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1 Abstract: The principal aim of a spectral observer is twofold: the reconstruction of a signal of time
»  via state estimation and the decomposition of such a signal into the frequencies that make it up.
s This paper proposes a novel spectral observer with an adjustable constant gain for reconstructing
« a given signal by means of the recursive identification of the coefficients of a Fourier series. The
s reconstruction or estimation of a signal in the context of this work means to find the coefficients
s of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The
»  design procedure of the spectral observer is presented along with the following applications: (1) the
s reconstruction of a simple periodical signal, (2) the approximation of both a square and a triangular
s  signal, (3) the edge detection in signals by using the Fourier coefficients and (4) the fitting of the
1 historical Bitcoin market data from 2014-12-01 to 2018-01-08.

u  Keywords: Signal processing; Fourier series; state observer

> 1. Introduction

[y

13 The term spectral observer was proposed by Gene H. Hostetter in his pioneering work [1]
12 to name the algorithm that permits the recursive calculation of the Fourier transform (FT) of a
15 band-limited signal via state estimation. Since the presentation of such a work, several designs
16 of spectral observers with improved features has been proposed either to deal with noise [2],
1z disturbances, lack of data [3] or to estimate other parameters such as frequency [4]. The main goals
1e of a spectral observer are both the estimation of a given signal and the transformation of such a
10 signal to the frequency domain by means of the recursive identification of the coefficients of a Fourier
20 series [5]. The estimation of a signal in the context of this work means to find the coefficients of a
x linear combination of functions —sines a cosines functions in our case— that approximates a signal
22 of interest such that it can be reconstructed [6]. Spectral observers are useful in a wide number of
23 applications, e.g., for determining the source of harmonic pollution in power systems [7], for the
24 simulation of the sea surface [8], for fault diagnosis in motors [9], [10] or in vibrating structures, such
25 as aerospace and mechanical structures, marine structures, buildings, bridges and offshore platforms.
2¢ The observer that we propose in this contribution is designed from a dynamical system which is
2z constructed from the N derivatives of a n-th order Fourier series. To perform the estimation, the
2s  Observer solely requires: (1) The measurement of the signal to be approximated, y(t), which actually
20 is used to compute the observation error e(t) = y(t) — (t), where j(t) is the observer output. (2)
30 A frequency step Aw = 271/AT, where AT is a period step that must satisfy the Nyquist-Shannon
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31 sampling theorem. The estimation provided by the observer are both a signal that approximates the
s2 original signal and Fourier coefficients to compute the magnitude and phase spectrums.

33 This paper is organized as follows: Section 2 presents the core of the proposed method which
3« is the formulation of the spectral observer from the Fourier series. Section 3 presents some examples
35 with test results of the proposed method utilized in different applications. In Section 4 the main
ss results are discussed. Finally, in Section 5 some concluding thoughts are given.

sz 2. The Proposed Method

To construct the proposed observer, we formulate a dynamical synthetic system in state space
representation by considering, firstly, that a given signal expressed as s(t) can be approximated by a
Fourier series, and secondly, that the Fourier series is the first state of the system and the rest of the
states are the N first-order derivatives of the Fourier series expressed by Eq. (1), where n is the series

order.

y(t) = %0 + i [ak cos (kwt) + by sin (kwt)], k € z. 1)
k=1

se  where ag, a1, by, ...,a,, b, are the Fourier coefficients and w is the fundamental angular frequency of
3o the signal to be estimated.
Before formulating the dynamical system, we remove the term ay from Eq. (1) since the offset
can be estimated through the coefficients ag, a1, by, ..., a4, b, as a constant component of them. Then,
the series for approximating the time function can be expressed as follows

y(t) = ki; [ak cos (kwt) + by sin (kwt)] . (2)
=1

If the order of the Fourier series is n = 1, we need to formulate a dynamical system with N = 2
states, each one to recover each coefficient (a1 and by). Thus, the two first states are the Fourier series
and its first derivative.

v1(f) = y(t) = aj cos (wt) + by sin (wt), vo(t) = y(t) = —way sin (wt) + wby cos (wt).  (3)

where v; are the states of the synthetic system. Consequently, the dynamical system that results from
the a change of coordinates, gives:

n(t) =n(t), 1) =—-w?r(t), 4)

a0 which basically is the dynamical model of an harmonic oscillator. Now, what happens if the order of
a1 the Fourier series increases? If the order increases to n = 2, then N = 4, since we need to recover four
.2 coefficients.

