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Abstract: The functionalization of polymeric substances is of great interest for the development of 15 
innovative materials for advanced applications. For many decades, the functionalization of 16 
chitosan has been a convenient way to improve its properties with the aim to prepare new 17 
materials with specialized characteristics. In the present article, we summarize the latest methods 18 
for the modification and derivatization of chitin and chitosan, trying to introduce specific 19 
functional groups under experimental conditions, which allow a control over the macromolecular 20 
architecture. This is motivated because an understanding of the interdependence between chemical 21 
structure and properties is an important condition for proposing innovative materials. New 22 
advances in methods and strategies of functionalization such as click chemistry approach, grafting 23 
onto copolymerization, coupling with cyclodextrins and reactions in ionic liquids are discussed. 24 

Keywords: chitin; chitosan; derivatization; controlled functionalization, click chemistry; graft 25 
copolymer; cyclodextrin; dendrimer; ionic liquids 26 

 27 

1. Introduction 28 

Polysaccharides are widely found in the biosphere fulfilling various important functions in 29 
living organisms, such as energy storage and structural materials, among others. Cellulose and 30 
chitin are the most abundant natural polymers in nature. However, chitin has very few applications 31 
compared to cellulose. This has several reasons including, scarce natural structures of chitin 32 
available to be used with low processing and the poor solubility properties of this polysaccharide. 33 
Therefore, most of the obtained chitin is processed by extensive alkaline deacetylation to obtain 34 
chitosan. This amino-polysaccharide is composed of β(1→4) linked units of 35 
N-acetyl-D-glucosamine and D-glucosamine (Figure 1). Due to its key properties such as 36 
biodegradability, biocompatibility, mucoadhesive and non-toxic, chitosan is of great interest in 37 
many applications such as biomedicine, pharmacy, biotechnology, food industry, nanotechnology, 38 
etc. [1,2]. 39 

One constant topic in materials research is the modification of natural polymers, which results 40 
in the development of new derivatives with unique properties. There is a great variety of methods 41 
to modify polysaccharides. Chitosan is prone to chemical modification at free amino groups from 42 
the deacetylated units at C-2, and hydroxyl groups at C-3 and C-6 positions [2]. Commonly, the 43 
chemical derivatization of chitosan is carried out to improve some specific characteristics, such as 44 
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solubility, hydrophilic character, gelling properties, affinity toward bioactive molecules, among 45 
others [3]. 46 

 47 

Figure 1. Chemical structure of chitosan composed of β(1→4) linked units of (A) 48 
N-acetyl-D-glucosamine and (B) D-glucosamine. 49 

Chemical modification of chitosan is usually done in bulk, randomly reacting its units. When 50 
specific new functionalities are pursued, other approaches are preferred where the reactions could 51 
be controlled stoichiometrically. In this scenario, polymer science is taking advantage of diverse 52 
strategies to design new polymer-based hydrogels, drug and gene delivery systems, scaffolds for 53 
tissue engineering, toxic substance and mineral chelation, and materials for the electronic and 54 
aerospace industry, among others. For example, introducing lipophilic or hydrophilic molecules to 55 
chitosan may result in altering or improving its properties like its solubility in acidic solutions and 56 
organic solvents, and its thermal and mechanical properties [4]. 57 

There are previous reviews covering important and specific aspects of the chemical 58 
modification of chitin and chitosan [5–7]. In the present paper, we aim to review and analyze recent 59 
developments found on literature dealing with the chemical modification of chitin and chitosan, 60 
with emphasis on proposed methods to obtain chitosan derivatives with a controlled 61 
macromolecular architecture. An understanding of the interdependence between chemical structure 62 
and properties is an important condition for proposing innovative materials. Some aspects of the 63 
chemistry of these polysaccharides (and their modification conditions) could have an impact on the 64 
properties of the products and should be taken into account: 65 

1. Chitin and chitosan are in fact a family of polymers, differing in terms of not only the molecular 66 
weight and extent of acetylation, but also in the dispersion of the degree of polymerization and 67 
the distribution of the acetylated and deacetylated units along the polymer chain. All these 68 
parameters will depend mainly on the natural source and isolation processes. Therefore, it is 69 
very important to know these intrinsic characteristics, as far as they shall affect the properties of 70 
the derivatives. 71 

2. Due to their insolubility in certain solvents (particularly chitin), some chemical reactions are 72 
carried out under heterogeneous conditions. This will have a determinant influence on the 73 
structure of the obtained derivatives. Using words from Kurita, “reactions under 74 
heterogeneous conditions are usually accompanied by problems including poor extents of 75 
reaction, difficulty in regioselective substitution, structurally ununiformly products, and partial 76 
degradation due to severe reaction conditions” [1]. Nowadays, these drawbacks could be 77 
circumvented using some novel solvent systems like ionic liquids. This topic will be revised 78 
herein as well. 79 

3. Usually, non-selective chemical derivatization could lead to the development of products with 80 
an irregular distribution and uncontrolled growth of the substituent groups in the main chain, 81 
or undesired depolymerization of the polysaccharide. 82 

4. Although chitosan presents valuable functional groups for derivatization reactions, often it is 83 
necessary to obtain some precursors to facilitate subsequent reactions or, in other cases, to 84 
protect the reactive amine in order to favor the chemoselectivity of the modification. Due to 85 
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their frequent use in chitosan functionalization processes, we will first refer to those reactions 86 
whose use is more or less recurrent under diverse experimental conditions. 87 

1.1. Chitosan precursors with protected amino groups 88 

Due to the high reactivity of the amino groups, these should be protected in order to promote 89 
the functionalization reaction to take place through the hydroxyl groups. Several methods have been 90 
proposed, but until now, the most frequent is the N-phthaloylation of chitosan [8–10]. 91 

With this purpose, typically, amino groups of chitosan could be protected from unwanted 92 
reactions by means of phthalic anhydride, whose derivative, N-phthaloyl chitosan, protects the 93 
amine moieties for further chemical modifications. N-phthaloylation should be carried out in 94 
DMF/water (95/5), in order to avoid O-phthaloyl substitution [9]. At the end of the chemical 95 
modification, the phthaloyl protection must be removed from the polymer by reaction with 96 
hydrazine monohydrate to regenerate the free amino groups. Nevertheless, this strategy has two 97 
drawbacks: 98 

• the N-phthaloylation of chitosan affects the solubility of chitosan in aqueous solutions. It is only 99 
soluble in aprotic polar organic solvents, which had been attributed to certain crystallinity 100 
[9,10]. Obviously, the solubility of the precursor in some organic solvents could be 101 
advantageous when the O-substitution reaction needs to be carried out in the later. 102 

• the unblocking reaction with hydrazine monohydrate severely depolymerize chitosan chain 103 
with the consequent weakening of its mechanical properties [11,12] 104 

Nonetheless, it is one of the best ways to protect the amine moieties in the chitosan polymer 105 
chains.  106 

Dissolving chitosan in methanesulfonic acid has been also used for the protection of amino 107 
groups [13–16]. As it should be expected, there is an important degradation of chitosan polymer 108 
chain due to the strong acidic conditions used to dissolve chitosan [13,14]. 109 

1.2. Some frequent reactions in chitosan chemistry 110 

There is a group of organic reactions, whose use in chitin chemistry is recurrent, due to their 111 
experimental simplicity, and because their products could be used as a kind of wildcards during 112 
other chemical modification strategies. These reactions provide the researcher with valuable tools 113 
for specificity control and regioselectivity of the functionalization, with minimal possibilities of side 114 
reactions or chain degradation. Herein, we will only make a brief summary of them, and the reader 115 
could get more details in other excellent reviews and compilations [1,5,17–20]. 116 

