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Abstract: The importance of predicting the exposure to environmental hazards is highlighted by 16 
issues like global climate change, public health problems caused by environment stresses, and 17 
property damages and depreciations. Several approaches have been used to assess potential 18 
exposure and achieve optimal results under various conditions, for example, for different scales, 19 
groups of people, or certain points in time. Micro-simulation tools are becoming increasingly 20 
important in human exposure assessment, where each person is simulated individually and 21 
continuously. This paper describes an agent-based model (ABM) framework that can dynamically 22 
simulate human exposure levels, along with their daily activities, in urban areas that are 23 
characterized by environmental stresses such as air pollution and heat stress. Within the framework, 24 
decision making processes can be included for each individual based on rule-based behavior to 25 
achieve goals under changing environmental conditions. The ideas described in this paper are 26 
implemented in a free and open source NetLogo platform. A simplified modeling scenario of the 27 
ABM framework in Hamburg, Germany, further demonstrates its utility in various urban 28 
environments and individual activity patterns, and portability to other models, programs and 29 
frameworks. The prototype model can potentially be extended to support environmental incidence 30 
management by exploring the daily routines of different groups of citizens and compare the 31 
effectiveness of different strategies. Further research is needed to fully develop an operational 32 
version of the model. 33 

Keywords: environmental stress; human exposure; agent-based model; air pollution; urban heat 34 
wave; exposure modeling; climate change 35 

 36 

1. Introduction 37 

1.1 Human exposure to environmental stresses 38 
Human health is closely related to the surrounding environment. People are exposed to a variety 39 

of factors that can be hazardous to health, including the physical living environment. A series of 40 
climate change-related risk factors (rising sea levels and storm surges, heat waves and droughts, 41 
typhoons and extreme precipitation, inland and coastal floods) have been and will continue to pose 42 
serious risks to human society [1]. The strength and frequency of many risk factors tends to increase. 43 
The occurrence of these hazards often stresses human health and welfare, e.g. through diseases, 44 
property damage, economic loss and ecological environment degradation. For instance, extreme 45 
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rainfall causes urban flooding which often leads to large economic losses and serious threats to urban 46 
safety [2] while heat waves are harmful to public health, especially to vulnerable groups, which is the 47 
most significant reason of weather-related deaths [3]; the effects of air pollution, drought, wind, snow 48 
and freezing weather on the normal operation of the city are also becoming increasingly prominent 49 
[4]. 50 

Over the last decade the combined effects of a set of environmental factors on health concerns 51 
have received growing attention in research and rising awareness of the risks posed by heat waves, 52 
air pollution, noise, visual and social loads, and similar phenomena [5-7]. Most studies have focused 53 
on the effects of one or two of these environmental stressors and found significant effects on health 54 
risk.  55 

1.2 Human health in urban environments 56 
Cities are a highly artificial environment, quite special and different from the natural 57 

environment that humans have always been living with. Urban environments can be highly stressful, 58 
where humans are exposed to multiple sources of environmental discomfort, such as air pollution, 59 
high temperature, noise, odor and social burdens [8]. As a result the health and wellbeing of humans 60 
can be negatively affected by the urban environment [9]. Humans in cities often cannot avoid being 61 
exposed to stressors, as they must work, shop, travel, or entertain in the cities. Working or staying 62 
for a long time outside is the main way of being exposed to a stressful environment, followed by 63 
travelling, particularly walking and cycling [10]. Even staying indoors, people are exposed to risks of 64 
high temperature, noise and air pollution, of which the effects often can penetrate into buildings.  65 

