units of Bohr distance; 1 Bohr = 5.29×10−9 cm).69

We see that the errors in the energy eignvalue for ∆r = 0.1Bohr is roughly 0.2% for the ground state,

Table 1. Numerical Eigenvalue Solutions

n ∆r = 0.5 ∆r = 0.2 ∆r = 0.1 ∆r = 0.05 Exact
1 -0.94427 -0.99019 -0.99751 -0.99937 -1.00000
2 -0.24621 -0.24938 -0.24984 -0.24996 -0.25000
3 -0.11035 -0.11098 -0.11108 -0.11110 -0.11111
4 -0.06218 -0.06237 -0.06240 -0.06241 -0.06250

70

and less than 0.1% for the excited states, while the ∆r = 0.05Bohr calculation has 0.06% errors in the71

ground-state energies, and ≤0.02% errors for the excited states.72

2. Matrix form of the Hartree-Fock Equation73

To solve for multi-electron systems, we can extend Eq (10) to solve for more than one radial
function simultaneously. For example, one can construct a differential matrix for a wavefunction that
has two coordinate positions,

R(ri, rj) =



R(r1, r1)

R(r2, r1)

R(r3, r1)
...

R(r1, r2)

R(r2, r2)

R(r3, r2)
...


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But this means that the vector size is N2 instead of N. Therefore, the most practical method for solving74

for multi-electron systems is the Hartree-Fock equations—though it is not impossible to solve such a75

large system on a laptop computer3.76

The Hartree-Fock equations (Eqns 5 and 6) contain two additional terms not present in the
one-electron Schrödinger equation: the direct and exchange interactions with the other electrons in the
system. For the rest of the section, we use the Taylor expansion of the Coulomb interaction,

1
|~r1 −~r2|

=
∞

∑
k=0

rk
<

rk+1
>

Pk(cos γ12) (12)

where r< and r> are the lesser/greater of r1 and r2, and Pk is a Legendre polynomial, and cos γ12 is the77

angle that separates the two particles.78

The direct term uses the sphericallly-averaged potential, whis is just the monopole term. The ith

electron feels the average monopole interaction from the other electrons

Vdir(r)Ri(r) = Ri(r)∑
j 6=i

∫ ∞

0
dr1R∗j (r1)Rj(r1)

1
r>

, (13)

where r> is the greater of r1 and r. This poses no complications from the treatment in section 1 due to
the fact that the resulting potential is diagonal like Eq (11), and can just be added to the centrifugal
and nuclear potentials. The exchange term is a bit more complicated [1,4],

Vexch(r)ψi(~r) = ∓∑
j 6=i

∑
k

ψj(~r)
∫ ∞

0
d3~r1ψ∗j (~r1)

rk
<

rk+1
>

Pk(cos γ)ψi(~r1),

Use of the spherical harmonics, their relationship with the Wigner 3j-symbols, and averaging over all
m quantum numbers, the exchange contribution can be reduced to [4],

Vexch(r)Ri(~r) = ∑
j 6=i

∑
k
−1

2

(
lj k li
0 0 0

)2

Rj(~r)
∫ ∞

0
dr1R∗j (r1)

rk
<

rk+1
>

Ri(r1). (14)

We can define the integral with finite difference matrix coefficients in a similar way to the
derivative, discussed in the previous section. The integral in Eq (14) can be discretized as follows
(where the coordinates r and r1 have been replaced with a spatial index, rx and ry respectively),

V(rx) ∝ ∑
j 6=i

∑
k

Rj(rx)∑
y

R∗j (ry)V̂k(rx, ry)Ri(ry)∆ry.

which can be written as a matrix (omitting the sums over j and k),

∆r



Rj(r1)R∗j (r1)V̂k(r1, r1) Rj(r1)R∗j (r2)V̂k(r1, r2) Rj(r1)R∗j (r3)V̂k(r1, r3) · · ·
Rj(r2)R∗j (r1)V̂k(r2, r1) Rj(r2)R∗j (r2)V̂k(r2, r2) Rj(r2)R∗j (r3)V̂k(r2, r3) · · ·
Rj(r3)R∗j (r1)V̂k(r3, r1) Rj(r3)R∗j (r2)V̂k(r3, r2) Rj(r3)R∗j (r3)V̂k(r3, r3) · · ·
Rj(r4)R∗j (r1)V̂k(r4, r1) Rj(r4)R∗j (r2)V̂k(r4, r2) Rj(r4)R∗j (r3)V̂k(r4, r3) · · ·

...
...

...
. . .




Ri(r1)

Ri(r2)

Ri(r3)

Ri(r4)
...

