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Abstract: Nowadays, the research and development of on-chip LiDAR sensors for vehicle collision 

avoidance is growing very fast. Therefore, the assessment of the reliability in obstacle detection 

using the information provided by LiDAR sensors has become a key issue to be explored by the 

scientific community. This paper presents the design and implementation of a self-tuning method 

in order to maximize the reliability of an Internet-of-Things sensors network and to minimize the 

number of sensors to localize with the required accuracy obstacles by a detection threshold. In order 

to achieve this goal, models that predict accuracy (i.e., prediction error) for object localization using 

data collected by LIDAR sensors are designed and implemented in Webots Automobile 3D 

simulation tool. The approach is based on combining different techniques. Firstly, point-cloud 

clustering technique and an error prediction model library composed by a multilayer perceptron 

neural network with backpropagation, k-nearest neighbors and linear regression are explored. 

Secondly the above-mentioned techniques for modeling are also combined with a supervised and 

reinforcement machine learning technique, Q-learning in order to minimize the detection threshold. 

In addition, a IoT driving assistance simulated scenario with a LiDAR sensor network is designed 

in order to validate the prediction model and the optimal configuration of the sensor network to 

guarantee reliability in obstacle localization. The results demonstrate that the self-tuning method is 

appropriate to increase the reliability of the sensor network whereas minimizing the detection 

threshold.  

Keywords: LiDAR sensors reliability; Internet of Things, self-turning parametrization; k-nearest 

neighbors, driven-assistance simulator. 

 

1. Introduction 

Nowadays, the Internet of Things (IoT) applications are present in many sectors from industry 

environments (e.g. manufacturing, energy, etc.) to our personal lives (e.g. health, society, mobility, 

etc.). IoT are strategic for automotive applications with fresh push and investment in recent years in 

order to develop and put into the market smart mobility ecosystems with an autonomous level of 

interaction between vehicles and infrastructures. Nevertheless, everyday car manufacturers, OEMs 

for automotive sector, researchers and engineers are introducing new technological contributions and 

new challenges should be addressed in short terms [1, 2].  

One particular challenge aiming at autonomous driving is the estimation of the accuracy and 

reliability in vision devices such as Light Detection and Ranging (LiDAR) and stereo camera 

integrated into automotive driving assistance systems for pattern recognition and obstacle detection 

tasks [3]. In many scenarios, it is very difficult to certify with a lower uncertainty level the real 

topology and distance of the objects, in most cases due to phenomena as dead zones, object 
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transparency, light reflection, weather conditions and sensors failures [4]. Furthermore, traditional 

networking devices are not designed to be used in the unpredictable, varying and dynamic 

environments of a IoT transportation ecosystems, being necessary to develop new methodologies to 

characterize and estimate the sensors reliability [5]. By the other hand, sensors fusion is commonly 

applied to combine different sensors for road detection, mainly cameras and LiDARs. Nevertheless, 

current sensor fusion methods are taking advantage of both sensors (cameras or LIDARs), rather than 

exploiting the advantages of each sensor isolated [6]. Furthermore, the parallel processing of frames 

(from camera) and scans (LiDAR) imply a high computational cost, being unnecessary in many 

scenarios if a method of error prediction based on sensor model for assessing reliability in runtime is 

developed [7].   

Another important issue is the increase of computing power and wireless communication 

capabilities to expand the role of sensors from mere data collecting to more demanding tasks as 

sensor fusion, classification and collaborative target tracking. Fault tolerance and reliability perform 

a key role for embedded systems, such as obscured wireless sensors, which are deployed in some 

applications where it is difficult to access them physically [8]. Reliable monitoring of a phenomenon 

(or event detection) depends on the set of data provided by the cluster of sensors, and not only rely 

on any individual node. The failure of one or more nodes may not cause the disconnection of 

operational data sources from the data sinks (command nodes or end user stations). However, it may 

increase the number of hops a data message has to go through before reaching its destination (and 

subsequently increase the message delay), giving an estimation of the failure probabilities of the 

sensors, as well as the intermediate nodes (nodes used to relay messages between data sources, and 

data sinks) [9]. 

