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Abstract: We have recently solved the tumbling-snake model for concentrated polymer solutions and1

entangled melts in the presence of both steady-state and transient shear and uniaxial elongational2

flows, supplemented by a variable link tension coefficient. Here, we provide the transient and3

stationary solutions of the tumbling-snake model under biaxial elongation both analytically, for4

small and large elongation rates, and via Brownian dynamics simulations, for the case of planar5

elongational flow over a wide range of rates, times, and the model parameters. We show that both the6

steady-state and transient first planar viscosity predictions are similar to their uniaxial counterparts,7

in accord with recent experimental data. The second planar viscosity seems to behave in all aspects8

similarly to the shear viscosity, if shear rate is replaced by elongation rate.9

Keywords: polymer melt; stochastic differential equation; link tension coefficient; entanglements;10

biaxial flow11

1. Introduction12

Understanding the behavior of polymer liquids in shearfree (extensional) flows has attracted the13

interest of academic researchers and industrial companies alike, due to the capacity of such flows14

to align and stretch polymer chains at a preferred flow direction, such as in fiber spinning and film15

forming processes [1]. The reliable measurement of uniaxial extensional viscosity has been resolved16

more than two decades ago with the development of the filament stretching rheometer [2]. Today,17

this rheometer has reached a level of maturity that allows to demonstrate that systems with the same18

number of entanglements, and thus with identical linear rheology, have a drastically different nonlinear19

uniaxial extensional behavior [3–5].20

On the other hand, the measurement of the planar or biaxial extensional viscosities is rather scarce21

and mainly unable to reach the steady-state (see e.g. [6,7]), while the such flow fields can be generated22

and controlled conveniently via optical birefringence in a cross-slot channel [8–10]. Rheooptics is then23

applied to interpret the data. The unavailability of reliable direct rheological data for planar elongation24

may be the reason for only a few works [11–14] devoted to testing the ability of rheological constitutive25

models to address this flow. Non-equilibrium molecular dynamics (NEMD) simulation of microscopic26

polymer chain models has helped in the past to clarify the applicability of constitutive relationships27

for simple flows, including uniaxial elongational and shear flows, while it is worthwhile recalling28

that steady-state planar elongation is easier to implement than uniaxial elongation (UE) in such a29

simulation setup [15–17].30

Since the introduction of the tube/reptation concept by de Gennes and Doi & Edwards [18–20],31

this mean-field theory turned out to serve as the far-most capable starting point in an attempt to32

describe the dynamical nonequilibrium behavior of entangled (high molecular weight) polymer melts33

and concentrated polymer solutions. At equilibrium, the incorporation of additional mechanisms, such34

as contour length fluctuations and constraint release (CR) [19,21,22], lead to an accurate description of35

linear viscoelastic properties [21–24]; under flow, however, and despite numerous modifications such36
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as the consideration of chain stretch [25], finite extensibility [26,27], and convective constraint release37

[27–30]), it still lacks consistency with available rheological data.38

Another formalism that aims to address the rheological response of high molecular weight39

polymeric melts and concentrated solutions is the model developed by Curtiss & Bird [31,32] based on40

the phase-space formulation within the kinetic theory of undiluted polymers [33]. It invokes neither41

a mean field tube nor slip-links. It is also known as the tumbling-snake model [34], as it allows for42

both orientational and curvilinear diffusion of polymer segments. The model entails, as the original43

tube/reptation model, the solution of a Fokker-Planck (FP) for the single-link distribution function,44

f (σ, u, t), which describes the probability that at time t a chain segment at contour position σ ∈ [0, 1]45

along the chain is oriented in direction u, with u and σ independent dynamical variables, and u · u = 1.46

Segmental motion is not considered as a strict one-dimensional diffusion process (“reptation”) along47

the polymer’s backbone but the chain is also allowed to explore the surrounding space by moving48

perpendicular to its backbone (that may be identified as CR events) with the parameter ε′ controlling its49

significance. The strictly one-dimensional diffusion process of Doi & Edwards is recovered as a special50

case, when ε′ = 0. The extra stress tensor, see Eq. (1) below, contains a term due to the anisotropy of51

the friction tensor ζ = ζeq [δ− (1− ε)uu] involving a link tension coefficient ε ∈ [0, 1]; if ε = 0 there is52

no friction against motion in the direction u, whereas for ε = 1 the friction tensor is isotropic as for53

an individual sphere. Despite the qualitatively different assumptions made by the two formalisms,54

the original tube/reptation model is obtained as a special case of the more general FP equation of the55

tumbling-snake model [31–33,35] when ε′ = ε = 0. Only the analytically tractable model with ε′ = 056

had been solved rigorously [31–33,36,37].57

We have shown recently that the tumbling-snake model for ε′ > 0 can be analyzed conveniently58

via Brownian Dynamics simulations and applied this approach to both steady-state [34,35,38] and59

time-dependent shear flow [34,38], as well as to steady-state and time-dependent uniaxial elongation60

[39]. These works provided evidence that the tumbling-snake model is able to capture the damping61

behavior of the transient viscosity in start-up shear experiments at high rates [40–42], while preserving62

the absence of such undershoots in both normal stress coefficients, in line with experimental data63

[34,38]. The appearance of the undershoot has been associated with the shear-induced rotational64

motion of chains [38,42], further supported by non-equilibrium atomistic simulations [43–45]. As such,65

similar undershoots are not seen in elongational flows [39].66

The qualitatively relevant and only modification to the original tumbling-snake model was the67

consideration of a variable link tension coefficient, that vanishes in the absence of flow, and is given68

by ε = ε0S2
2 [34,38], where S2 denotes the 2nd rank uniaxial nematic order parameter of polymer69

segments [46]. This adjustment of the Curtiss & Bird theory has eliminated certain disadvantages70

of their original model (exhibiting a constant link tension coefficient). Due to the refinement, the71

transient shear and elongational viscosities approach constant values at small times, and spurious72

time oscillations of the transient second normal stress in startup of shear flow are absent. Is has been73

demonstrated that the tumbling-snake model in its present form is able to qualitatively capture recent74

experimental evidence according to which the extensional viscosity of polymer solutions is seen to75

exhibit thinning below the inverse Rouse time and thickening above, whereas the extensional viscosity76

of polymer melts is monotonically decreasing for all strain rates [3–5], by having the strength ε0 of the77

link tension coefficient increasing as the polymer concentration decreases [39].78

