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Abstract: It is familiar that the Casimir self-energy of a homogeneous dielectric ball is divergent,
although a finite self-energy can be extracted through second order in the deviation of the permittivity
from the vacuum value. The exception occurs when the speed of light inside the spherical boundary
is the same as that outside, so the self-energy of a perfectly conducting spherical shell is finite, as is
the energy of a dielectric-diamagnetic sphere with ey = 1, a so-called isorefractive or diaphanous
ball. Here we re-examine that example, and attempt to extend it to an electromagnetic J-function
sphere, where the electric and magnetic couplings are equal and opposite. Unfortunately, although
the energy expression is superficially ultraviolet finite, additional divergences appear that render it
difficult to extract a meaningful result in general, but some limited results are presented.
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1. Introduction

Although it is clear that Casimir energies between distinct rigid bodies are finite, even though
they arise in a formal way from summation of changes in the zero-point field energies by material
bodies, that finiteness fails for the self energy of a single body. (For a detailed review see [1].) However,
for certain special cases, a unique finite self energy can be extracted. The classic case is that of the
perfectly conducting sphere of zero thickness, where a unique, finite, positive self energy has been
extracted by a variety of methods [2—4]:

Ep — 0.04617hc’ )
a

where a is the radius of the sphere.
An obvious generalization of a perfecting conducting spherical shell is a dielectric ball, with
a permittivity € within the spherical volume. This, however, immediately runs into problems [5].
Although it is possible to identify a finite self-energy in the dilute limit, that is, to order (e — 1),
unremovable divergences occur in higher order [6]. The weak-coupling limit coincides with the result
obtained by summing the van der Waals forces between the molecules that make up the medium [7]:

_ 23nhc 5
Evqw = m(e - 1)~ ()

The divergence in order (e — 1)% was verified in heat kernel analyses [8], where the second heat kernel
coefficient was shown to be nonzero in that order, resulting in a logarithmic divergence, making it
impossible to extract a finite energy. Dispersion does not appear sufficient to resolve this problem.

A possible way out is to consider a ball having both electric permittivity € and magnetic
permeability p. A general statement of this formulation was given in [9], where both the self energy
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and the stress on the sphere were given, consistent with the principle of virtual work. But much earlier
Brevik and collaborator realized that in the special case ey = 1, that is, when the speed of light is the
same both inside and outside the sphere, the divergences cancel, and a completely unique finite self
energy can be found [10-15].

Another generalization was explored more recently, that of an electromagnetic é-function shell
[16]. This was explored less completely in [1]. In that case there are, in general, two (transverse)
coupling constants, electric and magnetic, and we indicated there that although in general for finite
couplings the self energy was divergent, in the special case where the two couplings were equal and
opposite, the divergences apparently cancel. In this paper we wish to explore this problem further. We
will find that the modes brought in by the magnetic coupling contribute additional divergences that
seem to render extraction of a finite self energy problematic.

The outline of this paper is as follows. In Sec. 2 we re-analyze the dielectric-diamagnetic ball
with the speed of light the same inside and outside, ey = 1, and present accurate numerical results
which are slightly better than those given previously. In Sec. 3 we will examine the special case of the

electromagnetic J-sphere where the two coupling are equal and opposite, Ae = —Ag, and carry out the
asymptotic analysis to higher order, and identify the difficulties. Concluding remarks are offered in
Sec. 4.

We use natural units, with # = ¢ = 1, and Heaviside-Lorentz electromagnetic units.

2. Diaphanous ball

What we shall call a diaphanous ball is spherical volume of radius 4, in vacuum, with both electric
permittivity € and magnetic permeability i such that ey = 1, so the speed of light is the same both
inside and outside the sphere is the same. Here we will ignore dispersion; that was considered in [13].
The Casimir energy is given by the formula

1 00

) L d
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where ( is the Euclidean frequency, and where the modified spherical Bessel functions are
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where ¢, €’ are the exterior and interior values of the permittivity, and similarly for the permeability.
Note that when ¢ — 1 the familiar expression of the Casimir energy for a perfectly conducting spherical
shell is recovered. Of particular note are the point-splitting regulator terms in Eq. (3): T = 7/a is the
dimensionless point-splitting parameter in Euclidean time, while J represents point-splitting in the
angular (transverse) directions. The regulator parameters are to be taken to zero at the end of the
calculation.