Several reconstruction methods are reported in the literature to create specific geometry models 

of existing objects from scanned point clouds based on information obtained from LiDARs [10]. The 

progress in modelling techniques to simulate complex driving environments provides a realistic 

representation between multiple input/output variables in order to determinate which factors are 

most influential in degrading reliability, and rank ordering them, as well as, the detection of 

pedestrians, obstacles and vehicles in real-time driving scenarios [11]. Clustering techniques are 

highly used on exploratory data mining, statistical analysis, pattern recognition, image analysis, 

information retrieval, bioinformatics, data compression and computer graphics [12]. Among 

clustering algorithms one of the most used is the k-nearest neighbor’s (k-NN) algorithm because of 

the simplicity to get nearest neighbors of a query in training dataset, and then predicts the query with 

the major class of nearest neighbors [13]. Another widely applied technique in industrial applications 

is the reinforcement learning [14]. A good example of that are the results archived by the Q-learning 

algorithm in function to generate artificial intelligence and self-learning strategies on complex 

processes, providing self-tuning capability to obtain the optimal configuration based on the reward 

or penalties learned in previous states (iterative knowledge generation) [15].  

From the best of authors’ knowledge, the main contributions of this work is the design and 

implementation of a four-step method to maximize the reliability on IoT LiDAR sensors network and 

to minimize detection threshold (the number LiDAR sensors required to detect one obstacle). The 

method includes a point cloud grouping, modeling, learning and self-tuning (knowledge-based 

learning algorithm) tasks, combining supervised and reinforcement machine learning techniques and 

clustering. Furthermore, a IoT driving assistance scenario with a sensor network is created using 

Webots simulation tool to generate a LiDAR scan benchmark. Finally, the method is validated on 

dynamic obstacle detention scenario in order to obtain the best prediction model and optimal number 

of LiDAR sensors needed to guarantee reliability in the obstacles localization using these sensors. 

The paper consists of five sections. Following this introduction, the second section shows the 

design and implementation of several modules introduced on self-tuning reliability methodology. 

Subsequently, a driving-assistance case study scenario for obstacle detection based on IoT LiDAR 

model sensors information is developed in Section 3. Besides, the proposed methodology is validated 

based on the minimal number sensors demanded to ensure the LiDAR sensor reliability on each scan. 

Finally, the conclusions and future research steps are presented. 
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2. Self-tuning Method for Reliability in LiDAR sensors network. 

The self-tuning method for reliability in LiDAR sensors network mainly consists of a computer-

aided system to enable an efficient data interchange between the data provided by IoT sensor 

networks managed by a control node network and external modules devoted to evaluate the 

behaviour of these networks. The component in charge of generating sensory data through the 

simulation of sensor models is called Supervisor Node Controller (SNC); while the interface with the 

external modules is called IoT assessment framework. Different simulation tools can be used for this 

purpose. On the one hand, a 3D model simulator for automotive applications and on the other hand, 

an external programming software with a set of toolkits to manage points cloud, clustering methods, 

pattern recognition algorithms and modelling strategies based on Artificial Intelligence techniques, 

among others. 

2.1. Conceptual design 

The conceptual and architectural design of the proposed method is presented in this section. 

Figure 2 shows the data interchange between sensory and actuation. The data interchange component 

operates as data sharing broker. Supervisor Node Controller (SNC) and IoT Assessment framework 

bring and collect information from the data interchange broker.  

  

Figure 1. Conceptual design of Self-tuning Method. Iteration between IoT Assessment Framework 

and Supervisor Control Node. 

The SNC is composed by different local control nodes containing Internet-of-Things (IoT) sensor 

network models, distributed according to their functions. The distributed IoT sensors are in charge 

of capturing sensory data and interchange these data with the SCN in order to share it with other 

external modules. It is important to highlight that to send and receive information between the 

different nodes of the IoT sensors network, these data must necessarily pass through the supervisor. 