The overlap of global climate change and urbanization makes cities the places where risks are 66 
concentrated and intensified due to the high density of population, building, traffic and other urban 67 
infrastructures [6,11]. Modern cities can improve health via the provision of services as well as 68 
material, cultural and aesthetic attributes. They also offer opportunities for cost-effective 69 
interventions that can serve many people. Urbanization represents both opportunity and risk, and 70 
offers a fresh set of challenges for those concerned with protecting and promoting human health and 71 
wellbeing. However, environmental hazards remain and new threats have emerged [12]. Urban air 72 
pollution - of which a significant proportion is generated by vehicles, as well as industry and energy 73 
production - is estimated to kill some 2 million people annually [13]. Such stresses can worsen in the 74 
future, considering that more than half of the Earth’s population currently lives in cities (54% by 75 
2014), and by 2050 this proportion will rise up to 66% [14]. 76 

Over the next thirty years, most of the world’s population growth will occur in cities and towns 77 
of developing countries, mainly in Africa and Asia [14]. As urban populations grow, the quality of 78 
the urban environment will play an increasingly important role in public health with respect to issues 79 
ranging from solid waste disposal, provision of safe water, sanitation and injury prevention, to the 80 
interface between urban poverty, environment and health [15]. 81 

1.3 Dynamics of environment exposure 82 
Since humans are an active component of cities, human exposure to the urban environment is 83 

strongly linked to the various processes inherent in human mobility, to the distinctly local and 84 
individual characteristics (e.g. clothing type, travelling tool, physical quality) and finally to the 85 
quality of the natural, built and social environment [9,16]. While people move, the environment in 86 
which they are located and their exposure to the environment changes dynamically. In addition, 87 
available evidence indicates that personal exposure to many pollutants is not adequately 88 
characterized because the time people spend in different locations and their activities vary 89 
dramatically with age, gender, occupation, and socioeconomic status [17,18]. Thus, the exposure is 90 
dynamic, and the challenge for research is to analyze the complex relationships between individual 91 
and its local environment, to explore new exposure mechanisms under mobility, to identify universal 92 
and specific local conditions in the urban context [19].  93 

Preventing and reducing harmful exposure requires understanding of exposure dynamics, in 94 
particular its sources, intensity, extension, duration, process and impacts [20]. Different micro-95 
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environments (e.g., temperature, humidity, shadow, wind) and activities (e.g. working, shopping, 96 
and entertaining) lead to everyday exposure levels of people moving in the city. Yet, if the threats 97 
can be so different, they could affect the same people. The challenge is thus to find innovative, 98 
efficient approaches to collect, organize, store and communicate exposure data on an individual level, 99 
while also accounting for the inherent spatial-temporal dynamics.  100 

Models are appropriate tools to reach understanding on this issue. A dynamic individual 101 
exposure model is able to evolve as the individual moves would lay the basis for an assessment of 102 
the exposure level by providing reliable and standardized information on the exposed objects across 103 
a vast range of human activities [21]. In this paper, we explore the different types of exposure models 104 
in the urban environment, their characters and advantages, and define both their spatial and 105 
socioeconomic dimensions. By identifying research gaps in recent exposure models, we emphasize 106 
the capacity of agent-based model to fill the gaps and present an agent-based model prototype to 107 
integrate the dynamic and individual features of human exposure in urban environments. The aim 108 
of the paper is to assess the challenge of implementing a dynamic exposure model for individuals of 109 
different but specific mobility within an agent-based modelling framework. 110 

2. Modeling approaches for assessing environment exposures 111 
A wide variety of exposure models are employed for assessments of human exposure to 112 

environment stresses. These existing exposure models can be broadly categorized according to their 113 
target objects: modeling of exposure sources, exposed objects (receptors), and of accumulated 114 
exposure consequences (integrated in Table 1). In this section each of these basic types of exposure 115 
model are briefly described, along with inherent strengths or weaknesses, following with an analysis 116 
of the gaps and capacities of an agent-based model. 117 