 . (15)

3 In fact, radial solutions of three-electron problems can be solved on a laptop with the help of sparse matrix eigenvalue
solvers. Any system larger than this would require the use of a supercomputer.
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This method still requires knowledge of the other electrons, but now this equation solves for Ri(r)79

once per iteration. Contrast this with the inhomogeneous differential equation method, where each80

iteration on the wavefunction requires repeated integrations of the Hartree-Fock equations to accurately81

calculate the effect of exchange.82
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Figure 1. Numerical Results of using exact matrix exchange method.

The numerical results of using this Hartree-Fock matrix method are plotted in figure 1 for the83

spin-aligned (ortho-helium) and spin-anti-aligned (para-helium) cases. These results differ from the84

Cowan wavefunctions, even for the average (of para- and ortho-helium). The biggest difference is85

in the size of the part that overlaps with the center electron, as evident in figure 2. This means that86

Cowan’s code predicts a wavefunction that is more likely to occupy the same space as the 1s electron.87

Orthogonality between the 1s and 2s electrons offers a useful metric for comparison. Cowan’s code88

uses Lagrangian multipliers to force orthogonality (meaning that overlap integrals with non-identical89

electrons are zero) between the 1s and 2s electrons. Our calculation of LS-averaged wavefunctions90

produce overlap integrals for the 2s and 1s states that are 0.02. But if we calculate each LS term91

(ortho- and para-helium), the 1s and 2s ortho-helium (spin-aligned) triplet states have overlap integrals92

that are less than 0.001—comparable to the Cowan code, but the 1s and 2s states of the para-helium93

singlet state are not orthogonal (overlap integral is 0.08); this has been observed before in Hartree-Fock94

calculations [3,11].95

The energies are also different—and this may be where these details matter most. In Table 2,96

we compare the different calculations for the energy separation of the two different LS terms (para-97

and ortho-helium) of the 2s state of helium to the reference value from NIST [12,13]. Our matrix98

Hartree-Fock method gives a value that is nearly 10% lower than that predicted by Cowan and in99

much better agreement with the reference value. A direct numerical two-electron solution (where we100

expand Eq (10) to two dimensions and include a monopolar repulsion term; this is not the Hartree-Fock101

equations) agrees well with the reference value.102

Table 2. Energy difference between 2s3S and 2s1S in Ry

Cowan Hartree-Fock with Exact Exchange Direct Two-Electron Solution Measured [12,13]
0.06749 0.06158 0.0602 0.05857
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Figure 2. The ortho-helium wavefunctions compared with Cowan’s 1s 2s wavefunction. The new
calculations with exact exchange are given in red, while Cowan’ calculation are in dot-dashed black
lines.

3. Extension to Free-Electron Wavefunctions103

This same technique can also be used to calculate free-electron wavefunctions. However, the
problem is slightly different than the bound-electron problem. First, the eigenvalue is known, and
second, the outer boundary condition is not zero. To accomodate this, we move the energy (E = 1

2 k2)
to the other side of Eq (8), so that the system for which we are solving is

(H − E)ψ(r) = 0

We then use a matrix solver (Ax = b), rather than an eigenvalue solver and set the b vector equal to
zero except for the final value, which is set to 1,

b =



0
0
0
...
0
1


.

This will ensure that the wavefunction does not decay to zero at the outer-most boundary.104

The changes in the free-electron wavefunction are shown in figures 3 and 4 for a distorted-wave105

treatment, where we assume that the atom is not perturbed by the presence of the free-electron.106

Figure 3 shows the free electron reacting to a hydrogen atom in the 2s state, while figure 4 shows the107

free-electron reacting to a lithium atom in the 1s22s configuration. In these figures, we also plot the108

plane-wave solution for the same k state, and a local-density-approximation (LDA) for the exchange109

contribution [4,14,15]. The changes in the wavefunction in figure 3 are fairly minor, and the LDA giving110

a fairly reasonable amplitudes for the inner 5 Bohr of the wavefunction. The lithium wavefunctions111
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calculated with an LDA, on the other hand, are not nearly as good, the amplitudes of the exact exchange112

are lower by 30-50%. This means that if one were trying to accurately calculate the effects of penetrating113

collisions for multi-electron—meaning more than one electron—systems, the LDA wavefunction may114

not be accurate enough depending on the application.115

The differences between the three treatments (Coulomb/Plane wave, LDA, and exact exchange)116

become less important as the charge of the atom increases. For example, in Li-like boron, the differences117

are much less pronounced because the nuclear charge becomes the dominant contribution to the118

potential.119
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Figure 3. The l = 0 partial wave of the free-electron wavefunction under different approximations.
Black dot dashed is the plane wave, dotted blue is using an LDA to approximate the exchange
correlations, and solid red is the exact exchange treatment. The states are reacting to the presence of a
hydrogen atom in the 2s state
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Figure 4. Same as figure 3, but reacting to the Li 1s22s state.
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4. Application To Spectral Line Broadening120