However, this obligation is not necessary when this data transfer is between the different IoT sensors 

that make up the sensor network. 

The IoT assessment framework is responsible for receiving / sending data from/to the SCN. The 

first key component is a model developed for a tailored function in direct link with the local control 
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nodes and the IoT sensor network. The training procedure for this model is carried out using 

computational intelligence such as k-Nearest Neighbour, Multi-Layer Perceptron, Support Vector 

Machine, Self-Organizing Map, Bayesian Network, etc. For example, one model can be in charge of 

predicting predict the error in the localization of an object from data cloud points given by a LiDAR 

sensor. On the other hand, the second is group of tasks for self-tuning (knowledge-based learning 

algorithm). This module consists of a computational intelligence (CI) model library that contains 

other models with similar functions and a learning strategy (i.e., Q-Learning) that computes in 

runtime the actual threshold value with the aim of performing corrective actions. Both methods can 

also be enriched at runtime from data received by nodes of the IoT sensors network. 

2.2. Implementation 

The SCN, the local control nodes and IoT sensor network are designed and implemented using 

a simulation tool for 3D models using Webots for automobiles R2018a [16]. In addition to its high 

degree of potentiality when simulating sensors for driving assistance, Webots is able to interact with 

other external software or programming languages, such as MatLab, Python, Java and Visual #C/C++, 

among others. It should be noted that for modelling and simulation of sensors, any other simulation 

tool for 3D sensor models can be selected. 

 

 

Figure 2. Implementation of self-tuning procedure (knowledge-based learning algorithm). 

Therefore, IoT assessment framework can be implemented using any of the previously 

mentioned software or external programming languages. However, one of these programming 

software with an extensive set of libraries is MaLlab 2017b, then selected for developing the self-

tuning procedure. This tasks are carried out by two parallel execution threads, one of them in a local 

mode with directly data transfer with the IoT sensor network, and the other on a global level. The 

local tread (parallel execution 1) executes the current error prediction model from sensory data 

provided by IoT sensor network. Subsequently, depending on the value of a certain threshold that 

are calculated in runtime through a learning process, a set of corrective actions are performed. This 

procedure is described in later sections. 

On the other hand, the global tread (parallel execution 2) contains the CI model library with 

other error prediction models with different performance indices. Later on, the library can be also 

enriched from the process simulation. During the simulation, new sensory data can be generated 

providing new environment information in each interaction. Based on this continuous information 

flow and the previous knowledge-based learning algorithm, the library executes a parallel learning 

procedure for all error prediction models to obtain a personalize setting for each particular critical 

situation. Finally, once a new best configuration is yielded the corresponding model in the IoT sensor 

network is then updated. 
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2.2.1. Supervisor Control Node 

This controller is in charge to manage the scenario in runtime and interchange data between 

local control nodes or IoT sensors with other external modules. The overall operation of the 3D 

scenario is managed by the SCN, in this case, of Webots. Webots roots come from an extension of 

robot’s simulation software adapted to automobile simulations in a virtual environment. A set of 

computational procedures is in charge of adapting and transferring sensory information. The data 

transfer is carried out by means of different functionalities available in Webots. For example, some of 

available functions serves to create sensor models, such as LiDARs, stereo vison cameras, radar, 

Inertial, Magnetic, Gyroscope and GPS sensors that can be emulated with this software. In addition, 

many obstacles and objects can be added to the scenario, such as simple Vehicles, toad segments, 

traffic signals and lights, buildings, etc. Therefore, a 3D traffic scenario can be created in order to 

simulate the behaviour of IoT sensor networks that incorporates in each control local node (i.e. a fully 

automated vehicle) for driving-assistance scenarios. 

2.2.2 Threshold detector and Q-learning procedure 

Q-learning algorithm is a model-free reinforcement learning technique. Specifically, Q-learning 

can be used to find an optimal action-selection policy for any given (finite) Markov decision process 

[17]. It works by learning an action-value function that ultimately gives the expected utility of taking 

a given action in a given state and following the optimal policy (off-policy learner) thereafter. The 

algorithm is based on a simple value iteration update. It assumes the old value and makes a correction 

based on the new information [18].  