In this work, we discuss the solution of the tumbling-snake for the more general case of biaxial79

elongational flows, with a focus on planar elongational flow. The structure of this manuscript is as80

follows: In Section 2 we revisit the stress tensor of the tumbling-snake model, parameterize the velocity81

gradient tensor and define the viscosities. Section 3 summarizes the Brownian dynamics method82

to solve the model. In Section 4, we provide the series expansion of the two biaxial elongational83

viscosities in the case of steady-state general shearfree flow for small dimensionless elongation rates84

for comparison with limiting results presented in Section 6. Similarly, in Section 5 we derive analytic85

expressions for the linear viscoelastic viscosities in the case of start-up flow, again for biaxial flows. In86
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both sections, we discuss the cases of constant and variable link tension coefficient separately. This87

includes special cases such as the rigid dumbbell. In Section 6 we actually solve the model numerically88

using Brownian dynamics simulation for planar elongation, validate the analytic expressions, and89

further compare the predictions of the first planar viscosity with the uniaxial elongation viscosity. We90

conclude with Section 7 where we discuss the significance of this work.91

2. Stress tensor92

In the case of a monodisperse polymer with “polymerization degree” N related to the number93

of entanglements per chain, Z, introduced by Doi and Edwards, via N = 3Z, and polymer number94

density n, the time-dependent (extra or polymeric) stress tensor τ of the tumbling-snake model95

subjected to a homogeneous flow field characterized by the transposed velocity gradient tensor κ is96

given by [33,35]97

τ(t)
G

= −(1− ε′)

(
〈uu〉(1)(t)− 1

3
I
)
− 3ε′0

(
〈uu〉(2)(t)− 1

18
I
)
− ε B(t), (1)

with modulus G = nkBT(N − 1), temperature T, Boltzmann’s constant kB, unit tensor I, coefficients ε′98

and ε′0 interrelated via ε′0 ≡ ε′(N− 1)2, and a link tension coefficient ε. The latter comes in two versions,99

the original one proposed by Curtiss & Bird, where ε is a constant, and the variable one proposed100

by us within the tumbling-snake model, ε = ε0S2
2 with constant ε0 and uniaxial order parameter S2101

determined by 〈uu〉(1)(t). Note that we are adopting throughout the nomenclature of Bird et al. [33],102

while the τ in (1) is a pressure tensor, and thus the negative stress tensor, in the majority of scientific103

literature. This stress tensor (1) involves the following orientational averages calculated with the104

solution of the corresponding FP equation [34] for the single-link orientational distribution function105

f (σ, u, t)106

〈uu〉(1)(t) =
∫ 1

0
dσ
∫

du f (σ, u, t)uu

〈uu〉(2)(t) =
∫ 1

0
σ(1− σ)dσ

∫
du f (σ, u, t)uu, (2)

B(t) = λκ :
∫ 1

0
σ(1− σ)dσ

∫
du f (σ, u, t)uuuu,

where
∫

du denotes an integral over the unit sphere, λ a time constant proportional to ζeq/kBT, squared107

bond length a, and N3+β, where β is a chain constraint exponent, and κ : uu = (κ · u) · u stands108

for a two-fold contraction. The reptation or disengagement time is τd ≡ λ/π2. In addition to the109

highlighted dependency on time t the stress tensor as well as the averages depend also on the flow110

field κ via f . For the case of a general shearfree elongational, homogeneous incompressible flow at111

rate ε̇ the transposed velocity gradient tensor κ is traceless and diagonal and thus of the form112

κ = ε̇

 − 1
2 (1 + b) 0 0

0 − 1
2 (1− b) 0

0 0 1

 , b ≥ 0 (3)

where it is sufficient to consider semipositive b for symmetry reasons. When b = 0, we retrieve
homogeneous simple uniaxial elongation for ε̇ > 0 and biaxial stretching for ε̇ < 0, while b = 1
corresponds to planar elongation [33], b = 3 to equibiaxial extension, and b = 2 to so-called elliptical
extension (Fig. 1). Arbitrary b can be realized experimentally via a multiaxial elongational rheometer
[6]. While most results and methods to be presented below are valid for arbitrary b, we will focus
on planar elongation (b = 1) in Section 6. The ratio of principle strain rates κ22/κ33, denoted by
m by Demarmels and Meissner [6], is related to b by m = (b − 1)/2, and the projection of the
motion of a material particle in the xz– or yz–plane is given by x = Cz1−m and y = Czm with
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Figure 1. Prominent, qualitatively different examples for isochoric deformations r′ (red) of a unit cell
r (blue) in shearfree flows: (i) uniaxial extension (b = 0), (ii) planar extension (b = 1), (iii) elliptical
extension (b = 2), and (iv) equibiaxial extension (b = 3). For each scenario the situation is depicted both
in (a) 3D and (b) projected to the x–y–plane. Coordinates are related via r′ = E · r by the deformation
gradient tensor E = exp(κt), c.f. Eq. (3), here shown for ε̇t = 0.5.

constants C, while y(t) = x(t)ebt in the xy–plane. Except for b = 0 (κxx = κyy) and b = 3 (κyy = κzz)
there are two normal stress coefficients and corresponding viscosities that can be measured. The
first, η1(ε̇) = −(τzz − τxx)/ε̇, and the second, η2(ε̇) = −(τyy − τxx)/ε̇, rate-dependent stationary
elongational viscosity [33]. The corresponding transient viscosities we denote by η+

1 (ε̇, t) and η+
2 (ε̇, t).

The transient viscosities in the linear viscoelastic regime do not depend on rate, are thus denoted by
η+

1,2(t) = limε̇→0 η+
1,2(ε̇, t). Because the elongation rate enters the stress tensor in the combination λε̇,

we introduce the dimensionless Weissenberg number

Wi = ε̇λ. (4)

3. Brownian dynamics simulation113

The Brownian dynamics algorithm that we employ in this work is identical, apart from the114

different choice of flow field, κ, with the one we had presented previously. The Fokker-Planck equation115

of the tumbling-snake model subject to isotropic boundary conditions at chain ends at all times,116

∀t f (0, u, t) = f (1, u, t) = 1/4π, can be cast in the form of two coupled Itô stochastic differential117

equations for variables Ut (segment unit vector at time t) and σt ∈ [0, 1] (relative contour position at118

time t) as follows119

dUt = (I−UtUt)·

κ·Utdt +

√
2ε′0
λ

dWt

− 2ε′0
λ

Utdt,

dσt =

√
2(1− ε′)

λ
dW ′t , (5)

where dWt is a three-dimensional Wiener process and dW ′t is another one-dimensional Wiener process,120

independent from the former (Fig. 2). The transverse projector operator I − UtUt guaranties that121

the stochastic dynamics preserves the Ut property of being a unit vector. Note that the link tension122

coefficient ε affects the stress tensor, but not the dynamics of the orientational distribution function.123
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0

Figure 2. Tumbling-snake model. Strength of the orientational and one-dimensional diffusion of
segment vector Ut at relative position σt along the polymer contour determined by ε′ ∈ [0, 1]. The
link-tension coefficient ε affects the stress tensor.