This expression with { = 1 was evaluated accurately first in [3,4], and has been reconfirmed
several times since [17-20]. In [10,11] the uniform asymptotic expansion (UAE) for the Bessel functions
was used to evaluate the leading term in the expansion of Eq. (3) for small ¢:

3
E@ = @52. (6)
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(The superscript refers to the order in the UAE, not to the order in ¢.) Some years later, Klich realized
that the leading term in the ¢ expansion could be exactly computed by using the addition theorem for
spherical Bessel functions [21]:

[e)

Y (21 +1)s(x)ey(y) Py (cos 6) = ;yp @)
=0

where p = /x2 + y2 — 2xy cos 0. The exact O(¢?) result is only about 6% larger than the estimate (6):

5
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As Klich noted, even extrapolating this result to ¢ = 1 gets within 8% of the Boyer energy! [The
extrapolation of Eq. (2) to { = 11is good to 2%.] (Incidentally, the same exact treatment can be given for
the second-order coefficient for a dilute purely dielectric ball, Eq. (2), first calculated in numerically in
[6], but analytically in [22], but here, including even the first two terms in the UAE is still 15% low.)

In [15] the Casimir energy of a diaphanous sphere is calculated to higher order in the UAE. The
second-order term in the UAE is (keeping the &* term, which was not done in [15])

6 = 25 (5 1) (6- 72, o)

and at & = 1 the sum of E® and EM® is only about 0.5% high, while the coefficient of ¢ in the small &
expansion is high by about the same percentage. This suggests it may be sufficient to remove the first
two terms in the UAE from the logarithm in (3) and then add the the corresponding approximants:

E=E@+E® 4+ YR, (10)
I=1

where (x = vz, v =1+1/2,t = (1+22)71/2)

v 2 poo
R, = (jniz /0 dz{ln[l — (e (vz)s;(v2))"?]
- o - il (2t6 —(1-£)(2—-25¢ + 35t4)) } (11)
(2v)2  (2v)* \ 2 ’

Because R; is finite, the cutoffs can now be dropped. This equation (10) is to be understood as an
asymptotic expansion, in that only some optimal number of terms in the series are to be included.
Only R; here makes a substantial contribution, as the Table 1 shows for various values of¢.

Table1. E@), E (4), R1, Ry, R3, and the sum E for various values of ¢

¢ E@)q E@g Rqa Rpa Rza Ea
1 0.046875 —0.0005135 —0.0001517 —0.0000223 —6x 1076 0.04618
0.5 0.011719 0.0005456 —0.0000384 —6x10° —1.6x107° 0.0122184

0.01 4.687x107% 3.081x1077 —1793x108 —274x10"° —753x10"10 4974 x10°

In Fig. 1 we show how the remainders rapidly go to zero with [ for all ¢.


http://dx.doi.org/10.20944/preprints201803.0015.v1
http://dx.doi.org/10.3390/sym10030068

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 March 2018 d0i:10.20944/preprints201803.0015.v1

40f10

—
0.002 - |
0.001 - ]
g
T LT T
B A0 T e ]
2.x107 - ]
1 L ‘ ! ' ‘ __—T ______ ‘
00 0.2 0.4 0.6 08 10

Figure 1. The ratio of the remainder contributions to the energy relative to the lowest order
approximant, R;/E(?) for isorefractive dielectric-diamagnetic balls. Plotted are the negative of this
ratio for | = 1 (solid, black), I = 2 (dotted, blue), and I = 3 (dashed, red).

Since the corrections are so small, for all ¢ the lowest UAE contribution is all that is discernable in
a graph of the energy, Fig. 2.
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Figure 2. The energy for isorefractive dielectric-diamagnetic balls. Plotted are the first approximation
(dotted, blue), the second approximation (dashed, red), and the total (solid, black).

Brevik and Kolbenstvedt [11] give an analytic approximant to the Casimir energy engineered to
be exact for strong coupling ¢ = 1, but it does not give the exact low-¢ behavior. The same is true for
the approximation given in [14]. Brevik and Einevoll [13] include dispersion in the coupling, but this
leads to linearly divergent terms that are regulated by insertion of an arbitrary parameter. The direct
mode sum given in [15] includes the first three terms in the UAE, and is accurate to almost 0.1%, not
quite so accurate as the results reported here.

3. Dual Electromagnetic 6 Sphere

In general, Casimir self energies of bodies are divergent, so it is of interest to study examples
where unambiguous finite self energies can be extracted. Such is the case of a perfectly conducting
spherical shell, or the diaphanous ball discussed in the previous section, which reduces to the former
in the § — 1 limit. Another generalization of the spherical shell that would seem to admit finiteness is
an electromagnetic J-function sphere, with equal and opposite electric and magnetic couplings; it was


http://dx.doi.org/10.20944/preprints201803.0015.v1
http://dx.doi.org/10.3390/sym10030068

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 March 2018 d0i:10.20944/preprints201803.0015.v1

50f 10

observed in [16] that then the catastrophic divergence in third-order in the coupling cancels, because
only even powers in the coupling appear in the uniform asymptotic expansion of the energy integrand.
It turns out, however, that this is a rather more subtle problem than we would have anticipated.