 1 1 1 1( , ) ( , ) ( max ( , ) ( , ))t t t t t t t t t
a A

Q s a Q s a R Q s a Q s a    


   g g   (1) 

where, rt+1 is the reward observed after performing at in st, and  is the learning rate (0 <  ≤ 1). 

The Q-learning algorithm is introduced in the closed-loop cycle (self-tuning) in order to 

minimize the numbers of LiDAR sensors needed to guarantee a good accuracy in the localization of 

a detected obstacle with the minimum computational illustrated in Figure 2. Table 1 shows different 

rewards assigned for each detection threshold ().  

Table 1. Q-learning reward matrix for detection threshold. 

Detection threshold () 

ranges 

Rewards for number 

of LiDARs 

1 3 5 

0-1 1.0 0.9 0.85 

1-5 0.7 0.6 0.5 

5-10 0.35 0.3 0.25 

+10 0.15 0.1 0 

  
These range of values are defined in function of the obstacle prediction error calculated during 

the classification step (see Figure 2). During the learning process, the algorithm recommends the 

optimal numbers of sensors to achieve a reliable obstacle detection, based on the previous knowledge 

generated by the rewards obtained from similar situations learnt in the past. This self-turning 

threshold produces a reduction of the computational cost and an accelerates the prediction time to 

detect an obstacle in the driving assistance environments. 

3. IoT LiDAR Sensor Models for Obstacle Detection. Case Study 

A particular driving assistance scenario is defined in order to evaluate and to validate the 

proposed self-tuning methodology. In this use case, the methodology was applied to a LiDAR sensor 

model to assess the reliability related to the error accuracy in the location of an object. In this section, 

a model of error prediction from data of a single LiDAR sensor model was generated. Instead, this 
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same model will be used in a later section to evaluate and establish the reliability of an IoT sensor 

network. The way to generate a dataset for training and validate the error prediction models is 

described in the following sections. 

3.1. Traininig dataset from 3D scenario simulation 

In order to generate a virtual driving traffic scenario, Webots automobile simulation tool was 

used, creating also a 4-layer LiDAR sensor model. The scenario emulates the real setup available in 

the Centre for Automation and Robotics (CAR) in Ctra. Campo Real Km. 0.2, Arganda del Rey 

(Madrid, Spain), composed by a test track (a roundabout, traffic lights in the central crossing and 

additional curves on the main straight) to simulate an urban environment with pedestrians and a 

fleet of six fully-automated vehicles in movement and a communications tower [19]. Figure 3 

illustrates the aerial view of some of these 3D scenarios in Webots Automobile for driving assistance. 

A vehicle model (Toyota Prius), a camera image with objects recognized and the LiDAR point cloud 

are illustrated in Figure 3, implemented in this simulation tool.   

 

 
Figure 3. Simulated 3D scenario in Webots for Driving Assistance. (a) Aerial view of simulation 

scenario, (b) vehicle model with sensors incorporated (c) camera obstacles recognition procedure 

and (d) point cloud of objects into the scenario. 

The fully sensorized vehicle model (Toyota Prius model) incorporates two on-board sensors, one 

LiDAR sensor and a 3D stereo vision camera (see Figure 3b). Both sensors are located inside the 

vehicle, the LiDAR on the bottom front and the camera on the upper front. Table 2 shows the 

specifications and localization of this sensor models into the vehicle. 

 

 

 

Table 2. Specifications and localization into the vehicle of both sensor models. 