v1(t) = y(t) = ajcos (wt) + by sin (wt) + a; cos (2wt) + by sin (2wt ),

vp(t) = y(t) = —way sin (wt) + wby cos (wt) — 2way sin (2wt) + 2wb, cos (2wt),

u3(t) = §(t) = —w?ay cos (wt) — w?by sin (wt) — dw?a; cos (2wt) — 4w?by sin (2wt), )
v() = yO(t) = wlay sin (wt) — w3by cos (wt) + 8w3ay sin (2wt) — 8w’by cos (2wt),

() = y# (1) = whay cos (wt) + wby sin (wt) + 16way cos (2wt) 4 16wb, sin (2wt).

The dynamical system is then formulated as in Eq. (5) which, after some algebraic manipulations, it
becomes

() = va(t);  va(t) = v3(t),U3(t) = va(t), v4(t) = —dwny () — 5w?vs(t), (6)

a3 In v—coordinates.
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By generalizing Eq. (5) for order n, the dynamical system becomes:
vi(t) = va(t),
va(t) = va(h),
= @)
VN(t) _ (_1)7’1(1110(21 2)(,02”, [1 2271 . nZn} Ak_lA;ll/(t),
where N = 2n, A, and Ay are expressed by Eq. (8) and Eq. (9), respectively.
1 0 0 0 0 - 0 ]
0 w 0 0 0 N 0
00 —w* 0 0 e 0
00 0 —w - 0 - 0
Aw=|: : SRR : e : ’
0 0 0 0 . (_1)(m(mod 4)—m(mod 2))/2 wm ... 0
0 0 0 0 cee 0 .. (_1)(2n(mod 4)-2)/2 ,2n-1
®)
1 0 1 0 1 0 7
01 0 2 0 n
10 4 0 n’ 0
A,=[01 0 8 0 n’ )
10 222 g ... og2 g
0 1 0 22n—=1 . 0 n2n—1

Before presenting the state observer for system (7), it is necessary to analyze its observability
conditions. A dynamical system is said to be observable if it is possible to determine its initial state
by knowledge of the input and output over a finite time interval. In this way, a state observer or estate
estimator is a system that estimate the internal states of a system from the measured of its inputs and
outputs. There are several ways to determine if a given system is observable, one of them is the
observability rank condition which can be defined as:

Observability rank condition. A system

(0 = AW + o)
s = Celt) 10

is said to satisfy the observability rank condition if V¢(t), rank (O(g(t))) = N, where N is the state
dimension of (10) and O(g(t)) is the observability matrix defined as

_ 9T(¢(t))
ag(t)

where the observability mapping T(g(t)) is defined as follows

O(g(t)) (11)

T(g(t)) = (C,CA,CA%,..., CAN=D) = (y(t), y(t), y(t), .. y() N "D)T. (12)

d0i:10.20944/preprints201803.0033.v1
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Thus, according to the definition, the observability matrix for system (7), which in fact can be set
as system (10) with

[0 1 ... 0 0 ]
0 0 1 ... 0
A— , (13)
: 1
| 11(w) Tn(w) |

and C = [1,0,...,0],is given by Eq. (14) and has full rank. Notice that A £ cos,VEsinandT £ n—1.

O(v(t)) =

A(wx) ¥ (wx) A(2wx) ¥ (2wx) . A(nwx) ¥ (nwx)
—wV(wx) wA(wx) —2wV (2wx) 2wA (2wx) .. —hwV(nwx) nw A(nwx)
—w?A(wx) —w?V(wx) —4w’AQQwx) —40?V(2wx) ... —n*wA(nwx) —nlwV(nwx) (14)
wrv.(wx) —w'a(wx) 2Tw'v(wx) —2fw'awx) ... nlw'v(nwx) —nrwr.A(nwx)

Since system (7) is observable, a spectral observer can be designed as follows:

v(t) = AD(t) + K(y(t) — Co(t)), H(t) =Cih = 1y. (15)