From Eq. (5) it is transparent that 1− ε′ is related to a one-dimensional “reptation” diffusion coefficient,124

and ε′0 = ε′(N − 1)2 related to the orientational diffusion coefficient of polymer segments. The factor125

(N − 1)2 appears because σt is a relative rather than absolute contour position. For implementation126

details see [34,35].127

The moments required to evaluate the stress tensor given by Eq. (1), such as 〈uu〉(1)(t), i.e.,128

the left hand sides of Eq. (2), are obtained during Brownian dynamics via plain averaging over129

an ensemble of stochastic trajectories at times t. To be specific, 〈uu〉(1)(t) = 〈UtUt〉 and B(t) =130

λκ : 〈σt(1− σt)UtUtUtUt〉 involving the evaluation of a 2nd and 4th rank tensor, whose number of131

nonvanishing and independent components depends on κ (2 and 6 components, respectively, for the132

case of biaxial elongation).133

4. Small elongation rate expansion of the stationary viscosities for biaxial elongational flows134

Results for the stationary viscosities at small rates can be derived analytically. They are particularly135

useful because this limiting case can strictly not be accessed during Brownian dynamics, because the136

error bars increase with decreasing rate. They are furthermore useful to, e.g., test ratios between zero137

rate viscosities or to compare asymptotic behaviors for different types of flow. The approach to derive138

analytical results is based on a spherical harmonics expansion of the single-link distribution function139

around equilibrium.140

4.1. Stationary regime, constant ε141

To begin with, we assume a constant ε and we are interested in the rate-dependent steady-state142

values of the extensional viscosities. The methodology employed is described in detail in the143

Supplementary Section A and the final expression for the expansion, up to 2nd order in the144

dimensionless Weissenberg number Wi = ε̇λ, is given in Eq. (A6). Upon inserting this expansion into145

the stress tensor Eq. (1) we obtain both elongational viscosities up to second order in Wi in terms of the146

biaxiality parameter b147

η1(ε̇)

Gλ
=

3 + b
60

(
1+

2
3

ε

)
+

4
35

(
1− 2b

3
− b2

3

)(
3
4
+ ε

)
∆1Wi

+
12

245

(
1+

b2

3

) [
ε (∆2 + 6∆3)

(
1+

b
3

)
+

3
4

(
1+

b2

3

)
(∆2 − 8∆3)

]
Wi2,

η2(ε̇)

Gλ
=

b
30

(
1+

2
3

ε

)
− 16b

105

(
3
4
+ ε

)
∆1Wi

+
8b

245

(
1+

b2

3

) [(
3
4
+ ε

)
∆2 + 6(ε− 1)∆3

]
Wi2, (6)
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or alternatively, if we normalize with the known zero-rate shear value, η0 = 1
60
(
1+ 2

3 ε
)

Gλ [33,35], the148

result can also be written as149

η1(ε̇)

η0
= 3 + b +

240
35
(
1+ 2

3 ε
) (1− 2b

3
− b2

3

)(
3
4
+ ε

)
∆1Wi

+
720

245
(
1+ 2

3 ε
) (1+

b2

3

) [
ε (∆2 + 6∆3)

(
1+

b
3

)
+

3
4

(
1+

b2

3

)
(∆2 − 8∆3)

]
Wi2,

η2(ε̇)

η0
= 2b− 960b

105
(
1+ 2

3 ε
) (3

4
+ ε

)
∆1Wi

+
480b

245
(
1+ 2

3 ε
) (1+

b2

3

) [(
3
4
+ ε

)
∆2 + 6(ε− 1)∆3

]
Wi2. (7)

This way we see that the first and second zero-rate elongation viscosities limWi→0 η1,2(ε̇) are 3 + b
and 2b times, respectively, the zero-rate shear viscosity, η0. The following abbreviations have been
introduced for numerical prefactors appearing in (6) and (7)

∆j ≡ 24
∞

∑
ν=1,odd

1
(πν)4k j(ν)

, (j = 1, 2, 3) (8)

with the kernels k1(ν) = K2, k2(ν) = K2
2, and k3(ν) = K2K4 that depend on both ε′ and ε′0 via

Kj(ν) ≡ (1− ε′)(πν)2 + j(j + 1)ε′0. (j = 1, 2, 3) (9)

Evaluating the ∆j’s we can obtain more explicit predictions for two limiting cases (i) and (ii): (i)150

When ε′ = 0, implying Kj(ν) = (πν)2, the ∆j are readily evaluated, ∆1 = 1/40 and ∆2 = ∆3 = 17/6720,151

and Eq. (6) reduces to152

η1(ε̇)

Gλ
=

3 + b
60

(
1+

2
3

ε

)
+

1
350

(
1− 2b

3
− b2

3

)(
3
4
+ ε

)
Wi

+
17

19600

(
1+

b2

3

) [
ε

(
1+

b
3

)
− 3

4

(
1+

b2

3

)]
Wi2,

η2(ε̇)

Gλ
=

b
30

(
1+

2
3

ε

)
− 2b

525

(
3
4
+ ε

)
Wi

+
17b

29400

(
1+

b2

3

)(
ε− 3

4

)
Wi2, (ε′ = 0) (10)

up to order Wi3. These expressions (10) further include the Doi & Edwards results for ε = 0. (ii) In153

the second limit, ε′ = 1 with N = 2, thus ε′0 = ε′, the chain reduces to a rigid dumbbell. For this154

case Kj(ν) = j(j + 1) and all kernels k j are independent on ν, leading to ∆1 = 1/24, ∆2 = 1/144, and155

∆3 = 1/480. We thus obtain from Eq. (6)156

η1(ε̇)

Grdλrd
=

3(3 + b)
5

(
1 +

2
3

ε

)
+

1
35

(
1− 2b

3
− b2

3

)(
3
4
+ ε

)
Wird

+
1

1050

(
1+

b
3

) [
ε

(
1+

b
3

)
− 3

8

(
1+

b2

3

)]
Wi2rd,

η2(ε̇)

Grdλrd
=

6b
5

(
1 +

2
3

ε

)
− 4b

105

(
3
4
+ ε

)
Wird

+
2b

2275

(
1+

b2

3

)(
ε− 3

8

)
Wi2rd, (ε′ = ε′0 = 1) (11)
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with Wird ≡ ε̇λrd, G = 6Grd and λ = 6λrd. To the best of our knowledge, this expansion for the rigid157

rod subjected to biaxial flows is provided here for the first time. Our result, Eq. (11), also accounts for158

hydrodynamic interaction by identifying ε = λ
(2)
2 /λ

(1)
2 [35].159

4.2. Stationary regime, variable ε160

If, instead of a constant link tension coefficient, we consider the variable link tension coefficient of
the tumbling snake model given by ε = ε0S2

2 where S2
2 = 3

2 tr(〈uu〉ani · 〈uu〉ani) is the uniaxial order
parameter of the 2nd moment (here 〈uu〉ani = 〈uu〉(1) − 1

3 I) [34,38], then, up to third order in Wi we
obtain

ε(ε̇) = ε0
4(3 + b2)

75
(Γ1Wi)2 , (12)

where Γ1 is a numerical coefficient

Γ1 = 12
∞

∑
ν=1,odd

1
(πν)2K2

, (13)

that appeared in the Supplementary Eq. (A1b) of Ref. [38]. The corresponding steady-state viscosities161

are given, up to O(Wi3), by162

η1(ε̇)

Gλ
=

3 + b
60

+
4
35

(
1− 2b

3
− b2

3

)
Wi +

9(∆2 − 8∆3)

245

(
1+

b2

3

)2

Wi2 +
2(3 + b)(3 + b2)ε0

3375
(Γ1Wi)2 ,

η2(ε̇)