Among these reactions, the following will be frequently used: i) formation of Schiff bases (and 117 
reductive amination). It refers to the formation of imine products between amine and carbonilic 118 
(aldehydes and ketones) groups. This reaction is very simple, and takes place under mild conditions. 119 
The imine could be easily reduced with a suitable reducing agent like sodium borohydride (or, 120 
preferably, sodium cyanoborohydride) giving selectively N-alkyl derivatives; ii) 121 
carbodiimide-mediated amidation. There is a group of activators for the amidation of amines with 122 
carboxylic groups. When using these agents, the amidation is straightforward, usually takes place 123 
under mild conditions, at ambient temperatures. Most frequently used activators are: 124 
N,N'-dicyclohexylcarbodiimide (DCC); 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDC); 125 
and 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). In order to 126 
increase yields and decrease side reactions N-hydroxysuccinimide (NHS) is often added. 127 

2. Click chemistry reactions 128 

Among the different approaches developed to produce new chitin and chitosan derivatives, the 129 
polymer scientist should take into account the way to reduce cost, time consumption during the 130 
experiment, undesired byproducts of reactions, and reduce the possible pollution to minimum. 131 
Under the concept of “click chemistry” are recognized a few number of nearly perfect reactions, in 132 
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which two functional groups exclusively react with each other. They are quick reactions and exhibit 133 
high yields; they are carried out under mild temperature conditions (25-37°C), in a wide range of 134 
hydrogen potential (pH 4-12); they are insensitive to water and oxygen. They must generate highly 135 
regioselective products that need no complicated purification processes. An important characteristic 136 
is that they are modular reactions resembling biochemical processes in nature. Among these 137 
reactions, it could be mentioned [21,22]: 138 
• cycloaddition reactions, including those from the 1,3-dipolar family (like Huisgen reaction), 139 

and hetero-Diels-Alder reactions, 140 
• nucleophilic ring-opening reactions in strained heterocyclic electrophiles, 141 
• carbonyl chemistry of the non-aldol type, and 142 
• additions to carbon-carbon multiple bonds. 143 

Among the reactions that are considered as click chemistry, cycloadditions are the most used 144 
reactions in chitosan derivatization. On the one hand, the Huisgen’s reaction is a cycloaddition 145 
between alkynes and azides yielding two regioisomer triazoles [23]. It could be carried out with or 146 
without Cu(I) as catalyst, as could be appreciated in Figure 2. This is one of the most investigated 147 
chemoselective “click” reactions, which takes place in aqueous medium at room temperature, and is 148 
almost instantaneous. On the other hand, the Diels-Alder is a [4+2] cycloaddition between a diene 149 
and a dienophile, giving products with an unsaturated six-membered ring (Figure 3). This is also an 150 
important click reaction, with the peculiarity that it is thermodynamically reversible, depending on 151 
the reactants, but the reaction product is absolutely stable [24–26]. 152 

 153 

 154 

Figure 2. Huisgen cycloaddition reactions in absence (A) or presence (B) of Cu(I) catalyst. 155 

 156 

Figure 3. Diels-Alder reaction between a diene and a dienophile. 157 

The use of “click chemistry” has expanded the possibilities to produce new materials with 158 
outstanding properties [27–31]. Chitosan derivatives synthesized by click chemistry have shown 159 
tunable thermosensitive characteristics, photochromic behaviors, pH-sensitivity macromolecular 160 
networks and highly soluble chemoselective properties [32–35]. 161 

The main application of click chemistry on chitosan derivatization seems to be in the 162 
preparation of grafting copolymers. Due to the chemoselectivity of these reactions it was possible to 163 
obtain N- [36,37] or O-grafted [38,39] chitosan-g-poly(ethylene glycol). Other homopolymers grafted 164 
onto the chitosan backbone are: poly(N-isopropyl acrylamide) [40,41], β-cyclodextrin (on O-6 165 
position [42] or in the amine [43]), poly(caprolactone) [44,45] and others [46,47].  166 
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An interesting example of what it could be prepared with this powerful tool is the study of Jung 167 
et al. in which chitosan-poly(ethylene glycol) hybrid hydrogel microparticles are prepared and then 168 
conjugated with single-stranded DNAs via Cu-free click chemistry [48]. Authors consider that this 169 
strategy is an example of a robust biomolecular assembly platform that could be replicated as 170 
biomolecular targets and therapeutic applications. 171 

Furthermore, there are other chitosan derivatives developed via click chemistry reactions 172 
[33,49–59], some of which exhibit diverse properties like antimicrobial, antifungal, enhanced 173 
solubility in acidic and basic conditions, as well as an antigen detection system initiated by click 174 
chemistry, etc. Other materials synthesized are a cellulose-click-chitosan material [60], click-coupled 175 
graphene sheet with chitosan [61] and chitosan functionalized multiwalled carbon nanotubes [62]. 176 

The use of the Diels-Alder cycloaddition, gives the materials properties that can vary 177 
depending on the temperature, a characteristic that Huisgen's cycloaddition does not possess. In this 178 
sense, it is very premonitory to combine the properties of chitosan with the potential capacity of 179 
furans for the development of Diels-Alder reactions. The structure of the furan gives it a markedly 180 
dienic character, very suitable for the development of this type of reactions [63]. This feature opens 181 
up opportunities to investigate the potentialities of the Diels-Alder cycloaddition between furan- 182 
chitosan derivatives and dienophiles such as maleimides. This approach has been used to obtain a 183 
novel chitosan hydrogel with interesting drug-carrier characteristics suitable for the development of 184 
novel biotechnological and biomedical materials (Figure 4) [64]. 185 

 186 

Figure 4. Synthetic scheme for the preparation of N-(furfural) chitosan by reductive amination, FC, 187 
and Diels–Alder cycloaddition with a bismaleimide giving chitosan hydrogel. 188 

The number of reports about the use of click chemistry to modify chitosan is growing. 189 
However, the application of click chemistry in the controlled modification of chitosan is only in its 190 
early stages, and we should expect its use to have an even greater momentum in the coming years. 191 
The real possibilities of click chemistry are to be revealed in the coming years, and new materials 192 
with advanced properties for specific applications will surely appear. This is undoubtedly due to the 193 
simplicity of the reactions and especially to the excellent opportunities offered by these tools to 194 
introduce chemical modifications with a high control of the molecular architecture. 195 

3. Graft copolymerization 196 

Among the strategies of chitin and chitosan derivatization, grafting procedures are a strong 197 
chemical tool in order to develop innovative materials [6]. The structure of a typical graft-copolymer 198 
consists of a long sequence of the backbone polymer chain (chitin or chitosan in this case), containing 199 
one or more side polymer chain of distinct chemical nature [65]. The properties of this kind of 200 
copolymer are widely dependent on the molecular characteristics of the grafted side chains, such as 201 
molecular structure, length of the chain, as well as the degree of grafting [66]. 202 

There are three main techniques for the grafting copolymerization: grafting from, grafting onto 203 
and grafting through. As far as in this case the polysaccharide backbone chain is already formed, only 204 
the two former methods are of interest. On the one hand, the grafting from method involves the in situ 205 
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polymerization of the grafting monomer (Figure 5a). This reaction is initiated directly from the main 206 
chain, but its free homopolymerization could not be discarded as well. This procedure is usually 207 
accomplished by one-step, but no control over the macromolecular structure is possible. On the 208 
other hand, the grafting onto method is carried through the reaction between pendant functional 209 
groups of the backbone chain and end-functional groups of previously synthesized polymer chains 210 
(Figure 5b) [65]. This procedure allows the elaboration of polymer systems with a well-defined 211 
structure. This technique affords the preparation of versatile macromolecular materials from chitin 212 
and chitosan, allowing the development of novel hybrid materials with specific properties for 213 
advanced applications in several fields as food processing, biotechnology, water treatment, 214 
biomedicine, among others. 215 