The line broadening of spectral lines is due to the radiator interacting with its environment.121

Therefore the accuracy of spectral line broadening depends on three primary details: the atomic122

structure, the description of the plasma ensemble properties, and the way the plasma and atoms123

interact. The work here has an impact on spectral line broadening in two ways: the atomic structure124

and the behavior of plasma electrons when they impact the radiator.125

The changes in the atomic data will affect all spectral line shape calculations. All spectral line126

broadening calculations require input from an atomic structure code, and the most commonly-used127

information is the energy levels and dipole moments. As we showed in section 2, the energy levels of128

the helium atom can substantially change with a different treatment of exchange. The small changes in129

the wavefunctions will also result in changes in the dipole moments used by line-shape codes.130

In addition, there are a few calculations which treat the plasma electron quantum mechanically.131

Regardless of the method (second-order distorted-wave method [16,17], or a CCC method [18–22]),132

these calculations require a set of starting wavefunctions for the plasma electrons. Most of these133

methods use LDA methods for exchange, but as demonstrated in the previous sections, these may not134

be the most accurate when exchange becomes important. This method of using an exact exchange135

treatment is now being implemented in the DWE line shape code [23,24] (which was used in the136

SLSP4 workshop), which improves upon the relaxation theory method of Junkel et al. [25] to include137

exchange.138

Calculations which treat penetration effects explicitly in electron broadening have to take into139

account two processes: the softening of the potential when the plasma electrons occupy the same space140

as the bound electron, and exchange. Exchange calculations are extremely difficult to perform if the141

bound- and free-electron wavefunctions are not orthogonal, and become considerably simpler when142

the wavefunctions are orthogonal. LDA methods do not guarantee orthogonality, while these matrix143

methods can achieve orthogonality to one part in 1000, thus simplifying exchange calculations.144

5. Summary145

We present a different technique for evaluating exchange effects in multi-electron atoms and146

in collision processes. Rather than treating the exchange term of the Hartree-Fock equations as147

an inhomogeneous term of the differential equation, we treat it explicitly as an integro-differential148

equation. We have written the exchange integral as a matrix, and then approximating the rest of149

the Hamiltonian terms as finite-difference coefficients, we can use linear algebra packages such as150

LAPACK to diagonalize the total Hamitlonian to get the energies and wavefunctions. This method can151

be used for either bound-state, or free-state systems. These lead to some differences in the evaluation of152

the helium atom energy-level structure and wavefunctions. The behavior of penetrating free electrons153

near the origin is differs from the LDA treatment of exchange for multi-electron systems, and can lead154

to changes in the broadening of theses systems.155

Acknowledgments:156

T.A.G. acknowledges support from the National Science Foundation Graduate Research157

Fellowship under grant DGE-1110007. M.H.M., and D.E.W. acknowledge support from the United158

States Department of Energy under grant DE-SC0010623, the Wooton Center for Astrophysical Plasma159

Properties under the United States Department of Energy under grant DE-FOA-0001634, and the160

National Science Foundation grant NSF-AST 1707419. Sandia National Laboratories is a multimission161

laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC.,162

a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s163

National Nuclear Security Administration under contract DE-NA-0003525. T.A.G. and S.B.H. was also164

supported by the U.S. Department of Energy, Office of Science Early Career Research Program, Office165

of Fusion Energy Sciences under FWP-14-017426. We thank Dr. Chris Fontes, Dr. Andrew Baczewski,166

and Dr. Daniel Jensen for stimulating discussions.167

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 March 2018                   doi:10.20944/preprints201803.0056.v1

Peer-reviewed version available at Atoms 2018, 6, 22; doi:10.3390/atoms6020022

http://dx.doi.org/10.20944/preprints201803.0056.v1
http://dx.doi.org/10.3390/atoms6020022