Gλ
=

b
30
− 12b

105
∆1Wi +

6b(∆2 − 8∆3)

245

(
1+

b2

3

)
Wi2 +

4b(3 + b2)ε0

3375
(Γ1Wi)2 . (14)

We refrain from writing down more explicit expressions for the special cases of (i) ε′ = 0, using the163

∆j’s mentioned above for this case, as well as Γ1 = 1/8, and (ii) ε′ = ε′0 = 1, using Γ1 = 1/4.164

5. Transient elongational viscosities in the linear viscoelastic regime165

To study the transient viscosities after startup of flow we consider a time-dependent spherical166

harmonics expansion of the single-link distribution function around equilibrium, up to first order in167

Wi, to be able to obtain the linear viscoelastic analytical predictions; the procedure is described in the168

Supplementary Section A; the final expression for the expansion of the time-dependent single-link169

distribution function is given by Supplementary Eq. (A4).170

5.1. Transient regime, constant ε171

Inserting this expansion into the stress tensor expression (1), assuming a constant ε, we obtain172

analytical expressions for the time dependent viscosities, η+
1 (t), and η+

2 (t), which turn out to be 3 + b173

and 2b times the time-dependent shear viscosity, that was first presented in [34],174

η+
1 (t)
Gλ

= (3 + b)
[

1
60

(
1+

2
3

ε

)
− 1

15
∆0(t)

]
,

η+
2 (t)
Gλ

= 2b
[

1
60

(
1+

2
3

ε

)
− 1

15
∆0(t)

]
, (15)

where the following abbreviation has been introduced,175

∆0(t) = 24
∞

∑
ν=1,odd

exp(−K2(ν)t/λ)

(πν)4 , (16)

with K2(ν) from Eq. (9). An important property of ∆0(t) is its initial value, ∆0(0) = 1/4. It decreases176

monotonically with time, initially with a slope of −24[(2− ε′) + ε′0]/λ, and ultimately vanishes as177
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t→ ∞. Taking the rigid dumbbell limit, ε′ = 1 and N = 2, the ∆0(t) can be evaluated analytically and178

Eq. (15) becomes179

η+
1 (t)

Grdλrd
=

3(3 + b)
5

[
1+

2
3

ε− exp
(
− t

λrd

)]
,

η+
2 (t)

Grdλrd
=

6b
5

[
1+

2
3

ε− exp
(
− t

λrd

)]
. (ε′ = ε′0 = 1) (17)

To the best of our knowledge, this is the first time this result for a rigid dumbbell is presented.180

5.2. Transient regime, variable ε181

If, instead of a constant link tension coefficient, we consider a variable link tension coefficient
given as ε = ε0S2

2, the least order expansion with respect to Wi gives

ε(ε̇, t) = ε0
4(3 + b2)

75
Wi2 [Γ1 − Γ1(t)]

2 , (18)

where the dimensionless Γ1(t) = 12 ∑∞
ν=1,odd exp(−K2t/λ)/(πν)2K2 with Γ1(0) = Γ1, c.f. Eq. (13), is

taken from the Supplementary Eq. (A3b) of Ref. [38]. Putting this together, ε at small rates increases
quadratically with rate and time. The precise expression is

ε(ε̇, t) = ε0
3(3 + b2)

25
(ε̇t)2. (19)

As the variable link tension coefficient thus vanishes in the linear viscoelastic regime, the full time182

dependent planar elongation viscosities are given by Eq. (15) evaluated at ε = 0, i.e.,183

η+
1 (t)
Gλ

= (3 + b)
(

1
60
− 1

15
∆0(t)

)
,

η+
2 (t)
Gλ

= 2b
(

1
60
− 1

15
∆0(t)

)
. (20)

For times t� λ, this expression reduces, with ∆0(t) given by Eq. (16), to184

η+
1 (t)
Gλ

=
3 + b

10
[
2(1− ε′) + ε′0

] t
λ

,

η+
2 (t)
Gλ

=
b
5
[
2(1− ε′) + ε′0

] t
λ

. (t� λ) (21)

where use had been made of the already mentioned initial slope of ∆0(t).185

6. Brownian dynamics results for planar elongational flow186

Having derived analytical expressions for the various regimes, we now turn to the presentation
of full rate- and time-dependent exact numerical results for the tumbling-snake model for the special
case of planar elongational flow (b = 1).

κ = ε̇

 −1 0 0
0 0 0
0 0 1

 (22)

where polymers tend to align in z–direction to the expense of a compression in x–direction, while187

y is the neutral direction. All figures presented in this manuscript are generated using the variable188

link tension coefficient; predictions for the case of a constant ε are available in the Supplementary189
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Figure 3. Predictions for the variable link tension coefficient, ε/ε0 = S2
2 in planar elongational flow

as a function of dimensionless elongation rate Wi for N = 100 (Z ≈ 33 entanglements) and various
values of ε′0. The thick lines give the analytical predictions of Eq. (23) when ε′0 = 0 (dark blue) and 0.9
(dark yellow). The dependency of Γ1 on ε′0 determines their offsets and is relatively weak for any N.
For N > 2 the coefficient Γ1 decreases monotonically with increasing ε′, starting from Γ1 = 0.125 at
ε′ = 0. For any N ≥ 20 one has Γ1 ≈ 0.081 at ε′ = 0.9 (and Γ1 ≈ 0.078 at ε′ = 1).

Sec. B. All types of biaxial flows discussed above can be studied using an identical procedure. Mixed190

flows pose no additional problem and amount to consider a more general κ or even a time-dependent191

κ(t) in Eq. (3) of the Brownian dynamics algorithm (5). The analytical results will be used to test the192

simulation results, and to extend their validity to “infinitely” small rates and times, where simulation193

results tend to become more difficult to sample.194

6.1. Steady-state planar elongation195

The steady-state value of the variable link tension coefficient ε = ε0S2
2 as a function of

dimensionless elongation rate Wi for polymerization degree N = 100 (Z ≈ 33 entanglements) and
various values of ε′0 = ε′(N − 1)2 is shown in Fig. 3. At small elongation rates, as expected from Eq.
(12) evaluated at b = 1,

ε(ε̇) = ε0
16
75

(Γ1Wi)2 , (b = 1) (23)

ε increases quadratically with the elongation rate, whereas at large Wi, and irrespective of the value of196

ε′0, then ε→ ε0. This is also expected since for a fully aligned sample the order parameter approaches197

unity, S2 → 1. Thus, the model predictions for the case of a variable ε become identical to the ones for198

a constant ε at large rates, Wi� 1.199

The reduced steady-state first viscosity, η1(ε̇), as a function of the dimensionless elongation rate200

is presented in Fig. 4. All solid lines in this figure are determined by Eq. (14) evaluated at b = 1, i.e.,201

η1(ε̇)

Gλ
=

1
15

+
16
245

(∆2 − 8∆3)Wi2 +
32ε0

3375
(Γ1Wi)2 ,

η2(ε̇)