2.1 Modeling of exposure sources 118 
The modelling techniques adopted in current exposure models have evolved along distinct lines 119 

for the various types of source [22]. An elementary step towards a modelling assessment of the 120 
exposure to new compounds or pollutants (chemicals, materials) is to estimate their environmental 121 
concentrations [23]. Most of these studies focusing on the concentrations of environmental risk factors 122 
use mathematical models based on measurements extracted from a small number of fixed climatic 123 
monitoring stations within indoor and outdoor urban types of environments [24]. Jerrett, et al. [25] 124 
reviewed these models and sub-classified them as (i) proximity models, (ii) interpolation models, (iii) 125 
land use regression models, (iv) dispersion models, and (v) integrated emission-meteorological 126 
models. Geographical Information Systems (GIS) are often applied in these models to demonstrate 127 
spatial and temporal patterns of environmental pollutants. Nevertheless, these kinds of models aim 128 
to extrapolate the concentration distribution of the environmental stressors considering various 129 
factors that affect patterns of distribution in the research area, mostly (part of) a city [26, and others 130 
in Table 1].  131 

Schnell, Potchter, Yaakov and Epstein [24] criticized such models: 1) they underestimate 132 
concentrations of risk factors using limited monitoring measurements; 2) the complexity of pollutant 133 
distribution patterns was hardly accurate in these models; and 3) the indoor environment was 134 
ignored when using only outdoor monitoring data. Beyond Schnell’s criticism, these models mostly 135 
focus on a single stressor of concern and describe a few pathways through which the receptor, either 136 
a human or another organism, can be exposed [27]. However, awareness is growing that exposure to 137 
single stressors is the exception rather than the rule [28]. In practice, organisms are often exposed to 138 
multiple stressors, e.g., extreme weather, a chemical mixture or a combination of chemical, biological 139 
and physical agents. Exposure to multiple stressors may take place concurrently or sequentially, and 140 
the individual stressors may or may not interact [28].  141 

To some extent, the effect of stressor concentrations cannot really be represented by exposure 142 
models if there is no specified subject that suffers from the stressors. Moreover, due to raising 143 
concerns of people-centered urban management, to date, the monitoring of urban environments has 144 
not taken into account the dynamism of urban daily life [19]. Humans in the city are actively mobile 145 
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which influence greatly the consequence of individual exposures. Therefore, current studies intend 146 
to combine the modeling of exposure sources with human and/or other exposed subjects [20,29].  147 

Table 1. Selected sample models in studying human exposure to environmental stressors 148 
Category Model principles Example models/applications Representative 

References 
Model features

Modeling 
of exposure 
sources 

Estimation of the 
concentration, 
distribution and 
transportation of 
exposure sources 
(pollutants, heat, 
humidity, 
radiations, etc.) 
 

- Global air pollution (fine 
particles & ozone) assessment 
- Atmospheric Dispersion 
Modelling System (ADMS 5) 
- Land use regression (LUR) 
models 
- Multimedia Exposure 
Assessment Modeling 
- Water quality regression 
model 
- Indicator based heat and air 
pollution combination 
- Scenario projections from 
regional climate models 

[26] 
 
[30] 
 
[31] 
[29] 
 
[32] 
[20] 
 
[33] 

- Mainly physical 
aspects of exposure 
sources 
- Receptors ignored 
- Suitable in large scale 
and outdoor exposure 
- Result is a map (map 
set) of stressor 
concentration 

Modeling 
or 
assessment 
of exposed 
population 

- Assess the 
population or 
area or property 
that is exposed to 
certain stressor 
concentrations 
- compare the 
exposure 
status/level of 
sub-regions or 
sub-group of 
population  

- Modeling exposure to natural 
hazards like flooding, cyclone, 
droughts 
- Global and regional human 
exposures to air pollutions 
- Noise exposure model 
 
- Traffic noise and pollution 
exposure model 
- heat stress exposure model in 
combination with traffic model 

[34] 
[35] 
[36] 
[37] 
[38] 
 
[39] 
 
[40] 

- Offer an overview of 
group exposure 
- Produce relative 
comparison of sub-
group’s exposures  
- Suitable in large scale 
and outdoor exposure 
- Result is a population 
or area associated with 
certain stressor 
concentration 
(population-weighted 
concentrations) 

