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Abstract: The principal aim of a spectral observer is twofold: the reconstruction of a signal of time1

via state estimation and the decomposition of such a signal into the frequencies that make it up.2

This paper proposes a novel spectral observer with an adjustable constant gain for reconstructing3

a given signal by means of the recursive identification of the coefficients of a Fourier series. The4

reconstruction or estimation of a signal in the context of this work means to find the coefficients5

of a linear combination of sines a cosines that fits a signal such that it can be reproduced. The6

design procedure of the spectral observer is presented along with the following applications: (1) the7

reconstruction of a simple periodical signal, (2) the approximation of both a square and a triangular8

signal, (3) the edge detection in signals by using the Fourier coefficients and (4) the fitting of the9

historical Bitcoin market data from 2014-12-01 to 2018-01-08.10

Keywords: Signal processing; Fourier series; state observer11

1. Introduction12

The term spectral observer was proposed by Gene H. Hostetter in his pioneering work [1]13

to name the algorithm that permits the recursive calculation of the Fourier transform (FT) of a14

band-limited signal via state estimation. Since the presentation of such a work, several designs15

of spectral observers with improved features has been proposed either to deal with noise [2],16

disturbances, lack of data [3] or to estimate other parameters such as frequency [4]. The main goals17

of a spectral observer are both the estimation of a given signal and the transformation of such a18

signal to the frequency domain by means of the recursive identification of the coefficients of a Fourier19

series [5]. The estimation of a signal in the context of this work means to find the coefficients of a20

linear combination of functions —sines a cosines functions in our case— that approximates a signal21

of interest such that it can be reconstructed [6]. Spectral observers are useful in a wide number of22

applications, e.g., for determining the source of harmonic pollution in power systems [7], for the23

simulation of the sea surface [8], for fault diagnosis in motors [9], [10] or in vibrating structures, such24

as aerospace and mechanical structures, marine structures, buildings, bridges and offshore platforms.25

The observer that we propose in this contribution is designed from a dynamical system which is26

constructed from the N derivatives of a n-th order Fourier series. To perform the estimation, the27

observer solely requires: (1) The measurement of the signal to be approximated, y(t), which actually28

is used to compute the observation error e(t) = y(t)− ŷ(t), where ŷ(t) is the observer output. (2)29

A frequency step ∆ω = 2π/∆T, where ∆T is a period step that must satisfy the Nyquist-Shannon30
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sampling theorem. The estimation provided by the observer are both a signal that approximates the31

original signal and Fourier coefficients to compute the magnitude and phase spectrums.32

This paper is organized as follows: Section 2 presents the core of the proposed method which33

is the formulation of the spectral observer from the Fourier series. Section 3 presents some examples34

with test results of the proposed method utilized in different applications. In Section 4 the main35

results are discussed. Finally, in Section 5 some concluding thoughts are given.36

2. The Proposed Method37

To construct the proposed observer, we formulate a dynamical synthetic system in state space

representation by considering, firstly, that a given signal expressed as s(t) can be approximated by a

Fourier series, and secondly, that the Fourier series is the first state of the system and the rest of the

states are the N first-order derivatives of the Fourier series expressed by Eq. (1), where n is the series

order.

y(t) =
a0

2
+

n

∑
k=1

[ak cos (kωt) + bk sin (kωt)] , k ∈ z. (1)

where a0, a1, b1, ..., an, bn are the Fourier coefficients and ω is the fundamental angular frequency of38

the signal to be estimated.39

Before formulating the dynamical system, we remove the term a0 from Eq. (1) since the offset

can be estimated through the coefficients a0, a1, b1, ..., an, bn as a constant component of them. Then,

the series for approximating the time function can be expressed as follows

y(t) =
n

∑
k=1

[ak cos (kωt) + bk sin (kωt)] . (2)

If the order of the Fourier series is n = 1, we need to formulate a dynamical system with N = 2

states, each one to recover each coefficient (a1 and b1). Thus, the two first states are the Fourier series

and its first derivative.