Gλ
=

1
30
− 12

105
∆1Wi +

8
245

(∆2 − 8∆3)Wi2 +
16ε0

3375
(Γ1Wi)2 . (b = 1) (24)

with numerical prefactors ∆′js given by Eq. (8). The corresponding predictions of the simplified202

tumbling-snake model (ε′ = 0) read,203

η1(ε̇)

Gλ
=

1
15
− 17

14700
Wi2 +

ε0

6750
Wi2

η2(ε̇)

Gλ
=

1
30
− 1

350
Wi− 17

29400
Wi2 +

ε0

13500
Wi2, (b = 1, ε′ = 0) (25)
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Figure 4. Predictions for η1(ε̇)/Gλ for the tumbling snake model with variable ε as a function of
dimensionless elongation rate Wi for N = 100 and various values of the parameters ε0 and ε′0. (a)
ε0 = 0, various ε′0, (b) ε0 = 0.1, various ε′0, (c,d) ε′0 = 0.1, various ε0. The solid lines mark the predictions
of the small rate expansion, Eq. (24), or Eq. (25) for the case of ε′0 = 0. At large rates the viscosity
approaches the value given by Eq. (26).
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where we have used the numerical values for ∆2 and ∆3 quoted after Eq. (6), and Γ1 = 1/8 for ε′ = 0.204

Panel Fig. 4a shows the variation of η1(ε̇) upon changing ε′0 (or ε′) while keeping N = 100 and205

ε = 0 fixed. The prediction at small elongation rates is independent of the value of ε′0 and approaches206

the value 4η0. However, as Wi increases the first planar viscosity shear-thins after about Wi ≈ 1.207

This is in disaccord with the predictions for the uniaxial elongation viscosity of the tumbling-snake208

model, ηE, which seems to be passing from a maximum when ε′0 > 0 (see inset of Fig. 2a of Ref. [39]).209

However both share the same power-law behavior at large elongation rates which is always equal to -1210

irrespective of the value of ε′0, as for the Doi & Edwards model [18].211

In Fig. 4b we show the same variation as in Fig. 4a but now with ε0 = 0.1. Again, η1(ε̇) follows
Eq. (14) at small elongation rates and, irrespective of the value of ε′0, reaches monotonically the same
value at large elongation rates. This value is simply equal to

η1(∞)

Gλ
≡ lim

Wi→∞

η1(ε̇)

Gλ
=

ε0

6
⇒ η1(∞)

4η0
=

5ε0

2
(b < 3) (26)

where η0 = Gλ/60 is the zero rate shear viscosity for the case of variable ε, that vanishes at vanishing212

rate. The reduced first planar viscosity thus drops (or rises) from a value of 1/15 at small rates to ε0/6213

at infinitely large ones. For the scenario ε0 = 0.1 shown in Fig. 4b, the reduced first planar viscosity214

reduces to η1(∞)/Gλ =1/60. Equation (26) can be readily derived by noting that as Wi → ∞ then215

limWi→∞ ε = ε0 as well as216

lim
Wi→∞

〈u2
z − u2

x〉(1) = 1

lim
Wi→∞

〈u2
z − u2

x〉(2) = 1/6, (b < 3) (27)

lim
Wi→∞

Bzz − Bxx = Wi/6.

These expressions hold as long as κzz is the largest diagonal component of κ, which is the case for217

any b < 3. Using similar arguments, η2(∞) = 0 for b < 3. Equations (27) are analogous to the case of218

uniaxial elongation [39], apply independently of the value of ε′0, and originate from the dominance of219

the third term in the stress tensor expression, Eq. (1), at large elongation rates leading to a leveling-off220

of the first viscosity at a value given by Eq. (26). By further increasing the value of the parameter ε0, for221

given ε′0 and N, the small elongation rate predictions are unaffected (Figs. 4c and d). At large Wi the222

curves always reach the value of the reduced η1(∞), Eq. (26). When the value of ε0 exceeds 2/5 then223

η1(∞) > 4η0 (Fig. 4d). The corresponding predictions when the link tension coefficient is considered224

constant, but non-vanishing, are given in Supplementary Fig. (S1).225

From a visual comparison between planar η1(ε̇) and uniaxial ηE(ε̇) (see Fig. 2 of Ref. [39]) we note226

that their predictions are similar. To better quantify the similarities between η1 and ηE we compare the227

two in Fig. 5 in a way so that they both have the same zero-rate prediction. We show the comparison228

upon changing ε′0 whilst keeping N = 100 and ε = 0 (Fig. 5a) or ε0 = 0.1 (Fig. 5b) fixed. We find that229

ηE(ε̇)/3Gλ is slightly exceeding η1(ε̇)/4Gλ in the intermediate flow regime, starting at about Wi ≈ 3.230

Further, η1(ε̇)/4Gλ for ε′0 = 0.5 is basically coinciding with ηE(ε̇)/3Gλ for ε′0 = 0. For the case ε0 > 0231

in Fig. 5b we note that at large elongation rates ηE(∞)/3Gλ reaches a constant value larger than the232

corresponding one for planar elongation, η1(∞)/4Gλ, which stems from the way the two viscosities233

were made dimensionless; if both were made dimensionless with Gλ the corresponding value would234

be the same for both viscosities.235

The reduced steady-state second viscosity, η2(ε̇), as a function of the dimensionless elongation236

rate is presented in Fig. 6. As for η1(ε̇), the prediction at small elongation rates is independent of237

the values of ε′0 and ε0 in accord with Eq. (14), and approaches the value 2η0. Also, like η1(ε̇), as Wi238

increases the second viscosity shear-thins after about Wi ≈ 1. It can be noted that the predictions when239

ε0 is kept fixed (panels a and b) are almost the same irrespective of the value of ε′0 and the power-law240
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Figure 5. Comparison of the predictions for the first planar η1(ε̇)/4Gλ (black, blue, denoted as PEF in
the legends) and uniaxial ηE(ε̇)/3Gλ (red, pink, UEF) reduced viscosities as a function of dimensionless
elongation rate Wi for N = 100 and two values of the parameter ε′0. (a) ε0 = 0, (b) ε0 = 0.1.