~

where " means estimation, J(t) is the estimated signals and A is given by (13), with constant
coefficients expressed by <;(w). The gain of the state observer K, involved in the correction term
of Eq. (15), can be calculated as K = S~ICT, where S is the unique solution of the following algebraic
Lyapunov equation:

—AS—ATs—sA+cCcTc=0 (16)

and A is a parameter that can be used to tune the convergence rate of the observer. The Fourier
coefficients can be recovered from the new coordinates by the relation ¢ (t) = O~!(v(t))?(t), where

51 Check Fig. 1 to see a schema of the estimation.

Estimated signal l y(£): Signal
NOESAQ)

State Observer

A

A

¢, () =0" ()
c,(t)=[a @) b(t) .. a/(t) bﬂ(t)]r

Figure 1. Schema of the reconstruction of a signal by using the spectral observer

52 Before presenting some possible applications of the spectral observer it is important make a
ss  point: Notice that matrix A of the spectral observer depends on the fundamental frequency w. This
s« means that this variable must be known. In case we want to approximate a periodical signal with a
ss  known fundamental frequency, we just need to use it in matrix A. In case we want to fit a periodical
ss signal with unknown fundamental frequency or a non-periodical signal, we must assume, as in the
sz Fourier transform deduction from the Fourier series, that the period of the signal tends to infinity,
se  which means that the fundamental frequency tends to zero. As consequence of this assumption, w
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so have to be chosen depending on the accuracy desired in the recovery of the frequency components.
so In other words w is the frequency step that determines the resolution of the discretized frequency
61 domain, such that we have to choose w thinking how close we want the frequency components.

62 3. Application examples

63 This section presents four examples of possible applications of the spectral observer, which were
es conceived such that the reader can be able to reproduce them.

es 3.1. A simple example

66 Let be the signal s(t) = 4cost + sint + 2cos 2t + 5sin2t. It is obvious that the series order to
ez reproduce the signal is n = 2, then the order of system (7) for the conception of the observer should
ee be N = 4. Fig. 2 shows the estimation of the coefficients that was performed by the observer with a
oo gain A = 8, which actually was initialized with 7(0) = 0. The step time to perform the estimation in

Simulink was At = 0.005 [s] and the used solver was ODE3. Before presenting the next examples, it

_&l

b1 Il
—ay
— by [l

12 14 16 18 20

Figure 2. Example 1. Estimated coefficients
70
= is important to make a point: the parameter A permits to manipulate the speed of the convergence, if
= Aislarge, the spectral observer will estimate the signal faster. However if the signal is corrupted with
73 noise, this will be amplified.

7a  3.2. Reconstruction of basic signals

75 This example aims to show the estimation of the coefficients for basic signals such as square and
7e sawtooth waves. The first signal to be estimated is a square wave with angular frequency w = 1
7z [rad/s]. The observer was tuned with A = 15. The order of the series was set n = 2,i.e. N = 4.
e The frequency step was set w = 5 [rad/s]. The step time to perform the estimation in Simulink was
7 set At = 0.01 [s] and the used solver was ODE3. Fig. 3 shows the signal reconstruction performed
so by the spectral observer and the estimated coefficients. Firstly, notice that the coefficients do not
a1 converge towards a constant value, the reason is the number of coefficients used to approximate the
s2 signal, which is not enough to represent each harmonic that compose it. Even though the coefficients
es are not constant, the signal is estimated. Notice too that all the coefficients change abruptly at each
sa  discontinuity. This feature can be used for edge detection as will be seen in the next example.

85 Both the observer and conditions that were used to reconstruct the square wave were used to
ss reconstruct the sawtooth signal shown in Fig. 4. Notice that the convergence time is less to one
ez second and the coefficients become greater at the discontinuities.
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Figure 3. Example 2. (a) Square wave reconstruction and (b) Estimated coefficients
se  3.3. Edge detection by using the Fourier coefficients
8o Edge detection and the detection of discontinuities are important in many fields. In image

90 processing, for example, one often needs to determine the boundaries of the items of which a
o1 picture is composed, [11] or in applications that utilizes time-domain reflectometry (TDR), which
92 is a measurement technique used to determine the characteristics of transmission lines by observing
o3 reflected waveforms. TDR analysis begins with the propagation of a step or impulse of energy into
9¢ a system and the subsequent observation of the energy reflected by the system. By analyzing the
os magnitude, duration and shape of the reflected waveform, the nature of the transmission system
96 can be determined. TDR is a common method used to localize faults in transmission lines —such a
oz leaks in pipelines or faults with small impedance in wires— because faults in transmission lines cause
9¢ discontinuities in the reflected waveforms. For this reason, methodologies to detect discontinuities
9o are required in order to localize the nature and position of the faults.