 216 

Figure 5. Schematic representation of the (a) grafting from, and (b) grafting onto methods for graft 217 
copolymerization. 218 

3.1. Chitin “grafting from” copolymers 219 

The type of polymerization to be selected depends obviously on the type of monomer to be 220 
grafted, in most cases, radical polymerization has been used [67–74], although there is also a report 221 
of anionic ring-opening polymerization [75]. Acrylic monomers (especially acrylic acid) are among 222 
the most frequently grafted into chitin [67–70,73,76–78]. For the development of experimental 223 
procedures, it must be taken into account that chitin is not soluble in aqueous media and, therefore, 224 
the reaction must be carried out mostly under heterogeneous conditions. Hence, almost no-control 225 
over the macromolecular structure is attained, giving rise to a heterogeneous distribution of the 226 
grafting chains along the chitin backbone, and in some cases, only low degrees of grafting could be 227 
reached. 228 

The grafting from copolymerization of acrylic monomers onto chitin using cerium (IV) as redox 229 
initiator has been the subject of some studies [67–69,78]. In the pioneering work by Kurita et al the 230 
influence of several conditions of the copolymerization reaction of acrylamide and acrylic acid onto 231 
chitin was investigated [67]. These authors reported a procedure that allows reaching percentages 232 
of grafts above 200%. The obtained copolymers showed enhanced solubility and hygroscopic 233 
behavior [67]. Methyl acrylate [68] and methyl methacrylate [69] are other acrylic monomers that 234 
have been grafted on chitin in the past under similar conditions. 235 

The other free radical initiator that has been successfully used for the grafting of acrylic 236 
monomers onto chitin is potassium persulfate [70,73,76,77]. Hydrogels prepared with 237 
chitin-g-poly(acrylic acid) by the grafting from method have been proposed as a wound dressing 238 
material [70,76,77]. The highly water-absorbable film showed a good capacity of absorbing exudates 239 
from wounds, thus keeping a moist wound environment [70]. Subsequently, it was shown that the 240 
inclusion of glycidyltrimethylammonium chloride improves the wound healing properties of this 241 
hydrogel [76,77]. 242 
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Acrylic acid was also grafted on chitin nanofibers by the grafting from method using potassium 243 
persulfate. This material showed a stable dispersion in aqueous media at alkaline pH due to the 244 
stabilizing effect of electrostatic repulsions between nanofibers [73]. 245 

Chitin-g-polystyrene copolymer has also been prepared by the grafting from method using 246 
ammonium persulfate. The effect of some experimental parameters was evaluated, and the resulted 247 
material was a copolymer grafted at the C-6 position of chitin backbone [74]. 248 

Recently, polypyrrole, an electrically conducting polymer, was grafted on chitin to enhance its 249 
mechanical properties. The copolymerization reaction was carried out by the grafting from method 250 
using ammonium persulfate. The crystallinity of the graft copolymers decreased as a function of the 251 
increment of grafting percentage [79]. Itaconic acid, indole, and ε-caprolactone are also other 252 
examples of monomers that have been grafted into chitin by the grafting from procedure [71,72,75]. 253 

3.2. Chitosan “grafting from” copolymers 254 

Unlike chitin, the copolymerization reaction of chitosan could be accomplished by the grafting 255 
from procedure under homogeneous conditions in aqueous media. At some degree, it allows having 256 
more control over the macromolecular structure of the obtained copolymer as compared with 257 
chitin.  258 

In this case, a greater variety of monomers have been grafted to chitosan via the grafted from 259 
procedure, for example: acrylic monomers [80–98], styrene [90], oligoethylene glycol methacrylate 260 
[99], N-vinyl-2-pyrrolidone [100,101], ε-caprolactone [15,16,101–103], lactide [104], urethane [105], 261 
indole [72], aniline [106], among others. The type of polymerization and initiator to be employed 262 
depend on the selected monomer. 263 

One of the problems of the grafting from procedure is the difficulty to effectively control the 264 
chemoselectivity of the reaction. To overcome this drawback, the protection-graft-deprotection method 265 
has been employed [83,101–104]. With this purpose, chitosan amino groups are initially protected by 266 
N-phthaloylation [9]. Then, the copolymerization reaction is conducted with N-phthaloyl chitosan, 267 
and finally, amino groups are regenerated with hydrazine monohydrate. Thus, the side chains are 268 
anchored at the C-3 and C-6 hydroxyl groups of chitosan backbone, while amino groups remain free. 269 
The main disadvantage of this technique is that the copolymerization reaction should be carried out 270 
in organic solvents. 271 

N-isopropyl acrylamide is one of the most frequently grafted acrylic monomers on chitosan 272 
backbone, perhaps due to its thermosensitive properties and its promising applications for the 273 
preparation of advanced materials, especially on the biomedical field including drug delivery 274 
systems and tissue engineering [81–87,91–93,98]. Ammonium and potassium persulfate are the 275 
preferred radical initiator [82,84,85,87,91–93], but also cerium ammonium nitrate [81,86] and azo 276 
compounds [98] have been utilized. In general, the grafting from synthesis of poly(NIPAm) 277 
copolymers are simple and could be accomplished in one step. A strategy proposed by Chen et al. 278 
involves the synthesis via atom-transfer radical polymerization from the bromo 279 
isobutyryl-terminated chitosan at the C-6 hydroxyl group [83]. 280 

It has been established that the thermosensitive properties of NIPA are governed by the 281 
variation of hydrophilic and hydrophobic interactions by increasing the temperature. At low 282 
temperatures, water molecules form regular ice-like structures around hydrophobic methyl groups. 283 
When the temperature increases, that hydrophobic hydration collapses. As a result, hydrophobic 284 
interactions are generated between the methyl groups of different segments of NIPA chains, giving 285 
rise to a polymer network. From a thermodynamic point of view, this phase transition should 286 
generate a loss of conformational entropy, due to the ordering of the polymer in the network, which 287 
must be compensated by the translational entropy gain of the ejected water molecules. Therefore, as 288 
a result of the phase transition, there is an increase in the total entropy, which is greater than the 289 
enthalpy gain (the transition is endothermic), all of which results in a decrease in Gibbs free energy 290 
[7]. That is, the phase transition depends on the size and closeness of the grafted NIPA chain 291 
segments that are involved in the transition. Therefore, an adequate control of the molecular 292 
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architecture allows to effectively modulate the properties of the materials and their response to 293 
changes in temperature [7,81,107]. 294 

The rheological response of the solutions of this copolymer to changes in temperature is 295 
completely reversible. It has been postulated that the increase in the elastic response is due to the 296 
formation of hydrophobic crosslinked points at the expense of the amount of sol fraction, for that 297 
reason “the connectivity in the gel network is governed by the net number of formed 298 
enthalpic-hydrophobic driven-junctions” [81]. The fast thermoreversible response exhibited by these 299 
copolymers could be associated with this phenomenon. 300 

Polyelectrolyte complex membranes formed between this copolymer and pectin exhibit 301 
temperature and pH dual-stimuli response. Figure 6 shows the release of a model substance as a 302 
function of pH and temperature [108], and it can be appreciated how this type of material can 303 
respond simultaneously to both parameters.  304 

More information about the structure, properties and potential applications of 305 
chitosan-g-NIPA copolymers could be found in other specific reviews [7,109]. 306 