Specifications Ibeo Lux 4 Layers Specifications Bumblebee 2 1394a 

Localization Bottom frontal Localization Front top 

Horizontal field 120 deg. (35 to −50 deg.) Size resolution max. 1034 x 776 pixels 

Horizontal step 0.125 deg. Pixel resolution 4.65 µm square pixels  

Vertical field 3.2 deg. Focal lengths 3.8 mm 

Vertical step 0.8 deg. Aperture Focal length / 2.0 

Range 200 m Horizontal Field of View 66° 
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Update frequency 12.5 Hz Frame rates 20 FPS 

3.1.1. Benchmark data 

During 2 minutes and 56 seconds of simulations, a data collection provided by the LiDAR sensor 

model and a set of captured images by 3D stereo vision camera model were obtained. In total, a 

benchmark of 1031 scenes is available with the same number of LiDAR scans, captured images and 

annotation files with the localization of each recognized obstacles. 

On the one hand, the camera benchmark contains 1031 images and its corresponding annotation 

files obtaining from the object recognition algorithm of the camera sensor model with the following 

information: localization (weight x height) into the image (in pixels) of each object and the size 

(weight x height) of each object into the image. This model sensor is a stereo vision camera which 

specifications are 0.8 MP; resolution, 1032 × 776, in color and 20 FPS.  

On the other hand, the LiDAR benchmark contains 1031 scans. Each scan contains 3-D point 

cloud/scan. This small benchmark set is useful for exploring the accuracy of an obstacle in the scene. 

Each scene contains in first, second and third column the X, Y, Z relative position of object regarding 

the localization of the LiDAR into the scene (X0 = 0, Y0 = 0 and Z0 = 0), and the fourth column are the 

number of the corresponding layer. 

In addition, the raw data obtained from the LiDAR need to be filtering and pre-processing in 

order to facilitate the determination of the error in the location of an object. Firstly, points 

corresponding to the ground plane that make up the road asphalts and the vegetation are eliminated. 

Principally, the points deleted are located 20 cm above the ground plane. 

Secondly, in order to process the sensory data, fast indexing and search capabilities are required. 

For this, the data of the point cloud is internally organized using a k-d tree structure [20] and then, 

the next step of data-processing consists of extracting the points that correspond to nearby obstacles 

corresponding to specific point-cloud sequence. For this segmentation, a density-based spatial 

clustering of applications with noise (DBSCAN) was applied [21], being able to segment the point 

cloud for each available obstacle in the scene. Product to the algorithm returns the points clustered 

for each axis, the following formula is used to calculate the centroid of each point cloud segmented 

(X0, Y0, Z0) that corresponds to each obstacle: 

 
0 0 0

1 1 1

( , , , ) , ,
i n i n i n

i i i

i i i

x y
X Y Z

n n n

z  

  

 
  
 
    (2) 

Finally, the last step is to compare each centroid calculated by means of the LiDAR with the 

actual location obtained by the object recognition algorithm of each obstacle in order to obtain the 

accuracy error.  

Once the benchmark data set is created, the next step is to create the training data set itself for 

the generation of the error prediction models. Next, the spatial statistics of the point cloud used as 

inputs to the error prediction model are described. Subsequently, the two errors that have been taken 

into account as outputs of the model are also explained. 

3.1.2. Model Inputs  

A group of spatial statistics were implemented in order to standardize the model inputs 

independently of distribution of the point cloud [22]. Based on these spatial point pattern methods 

have been obtained the centrographic and directional distribution of the cloud of points. Common 

centrographic statistics for a point pattern are the mean center, median center, standard deviational 

circle and standard deviational ellipse [23]. The mean center MC is characterized by geographic 

coordinates {X, Y, Z} equal to the arithmetic means of the x-, y- and z-coordinates of all the N points 

in a pattern: 

 1 1 1( ) ; ( ) ; ( )

N N N

i i ii i i
x y z

MC X MC Y MC Z
N N N

    
  

  (3) 
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An alternative unique measure of central spatial tendency of a point pattern that was used is the 

center of minimum distance (often referred to as the median center), which is robust in the presence 

of spatial outliers. Unlike the mean center, defining the median center MedC requires a much more 

computationally complex iterative process to find a location that minimizes the Euclidean distance d 

to all the points in a point pattern [24]: 

 

        
2 2 2,

1, 1
, , |min

i N t At t t t t t

i i ii t
MedC x y z x x y y z z

 