Modeling 
of 
individual’s 
exposure 
degree 
 

- Assess the 
accumulation of 
exposure at a 
series of time and 
locations 
- Simulate the 
exposure degree 
of specific 
receptors 
- Mostly adopted 
with receptors’ 
mobility and 
activity  
 

- CARES (Cumulative and 
Aggregate Risk Evaluation 
System) 
- Lifeline (exposure to pesticide)
- Mobile-tracked traffic-related 
air pollution model 
- Urban exposure in daily life 
routines 
 
- GPS-based modelling of urban 
exposure to air pollution 
- Modeling exposure to multi-
stressors 
- Personalized model of 
pesticide use  

[41] 
 
[42] 
[43] 
 
[24] [10] 
[7] 
 
[44] 
[45] 

- Focus on sampled 
individual receptors 
- Suitable to model 
multiple stressors 
- Limited number of 
receptors 
- Specific and accurate at 
individual level 
- Result is an integrative 
degree/intensity of a 
subject being exposed 
(time-weighted 
concentrations) 

2.2 Modeling of population exposure 149 
Models of population exposure go a step further than the stressor concentration models do. 150 

These models generally assess the size of a population, the area and/or property that is exposed to 151 
certain stressor concentrations, and may also compare the exposure level of sub-regions or sub-152 
groups (Table 1). Natural hazards like flooding, sea level rise, snow avalanches, droughts are among 153 
the mostly targeted exposure sources. For example, the nation-wide exposure assessment in Austria 154 
covers river flooding, torrential flooding, and snow avalanches [35]. A mapping study of flood 155 
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exposure detected flood inundation areas and the affected people [46], which indicated that exposure 156 
depends strongly on the temporal and spatial dynamics of the distributed population. A few studies 157 
also estimated global exposure to floods and revealed the economic exposure, population exposure 158 
and geographical distribution of regional exposures [34,47,48]. Overall, these modeling approaches 159 
help identifying highly exposed regions and are an important and suitable tool to inform regional or 160 
nation-wide adaptation. Also the impact of the structure and morphology of cities on heat stress 161 
exposure of urban commuters has been investigated by combining a simple heat stress model with a 162 
traffic model that can track certain groups of commuters [40].  163 

Population exposure models have been widely applied to explore human exposure to air 164 
pollutions. Hystad, Setton, Cervantes, Poplawski, Deschenes, Brauer, van Donkelaar, Lamsal, Martin, 165 
Jerrett and Demers [36] created national pollutant models to produce estimates of population 166 
exposure to five common air pollutants (PM2.5, NO2, benzene, ethylbenzene, and butadiene) in 167 
Canada. Global and regional exposure to black carbon [37], metals [49] and ozone [26] were also 168 
estimated using similar approaches. Besides, a noise exposure model for London indicated that over 169 
1 million residents were exposed to high daytime and night-time noise levels [38]. Modeling of traffic 170 
pollution exposure in Toronto revealed the highest polluted areas and periods along roadways at 171 
peak levels of traffic but the highest population exposure in the central business district due to the 172 
higher population density [39]. 173 

Population exposure models often place strong emphasis on the geographical distribution of 174 
populations, stressors and their estimated level or intensity of exposure, which might be called 175 
population-weighted stressor concentrations [37]. These models have advantages in identifying 176 
geographic areas, usually larger than a city, where hotspot exposures are a potential risk to human 177 
health, and are informing decision making to reduce exposure inequalities [49]. New developments 178 
in sensor technology now enable us to monitor multiple stressors and personal exposures in activity 179 
spaces and fields of varying concentration [16]. 180 