Figure 6. Predictions for η2(ε̇)/Gλ, analogous to Fig. 3, as a function of dimensionless elongation rate
Wi for N = 100 and various values of the parameters ε0 and ε′0. (a) ε0 = 0, various ε′0, (b) ε0 = 0.1,
various ε′0, (c,d) ε′0 = 0.1, various ε0. The solid lines mark the predictions of the small rate expansion,
Eq. (24), or Eq. (25) for the case of ε′0 = 0.
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Figure 7. Predictions for the link tension coefficient, ε(t)/ε0 as a function of dimensionless time for
N = 100 and various values of the parameter ε′0 and dimensionless elongation rate Wi. The thick
straight lines give the prediction of 12

25 (ε̇t)2 according to Eq. (19) with b = 1.

behavior at large elongation rates when ε = 0 is equal to −3/2 as for the Doi & Edwards model. In241

panels Fig. 6c–d we note that as the ε0 increases under fixed ε′0, η2(ε̇) increases after about Wi ≈ 20.242

6.2. Transient planar elongation243

Next we inspect the transient link tension coefficient, ε/ε0, as a function of dimensionless time244

t/λ for N = 100 and various values of the parameter ε′0 and dimensionless elongation rates Wi (Fig.245

7). At early times, this coefficient follows 12
25 (ε̇t)2 according to Eq. (19) with b = 1, irrespective of Wi246

and ε′0, whereas at larger times it monotonically approaches the steady-state values of the squared247

order parameter S2
2. A similar behavior was also noted for the transient behavior of the variable link248

tension coefficient in uniaxial elongation [39].249

In Fig. 8 we show the transient first viscosity η+
1 (ε̇, t) as a function of the dimensionless time for250

various dimensionless elongation rates along with the linear viscoelastic prediction, that follows from251

Eq. (20) with b = 1,252

η+
1 (t)
Gλ

= 4
(

1
60
− 1

15
∆0(t)

)
=

2
5
[
2(1− ε′) + ε′0

] t
λ
+ O

(
t
λ

)2
,

η+
2 (t)
Gλ

= 2
(

1
60
− 1

15
∆0(t)

)
=

1
5
[
2(1− ε′) + ε′0

] t
λ
+ O

(
t
λ

)2
. (b = 1) (28)

The first term on the right hand side provides the full dependency on time, the second the initial253

slope. For all elongation rates we indeed notice from our Brownian dynamics results that as t→ 0 the254

transient first viscosity η+
1 (ε̇, t)/Gλ increases with increasing ε′0, as suggested by the slope provided255

by Eq. (28). As was the case for the shear viscosity [34,38] and the uniaxial elongation viscosity [39],256

by using the variable link tension coefficient ε = ε0S2
2 we have amended the problematic predictions257

of the original tumbling-snake model, in which a constant link tension coefficient is considered,258

according to which both limiting η+
1 (t)/Gλ and η+

2 (t)/Gλ approach a constant value, ε0/15 and259

ε0/30, respectively, irrespective of the value of the parameter ε′0 and thus the mode, reptation versus260

orientational diffusion. Additional Figs. S3 and S4 are provided in Supplementary Section B. By further261

increasing the elongation rate (Wi = 100) the transient first viscosity goes over the linear viscoelastic262

prediction only when ε0 > 0, and reaches the steady-state value without reaching an overshoot,263

independently of the value of the parameters ε′0 > 0 and ε0. We observed a similar trend in the case264

of uniaxial η+
E (ε̇, t) [39]. Similarly for larger elongation rate (Wi = 1000) but now the curves depart265

much sooner and more intensely from the linear viscoelastic prediction, just like η+
E (ε̇, t) does depart266
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Figure 8. Predictions for η+
1 (ε̇, t)/Gλ for the model with variable ε as a function of time for N = 100

and various values of the parameter ε0 and the dimensionless elongation rate Wi for (a) ε′0 = 0, (b)
ε′0 = 0.1, (c) ε′0 = 0.5, and (d) ε′0 = 0.9. The solid black lines represent the linear viscoelastic results, Eq.
(28), their initial slopes are given by the right hand side of this equation with ε′ = ε′0/(N − 1)2. For the
model with constant ε the transient viscosities do not vanish in the limit t/λ→ 0 (see Supplementary
Sec. B).
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Figure 9. Comparison between the predictions for η+
1 (ε̇, t)/4Gλ (denoted as PEF in the legends) and

η+
E (ε̇, t)/3Gλ (UEF) as a function of dimensionless elongation rate Wi for N = 100 for the model with

variable link-tension coefficient ε. (a) ε′0 = 0, (b) ε′0 = 0.5.

from η+
E (t). The non-appearance of an undershoot in shearfree flows is attributed to the absence of a267

rotational contribution to κ, and because the orientational diffusion of segments does therefore not268

lead to any deterministic rotation. On the other hand, under shear the tumbling behavior of polymer269

chains is not only due to the rotational component of κ, but triggered by the orientational diffusion270

term, present for ε′0 > 0. It produces undershoots at large shear rates [34,38]. Overall, the predictions271

for the transient first viscosity exhibit the same time-dependency with the uniaxial elongation viscosity272

except at large times as they approach their steady-state values (Fig. 9).273

Finally, we investigate the transient second viscosity η+
2 (ε̇, t) as a function of the dimensionless274

time for various dimensionless elongation rates along with the linear viscoelastic predictions given by275

Eq. (28) in Fig. 10. Like η+
1 (ε̇, t), for all elongation rates and as t/λ→ 0 the transient second viscosity276

η+
2 (ε̇, t) increases with increasing ε′0, following Eq. (28). Also, at small times and irrespective of the277

elongation rate and the values of the parameters ε′0 and ε0, η+
2 (ε̇, t) follows the linear viscoelastic278

prediction, Eq. (28). It implies that the ratio between the two viscosities is two, initially. The most279

important distinctions between the transient behavior of η+
1 (ε̇, t) and η+

2 (ε̇, t) are the appearance of an280

overshoot, independently of the values of the parameters ε′0 and ε0, and the fact that for ε0 > 0 and281

any ε′0 the curves are only slightly above the linear viscoelastic curve at small times. As for η+
1 (ε̇, t), an282

undershoot is not predicted, as expected.283

Finally, it should be noted that, as was the case for shear flow and UE, model predictions for284

constant values of the parameters ε′0 and ε0 but with a different number of Kuhn segments N are found285

to be identical, for both steady-state and transient quantities, for large values of N (N ≥ 10), since the286

two viscosities were scaled with the modulus G and the relaxation time λ, both of which do depend287

on N; thus, this comparison is not shown.288

7. Conclusions289

In this work, we discussed the features of the tumbling-snake model for concentrated solutions290

and entangled polymer melts subjected to both steady-state and transient biaxial elongation, focussing291

on planar elongation as an application of the more general framework. The model employs a variable292

link tension coefficient, given by ε = ε0S2
2 [34,38], which, as for shear flow and uniaxial elongation,293

has amended several shortcomings of a constant link tension coefficient originally suggested by Bird294

et al. [33,37]. In particular, the two planar transient elongation viscosities η+
1,2(ε̇, t) do not approach295

a finite value as t → 0 upon using the variable link tension coefficient. We have shown that the296

predictions of the first planar viscosity η1 and the uniaxial elongation viscosity are similar with respect297

to their transient and stationary behaviors, in accord with available experimental data [7]. On the other298
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Figure 10. Predictions for η+
2 (ε̇, t)/Gλ, analogously to Fig. 7 for η+

1 (ε̇, t)/Gλ, for the model with
variable ε as a function of time for N = 100 and various values of the parameter ε0 and the
dimensionless elongation rate Wi for (a) ε′0 = 0, (b) ε′0 = 0.1, (c) ε′0 = 0.5, and (d) ε′0 = 0.9. The
solid black lines represent the linear viscoelastic results, Eq. (28). For the model with constant ε the
transient viscosities do not vanish in the limit t/λ→ 0 (see Supplementary Sec. B).
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hand, the steady-state second planar viscosity η2 always thins irrespective of the value of the ultimate299

strength of the link-tension coefficient, ε0. Overall the second viscosity seems to share many features300

with shear viscosity with respect to rate and time, except that η2, unlike the shear viscosity [34,38],301

does not (and should not) exhibit an undershoot in the course of time after startup of flow.302