 

 
     

 
   (4) 

 

where i defines each point in a point pattern, t is an iteration number and {xt, yt, zt} is a location of an 

iterative candidate median center. An important property of a point pattern is the degree of its spatial 

spread. It can be characterized by the standard distance SD, estimated as: 

 

 

     
2 2 2

1 1 1

n n n

i i i

i i i

x X x Y x Z

SD
N N N

  

  

  
  

  (5) 

 

where xi, yi and zi are the coordinates of point i{xi, yi, zi}, N is the total number of points and X, Y and 

Z are the coordinates of the mean center MC{X,Y,Z}. 

Finally, the last spatial statistics used as input in this work is the third central moment (3thCM) 

[25]. This value represents the mean value of the cubic deviation in distance of each point with respect 

to the mean center (MC) of each axis. The 3thCM value is calculated as follows: 

 

      
2 2 2

1

1
3 ( ) ( ) ( )

nth

i i ii
CM x MC X y MC Y z MC Z

n 
      
    (6) 

where xi, yi and zi are the coordinates of point i{xi, yi, zi}, n is the total number of points and MC is the 

mean center by geographic coordinates {X, Y, Z} which were calculated in equation (3). 

3.1.3. Model output 

 The outputs of these models are two figure of merits of the accuracy: the distance root mean 

squared (DRMS) and the mean radial spherical error (MRSE). The first is a measure of data tracked 

in the x-y plane (2D) and the second is a measure of the data tracked in x–y–z space (3D) [26]. The 

DRMS and MRSE values are calculated as follows: 

 

     2 2

, ,1

1 n

i Actual ti i Actual tii
DRMS x x y y

n 
      (7) 

 

       2 2 2

, , ,1

1 n

i Actual ti i Actual ti i Actual tii
MRSE x x y y z z

n 
        (8) 

 

where n is the number of readings for a dynamic tag during the time it is tracked, (xti, yti, zti) are the 

coordinates of the tag at time ti, and (xActual,ti, yActual,ti, zActual,ti) are the actual coordinates of the tag at time 

ti. 

3.2. Model training and initial validation 

In order to estimate the value of the figure of merits in terms of error (DRMS and MRSE) in 

function of parameters extracted from the cloud of point generated by the LiDAR sensors, the error-

based prediction model library for the localization is defined. During the approach, three models 

were considered. First, a multilayer perceptron neural network with backpropagation (MLP) 
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composed by two hidden layer, 5 neurons for each hidden layer, sigmoid activation functions, 1∙104 

epochs, training initial value of  = 10–3, decrease factor of 0.1, increase factor of 10, maximum value 

of  was 1010 and the minimum performance gradient was 10-7. The second modeling technique is a 

k-Nearest Neighbors (k-NN) with 2 neighbors. Finally, a lineal regression is also obtained by 

minimizing the sum of squared of the difference between the predicted and observed values.  

Table 3. Model correlation coefficients based on plane & space figures of merits 

Models 

Correlation coefficient (R2) 

DMRS MRSE 

MLP 0.8668 0.8670 

k-NN 0.9355 0.9355 

Linear Regression 0.4841 0.4858 

 

1031 scans were extracted from the Webots simulator to generate the training and validation 

datasets. Subsequently, the scans were randomly divide into two datasets: 765 samples for the 

training dataset (representing the 74% of the total of samples) and 255 samples to compose the 

validation dataset (representing the another 26% of the total of samples). The model correlation 

coefficients (R2) were estimated for all the models implemented in the modelling library. The Table 3 

showed the values obtained for each model based on the plane (DMRS) and space (MRSE) figures of 

merits described before. As it can be appreciated, in both cases the k-NN algorithms represent the 

best fitting parameters, with a 93% of correlation between the x, y, z cloud of points coordinates in 

the localization of each obstacle detected.   

 

 

Figure 4. Prediction error behaviour of the model library in the localization of obstacles by LiDAR 

point clouds. 