2.3 Modeling of individual’s exposure degree 181 
Individual exposure models simulate the exposure level of each receptor based on their 182 

individual characteristics and within a pre-set specific route and/or space (Table 1). These approaches 183 
were often seen in mobility-related exposure studies using empirical or experimental traffic data for 184 
specific individuals [43,50]. Leyk, et al. (2009), presenting a spatial individual-based model prototype 185 
for assessing potential pesticide exposure of farm-workers with their individual level track of 186 
movement and activities. Similarly, more complex modeling tools were developed for quantification 187 
of human exposure to traffic-related air pollution within distinct micro-environments by using GPS 188 
trajectory analysis of the individuals in the city area [10,24]. Findings of these approaches show the 189 
exposure of people to environmental sources of discomfort while performing their daily life activities 190 
[7,10]. These studies suggested a shift from measuring environmental conditions in fixed monitoring 191 
stations to monitoring with mobile portable sensors [44,51].  192 

Individual exposure models were applied in both human models and wildlife models. Loos, 193 
Schipper, Schlink, Strebel and Ragas [28] compared five human and five wildlife receptor-oriented 194 
exposure models and identified their similarities regarding exposure endpoints, chemical stressors 195 
and the extent of model validation, as well as the differences relate to the simulation of behavior and 196 
the representation of individuals and space. In addition, an individual receptor can be considered as 197 
an integrator of different stressors to which it is exposed while moving through space and time. 198 
Therefore, exposure models for multiple stressors should primarily focus on the receptor, and not on 199 
the stressor(s). A few studies have indeed reported the applicability of individual-oriented models in 200 
modeling noise, black carbon, particle number concentrations, and multiple chemicals [41,44].   201 

The assessment of individual exposure often aims to tell the total exposure degree or intensity 202 
with a process of moving in different space sites. Sampling approaches are generally applied to collect 203 
exposure data at different location and time, often along a planned routine in a city. The assessment 204 
shows the consequence of accumulated exposure degree that is often a function of the stressor 205 
concentration and the duration of being exposed, or so called time-weighted concentrations [52]. As 206 
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indicated in table 2, most individual exposure models don’t consider human exposure as a dynamic 207 
process but as a summary over several time points/periods. This may be discussable in case of long 208 
time continuing environment threats, for example, a heat wave that lasts several days. In practice, 209 
monitoring of individual exposure is limited to studies with a small number of individuals because 210 
of the high costs and complex organization associated with the measurements [10,51]. The results are 211 
very much accurate and reliable at personal level, though they don’t show a big picture of the 212 
exposure pattern of the whole city or area. 213 

2.4 Research gaps and capacities of agent-based modelling  214 
As shown above, dozens of studies have measured the concentrations of numerous stress 215 

sources in different media to which humans are exposed. Others have catalogued the various 216 
exposure pathways and identified the duration and accumulation of exposure for the general 217 
population. All of this information allows better estimates of exposure. However, literature reviews 218 
have demonstrated that the role of individual mobility for exposure was less explored and based on 219 
limited monitoring data of personal samples [19]. The relationship between individual heterogeneity 220 
and uniform group patterns, especially for peak exposure in “hot-spots” is still insufficiently 221 
addressed and the contribution of mobility-related exposure is not clear [7]. In addition, the dynamic 222 
process of changing exposure to various individuals requires innovative models that can identify the 223 
emerging non-linear patterns of collective exposures. We hypothesize that a computer simulation 224 
tool with a large number of individual random activities in different types of environments can 225 
provide a better understanding of the consequences of human exposure to environmental risk factors 226 
throughout the concerned space and time range.  227 

To fill the research gaps and test the hypothesis, we recommend the development of an overall 228 
framework for exploring the spatial and temporal variability of individual exposure concentrations 229 
and emerging collective exposure patterns, a screening tool for exposure source concentrations, the 230 
collection of better source and receptor data, the demonstration of exposure processes and collective 231 
exposure patterns. While a few researchers have mentioned similar ideas taking into account activity 232 
spaces and daily mobility in measuring environmental exposures [7,19,53], the present study is a 233 
practical effort to implement them. An agent-based model (ABM) is a suitable tool to implement such 234 
dynamic non-linear and collective simulations, as reviewed in existing studies on coupled human-235 
nature systems [54]. 236 