We follow the notation and formalism given in [16]. In this model, the couplings are modelled by
a plasma-like dispersion relation, Ay = {pm/{?, and the form of the Casimir energy, after the bulk
vacuum energy is subtracted, is [analogous to (3), except we have used a more general form of the
frequency regulator]

ad elt —1_d

—_i * el EAH
E= 4n;(21+1)1),(c055)/00dg o Cazinatar (12)

where the TE and TM modes are given by

)le)\ / /
APH =14 ngg + 1€l Aeger(x)s1(x) — Ageer(x)s)(x)],  x = [C]a. (13)

In [16] we mostly considered the electric case where A, = 0, but we did remark that interesting
cancellations occur if A, = —A,. Here we will explore this further, and define A = {,a = —{;a. This
leads to the following form for the quantities in the logarithm:

Ay %[el(x)sl(x) T el (x)s)(x)]. (14)

As we will see in Sec. 3.4, there is a difficulty with this model, in that singularities appear for finite
imaginary frequency { arising from the ejs; terms.

3.1. Uniform Asymptotic Expansion

To focus on the ultraviolet behavior, we will modify the UAE expansions by replacing, as
suggested in [16], 1/z — t, which is correct for large z. Doing so leads to the modified UAE expansion
(recall x = vz, v=1+1/2,t = (1+2%)"1/2)

t2 t4 6
InAEAT ~ A2 At A2 [3(1 - 682 + 6t%)% + 224
" 212 16v4 19216 3( + 6t%)% 4 2A%]
tS
— Ao R(=1+ (1 + (1= 66+ 6t) (~13 + 275¢7 — 840t* + 630+°)
+AP (1= 6 + 6147 + A+ O 1), (15)

In [16] we did calculate the energies corresponding to the first two terms in this uniform expansion,
just twice those from the A, contribution. The O(v~?2) term in the UAE is in general sensitive to the

regulator,
A2 1
EY =& (1 - A) / (16)

where A = /6% + 72. The divergent term arises from the form of the temporal point splitting in
Eq. (12). Had we used a simple imaginary exponential instead, and set § = 0, no divergence would
have appeared, as we saw in (6). However, the form of the divergence is that expected on general
grounds, but it would seem it can be consistently removed. The fourth-order term is finite, but was not
explicitly given in [16]. It is twice the O(A*) term evaluated in Eq. (4.14) in [23]:

A
4 __~ (2 _
E o ( : 1>. (17)
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3.2. First Approximation

Before we consider the general situation, let us see if we can extract some sort of reasonable
approximation to the energy. We note that the leading terms in Eq. (15) (the highest power of A in each
order of 1/v) can be readily summed:

® 1 /At A212
InAEAE ~ 2V 2 (2] =2In(1- 22— ). 1
" Ly (z> " ( <zv>2> (1%

The terms we have summed here might be presumed to be the largest contributions, since for a given
power of A2, only the leading power of 1/1? is kept. Then, if we subtract off the leading, divergent
term, we can write this contribution to the energy as

E=E® 4 Ey, (19)
where
P
Ep=—— l;f(Zv/)\), (20)

in terms of the function

f(x):/oldttzx/l—tz ! :—g(1—2x2+2x\/x2—1), (21)

x2 —¢2

which only exists if x > 1. For large x,

F(x) ~ % x> 1. 22)

To improve convergence of the | sum, we can subtract the next term in the UAE, so

f_r@ ., A ZV)_”<A>2
E=Eo+E nal;lf<}\ 16\2v) |’ @3)

From this, we can readily obtain a numerical estimate, based on this leading approximation, valid
for A < 3, shown in Fig. 3. The figure shows the first two UAE contributions, and the sum of all the
leading terms as explained above, with the second-order divergence removed. It is to be noted that
the exact approximant is finite at at A = 3, E(A = 3) = —0.686434/4, but it is singular there, since
the derivative becomes infinite at that point. Therefore, it is unclear how to analytically continue this
approximant result to higher values of the coupling A.