 307 

Figure 6. Release profile of Coomassie Blue dye from polyelectrolyte complex membranes formed 308 
between this chitosan-g-NIPAm and pectin as a function of pH and temperature. Reprinted from Ref. 309 
[108], Copyright 2011, with permission from Elsevier. 310 

ɛ-caprolactone is the other monomer also often grafted onto chitosan. Poly(ɛ-caprolactone) is a 311 
hydrophobic, biodegradable and biocompatible polymer with excellent mechanical properties, so it 312 
is comprehensible to search new hybrid materials via grafting copolymerization. Because one of the 313 
properties of chitosan that is important to take advantage of is its hydrophilicity and solubility in 314 
acidic aqueous solutions, the protect-graft-deprotect strategy has been the preferred method [101–315 
103]. Nevertheless, in this case, different synthetic approaches have been tested. The typical amino 316 
group protection by N-phthaloylation has been followed in most of the cases [101–103]. In these 317 
cases, tin octanoate was selected as a catalyst [101,102], but it has been also showed that N-phthaloyl 318 
chitosan is also by itself a catalyst for the ring-opening polymerization of caprolactone monomers 319 
and hydroxyl groups acting as initiators [103]. Moreover, there are other reports where 320 
methanesulfonic acid was used as a solvent for chitosan and at the same time served to protect the 321 
amino groups, and as a catalyst for the ring-opening reaction [15,16]. This copolymer could be used 322 
as an efficient stabilizer of gold nanoparticles [101] and could form amphiphilic copolymer micelles 323 
suitable for the drug delivery of hydrophobic anticancer molecules [16]. 324 

In conclusion, it can be highlighted that the grafting from method has the advantage that 325 
chitosan can be functionalized in a fairly easy manner, generally in a single reaction step. If it is 326 
required to control the chemoselectivity of the copolymerization and to direct the reaction towards 327 
the hydroxyl groups at C-6 and C-3 positions, it is necessary to follow the strategy of protecting 328 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 March 2018                   doi:10.20944/preprints201803.0005.v1

Peer-reviewed version available at Polymers 2018, 10, 342; doi:10.3390/polym10030342

http://dx.doi.org/10.20944/preprints201803.0005.v1
http://dx.doi.org/10.3390/polym10030342


 9 of 39 

 

amino groups before copolymerization. The main drawback of the grafting from method is that there 329 
is a poor control over the structure of the copolymer, both in terms of the dispersion of the grafted 330 
chain length, as well as their distribution throughout the chitosan backbone (Figure 5a). 331 

3.3. Chitosan “grafting onto” copolymers 332 

As it is discussed above, the grafting onto is the other technique of preparing graft copolymers. 333 
Its main advantage is that it is possible to obtain derivatives with a better control of the 334 
macromolecular architecture and, therefore, it should be possible to have a greater possibility of 335 
modulating the properties and applications of these materials. There are several types of 336 
homopolymers that have been grafted onto chitosan, including poly(ɛ-caprolactone) [110–112], 337 
poly(ethylene glycol) and Pluronic [11,36–39,113–126], poly(N-isopropyl acrylamide) [40,41,83,127–338 
131] and poly(N-vinylcaprolactam) [132–139], among others.  339 

The grafting of end-functionalized poly(ɛ-caprolactone) has been conducted by the 340 
protect-graft-deprotect procedure, using EDC condensing agent for carboxylic-terminated 341 
poly(caprolactone) (Figure 7) [111,112], or the reaction of isocyanate groups with chitosan hydroxyl 342 
groups [110]. It has been reported that the resultant material could be self-assembled into micelles 343 
and used as stabilizers to prepare silver nanoparticles with good antimicrobial activity [112]. 344 

 345 

Figure 7. Chemical structure of chitosan-g-poly(ɛ-caprolactone) 346 

Chitosan grafted with Pluronic, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene 347 
oxide), copolymer have also been synthesized by the grafting onto method. With this purpose, 348 
Pluronic is “activated” with succinic anhydride, and the resulted carboxylated Pluronic grafted 349 
onto chitosan in the presence of EDC/NHS system (Figure 8) [124–126]. This water-soluble 350 
thermosensitive copolymer has been evaluated as a potential injectable cell delivery carrier with the 351 
aim of using it as a scaffold for cartilage regeneration [125]. Its suitability in the preparation of 352 
nanocapsules for drug delivery was also verified [126]. 353 

 354 

Figure 8. Chemical structure of chitosan-g-Pluronic 355 

The grafting of poly(ethylene glycol) onto chitosan backbone has been accomplished via 356 
PEGylation of amino groups throughout conjugation with methoxy PEG-nitrophenyl carbonate 357 
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[116], methoxy PEG-succinimidyl carbonate [118], amidation with carboxylated PEG [119] or 358 
reductive amination (Figure 9) [114,115,117,120,121]. The use of “click chemistry” tools has also 359 
been reported for the N- [36,37] or O-PEGylation of chitosan [38,39]. However, the grafting onto the 360 
-OH groups at C-6 of chitosan structure is an alternative option of chitosan modification, because it 361 
allows the total availability of free amino groups. In this sense, some studies related to 362 
O-substitution graft copolymers have been developed by etherification reaction [11,113,122,123]. 363 
For this purpose, the amino groups of chitosan were protected with phthalic anhydride by the 364 
above-mentioned procedure. The resultant material (degree of substitution about 15%) shows 365 
solubility in a wide range of pH [113]. PEGylated chitosan has been considered as a bioactive 366 
delivery carrier for insulin [123], DNA [116], heparin [118], albumin [120], among others. A detailed 367 
review of the methods of synthesis, characterization and pharmaceutical applications of PEGylated 368 
chitosan derivatives can be consulted [140]. 369 

 370 

Figure 9. Chemical structure of chitosan-g-poly(ethylene glycol) 371 

Cs-g-PNIPAm copolymer has also been synthesized by the graft onto method via the amidation 372 
between carboxylic-end NIPAm chains and chitosan amino groups using carbodiimide compounds 373 
like DCC [127], or EDC (Figure 10) [128–130]. Similarly, the same reaction, but between 374 
O-carboxymethyl chitosan and amino-end PNIPAm chains has also been proposed [131], having the 375 
advantage of leaving the amino groups free. Bao et al. have also made use of “click chemistry” 376 
reactions to anchor NIPAm chains onto chitosan backbone [40,41]. Due to its thermoresponsive 377 
behavior, this copolymer form hydrogels in situ, which favors some properties as enhancement of 378 
drug residential time, ocular absorption, pharmacokinetics and bioavailability of hydrophobic 379 
drugs [7,127,130]. 380 

 381 

Figure 10. Chemical structure of chitosan-g-poly(N-isopropyl acrylamide) 382 

The grafting onto approach to synthesize chitosan-graft-PVCL has been conducted by the 383 
amidation between PVCL-COOH and chitosan amino groups using EDC/NHS system [132–384 
135,137,138] or DMTMM (Figure 11) [136,139]. 385 
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 386 

Figure 11. Chemical structure of chitosan-g-poly(N-vinyl caprolactam) 387 

It has been established that the molecular architecture of this copolymer plays a prominent role 388 
in their thermoresponsive properties (LCST within 34-45 °C) [136,139]. Figure 11 shows the 389 
dependence of the phase transition on the length of the grafted chain or the closeness between them 390 
along the chitosan backbone. The increment of the length of the grafted chains implies that longer 391 
hydrophobic segments appear, which favors polymer-polymer long-range interactions and giving 392 
lower phase transition temperature (Figure 12a). The spacing between PVCL chains along the 393 
chitosan backbone also impacts on the transition: as they are closer, the lower the cloud point 394 
temperature and the greater the enthalpic change (Figure 12b). As the spacing between grafted 395 
chains is more reduced, the hydrophobic intercatenary interactions between PVCL segments are 396 
favored, giving rise to the above-mentioned behavior [136]. Indulekha et al. reported the study of 397 
CS-g-PVCL gel as a transdermal drug delivery system for pain management, which showed 398 
biocompatibility and drug permeation through in vitro skin test [138]. Jayakumar et al. have studied 399 
Cs-g-PVCL based nanoparticles as a promising candidate for cancer drug delivery [132–135,137]. 400 