Finally, distance root mean square tendency for all the models is shown in Figure 4, validating 

the best fitting obtained between the observed solution and the prediction values based on the k-NN 

algorithm. Nevertheless, in most of cases, the MLP model present very similar behavior with the k-

NN model, not so far from the linear regression model.  

4. Experimental results. 

Additional experimental tests, for evaluating the IoT on-chip LiDAR sensor network and the 

performance of self-tuning methodology on dynamic obstacle detention scenario, were also 

conducted in order to define the best prediction model and optimal number of LiDAR sensors 

required to ensure the reliability of this sensor network. Some critical conditions were taken into 

account in the conducted study. 

In this case, the simulation time (43 seconds) for each traffic scenario is somewhat smaller due 

to the computational overload generated by the processing and storage of all the data provided by 5 

LiDARs plus 2 high resolution cameras. In addition, the global scenario is the same that was 
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generated in section 3. However, there are more devices and objects in each scene with different 

distribution. Some of these dynamic objects in the scenario are 4 buildings, 50 trees, 20 pedestrians, 

10 small and medium vehicles, and 1 truck. Therefore, the main difference relies on the distribution 

of the IoT sensory system in the fully automated vehicle (Toyota Prius) modelled in Webots (see 

Figure 5). 

 

Figure 5. Side (a), front (b), plan (c) and rear view (d) of on-board IoT sensory system setup into 

vehicle model. 

Figure 5 represents the configuration of the IoT sensory system mounted in a fully automated 

vehicle modelled in Webots automobile.  

Table 4. Localization of each sensor which makes up the IoT sensory system. 

Sensor Model Localization (m) 

3D Stereo Camera Bumblebee 2 ( 0.0, 2.04, 1.2) 

LiDAR 0 Ibeo Lux 4 layers ( 0.0, 3.635, 0.5) 

LiDAR 1 Ibeo Lux 4 layers (-0.70, 3.64, 0.5) 

LiDAR 2 Ibeo Lux 4 layers ( 0.70, 3.64, 0.5) 

LiDAR 3 Ibeo Lux 4 layers (-0.55, 2.04, 1.2) 

LiDAR 4 Ibeo Lux 4 layers ( 0.55, 2.04, 1.2) 

 

On the bottom front of the vehicle, three equidistant LiDAR models (LiDAR 0/1/2) are placed in 

order to expand the horizontal field of view. In the upper front, just on either side of the stereoscopic 

camera model, there are two models of LiDAR devices (LiDAR 3/4) whose purpose is to expand the 

field of view, in this case, vertical. The aim of this IoT evaluation is to demonstrate how IoT sensory 

system incorporates a series of extended capabilities in terms of precision in measurements regarding 

the behavior of a single sensor with better specifications than each node of the sensory network 

isolated. The setup of the IoT sensory system is summarized in Table 4. 

The next step was associate the same model of the error prediction model library to each LiDAR 

sensor. The conceptual diagram of the self-tuning method is shown in Figure 6.   
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Figure 6. Flow diagram of the self-tuning method for the IoT sensors dynamic obstacle detection 

scenario. 

During simulations of each scenario, the information provided by each sensor is collected, 

filtered and processed (as it was discussed in section 3.2.1), the spatial statistics are calculated (it was 

described in section 3.2.2) and applied as inputs to each model in the library of error prediction 

models. These models are able to estimate the accuracy of the localization for an object using LiDAR 

sensor, based on the DMRS and MRSE figures of merits. Table 5 lists the value of the correlation (R2) 

of each type of model (ANN, k-NN and regression models) according to the number of LiDARs (1, 3 

or 5) used at each instant with the objective of expanding the field of view, both vertical and 

horizontal, of the IoT LiDARs network in different critical situations. 

Table 5. Behaviour of the correlation (R2) of each one of the types of models according to the 

number of LiDARs used at each moment. 