An agent-based model considers the essential known and measurable aspects of an agent and 237 
acknowledges the nonlinearities and underlying dynamic processes [54-57]. An agent-based 238 
approach can make an important contribution to improving health and wellbeing, both at individual 239 
and collective group levels. In an ABM, agents are described by self-contained computer programs 240 
that interact with its environment and with one another and can be designed and implemented to 241 
describe rule-based behaviors and modes of interaction of observed social entities [55,58,59].  242 

Regarding the field of environmental exposure studies, ABMs have the advantage to simulate 243 
the exposure consequences of individual activities and the patterns of collective group exposures, 244 
thus to suggest exposure reduction strategies accordingly. Currently, there is limited understanding 245 
of the complex mobility exposure to environmental stresses in the specific urban context. There is an 246 
urgent need to develop an innovative and operational approach to understanding urban health and 247 
wellbeing that integrates individual characters within a mobility context. This, in turn, will help to 248 
integrate substantive consideration of individual wellbeing into long-term planning, development 249 
and management of urban environments. Exposure estimates to atmospheric pollutants can address 250 
individuals (personal exposure) or large population groups (population exposure) and can be based 251 
on direct (exposure monitoring) or indirect methods (exposure modelling). Efforts aiming at 252 
providing useful global models have given rise to freely available, web-based databases, each acting 253 
as a collector of the different data and models representing geophysical and meteorological risks.  254 

 255 
 256 
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3 An agent-based modelling framework 257 
An agent-based prototype model to urban environment stresses is developed in the present 258 

work for quantification of human exposure within distinct microenvironments and a novel approach 259 
based on daily routine analysis of individuals. Subsequent sections provide the context on the model 260 
environment and its implications for health, and outline a conceptual framework for the study of 261 
health and wellbeing in and between urban spaces. Finally, guidance on research criteria and the use 262 
of a systems approach is offered to prospective investigators for the development of research 263 
proposals. 264 

3.1 Model structure 265 
The model framework is structured in three overlapping layers: spatial data of the concerned 266 

urban environment, concentrations of environmental stress sources, and human activities. Figure 1 267 
illustrates the ABM used in this paper. 268 

 269 
Figure 1. Illustration of the agent-based model framework for environmental exposure simulation. Applied 270 

and illustrated based on Leyk, Binder and Nuckols [45] 271 
In this framework, spatial data of the changing concentration patterns of the environmental 272 

stress factors are the key pre-set inputs that build up the natural aspects of the system (center layer 273 
in Figure 1). A specific map will be used to represent the city with buildings, streets, shops, green 274 
areas, etc. (lower layer in Figure 1). Agents with initiated attributes act daily to work, rest, entertain, 275 
shop, take care of children, and follow certain paths to work (top layer in Figure 1). Once the 276 
prototype model is initialized, agents act on their daily life according to predetermined rules that are 277 
set according to empirical studies and specific surveys. Depending on their normal lifestyles 278 
(different among agents) as well as the environment stress factors of their location, they suffer or 279 
reduce exposure levels. A simulation during a heat wave or air pollution event, with a period from 280 
hours to days, would report a cumulative exposure level for each agent and a collective pattern of all 281 
agents in the study area. The loops of agents’ daily activities and the evolution of the stressful factors 282 
drive the model to run step by step, so that the exposure process can be analyzed.  Finally, the model 283 
produces summary information that can be used to diagnose both individual and collective exposure 284 
and inform relevant exposure reduction strategies. Further details of the model components are 285 
introduced in the following sections. 286 

3.2 Modeling environment 287 
The modeling environment includes two parts, the natural environment of the studied city area 288 

and the stressed environment of a heat wave or air pollution event. The natural environment of the 289 
city is represented by an integrated computable map of land-use data, street and building 290 
information, key sites, and so on. Such data are usually available in GIS format.  291 
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In addition to data from the urban environment, geospatial data for the stressed environment 292 
are needed to map the impact on agent movements. Environmental stressors such as high 293 
temperatures or air pollution can be taken from measurements or from atmospheric model 294 
simulations. These are usually gridded datasets with a fixed spatial resolution. The temporal 295 
resolution typically varies between minutes and several hours. For simulating the exposure to 296 
stressors both high spatial and temporal resolutions are desired. However, there are limits set by the 297 
availability of observations, by the resolution of the models or the computing resources (e.g. disk 298 
space, working memory or computing time).  299 