ν1(t) = y(t) = a1 cos (ωt) + b1 sin (ωt), ν2(t) = ẏ(t) = −ωa1 sin (ωt) + ωb1 cos (ωt). (3)

where νi are the states of the synthetic system. Consequently, the dynamical system that results from

the a change of coordinates, gives:

ν̇1(t) = ν2(t), ν̇2(t) = −ω2ν1(t), (4)

which basically is the dynamical model of an harmonic oscillator. Now, what happens if the order of40

the Fourier series increases? If the order increases to n = 2, then N = 4, since we need to recover four41

coefficients.42

ν1(t) = y(t) = a1 cos (ωt) + b1 sin (ωt) + a2 cos (2ωt) + b2 sin (2ωt),

ν2(t) = ẏ(t) = −ωa1 sin (ωt) + ωb1 cos (ωt)− 2ωa2 sin (2ωt) + 2ωb2 cos (2ωt),

ν3(t) = ÿ(t) = −ω2a1 cos (ωt)− ω2b1 sin (ωt)− 4ω2a2 cos (2ωt)− 4ω2b2 sin (2ωt), (5)

ν4(t) = y(3)(t) = ω3a1 sin (ωt)− ω3b1 cos (ωt) + 8ω3a2 sin (2ωt)− 8ω3b2 cos (2ωt),

ν̇4(t) = y(4)(t) = ω4a1 cos (ωt) + ω4b1 sin (ωt) + 16ω4a2 cos (2ωt) + 16ω4b2 sin (2ωt).

The dynamical system is then formulated as in Eq. (5) which, after some algebraic manipulations, it

becomes

ν̇1(t) = ν2(t); ν̇2(t) = ν3(t), ν̇3(t) = ν4(t), ν̇4(t) = −4ω4ν1(t)− 5ω2ν3(t), (6)

in ν−coordinates.43
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By generalizing Eq. (5) for order n, the dynamical system becomes:

ν̇1(t) = ν2(t),

ν̇2(t) = ν3(t),

... =
..., (7)

ν̇N(t) = (−1)n(mod 2)ω2n,
[

1 22n · · · n2n
]

A−1
k A−1

ω ν(t),

where N = 2n, Aω and Ak are expressed by Eq. (8) and Eq. (9), respectively.44

Aω
.
=

































1 0 0 0 · · · 0 · · · 0

0 ω 0 0 · · · 0 · · · 0

0 0 −ω2 0 · · · 0 · · · 0

0 0 0 −ω3 · · · 0 · · · 0
...

...
...

...
. . .

...
. . .

...

0 0 0 0 · · · (−1)(m(mod 4)−m(mod 2))/2 ωm · · · 0
...

...
...

...
. . .

...
. . .

...

0 0 0 0 · · · 0 · · · (−1)(2n(mod 4)−2)/2 ω2n−1

































,

(8)

Ak
.
=

























1 0 1 0 · · · 1 0

0 1 0 2 · · · 0 n

1 0 4 0 · · · n2 0

0 1 0 8 · · · 0 n3

...
...

...
...

. . .
...

...

1 0 22n−2 0 · · · n2n−2 0

0 1 0 22n−1 · · · 0 n2n−1

























. (9)

Before presenting the state observer for system (7), it is necessary to analyze its observability45

conditions. A dynamical system is said to be observable if it is possible to determine its initial state46

by knowledge of the input and output over a finite time interval. In this way, a state observer or estate47

estimator is a system that estimate the internal states of a system from the measured of its inputs and48

outputs. There are several ways to determine if a given system is observable, one of them is the49

observability rank condition which can be defined as:50

Observability rank condition. A system

ς̇(t) = A(t)ς(t) + ϕ(y(t))

y(t) = Cς(t)
(10)

is said to satisfy the observability rank condition if ∀ς(t), rank (O(ς(t))) = N, where N is the state

dimension of (10) and O(ς(t)) is the observability matrix defined as

O(ς(t)) =
∂T(ς(t))

∂ς(t)
, (11)

where the observability mapping T(ς(t)) is defined as follows

T(ς(t)) = (C, CA, CA2, ..., CA(N−1)) = (y(t), ẏ(t), ÿ(t), ..., y(t)(N−1))T. (12)
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Thus, according to the definition, the observability matrix for system (7), which in fact can be set

as system (10) with

A =



















0 1 . . . 0 0

0 0 1 . . . 0
. . .

...
... 1

γ1(ω) . . . γn(ω)



















, (13)

and C = [1, 0, ..., 0], is given by Eq. (14) and has full rank. Notice that N , cos, H , sin and Γ , n − 1.

O(ν(t)) =
















N(ωx) H(ωx) N(2ωx) H(2ωx) . . . N(nωx) H(nωx)

−ωH(ωx) ωN(ωx) −2ωH(2ωx) 2ωN(2ωx) . . . −nωH(nωx) nωN(nωx)

−ω2N(ωx) −ω2H(ωx) −4ω2N(2ωx) −4ω2H(2ωx) . . . −n2ωN(nωx) −n2ωH(nωx)
...

...