As a concluding remark, the tumbling-snake model with variable link-tension coefficient has303

been shown to provide a very adequate description of the available rheological measurements of304

entangled polymer melts and concentrated polymer solutions when subjected to shear [34,35,38],305

uniaxial elongation [39], and planar elongation. The model is tractable analytically at small and large306

rates, that are unaccessible or difficult to access by numerical inspection, and for all intermediate rates307

the model is solved conveniently by simple Brownian dynamics. Introducing further refinements,308

such as contour length fluctuations (see e.g. [23,47,48] and references therein), convective constraint309

release [27–29], flow-induced alignment of chain ends [46,49], and chain stretch [25,50], the latter being310

significant in strong elongation flows, could further improve the tumbling-snake’s model capacity to311

quantitatively predict the rheological response of entangled polymer melts and concentrated polymer312

solutions. As for our works preceding the present study, no such refinements were attempted to313

present predictions of the tumbling-snake model for future reference. This includes our analytical314

results for biaxial elongation in the case of purely one-dimensional diffusion, ε′0 = 0, or the transient315

viscosities for a rigid dumbbell, as such results were apparently not available so far.316

Supplementary Materials: The following are available online at www.mdpi.com/link, Section A: Methodology317

to obtain the real spherical harmonics expansion of the single-link distribution function, Section B: Results of the318

BD simulations when a constant link tension coefficient is employed (Figs. S1–S4), Figure S1: Steady-state first319

planar viscosity, Figure S2: Steady-state second planar viscosity, Figure S3: Transient first planar viscosity, Figure320

S4: Transient second planar viscosity321

Acknowledgments: This work was co-funded by the Republic of Cyprus through the Research Promotion322

Foundation (Project No.: KOYLTOYRA/BP-NE/0415/01) granted to PSS through the "Cyprus Research323

Award-Young Researcher 2015" award.324

Conflicts of Interest: The authors declare no conflict of interest.325

References326

1. Weinberger, C.B.; Goddard, J.D. Extensional flow behavior of polymer solutions and particle suspensions327

in a spinning motion. Int. J. Multiphase Flow 1974, 1, 465–486.328

2. Tirtaatmadja, V.; Sridhar, T. A filament stretching device for measurement of extensional viscosity. J. Rheol.329

1993, 37, 1081–1102.330

3. Huang, Q.; Alvarez, N.J.; Matsumiya, Y.; Rasmussen, H.K.; Watanabe, H.; Hassager, O. Extensional331

rheology of entangled polystyrene solutions suggests importance of nematic interactions. ACS Macro Lett.332

2013, 2, 741–744.333

4. Huang, Q.; Mednova, O.; Rasmussen, H.K.; Alvarez, N.J.; Skov, A.L.; Almdal, K.; Hassager, O.334

Concentrated polymer solutions are different from melts: Role of entanglement molecular weight.335

Macromolecules 2013, 46, 5026–5035.336

5. Huang, Q.; Hengeller, L.; Alvarez, N.J.; Hassager, O. Bridging the gap between polymer melts and solutions337

in extensional rheology. Macromolecules 2015, 48, 4158–4163.338

6. Demarmels, A.; Meissner, J. Multiaxial elongation of polyisobutylene with various and changing strain339

rate ratios. Rheol. Acta 1985, 24, 253–259.340

7. Nguyen, D.A.; Bhattacharjee, P.K.; Sridhar, T. Response of an entangled polymer solution to uniaxial and341

planar deformation. J. Rheol. 2015, 59, 821–833.342

8. Sadati, M.; Luap, C.; Kröger, M.; Gusev, A.A.; Öttinger, H.C. Smooth full field reconstruction of velocity343

and its gradients from noisy scattered velocimetry data in a cross-slot flow. J. Rheol. 2011, 55, 353–377.344

9. Haward, S.J.; Oliveira, M.S.N.; Alves, M.A.; McKinley, G.H. Optimized cross-slot flow geometry for345

microfluidic extensional rheometry. Phys. Rev. Lett. 2012, 109, 128301.346

10. Sadati, M.; Luap, C.; Lüthi, B.; Kröger, M.; Öttinger, H.C. Application of full flow field reconstruction to a347

viscoelastic liquid in a 2D cross-slot channel. J. Non-Newtonian Fluid Mech. 2013, 192, 10–19.348

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 March 2018                   doi:10.20944/preprints201803.0049.v1

Peer-reviewed version available at Polymers 2018, 10, 329; doi:10.3390/polym10030329

http://dx.doi.org/10.20944/preprints201803.0049.v1
http://dx.doi.org/10.3390/polym10030329


18 of 19

11. Demarmels, A.; Meissner, J. Multiaxial elongations of polyisobutylene and the predictions of several349

network theories. Colloid Polymer Sci. 1986, 264, 829–846.350

12. Wagner, M.H. The nonlinear strain measure of polyisobutylene melt in general biaxial flow and its351

comparison to the Doi-Edwards model. Rheol. Acta 1990, 29, 594–603.352

13. Wagner, M.H.; Ehrecke, P.; Hachmann, P.; Meissner, J. A constitutive analysis of uniaxial, equibiaxial and353

planar extension of a commercial linear high-density polyethylene melt. J. Rheol. 1998, 42, 621–638.354

14. Verbeeten, W.M.H.; Peters, G.W.M.; Baaijens, F.P.T. Differential constitutive equations for polymer melts:355

The extended Pom-Pom model. J. Rheol. 2001, 45, 823–843.356

15. Baig, C.; Edwards, B.J.; Keffer, D.J.; Cochran, H.D. A proper approach for nonequilibrium molecular357

dynamics simulations of planar elongational flow. J. Chem. Phys. 2005, 122, 184906.358

16. Baig, C.; Edwards, B.J.; Keffer, D.J.; Cochran, H.D.; Harmandaris, V. Rheological and structural studies359

of linear polyethylene melts under planar elongational flow using nonequilibrium molecular dynamics360

simulations. J. Chem. Phys. 2006, 124, 084902.361

17. Kim, J.; Edwards, B.; Keffer, D. Visualization of conformational changes of linear short-chain polyethylenes362

under shear and elongational flows. J. Mol. Graph Model. 2007, 26, 1046–1056.363

18. Doi, M.; Edwards, S.F. Dynamics of concentrated polymer systems. 1. Brownian-motion in equilibrium364

state. J. Chem. Soc. Faraday Trans. 2 1978, 74, 1789–1801.365

19. Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Clarendon, Oxford, 1986.366

20. de Gennes, P.G. Reptation of a polymer chain in presence of fixed obstacles. J. Chem. Phys. 1971, 55, 572–579.367