    401 

Figure 12. (a) Dependence of the hydrodynamic diameter, DH, on temperature, of Cs-g-PVCL 402 
aqueous solutions (pH 6) for different number-average molecular weights of PVCL-grafted chains (4, 403 
13 and 26 kDa).  Reprinted by permission from Springer Nature: Ref. [139], Copyright 2015. (b) 404 
Micro-DSC curve of 10 wt% aqueous solutions (pH 6) of Cs-g-PVCL, varying the spacing between 405 
grafted side chains. Reprinted from Ref. [136], Copyright 2015, with permission from Elsevier. 406 
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Table 1 presents a compendium of the most representative monomers that have been grafted 407 
into chitosan, as well as the main applications proposed. 408 

Table 1. Main monomers used for derivatization of chitin and chitosan by grafting copolymerization. 409 

Monomers Applications References
Chitin “grafting from” 
copolymers 

  

Acrylamide Water absorbents, chelating agents [67] 
Acrylic acid Water absorbents, chelating agents. Wound 

dressing. Nanofibers 
[67,70,73] 

Methyl methacrylate Gel-like mass for biomedical field [69] 
Itaconic acid Waste-water treatment [71] 
Indole Antimicrobial activity [72] ε-caprolactone Biomedical field 

 
[141] 

Glycidytrimethylammonium 
chloride 

Wound healing [76] 

Pyrrole Electrically-conducting material [79] 
Chitosan “grafting from” 
copolymers 

  

Acrylic acid Controlled release devices, ion-exchange 
bioseparation, antibacterial activity, removal of 
heavy metal ions 

[80,88,89,96] 

N-butyl acrylate Biodegradable packaging materials, recovery 
of heavy metals from waste waters 

[90,94] 

Iodine Cervical antibacterial biomembrane [95] 
acrylamide-co-acrylic acid Drug release hydrogels [97] 
Styrene Recovery of heavy metals from waste waters [90] 
Aniline Antibacterial activity [106]  
NIPAm Biomedical field: tissue engineering, drug 

delivery systems. 
[81–87,91–

93,108,130,142] 
Lactide Gene delivery, complex with DNA [104]  ε-caprolactone Nanoparticle stabilizer, drug delivery systems [16,101–103] 
N-vinyl-2-pyrrolidone Antimicrobial activity, nanoparticle stabilizer [100,101] 
Carbamate (urethane) Drug delivery systems [105] 
Indole Antimicrobial activity [72] 
Chitosan "grafting onto” 
copolymers 

  

Pluronic Injectable cell delivery carrier, gene expression, 
controlled release 

[125,126] 

ε-caprolactone Drug carriers, antimicrobial activity [110–112] 
Ethylene glycol Bioactive molecules delivery, polymeric 

surfactants, gene delivery, apoptosis-inducing 
activity. 

[113,116,118,12
0,122,123] 

NIPAm Drug/gene delivery, [40,41,83,127–
131]  

PVCL Controlled drug delivery systems [132–139]  
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 410 

3.4. Chitosan network systems prepared by radiation 411 

Ionizing radiation constitutes an environmentally friendly tool to prepare graft copolymers 412 
from chitin and chitosan. Fundamentally, UV- and γ-radiation have been used for the preparation 413 
of chitosan derivatives. UV-initiated polymerization has some benefits, such as lower reaction 414 
temperature, fewer amounts of initiator, higher reaction rate, and shorter polymerization times, 415 
among others. The principal disadvantage of this method of modification is the absence of 416 
specificity. Usually, the resultant radiation-based graft copolymers tend to exhibit a crosslinked 417 
network structure. 418 

On the one hand, chitosan-based graft copolymers have received special attention for 419 
applications as flocculants due to their biodegradability, absorption and charge neutralization 420 
ability, among others. It could be mentioned those materials based on acrylic monomers [143–147], 421 
displaying important flocculation properties. There are also reports of radiation-induced chitosan 422 
grafted with poly(maleic acid) showing high sorption capacity of Co(II) [148,149]. On the other 423 
hand, Burillo et al. have developed thermosensitive graft copolymers based on chitosan derivatives 424 
by gamma radiation [150–153].  425 

4. Chitosan-grafted-cyclodextrin derivatives   426 

Supramolecular polymer chemistry has gained interest in macromolecular research. A number 427 
of molecular architectures have been introduced to develop new materials, in which cyclodextrins 428 
(CDs) have been extensively used. CDs are non-toxic cyclic oligosaccharides, formed by 6 to 9 429 
α-D-glucose units linked by (14) glycosidic bonds (Figure 13). They own a truncated cone-shape 430 
geometry, with a hydrophilic external surface and a relatively more hydrophobic internal cavity 431 
[154]. This arrangement favors host-guest interactions through the inclusion of a wide variety of 432 
small organic molecules -mainly hydrophobic-, such as adamantane, eugenol, doxorubicin, etc. 433 
(Figure 14) [155–157]. This important property confers to CDs a special attention as an effective 434 
molecular carrier during the design of advanced drug delivery systems. According to Rekharsky 435 
and Inoue, the general tendencies of the dependence between thermodynamic quantities can be 436 
understood in terms of hydrophobicity, steric effects during the guest-host interaction, the involved 437 
guest-host hydrogen bonding and the flexibility of the guest molecule [158]. Thermodynamic studies 438 
about the stability of the inclusion complex demonstrated that the enthalpy gain due to the guest 439 
inclusion is compensated with the loss of entropy that results from the considerable conformational 440 
changes that take place in the CDs during the complexation, and the entropy gain due to the 441 
desolvation of both host and guest [158,159]. 442 

 443 
Figure 13. Structure of α-cyclodextrin (formed by six glucosidic units). The arrangement of the 444 
external hydrophilic surface and the relatively hydrophobic internal cavity is evident. Reproduced 445 
from Ref [160] with permission of The Royal Society of Chemistry. 446 
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 447 

Figure 14. Chemical structure of (A) adamantane, (B) eugenol, (C) doxorubicin. 448 

Many investigations have been carried out with the aim of proposing methods to prepare 449 
chitosan grafted CDs derivatives in order to take advantage of both: the mucoadhesive properties 450 
and reactive functional groups of chitosan and the ability of CDs to interact with hydrophobic guest 451 
substances [161–163]. In the presence of a guest molecule, chitosan-g-CDs solutions could form 452 
intramolecular and intermolecular complexes, which can lead to a large increase in the viscosity or 453 
to the formation of temporary and reversible supramolecular network systems. Consequently, an 454 
adequate control of the grafting reaction is of utmost importance in order to regulate the molecular 455 
architecture, and therefore the behavior and properties of the polymer materials. For this purpose, 456 
the arsenal of methods available for the chemical modification of chitosan can be applied at the time 457 
of grafting the cyclodextrin. So far, the following main methods have been proposed: 458 

5. Reductive amination reaction. Usually, the CD is modified in order to attach an aldehyde 459 
group. The inclusion of the CD moieties into the chitosan backbone is carried out by the 460 
formation of a Schiff base, followed by the reduction with a proper agent. The reductive 461 
amination procedure is one of the most used because it is a simple, easy and little degradative 462 
method [156,164–166]. 463 