ωΓH(ωx) −ωΓN(ωx) 2ΓωΓH(2ωx) −2ΓωΓN(2ωx) . . . nΓωΓH(nωx) −nΓωΓN(nωx)

















(14)

Since system (7) is observable, a spectral observer can be designed as follows:

˙̂ν(t) = Aν̂(t) + K(y(t)− Cν̂(t)), ŷ(t) = Cν̂ = ν̂1. (15)

where ˆ means estimation, ŷ(t) is the estimated signals and A is given by (13), with constant

coefficients expressed by γi(ω). The gain of the state observer K, involved in the correction term

of Eq. (15), can be calculated as K = S−1CT, where S is the unique solution of the following algebraic

Lyapunov equation:

− λS − ATS − SA + CTC = 0 (16)

and λ is a parameter that can be used to tune the convergence rate of the observer. The Fourier

coefficients can be recovered from the new coordinates by the relation ĉk(t) = O−1(ν(t))ν̂(t), where

ĉk(t) = [â1(t) b̂1(t) ... ân(t) b̂n(t)]
T.

Check Fig. 1 to see a schema of the estimation.51

1
ˆ( ) ( ( )) ( )

k
c t O t tn n

-

=

1
ˆˆ( ) ( )y t tn=

 Signal

State Observer 

1 1
( ) [ ( ) ( ) ... ( ) ( )]

T

k n n
c t a t b t a t b t=

Figure 1. Schema of the reconstruction of a signal by using the spectral observer

Before presenting some possible applications of the spectral observer it is important make a52

point: Notice that matrix A of the spectral observer depends on the fundamental frequency ω. This53

means that this variable must be known. In case we want to approximate a periodical signal with a54

known fundamental frequency, we just need to use it in matrix A. In case we want to fit a periodical55

signal with unknown fundamental frequency or a non-periodical signal, we must assume, as in the56

Fourier transform deduction from the Fourier series, that the period of the signal tends to infinity,57

which means that the fundamental frequency tends to zero. As consequence of this assumption, ω58
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have to be chosen depending on the accuracy desired in the recovery of the frequency components.59

In other words ω is the frequency step that determines the resolution of the discretized frequency60

domain, such that we have to choose ω thinking how close we want the frequency components.61

3. Application examples62

This section presents four examples of possible applications of the spectral observer, which were63

conceived such that the reader can be able to reproduce them.64

3.1. A simple example65

Let be the signal s(t) = 4 cos t + sin t + 2 cos 2t + 5 sin 2t. It is obvious that the series order to66

reproduce the signal is n = 2, then the order of system (7) for the conception of the observer should67

be N = 4. Fig. 2 shows the estimation of the coefficients that was performed by the observer with a68

gain λ = 8, which actually was initialized with ν̂(0) = 0. The step time to perform the estimation in69

Simulink was ∆t = 0.005 [s] and the used solver was ODE3. Before presenting the next examples, it

0 2 4 6 8 10 12 14 16 18 20
−2

−1

0

1

2

3

4

5

6

7

[s]

â1
b̂1
â2
b̂2

Figure 2. Example 1. Estimated coefficients

70

is important to make a point: the parameter λ permits to manipulate the speed of the convergence, if71

λ is large, the spectral observer will estimate the signal faster. However if the signal is corrupted with72

noise, this will be amplified.73

3.2. Reconstruction of basic signals74

This example aims to show the estimation of the coefficients for basic signals such as square and75

sawtooth waves. The first signal to be estimated is a square wave with angular frequency ω = 176

[rad/s]. The observer was tuned with λ = 15. The order of the series was set n = 2, i.e. N = 4.77

The frequency step was set ω = 5 [rad/s]. The step time to perform the estimation in Simulink was78

set ∆t = 0.01 [s] and the used solver was ODE3. Fig. 3 shows the signal reconstruction performed79

by the spectral observer and the estimated coefficients. Firstly, notice that the coefficients do not80

converge towards a constant value, the reason is the number of coefficients used to approximate the81

signal, which is not enough to represent each harmonic that compose it. Even though the coefficients82

are not constant, the signal is estimated. Notice too that all the coefficients change abruptly at each83

discontinuity. This feature can be used for edge detection as will be seen in the next example.84

Both the observer and conditions that were used to reconstruct the square wave were used to85

reconstruct the sawtooth signal shown in Fig. 4. Notice that the convergence time is less to one86

second and the coefficients become greater at the discontinuities.87
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Figure 3. Example 2. (a) Square wave reconstruction and (b) Estimated coefficients