21. Watanabe, H. Viscoelasticity and dynamics of entangled polymers. Prog. Polym. Sci. 1999, 24, 1253.368

22. McLeish, T.C.B. Tube theory of entangled polymer dynamics. Adv. Phys. 2002, 51, 1379–1527.369

23. Stephanou, P.S.; Mavrantzas, V.G. Quantitative predictions of the linear viscoelastic properties of entangled370

polyethylene and polybutadiene melts via modified versions of modern tube models on the basis of371

atomistic simulation data. J. Non-Newtonian Fluid Mech. 2013, 200, 111–130.372

24. Stephanou, P.S.; Mavrantzas, V.G. Accurate prediction of the linear viscoelastic properties of highly373

entangled mono and bidisperse polymer melts. J. Chem. Phys. 2014, 140, 214903.374

25. Marrucci, G.; Grizzuti, N. Fast flows of concentrated polymers – predictions of the tube model on chain375

stretching. Gazz. Chim. Ital. 1988, 118, 179–185.376

26. Ianniruberto, G.; Marrucci, G. A simple constitutive equation for entangled polymers with chain stretch. J.377

Rheol. 2001, 45, 1305–1318.378

27. Stephanou, P.S.; Tsimouri, I.C.; Mavrantzas, V.G. Flow-induced orientation and stretching of entangled379

polymers in the framework of nonequilibrium thermodynamics. Macromolecules 2016, 49, 3161–3173.380

28. Marrucci, G. Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule. J.381

Non-Newtonian Fluid Mech. 1996, 62, 279–289.382

29. Ianniruberto, G.; Marrucci, G. On compatibility of the Cox-Merz rule with the model of Doi and Edwards.383

J. Non-Newtonian Fluid Mech. 1996, 65, 241–246.384

30. Ianniruberto, G.; Marrucci, G. Flow-induced orientation and stretching of entangled polymers. Philos.385

Trans. R. Soc., A 2003, 361, 677–687.386

31. Curtiss, C.F.; Bird, R.B. A kinetic-theory for polymer melts. 1. The equation for the single-link orientational387

distribution function. J. Chem. Phys. 1981, 74, 2016–2025.388

32. Curtiss, C.F.; Bird, R.B. A kinetic-theory for polymer melts. 2. The stress tensor and the rheological equation389

of state. J. Chem. Phys. 1981, 74, 2026–2033.390

33. Bird, R.B.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids: Vol. 2, Kinetic Theory; John Wiley &391

Sons, New York, 1987.392

34. Stephanou, P.S.; Schweizer, T.; Kröger, M. Communication: Appearance of undershoots in start-up shear:393

Experimental findings captured by tumbling-snake dynamics. J. Chem. Phys. 2017, 146, 161101.394

35. Stephanou, P.S.; Kröger, M. Solution of the complete Curtiss-Bird model for polymeric liquids subjected to395

simple shear flow. J. Chem. Phys. 2016, 144, 124905.396

36. Bird, R.B.; Saab, H.H.; Curtiss, C.F. A kinetic-theory for polymer melts. 4. Rheological properties for shear397

flows. J. Chem. Phys 1982, 77, 4747–4757.398

37. Bird, R.B.; Saab, H.H.; Curtiss, C.F. A kinetic-theory for polymer melts. 3. Elongational flows. J. Phys. Chem.399

1982, 86, 1102–1106.400

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 March 2018                   doi:10.20944/preprints201803.0049.v1

Peer-reviewed version available at Polymers 2018, 10, 329; doi:10.3390/polym10030329

http://dx.doi.org/10.20944/preprints201803.0049.v1
http://dx.doi.org/10.3390/polym10030329


19 of 19

38. Stephanou, P.S.; Kröger, M. Non-constant link tension coefficient in the tumbling-snake model subjected to401

simple shear. J. Chem. Phys. 2017, 147, 174903.402

39. Stephanou, P.S.; Kröger, M. From intermediate anisotropic to isotropic friction at large strain rates to403

account for viscosity thickening in polymer solutions. J. Chem. Phys. 2018, in press.404

40. Schweizer, T.; Hostettler, J.; Mettler, F. A shear rheometer for measuring shear stress and both normal stress405

differences in polymer melts simultaneously: the MTR 25. Rheol. Acta 2008, 47, 943–957.406

41. Auhl, D.; Ramirez, J.; Likhtman, A.E.; Chambon, P.; Fernyhough, C. Linear and nonlinear shear flow407

behavior of monodisperse polyisoprene melts with a large range of molecular weights. J. Rheol 2008,408

52, 801–835.409

42. Costanzo, S.; Huang, Q.; Ianniruberto, G.; Marrucci, G.; Hassager, O.; Vlassopoulos, D. Shear and410

extensional rheology of polystyrene melts and solutions with the same number of entanglements.411

Macromolecules 2016, 49, 3925–3935.412

43. Sefiddashti, M.H.N.; Edwards, B.J.; Khomami, B. Individual chain dynamics of a polyethylene melt413

undergoing steady shear flow. J. Rheol. 2015, 59, 1–35.414

44. Sefiddashti, M.H.N.; Edwards, B.J.; Khomami, B. Steady shearing flow of a moderately entangled415

polyethylene liquid. J. Rheol. 2016, 60, 1227–1244.416

45. Kim, J.M.; Baig, C. Precise analyis of polymer rotational dynamics. Sci. Rep. 2016, 6, 19127.417

46. Kröger, M. Models for Polymeric and Anisotropic Liquids; Vol. 675, Springer, New York, 2005.418

47. Stephanou, P.S.; Baig, C.; Mavrantzas, V.G. Toward an improved description of constraint release and419

contour length fluctuations in tube models for entangled polymer melts guided by atomistic simulations.420

Macromol. Theory Simul. 2011, 20, 752–768.421

48. Stephanou, P.S.; Baig, C.; Mavrantzas, V.G. Projection of atomistic simulation data for the dynamics of422

entangled polymers onto the tube theory: calculation of the segment survival probability function and423

comparison with modern tube models. Soft Matter 2011, 7, 380–395.424

49. Kröger, M.; Hess, S. Viscoelasticity of polymeric melts and concentrated solutions. The effect of425

flow-induced alignment of chain ends. Physica A 1993, 195, 336–353.426

50. Fang, J.; Kröger, M.; Öttinger, H.C. A thermodynamically admissible reptation model for fast flows of427

entangled polymers. II. Model predictions for shear and extensional flows. J. Rheol. 2000, 44, 1293–1317.428

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 March 2018                   doi:10.20944/preprints201803.0049.v1

Peer-reviewed version available at Polymers 2018, 10, 329; doi:10.3390/polym10030329

http://dx.doi.org/10.20944/preprints201803.0049.v1
http://dx.doi.org/10.3390/polym10030329

	Introduction
	Stress tensor
	Brownian dynamics simulation
	Small elongation rate expansion of the stationary viscosities for biaxial elongational flows
	Stationary regime, constant 
	Stationary regime, variable 

	Transient elongational viscosities in the linear viscoelastic regime
	Transient regime, constant 
	Transient regime, variable 

	Brownian dynamics results for planar elongational flow
	Steady-state planar elongation
	Transient planar elongation

	Conclusions