6. The second most important method is via amidation of CDs modified with a carboxylic group 464 
with the amino groups of chitosan. In this case, two strategies have been applied: i) the classic 465 
condensation reaction [167,168], and ii) by amidation using coupling activators of the carboxylic 466 
acid group, like EDC/NHS [162,169–173]. The former reaction requires high temperatures due 467 
to the high activation energies involved, while the use of condensation agents in the later, 468 
selectively promotes the formation of the amide bond in aqueous solution under mild and 469 
controllable conditions. 470 

7. The nucleophilic substitution of halides or tosyl groups by chitosan amino groups is another 471 
recurrent way to attach CDs into the chitosan backbone [155,157,174–179]. 472 

8. A method so far little used, but in the future can provide derivatives with a high 473 
regioselectivity, is anchoring β-cyclodextrin onto chitosan by click chemistry. In this way, using 474 
the Huisgen cycloaddition reaction, β-CD chains have been grafted onto the chitosan backbone 475 
through the amino group (position 2) [43] or to the O-6 [42]. 476 

9. Other methods, among which i) the preparation of epoxy-activated chitosan and its reaction 477 
with hydroxyl groups of CD [180] or ii) the anchoring of CD into chitosan using 478 
1,6-hexamethylene diisocyanate [181–183], among others, can be mentioned.  479 

In this sense, Auzély-Velty and Rinaudo have reported a procedure, in which a 480 
monosubstituted β-CD, possessing a D-galacturonic acid group on the primary face of CD, was 481 
grafted onto the chitosan backbone by reductive amination reaction [156,165]. The characterization 482 
of the graft copolymer confirmed a successful inclusion of CD on the chitosan chain with almost no 483 
degradation of the polymer. These authors also observed a slight reduction in the solubility of the 484 
derivative (at grafting degrees 10-12%) as compared with that of the pristine chitosan [165]. At a 485 
given concentration, the viscosity of the copolymer solution is higher than that the original chitosan, 486 
confirming the presence of interchain interactions induced by the presence of grafted CD [156]. 487 

The host properties of CD and chitosan-g-CD were comparatively studied toward a low or high 488 
molecular weight guest. In the former case, 4-tert-butylbenzoic acid and (+)-catechin low molecular 489 
weight guests were chosen, and the inclusion complex was analyzed by means of NMR [165]. 490 
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Experimental data corroborated that the complexation of 4-tert-butylbenzoic acid is a dynamic 491 
process, in the sense that the guest molecule is constantly switching between the free and bound 492 
states. Moreover, it was possible to conclude that chitosan-g-CD exhibits the same host-guest 493 
properties as the native CD toward the low molecular weight hydrophobic guest, suggesting that 494 
the grafting process have not significant influence over the binding capacity of CD [165]. In the 495 
second case, the interaction of chitosan-g-CD with two macromolecular guests (adamantane 496 
attached to chitosan or poly(ethylene glycol)) was evaluated [156]. On the one hand, NMR analyses 497 
demonstrated that the hydrophobic sites of the macromolecular guest interact with the grafted CD 498 
moieties in the same way as with the non-grafted one. On the other hand, rheological experiments 499 
showed that PEG end-capped with adamantane mixed with CD-chitosan solutions give a significant 500 
increase in the viscosity due to cross-linking of CD-chitosan chains through host-guest inclusion 501 
complexation with PEG-di-adamantane guest. Nevertheless, when the complexation takes place 502 
with the chitosan-di-adamantane derivative, a gel-like behavior was appreciated [156]. These 503 
characteristics of the inclusion complex with di-adamantane macromolecular derivatives open 504 
interesting possibilities to produce advanced materials with controlled sol-gel properties.  505 

One of the drawbacks of chitosan-g-CDs as a drug delivery system is the poor solubility of 506 
chitosan at neutral pH values. In this context, Sajomsang et al. have proposed the quaternization of 507 
chitosan amino groups in order to obtain a water-soluble grafted [176,177]. Synthesis strategy 508 
involves the quaternization of previously prepared chitosan-g-CDs, carried out by the nucleophilic 509 
substitution of the remained free amino groups, yielding a water-soluble quaternized 510 
chitosan-g-CD. The degree of quaternization (DQ), reached values between 60 and 85%. The 511 
mucoadhesive properties of the grafted polymer were dependent on the DQ, being stronger as the 512 
DQ increases, while its cytotoxicity does not show any dependence with the DQ [177]. The formation 513 
of an inclusion complex between the quaternized chitosan-g-CDs and eugenol as model guest 514 
molecule has also been studied. In this case, it was confirmed that eugenol is included in the 515 
hydrophobic cavity of CDs, but a self-aggregated micelle-type structure was formed, within which, 516 
extra eugenol molecules were entrapped as illustrated in Figure 15. The greatest mucoadhesion was 517 
attained with the complex having 11% CD substitution, suggests that in this case, electrostatic 518 
interaction has a key role in governing the adhesion between mucin and the chitosan derivative 519 
[155]. Moreover, an enhanced mucoadhesion has been reported for this system when CDs were 520 
attached to the chitosan backbone throughout a citric acid molecule. This effect is possibly due to 521 
additional intermolecular hydrogen bonding between the carboxyl and hydroxyl groups from the 522 
citric acid spacer and mucus glycoprotein [168,184]. 523 

 524 
Figure 15. Schematic structure of inclusion complex between eugenol (pink) and quaternized 525 
chitosan (black) grafted with β-cyclodextrin (blue) forming self-aggregated micellar structures. 526 
Reprinted from reference [155], Copyright 2012, with permission from Elsevier. 527 

Another extensive coupling method used to graft CD into chitosan chain is based on amidation 528 
reaction. This reaction occurs among a component containing a free amino group, like chitosan, with 529 
a substituted carboxylic acid-cyclodextrin to generate the amide bond. This reaction is mediated by 530 
diimide derivatives, among them, EDC is the most used due to its water solubility. Daimon et al. 531 
described the preparation of a chitosan-g-CDs by the condensation reaction of chitosan and 532 
β-CD-carboxylate [162,163]. The interaction between chitosan-g-CDs and insulin was evaluated. 533 
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Insulin was strongly bound to β-CD residues due to the specific host-guest inclusion complex with 534 
insulin. The electrostatic interactions between chitosan-g-CDs and insulin allowed a strong binding 535 
in a wide range of pH [162]. The conclusion of several studies is that chitosan-g-CDs have the 536 
remarkable potential to be applied in the delivery of peptides and proteins as an efficient delivery 537 
carrier [162,163,173].  538 

Kono et al. described the preparation of a hydrogel based on carboxymethyl chitosan and 539 
carboxymethyl CD. A reductive amidation reaction was conducted employing EDC-NHS as the 540 
coupling agent. It allowed simultaneous grafting of CD into chitosan and crosslinking. 541 
Acetylsalicylic acid was chosen as a model drug to explore its properties as a carrier for drug 542 
delivery system. According to their results, the observed drug release profile could be attributed to 543 
the formation an inclusion complex of aspirin inside CD cavities [170]. 544 

Apart from the aforementioned applications for controlled release systems, other studies aimed 545 
at the use of chitosan/cyclodextrin materials for the removal of metals or organic micropollutants 546 
from wastewaters has been described as well [185,186]. For example, Zhao et al. prepared chitosan- 547 
β-cyclodextrin absorbent material, using EDTA as cross-linker. According to these authors, 548 
“chitosan chain is considered as the backbone, and the immobilized cyclodextrin cavities capture the 549 
organic compounds via host-guest inclusion complexation, while EDTA-groups complex metals” 550 
[186]. A β-cyclodextrin-chitosan-graphene oxide composite material has been also proposed. It is 551 
claimed that this material is appropriate for the removal of manganese ions [185]. 552 