10 of 10

References168

1. Bethe, H.A.; Salpeter, E.E. Quantum Mechanics of One- and Two-Electron Atoms; 1957.169

2. Hartree, D.R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and170

Methods. Proceedings of the Cambridge Philosophical Society 1928, 24, 89.171

3. Fock, V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift fur172

Physik 1930, 61, 126–148.173

4. Cowan, R.D. The theory of atomic structure and spectra; 1981.174

5. Grant, I.P. Relativistic Quantum Theory of Atoms and Molecules; 2007.175

6. Talman, J.D.; Shadwick, W.F. Optimized effective atomic central potential. Phys. Rev. A 1976, 14, 36–40.176

7. Shiozaki, T.; Hirata, S. Grid-based numerical Hartree-Fock solutions of polyatomic molecules. Phys. Rev. A177

2007, 76, 040503.178

8. Beck, T.L. Real-space mesh techniques in density-functional theory. Reviews of Modern Physics 2000,179

72, 1041–1080, [cond-mat/0006239].180

9. Chow, P.C. Computer Solutions to the Schrödinger Equation. American Journal of Physics 1972, 40, 730–734.181

10. Pillai, M.; Goglio, J.; Walker, T.G. Matrix Numerov Method for solving Schrödinger’s equation. Americal182

Journal of Physics 2012, 80, 1017–1019.183

11. Sharma, C.S. On the Hartree-Fock equations for helium with non-orthogonal orbitals. Journal of Physics B:184

Atomic and Molecular Physics 1968, 1, 1023.185

12. Kramida, A.; Yu. Ralchenko.; Reader, J.; and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.5.2),186

[Online]. Available: https://physics.nist.gov/asd [2015, April 16]. National Institute of Standards and187

Technology, Gaithersburg, MD., 2018.188

13. Morton, D.C.; Wu, Q.X.; Drake, G.W.F. Energy levels for the stable isotopes of atomic helium (He-4 I and189

He-3 I). Canadian Journal of Physics 2006, 84, 83–105.190

14. Slater, J.C. A Simplification of the Hartree-Fock Method. Physical Review 1951, 81, 385–390.191

15. Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical192

Review 1965, 140, 1133–1138.193

16. Madison, D.H.; Bray, I.; McCarthy, I.E. Exact second-order distorted-wave calculation for hydrogen194

including second-order exchange. Journal of Physics B Atomic Molecular Physics 1991, 24, 3861–3888.195

17. Kingston, A.E.; Walters, H.R.J. Electron scattering by atomic hydrogen - The distorted-wave second Born196

approximation. Journal of Physics B Atomic Molecular Physics 1980, 13, 4633–4662.197

18. Bray, I. Convergent close-coupling method for the calculation of electron scattering on hydrogenlike198

targets. Phys. Rev. A 1994, 49, 1066–1082.199

19. Bray, I.; Stelbovics, A.T. Calculation of Electron Scattering on Hydrogenic Targets. Advances in Atomic200

Molecular and Optical Physics 1995, 35, 209–254.201

20. Griem, H.R.; Ralchenko, Y.V.; Bray, I. Stark broadening of the B III 2s-2p lines. Phys. Rev. E 1997,202

56, 7186–7192.203

21. Seaton, M.J. Atomic data for opacity calculations. XIII - Line profiles for transitions in hydrogenic ions.204

Journal of Physics B Atomic Molecular Physics 1990, 23, 3255–3296.205

22. Seaton, M.J.; Yan, Y.; Mihalas, D.; Pradhan, A.K. Opacities for Stellar Envelopes. Mon. Not. Ro. Astr. Soc.206

1994, 266, 805.207

23. Gomez, T.A. Improving Calculations of the Interaction Between Atoms and Plasma Particles and its Effect208

on Spectral Line Shapes. PhD thesis, University of Texas at Austin, 2017.209

24. Gomez, T.A.; Nagayama, T.; Kilcrease, D.P.; Fontes, C.J.; Iglesias, C.A.; Lee, R.W.; Hansen, S.B.; Montgomery,210

M.H.; Winget, D.E. Penetrating Collisions by Electrons and its Effect on Electron Broadening. in prep 2018.211

25. Junkel, G.C.; Gunderson, M.A.; Hooper, Jr., C.F.; Haynes, Jr., D.A. Full Coulomb calculation of Stark212

broadened spectra from multielectron ions: A focus on the dense plasma line shift. Phys. Rev. E 2000,213

62, 5584–5593.214

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 March 2018                   doi:10.20944/preprints201803.0056.v1

Peer-reviewed version available at Atoms 2018, 6, 22; doi:10.3390/atoms6020022

http://xxx.lanl.gov/abs/cond-mat/0006239
http://dx.doi.org/10.20944/preprints201803.0056.v1
http://dx.doi.org/10.3390/atoms6020022

	Introduction
	Finite Difference Matrix to Solve the Schrödinger Equation
	Matrix form of the Hartree-Fock Equation
	Extension to Free-Electron Wavefunctions
	Application To Spectral Line Broadening
	Summary