In order to shows how the spectral observer (15) can be used to detect discontinuities
in a function, we present the following example: Let us consider s(tf) = sign(sin (0.5t)) —
0.05sign(sin (2t)), which is plot in Fig. 5 (a). The aim of this test is to detect the discontinuities in
the principal signal with period T = 2 [s]. To identify the discontinuities, the coefficients provided by
the spectral observer are used to calculate the following indicator function:

m:m(dﬁ+%) (17)

1o The observer to perform the estimation was tuned with A = 15. The order of the series was set n = 2,
11 ie. N = 4. The frequency step was set w = 1 [rad/s]. The step time to perform the estimation in
102 Simulink was set At = 0.01 [s] and the used solver was ODE3.

103 Fig. 5 (a) shows s(t) and its reconstruction §(t). Fig 5 (b) shows the index 1 (f) and r,(t) that
1a  becomes greater at the discontinuities indicating where they are.

ws 3.4. Fittig complex signal: the Bitcoin price

106 Bitcoin is the longest running and most well known cryptocurrency in the world. It was
1z released as open source in 2009 by the anonymous Satoshi Nakamoto. Bitcoin serves as a
10e decentralized medium of digital exchange, with transactions verified and recorded in a public
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Figure 4. Example 2. (a) Triangular wave reconstruction and (b) Estimated coefficients

1o distributed ledger (the blockchain) without the need for a trusted record keeping authority or
uo central intermediary. Hereafter, we will use the proposed spectral observer for fitting the historical
11 Bitcoin market close data every 1000 [min]. The records were downloaded from the website:
u2  https://www.kaggle.com /neelneelpurk/bitcoin/data.

113 The observer to perform the estimation was tuned with A = 1. The order of the series was set
us n = 20,ie. N = 40. The frequency step was set w = 10 [rad/s]. The step time to perform the
us  estimation in Simulink was set At = 0.01 [s] and the used solver was ODES.

116 In Fig. 6, the Bitcoin fitting performed by the spectral observer is shown. Fig. 7 shows
ur the estimated coefficients which are not constant and look as they were enveloped by exponential
ue functions. In order to have a model that represents the behavior of the Bitcoin in the specified interval,
1o we can fit each coefficients by means of polynomials after calculating the natural logarithm of each
120 one. In Fig. 8, In (|a1]) is plotted versus a cubic polynomial calculated to interpolate it.

In(|aq]) = 1.2 x 10728 + 1.5 x 107°#> — 0.0021¢ — 1.4, (18)

121 We can perform the same procedure for each coefficient to obtain a series with the following
22 form:

9(t) = (el(mt3+ﬁﬂt2+mt+5cl)l) cos (wt) + (e\(a51t3+/851t2+%1t+551)|) sin (wt)
+ (el(“52t3+,802t2+')‘02t+552)|) Ccos (zwt) + (e‘(“52t3+,352t2+')‘52t+552)|) sin (zwt) (19)

R (e|(“cnt3+ﬁcnt2+’)‘cnt+5cn)|) cos (na)t) + (e|(“snt3+ﬁsnt2+7$nt+5sn)‘) sin (nwt)

123 where ack, Bk, Yeks Ocks Xsks Bsks Yskr Osk are the coefficients of the polynomial that approximates the
12« natural logarithms of the coefficients.

125 4. Conclusions

126 In this paper, we presented the design of a novel spectral observer, which can be used to
12z estimate periodical and non-periodical signals via state estimation. To design the spectral observer,
12s  we constructed a synthetic system in state space representation from the Fourier series. We presented
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Figure 5. Example 3. (a) Signal reconstruction and (b) Estimated coefficients

some application examples to reconstruct periodical signals but also a well-know non-periodical one:
the price of the Bitcoin from its genesis. As future work, we will present an analysis of the spectral
observer face to perturbations and noise. We will explore some new applications and propose some
improvements.
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