The introduced modelling framework aims to simulate the exposure to air pollution and heat 300 
stress in an urban area. Air pollution is elevated in urban areas mainly due to emissions from traffic 301 
(fossil fuel driven vehicles and ships), industry and residential heating. Therefore, high 302 
concentrations can be expected near big roads, harbor and industry areas. Pollutants range from 303 
larger particles such as particular matter (PM) to gases such as Ozone, NOx, CO, etc. Most of them 304 
are formed after several chemical reactions. Hence, chemistry models are applied to simulate the 305 
concentration levels within urban areas [60]. The emissions of chemicals, which are crucial for the 306 
chemistry model, are usually estimated from traffic, census, and monitoring stations.  307 

It is well known that due to the heterorganic surfaces and three-dimensional structures (e.g. 308 
buildings, trees, bridges etc.) temperatures and heat stresses can vary strongly within a city [61]. At 309 
night-time the so called urban heat island (UHI) can develop for low wind speed and cloud cover 310 
[62]. The UHI refers to higher near-surface temperatures in urban areas compared to the rural 311 
surroundings. Also during the day temperatures are varying within the city. Especially, green and 312 
blue areas (e.g. parks, lakes, rivers, etc.) have a cooling effect during the day. Since humans do feel 313 
the environment as a combination of the meteorological variables temperature, humidity, wind speed 314 
and long- and shortwave radiation, rather than temperature alone so-called biometeorological 315 
indices are computed, which summarize the combined effect of the thermal environment on the 316 
human heat budget of a person [63]. The developed prototype uses artificial temperature data 317 
randomly chosen from a typical temperature range for Hamburg to validate the model because high-318 
resolution daily or hourly temperature or heat stress data for Hamburg are only available for periods 319 
with a length of 3-4 days in summer [64,65]. 320 

3.3 Agent attributes and behaviors  321 
The urban population is quite diverse, consisting of people of different ages, gender, living and 322 

working location, social background, lifestyles etc. Hence, they all show a unique behavior. 323 
Modelling each urban dweller of a city like Hamburg with 1.7 million citizens is not feasible due to 324 
computing constraints and more importantly due to the lack of available data. However, it is possible 325 
to group people with similar attributes and behaviors to agent types based on surveys, traffic data 326 
and data from public transport companies. The behavior of urban dwellers can depend on age, 327 
gender, work, income, education, living and work location, access to cars or public transport, and 328 
environmental conditions (e.g. rain, temperature, and pollution levels). Crowd-sourcing information 329 
on detailed time-location data can also be collected for each individual at each moment by GPS-330 
equipped mobile phones, offering many advantages over traditional time-location analysis, such as 331 
high temporal resolution and minimum reporting burden for participants.  332 

3.4 Daily routines 333 
As mentioned before, agents have goals that they are following. These could be to go to work 334 

every day, to take children to school or day care, etc. To facilitate the modeling, it is hypothesized 335 
that the daily routine of a certain group of agents is uniform. This makes it possible to simulate as 336 
many agent types as determined in grouping processes. According to the grouping properties of the 337 
agents, the empirical data and survey data are used to generate synthetic daily routines, with agent 338 
priorities for each option of the population commuting between different directions. To capture 339 
variability in the travel survey and uncertainties in behavior, the synthetic daily routines can be 340 
described as action probabilities or priorities p. An example of a synthetic daily routine for a female 341 
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agent, employed and aged 30-45 with one child is shown in Figure 2. In this example, the agent starts 342 
the day at 8 am with standard deviation of 15 min. They then travel, via school to drop their children 343 
off, to work with a 0.2 probability of visiting the shops for a while on route and so on. Parts of this 344 
daily routine can be different among agents of the group, e.g. the staying time in a shop, but agents 345 
in this group all have to visit such many places on the route.  346 