Finally, it should be noted that there is an increasing number of publications in which chitosan 553 
and cyclodextrin are used as important components in the preparation of nano-vehicles or 554 
stimuli-sensitive carriers [157,172,178,187–190]. 555 

5. Dendronized chitosan 556 

Dendrimers are commonly represented as highly symmetrical molecules, displayed in tiers 557 
with an algorithmic growth. They are characterized by a high end functional groups located on the 558 
surface of a spherical conformation, leading a molecule owing a large amount of functional sites 559 
easily accessible to the media, with an isolate core. This typical architecture influences the physical 560 
properties, like solution behavior, especially at high molecular weights. In dendrimer construction, 561 
two synthetic approaches have been employed: divergent and convergent. On the former, stepwise 562 
growing occurs from the center by means of a series of high selective reactions over a single 563 
molecule, whereas on the latter, the synthesis begins in the periphery and ends in the core. Despite 564 
the important biomedical applications of dendrimers as viral and pathogenic cell adhesion 565 
inhibitors, references about dendronized chitosan derivatives are still scarce [191]. Here is a general 566 
brief description about these novel chitosan derivatives. 567 

Some of the first reports of the preparation and characterization of chitosan dendrimer hybrid 568 
molecules are those presented by Sashiwa et al. [192–195]. They reported the preparation of sialic 569 
acid bound dendronized chitosan using gallic acid as the focal point, and tri(ethylene glycol) as 570 
spacer arm. It was suggested to be a non-toxic alternative and inhibitors of hemagglutination of 571 
influenza viruses.  572 

The preparation of a Pb2+ heavy metal bioabsorbent CDH, PAMAM-g-chitosan, was achieved 573 
by divergent approach synthesis. The addition of methylacrylate over amino groups of chitosan 574 
powder surface was driven by the Michel addition reaction followed by the amidation of terminal 575 
groups with EDTA, different generation of PAMAM were obtained by the subsequent propagation 576 
of PAMAM [196]. 577 

The preparation of a water soluble quaternized carboxymethyl chitosan/poly(amido amine) 578 
dendrimer with core-shell nanoparticles was also described [197,198]. The synthesis of this 579 
dendronized chitosan involves a two-step reaction: the activation of carboxylic groups in 580 
quaternized carboxymethyl chitosan and the subsequent condensation reaction. The obtained 581 
chitosan dendrimer hybrid could self-aggregate into core-shell nanoparticles due to the combination 582 
of hydrophobic and electrostatic interactions and hydrogen bonding. These dendrimer nanoparticles 583 
exhibited antibacterial activity against to Gramm negative bacteria as E. coli. 584 
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Similar nanostructures were also prepared with carboxymethyl chitosan-modified magnetic 585 
core composed of magnetite nanoparticles and dendritic branches with carboxymethyl chitosan 586 
terminal groups [199]. These dendrimers exhibit selective adsorption for anionic and cationic 587 
compounds at specific pH and their potential use to remove dyes was successfully proved. 588 

6. Chitosan modification using ionic liquids 589 

The ionic liquids (IL) have become a versatile media to perform chitin and chitosan 590 
derivatization that was not available few of decades ago. Ionic liquids are salts that remain liquid 591 
below 100°C; in a practical sense, are those salts that should be handled as liquids at room 592 
temperature. Most of them are formed by uneven ionic moieties, usually large cations paired with 593 
anions of relatively smaller size. The combination and modification of cations and anions make it 594 
possible to obtain ionic liquids with diverse chemical characteristics and functional properties. Thus, 595 
IL have been praised as customizable solvents; some of them with remarkable properties that have 596 
found its way to industrial scale applications. Many IL have been also classified as “green” solvents 597 
due to their reduced vapor pressure, conventional non-flammability, and exceptional solvation 598 
potential [200,201]. 599 

The IL capacity to dissolve polysaccharides was first reported in 1934. However, this does not 600 
receive considerable scientific attention, until recently. One of the main focus of interest has been the 601 
capacity of some IL to dissolve typically intractable polysaccharides as cellulose or chitin [202–205]. 602 
Imidazolium-based IL, particularly 1-ethyl-3-methylimidazolium (Emim) and 603 
1-butyl-3-methylimidazolium (Bmim) in chloride or acetate form (Figure 16), are commonly used to 604 
prepare chitin and chitosan solutions that could reach relatively high concentration (over 10 w%). 605 
Other types of IL have been reported to dissolve chitosan to different extents, for example, 606 
pyridinium-based IL functionalized with sulfonic acid [206] or amino acid-based IL [207]. The 607 
chitosan-IL solutions provide alternative media to get homogeneous reaction conditions and also 608 
enable derivatizations that are not favored in aqueous environments. The availability of this type of 609 
chitin-chitosan solvent system began to gain relevance in scientific research and applications 610 
development. 611 

 612 

Figure 16. Chemical structure of the acetate salts of 1-ethyl-3-methylimidazolium, Emim, and 613 
1-butyl-3-methylimidazolium, Bmim. 614 

Actually, several types of chemical modifications of chitin-chitosan in IL have been reported. 615 
Some of them have been compiled in focused reviews [208,209]. Chitosan has several functional 616 
chemical groups susceptible to react, which allow the production of a range of derivatives and 617 
grafting. Below is a succinct summary of the most relevant chitosan derivation procedures in IL 618 
reported in the literature and some examples of the obtained products are included in Figure 17. 619 
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 620 

Figure 17. Some examples of chitosan derivatization made in IL. A) Chitosan-graft-oxicellulose, B) 621 
N-acylation, C) O-acylation, D) Alkylation. 622 

6.1. Acylation 623 

Acetylation was one of the first chemical modification procedures performed on chitin-chitosan 624 
dissolved in ionic liquids. Homogeneous acetylation of chitin and chitosan in halide 625 
imidazolium-based IL has been reported [210,211]. Based on the degrees of substitution and 626 
spectroscopic evidence reported both N-acetylation and O-acetylation was achieved indistinctly. 627 
With IL the acetylation of chitosan proceeds in mild and homogeneous conditions, making this 628 
methodology more straightforward compared to usual procedures [209]. Other acylation procedures 629 
have been reported. The IL 1-butyl-3-methylimidazolium acetate (BmimAc) was used as the 630 
reaction solvent to obtain N-linoleyl chitosan oligomers. Narrow-distribution low molecular 631 
chitosan was used as starting material that was acylated with linoleic acid using EDC and 632 
4-(dimethylamino) pyridine (DMAP) as catalysts on mild reaction conditions. The nanomicelles of 633 
the obtained amphiphilic molecules are proposed as drug vector [212]. Similarly, the use of glycine 634 
chloride ([Gly]Cl) aqueous solution as media to synthesize N-acyl chitosan derivatives (i.e. 635 
N-maleyl, N-succinyl chitosan, and N-acetylated) was reported as a procedure to obtain fibers with 636 
improved mechanical properties [213]. Another acylation type modification was achieved reacting 637 
chitosan with monomethyl fumaric acid mediated by EDC. The reaction media was an aqueous 638 
solvent system including 4 w% of the IL, 1-sulfobutyl-3-methylimidazolium 639 
trifluoromethanesulfonate (BSmimCF3SO3). The product, monomethyl fumaric-chitosan amide, has 640 
improved water solubility and antioxidant activity [214]. Chitosan has been also reacted with a 641 
carboxyl group-bearing IL (1-carboxypropyl-3-methyl imidazolium chloride) to obtain an acyl 642 
conjugate. Spectroscopic techniques (NMR and FTIR) were used to elucidate the structure of the 643 
chitosan-ionic liquid conjugate. This compound shows good anion adsorption performance and was 644 
proposed for wastewater treatment [215]. 645 