3.3. O(A?) Contribution

We can also, in principle, compute the exact order-A? contribution by doing the angular
momentum sum exactly again using the addition theorem [21]. Indeed, the [-sum over the Bessel
functions can be thus replaced by integrals over w = 2x/2(1 — cos ), for example,

e 2 4x d
g(ZlJrl)elQ(x)slz(x) - /O D, (24)

The divergence at w = 0 here is irrelevant because of the derivative appearing in Eq. (12). However,
the terms involving derivatives of Bessel functions possess serious singularities when cosé = 1,
which at present we do not see how to deal with. Although these structures represent the infrared
singularities of the derivatives of the modified Bessel function, because they result in divergences
when the field-points overlap, they seem to represent ultraviolet singularities not captured by the
UAE.
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Figure 3. Energy estimate £ for a diaphanous ball (in units of 1/a) based on the leading terms in the
UAE as a function of the coupling A. Plotted is the exact approximant (solid curve), the contribution
of the leading order E 2 (with the 1/A divergence removed) (dotted curve), and the sum of the first
two leading orders E() 4+ E®) (dashed curve). Although the exact approximant is finite at A = 3, it
possesses infinite slope there, having changed sign for a slightly smaller value of A.

3.4. General Analysis

The difficulties we have encountered in O(A?) are symptomatic of a more general pathology. It is
easy to see that AF always has one zero for finite positive x, and if A is large enough AH does as well.
(For [ = 1, the minimum value of A for A" to develop a zerois A; = 8/3 = 2.666 ... ..) For large A both
zeroes approach A/2, as shown in Fig. 4. These zeroes translate into poles in the frequency integrand
in (12). This is rather surprising, since the whole point of doing the Euclidean rotation of the frequency
to the imaginary axis, w — i(, is to avoid singularities along the real axis. However, this phenomenon
by itself is not fatal, since we would think the energy would be obtained by taking the real part of the
expression (12), (14), that is, the principal values coming from these simple poles. But, numerically this
is a bit challenging.

Therefore, a better scheme would seem to be to rotate back through —7/4, to a path of integration
bisecting the first quadrant of the complex frequency plane. Removing the first two approximants
coming from the UAE, we then obtain the following expression, which would seem amenable to
numerical evaluation:

1 oo
E=E® +E®W - Y 21+ 1R 2

+ s 1221( I+ 1R, (M), (25)

where the remainder is given by (the cutoff has been dropped, in the expectation that the remainder is
finite)

[e] d /\2t2 /\4t4
R:/ dxw(x,A), wi(x,A)=R(1—i)x— |[InAEA" + 2 + = . 26
1= [ dxwi(nA), wilxnn) =R Dr el

The integrand, computed numerically, is plotted in Fig. 5. It is seen that subtraction of the leading
UAE contributions greatly suppresses the large x behavior, so the integrals are rapidly convergent.
However, because of the small x singularities of the derivatives of the Bessel functions, there is a finite
contribution at moderate x, all the way down to x = 0, which grows with /. Consequently, when
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Figure 4. Zeroes of AE (right) and AT (left), and of their product, shown by the plots of their
magnitudes, for | = 1 and A = 10. As A gets large, the zeroes approach A/2 for all I.

Integrand, /=1
-------- Remainder, /=1

wi(x,A)

Integrand, /=10
-------- Remainder, /=10
Integrand, /=100
-------- Remainder, /=100

Figure 5. The integrand of the energy w;(x, A) given by (26) for A = 1 and I = 1,10, 100, shown by the
dotted lines. The solid lines show the unsubtracted In AFAH integrand. The removal of the leading
UAE contributions greatly improves the large x behavior, but leaves large and growing contributions
for moderate values of x.
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this is integrated over x, the remainder R; grows with [. This growth appears to be cubic. When the
Py(cos §) convergence factor is inserted into the / summation, this would translate into a divergence
going like 55, a quintic divergence. So we conclude that the UAE does not capture the real divergence
of the self energy for the isorefractive sphere. Because of numerical errors, and the likely appearance
of a subleading logarithmic divergence, it appears unfeasible to extract a finite remainder, even if the
divergent terms can be “renormalized” away.

4. Conclusions

We have re-examined two situations which extend the classic problem of the ideal perfectly
conducting sphere: the diaphanous dielectric-diamagnetic ball, where the speed of light is the same
on both sides of the spherical surface, and the isorefractive é-function sphere, where the electric and
magnetic couplings are equal and opposite. The former situation has been well studied, and is uniquely
finite; here we extend the accuracy of the numerical calculations a bit. The latter situation, although
apparently ultravioletly finite, possesses infrared sensitivity that translates into much more severe
ultraviolet divergences than revealed by the UAE, which seem to make it practically impossible to
extract a well-defined self energy. This sensitivity manifests itself as poles on the imaginary frequency
axis in the energy integrand. By truncating the theory, We are able to make some estimates for small
coupling A. Further study of this suprisingly pathological model is warranted.
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