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A. Methodology to obtain the real-valued spherical harmonics expansion of the single-
link distribution function

Upon using for a general shearfree flow
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in Eq. (C4) of Ref. [1] and performing the necessary integrations we obtain
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Note that already in the 2" line of Egs. (A1) we have specified our treatment to the case of

ageneral shearfree flow, i.e. & =" =diag(-4(1+b),~4(1-b) 1) Wi where Wi=£4 . Now,
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by taking cases separately we find that bo“)( )=0,vu and b“)( )=0, 1 even,vn, p. For

the rest,
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where ¢, is the Kronecker symbol (if n=I, 5, =1, otherwise ¢, =0) and the shorthand

notation K, z(l—g’)(wr)2 +&,j(j+1) is used. By following the methodology employed

in Refs. [1,2] we obtain the following expression for the time-dependent single-link

distribution function:

f(o,ut)= i{1+4Wi\/§ {0,(,0)- 0, (0 1)} v (U)

. (A4)
—4Wi,[)’\/%{gl(a,0)—gl(a,t)}yzz(u) +O(Wi2)
where
0,(c t)=iMexp(—K t) (A5)
e e (vz)K, 2h

odd
Note that for t—0 the single-link distribution function becomes, as should, equal to the
equilibrium one whereas, as t — o the single-link distribution function becomes identical
to the one given below in Eq. (A6), up to first order terms. The single-link distribution
function presented here generalizes the one presented in Ref. [3] which was only specified
for uniaxial elongation ( #=0). In the case of a stationary state, we are interested to have
the solution up to third order in the dimensionless elongation rate. By solving the stationary

limit of Eq. (A3) we obtain
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where

< 6 . < 6 . < 6 .
g, (0)= ; oK, sin(vzo), 9, (o) = ; K sin(vzo), g, (o) = ;Wsm (vo)
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Note that g,(o’)=g,(0,0) , where g,(o,t) is the corresponding expression employed in

Eq. (A5).

B. Results of the BD simulations when a constant link tension coefficient is employed
Fig. S1 shows the reduced steady-state first [Fig. S1] and second [Fig. S2] viscosities in
the case of planar extension, made dimensionless with GA, as a function of the
dimensionless elongation rate, Wi. In the case of a constant link tension coefficient, the
expansion of the two elongational viscosities in the case of planar elongation up to second
order in Wi is obtained by setting b=1 in Egs. (6) of the manuscript:
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with numerical prefactors A; given by Eq. (8) of the manuscript. When &' =0
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These predictions are provided in Figs. S1 and S2. All curves, irrespective of the value of

(B2)

&, reach the same value of the first viscosity at large elongation rates. This value is simply

given by:
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FIG. S1: 7,/GA as a function of Wi for various values of the parameters ¢, and =. Note

that in part (b) and in all insets the vertical axis is in linear scale. The thick lines give the

predictions of Egs. (B1) or (B2) for the case of ¢ =0 .
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FIG. S2: Same as FIG. S1 but for 77,/GA.
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FIG. S3: Predictions for the transient nf/Gl as a function of time for N=100 and various
values of the parameter ¢ and dimensionless elongation rate Wi for (a) =0, (b) ¢=0.1,

c) &= 0.5, and (d) ¢=0.9. The thick lines give the predictions of Eq. (14).
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FIG. S4: Same as FIG. S3 but for 77; /GA .

Note that Eq. (B3) differs from Eq. (26) only when the first viscosity is made dimensionless
with the zero-rate viscosity which, when the link tension coefficient is taken as a constant,
IS given as

GA 2
24145, B4
o 60[ 3‘9j (B4)

We next show the transient first (Fig. S3) and second (Fig. S4) viscosity as a function of
the dimensionless time (t/4) for various dimensionless elongation rates along with the

linear viscoelastic (LVE) prediction (see Eqg. (15) with b=1).
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