6.2. Alkylation 646 

Several alkylation type modifications of chitosan have been done using IL as media and 647 
catalyst. The nucleophilic substitution of 2,3-epoxypropyltrimethyl ammonium chloride (EPTAC) 648 
onto chitosan, using ionic liquid of 1-allyl-3-methylimidazole chloride (AmimCl) as a homogeneous 649 
reaction media, produced N-[(2-hydroxyl)-propyl-3-trimethyl ammonium] chitosan chloride 650 
(HTCC). In this system, the attack of the amino groups of chitosan to the C atom with less steric 651 
hindrance in EPTAC is thermodynamically favored according to quantum chemistry calculations 652 
[216]. Chitosan was reacted with four alkyl halides in a basic form of the Bmim IL to prepare a series 653 
of alkylated chitosans with different carbon chain substituents (i.e. ethyl-, butyl-, dodecyl-, and 654 
cetyl-chitosan). The analysis of FTIR spectra indicates the occurrence of O-alkylation; however, the 655 
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N-alkylation prevails at the reaction conditions used. The antibacterial activity of alkylated chitosans 656 
decreased with the growth of the DS or the growth of the carbon chain [217]. Another report of 657 
N-alkylation of chitosan in IL is the production of N-[(2-Hydroxyl)-propyl-3-trimethyl ammonium] 658 
chitosan chloride (HTCC) in AmimCl [218]. In contrast, there are few examples of O-alkylation of 659 
chitosan achieved in IL. Dodecanol was selectively linked to hydroxyl groups of chitosan using 660 
N,N'-carbonyldiimidazole as a bonding agent and BmimCl as homogeneous media. The authors 661 
attribute the selective alkylation of hydroxyl groups of CS, without protecting amino groups, to the 662 
particular properties of the ionic liquid solvent [219]. 663 

6.3. Grafting 664 

The solvent capacity of several IL has been used to achieve grafting on chitin or chitosan. Chitin 665 
graft polystyrene was obtained by atom-transfer radical polymerization (ATRP) in AmimBr [220]. 666 
Methacryloyloxyethyl trimethylammonium brushes were formed on chitosan by single electron 667 
transfer living radical polymerization in BmimCl [221]. The synthesis of chitosan graft 668 
polyethylenimine copolymers was developed in BmimAc [222]. Two different research groups have 669 
reported the chitosan grafting with polycaprolactone using IL as a solvent. Wang and collaborators 670 
use EmimCl as solvent and stannous octoate as catalyst [223], whereas Yang and co-workers use a 671 
ring-opening graft polymerization route with N-protected chitosan dissolved in BmimAc [216] 672 

Ionic liquids allow the homogeneous mixture of polysaccharides in solution. This has been used 673 
to produce several composite materials. Furthermore, these solvent systems have enabled the 674 
possibility to carry out inter-polysaccharide reactions that have been proved difficult to do in other 675 
media. Thus, it was possible to produce chitosan graft oxycellulose using a mixture of two IL, 676 
AmimCl as the solvent and 1-sulfobutyl-3-methylimidazolium hydrogen sulfate (SmimHSO4) IL as 677 
the catalyst of the reaction [224]. Another example is the covalent linking of chitosan and xylan 678 
through the Maillard reaction in BmimCl [225]. 679 

6.4. Other derivatizations 680 

The crosslinking of chitosan in IL has been explored. Chemical ionogels were obtained 681 
crosslinking chitosan with glutaraldehyde in EmimAc [226]. Recently was reported the design of a 682 
dicationic IL (1,10-(butane-1,4-diyl)bis(3-(4-bromobutyl)-1H-imidazole-3-ium)bromide) used as 683 
crosslinking agent for chitosan. The composite materials of chitosan crosslinked with IL were tested 684 
as catalysts of the cycloaddition reaction of CO2 with various epoxides [227].  685 

Other derivatization reactions of chitosan performed in ionic liquids solutions include the 686 
formation of a Schiff base conjugate using BmimCl as solvent [228], and the sulfonation of chitosan 687 
in an aqueous solvent system containing [Gly]Cl [229]. 688 

6.5. Degradation 689 

A homogeneous reaction media like the obtained using IL represent an opportunity window to 690 
test diverse modifications in the chemical structure of chitin and chitosan. One of the basic 691 
modifications of these polysaccharides is the deacetylation. This has been achieved by hydrothermal 692 
treatment using aqueous BmimAc as reaction medium and catalyst [230]. However, there are more 693 
scientific reports on the hydrolysis of chitin and chitosan in IL.  694 

A mixture of BmimCl, BmimBr, and hydrochloric acid was effectively used to depolymerize of 695 
chitin [231]. Improved reaction rates were reported when chitosan dissolved in AmimCl was treated 696 
with sulfonic acid-functionalized ionic liquids based in propylpyridinium and microwave 697 
irradiation [206]. An aqueous solution–ionic liquid biphasic catalytic system was proposed for the 698 
oxidative degradation of chitosan. Chitosan was dissolved in diluted HCl and the hydrophobic ionic 699 
liquid 1-N-butyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl) imide ([bmim][Tf2N]) 700 
containing with iron(II) phthalocyanine (FePc) complete the oxidative catalytic system [232]. 701 
Furthermore, a nitrogen-containing furan derivative has been obtained directly from chitin 702 
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dissolved in a range of imidazolium-based IL, containing HCl or HBr as additives, after a thermal 703 
treatment [233]. 704 

6.6. Biocatalyzed reactions 705 

Ionic liquids have been also used as effective media for biocatalyzed reactions. It is considered 706 
that many enzymes, particularly those that tolerate conventional organic solvents, can achieve 707 
comparable activities in ionic liquids. Moreover, ionic liquids solvent systems could overcome some 708 
limitations that are observed in the biotransformation of highly polar substrates, such as 709 
polysaccharides [200]. Consequently, several research groups have studied enzymatic modifications 710 
of chitin-chitosan using IL as reaction media or additive. Bacterial and fungal chitinases dispersed in 711 
an aqueous solvent system containing EmimAc were applied to produce monomers and 712 
oligosaccharides from chitin. A notorious enzymatic activity reduction was observed when IL 713 
concentration is over 20 v% [234]. Chitosan oligomers were produced with amylose in a [Gly]BF4 714 
aqueous medium. Similarly, an enzymatic activity reduction was observed when the IL 715 
concentration goes over 8 v% [235]. On the other hand, commercial lipase was used for the synthesis 716 
of chitosan esters via transesterification with methyl palmitate. The reaction media contain a mixture 717 
of a hydrophilic IL, EmimAc, and a hydrophobic IL, Bmim tetrafluoroborate [236]. 718 

The ionic liquids have become a promising solvent platform for controlled chemical 719 
modification of chitosan. The “customization” of IL could provide tunable homogeneous phase 720 
media to circumvent the common drawbacks of the heterogeneous conditions (i.e. require harsh 721 
reaction settings, high variability, low product yields, extended reaction times, etc.) [208,209]. Most 722 
of the cited authors in this section remark the “green” solvent condition of IL refereed to their low 723 
vapor pressure, non-flammability, thermal and chemical stability. Furthermore, the reuse and 724 
recycling of IL have received particular attention. There are examples of controlled reactions, even 725 
regioselective, derivatization of chitosan using IL as media, additive or catalysts. However, the main 726 
concerns about the use of IL focus on their biocompatibility and their cost, as they are not readily 727 
available yet. The application of IL for polysaccharide processing is relatively recent subject, the 728 
possibilities enabled are numerous thus considerable research effort is ongoing worldwide.  729 
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