3.3. Edge detection by using the Fourier coefficients88

Edge detection and the detection of discontinuities are important in many fields. In image89

processing, for example, one often needs to determine the boundaries of the items of which a90

picture is composed, [11] or in applications that utilizes time-domain reflectometry (TDR), which91

is a measurement technique used to determine the characteristics of transmission lines by observing92

reflected waveforms. TDR analysis begins with the propagation of a step or impulse of energy into93

a system and the subsequent observation of the energy reflected by the system. By analyzing the94

magnitude, duration and shape of the reflected waveform, the nature of the transmission system95

can be determined. TDR is a common method used to localize faults in transmission lines —such a96

leaks in pipelines or faults with small impedance in wires— because faults in transmission lines cause97

discontinuities in the reflected waveforms. For this reason, methodologies to detect discontinuities98

are required in order to localize the nature and position of the faults.99

In order to shows how the spectral observer (15) can be used to detect discontinuities

in a function, we present the following example: Let us consider s(t) = sign(sin (0.5t)) −

0.05sign(sin (2t)), which is plot in Fig. 5 (a). The aim of this test is to detect the discontinuities in

the principal signal with period T = 2 [s]. To identify the discontinuities, the coefficients provided by

the spectral observer are used to calculate the following indicator function:

rk = ln

(

√

â2
k + b̂2

k

)

(17)

The observer to perform the estimation was tuned with λ = 15. The order of the series was set n = 2,100

i.e. N = 4. The frequency step was set ω = 1 [rad/s]. The step time to perform the estimation in101

Simulink was set ∆t = 0.01 [s] and the used solver was ODE3.102

Fig. 5 (a) shows s(t) and its reconstruction ŷ(t). Fig 5 (b) shows the index r1(t) and r2(t) that103

becomes greater at the discontinuities indicating where they are.104

3.4. Fittig complex signal: the Bitcoin price105

Bitcoin is the longest running and most well known cryptocurrency in the world. It was106

released as open source in 2009 by the anonymous Satoshi Nakamoto. Bitcoin serves as a107

decentralized medium of digital exchange, with transactions verified and recorded in a public108
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Figure 4. Example 2. (a) Triangular wave reconstruction and (b) Estimated coefficients

distributed ledger (the blockchain) without the need for a trusted record keeping authority or109

central intermediary. Hereafter, we will use the proposed spectral observer for fitting the historical110

Bitcoin market close data every 1000 [min]. The records were downloaded from the website:111

https://www.kaggle.com/neelneelpurk/bitcoin/data.112

The observer to perform the estimation was tuned with λ = 1. The order of the series was set113

n = 20, i.e. N = 40. The frequency step was set ω = 10 [rad/s]. The step time to perform the114

estimation in Simulink was set ∆t = 0.01 [s] and the used solver was ODE8.115

In Fig. 6, the Bitcoin fitting performed by the spectral observer is shown. Fig. 7 shows116

the estimated coefficients which are not constant and look as they were enveloped by exponential117

functions. In order to have a model that represents the behavior of the Bitcoin in the specified interval,118

we can fit each coefficients by means of polynomials after calculating the natural logarithm of each119

one. In Fig. 8, ln (|a1|) is plotted versus a cubic polynomial calculated to interpolate it.120

ln (|a1|) = 1.2 × 10−9t3 + 1.5 × 10−6t2 − 0.0021t − 1.4, (18)

We can perform the same procedure for each coefficient to obtain a series with the following121

form:122

ŷ(t) =
(

e|(αc1t3+βc1t2+γc1t+δc1)|
)

cos (ωt) +
(

e|(αs1t3+βs1t2+γs1t+δs1)|
)

sin (ωt)

+
(

e|(αc2t3+βc2t2+γc2t+δc2)|
)

cos (2ωt) +
(

e|(αs2t3+βs2t2+γs2t+δs2)|
)

sin (2ωt) (19)

+... +
(

e|(αcnt3+βcnt2+γcnt+δcn)|
)

cos (nωt) +
(

e|(αsnt3+βsnt2+γsnt+δsn)|
)

sin (nωt)

where αck, βck, γck, δck, αsk, βsk, γsk, δsk are the coefficients of the polynomial that approximates the123

natural logarithms of the coefficients.124

4. Conclusions125

In this paper, we presented the design of a novel spectral observer, which can be used to126

estimate periodical and non-periodical signals via state estimation. To design the spectral observer,127

we constructed a synthetic system in state space representation from the Fourier series. We presented128
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Figure 5. Example 3. (a) Signal reconstruction and (b) Estimated coefficients

some application examples to reconstruct periodical signals but also a well-know non-periodical one:129

the price of the Bitcoin from its genesis. As future work, we will present an analysis of the spectral130

observer face to perturbations and noise. We will explore some new applications and propose some131

improvements.132
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Figure 6. Example 4. Bitcoin fitting
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