Techniques 

Model correlation (R2) 

1 LiDAR 3 LiDAR 5 LiDAR 

DRMS MRSE DRMS MRSE DRMS MRSE 

ANN 0.8190 0.8185 0.8949 0.9167 0.8263 0.8279 

k-NN 0.8184 0.8219 0.9868 0.9871 0.8893 0.8909 

Regression 0.7317 0.7300 0.7572 0.7614 0.7269 0.7307 

 

From this table, the type of model within the library with better correlation for both outputs of 

2D and 3D spatial error type with respect to different IoT LiDAR system configurations can be 

extracted. With one LiDAR the correlation values for both outputs are similar to those obtained in 

section 3.2.3. On the other hand, for a configuration of 3 sensors, the value of this performance index 

improves notably in all models, highlighting k-NN since it is very close to 100%. Although, in theory, 

increasing the number of sensors the field of view is widened, it turns out that the correlation 

decreases with 5 sensors in all models. One of the causes of this is the duplicity of information 

provided by too many sensors. This problem could be solved by using an optimized distribution in 

mesh that avoids the duplication of space covered by each LiDAR. 

Finally, during the simulation of this dynamic obstacle localization scenario, the learning and 

self-tuning (knowledge-based learning algorithm) tasks were also validated to automatically set the 

best prediction model and optimal number of LiDAR sensors needed to ensure the reliability. The Q-

learning classification error matrix is shown in the Figure 7. 
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Figure 7. Q-learning classification error matrix 

As it is shown, the 67% of the scenarios can be appropriately addressed with a threshold between 

0-1 (in other words, with more than 99% of detection accuracy) and only one LiDAR is demanded. In 

total, 87% of the scenarios can be solved using only one LiDAR, but it is recommended to use 3 LiDAR 

if the threshold is bigger than 10 (with less than 90% of obstacle localization accuracy), increasing 

considerably the reliability on multi-sensor-based system. Furthermore, it is good to clarify that only 

in the 2% of the cases 5 LiDAR sensors are needed, which is an evidence of the suitability of the self-

tuning method for minimizing the number of sensors required to achieve a higher obstacle 

localization reliability in the driving-assistance environments. 

5. Conclusions 

The design and implementation of self-tuning method based on simple soft-computing methods 

for automatically selecting the LiDAR sensors in a IoT multisensory driving-assistance scenarios in 

order to increase the obstacle localization reliability is presented in this paper. The proposed method 

includes four main tasks combining point cloud grouping, clustering, supervised and reinforcement 

learning algorithms. Three simple techniques suitable from the perspective of industrial informatics 

have been considered to implement the modelling library: a linear regression to corroborate the direct 

correlation between the extracted point clouds with obstacle localization; secondly, the well-known 

multi-layer perceptron once again corroborated the suitability for modelling the main process 

characteristics; and a k-Nearest Neighbors showing the suitability of clustering techniques to stablish 

correlations based on point dispersions. All the selected models have accurately reflected the 

behavior of the selected variables and the statistical tests have confirmed the goodness-of-fit, 

highlighting the more than 90% of the correlation coefficient obtained for k-NN algorithm in almost 

all the scenarios.  

By the other hand, a Q-learning algorithm was also introduced in order to minimize the number 

of LiDAR sensors needed in each obstacle localization scenario to ensure sensors reliability based on 

global IoT sensors network information. The self-tuning procedure is based on a reinforcement 

learning algorithm to explore for each particular scenario how many sensors are required to detect 

the number of obstacles present in one scan. Based on that, the proposed method fulfils two main 

criteria: the best model-based fitting and self-tuning management of the computational resources 

(smaller number of LiDAR real required for each particular situation) necessary to improve the 

obstacle localization reliability on IoT LiDAR sensor networks. The accuracy and generalization of 

the proposed method was in a virtual driving traffic scenario developed with Webots Automobile 

simulation tool, solving the 67% of the scenarios taken account using one LiDAR with more than 99% 

of obstacle localization accuracy. Finally, the proposed self-tuning methodology will be embedded 

and validated in real driving environments as part of the contributions to the IoSENSE project1. 

                                                 

1 European Project (www.iosense.eu) 
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