 347 

 348 
Figure 2. Example of a daily routine for a female agent, employed, aged 30-45 with one child 349 

4 Model implementation and results 350 
In order to demonstrate the applicability of the ABM framework a prototype model 351 

implemented in the Netlogo platform is set-up for the city of Hamburg which simulates the exposure 352 
to air pollution of different kinds of agents living near the city center during their commute to work 353 
(Figure 3). A detailed description is given in Rühe [66]. In the following, the employed data (Section 354 
4.1), the agent types (Section 4.2), and the model formulation (Section 4.3) are described briefly. In 355 
addition, some first results are presented (Section 4.4). 356 

Figure 3. Map of commuting routes from home location (red house on the right) to work location (big red 357 
house in top left corner) implemented in NetLogo. The third small house represents day nursery. Each note 358 
represents a point where the exposure is calculated new. On each intersection agents decide which path they 359 
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use. The different colors represent the means of transport (blue=car, green=bike, yellow=public transport). For 360 
car and bike different routes are possible indicated by the different shades of blue and green. 361 

4.1 Data preparation for the case city of Hamburg 362 
In the present model, NO2 concentration data are taken from model results from chemistry 363 

transport model CityChem (Ramacher et al., 2017). The data are averaged for the summer and winter 364 
of 2012 on a 250 m × 250 m grid. Values for temperature are taken from the DWD (German 365 
Meteorological Service) and are randomly set at the same grid using typical ranges for summer (17 – 366 
24.9 °C) and winter (0 – 8.9 °C). As soon as long-term high-resolution temperature or heat stress data 367 
are available, they can be implemented with the same input routine used for the N02 data. For 368 
simplicity the routes as well as the home and work locations are predefined (Figure 3 and Table 2). 369 
Information about the costs for taking the car were taken from ADAC (Allgemeine Deutsche 370 
Automobil-Club), information about bike costs from the Federal Environment Agency 371 
(Umweltbundesamt) and the costs for public transportation in Hamburg were taken from the public 372 
transportation service of Hamburg, HVV homepage (www.hvv.de). With this information it is 373 
possible to calculate overall costs for each path. 374 

Table 2. Time, length and costs for the different routes. 375 

 Car1 Car2 Car3 Car4 Car5 Bike Public 
Time [min] 10 16 17 15 13 19 18 
Length [km] 5.1 5.3 6.8 7.1 6.6 5.0 6.3 
Costs [€] 1.53 1.59 2.04 2.13 1.98 0.4 1.07 

4.2 Settings of agents 376 
The agent types are characterized by their different initial priorities for car, bike and public 377 

transport (p1, p2, and p3), their different weights for costs, time, temperature deviation, exposure (α, 378 
β, and γ), adaptation rate A and desired temperature Tdesired (Table 3). The values are set for typical 379 
urban dwellers. Therefore, artificial values are used to create meaningful citizens. This work tries to 380 
represent a broader cross section of society. This is why agent types reach from college students with 381 
small amounts of money available, with high weights for costs and a high priority for bike 382 
transportation, to old retired people with low weights for costs and with high priority for car 383 
transportation.  384 

Table 3. Attributes of different agents. 385 

Agent type: Alfred Bob Chris Dean Earl Frank George 
prioritycar 0.1 0.95 0.65 0.333 0.1 0.333 0.8 
prioritybike 0.7 0.025 0.001 0.333 0.2 0.333 0.1 
prioritypublic 0.2 0.025 0.3499 0.333 0.7 0.333 0.1 
A 10 0.1 1.2 3 0.1 4 2 
α 0.6 0.05 0.3 0.1 0.45 0.8 0.8 
β 0.1 0.75 0.1 0.7 0.45 0.1 0.1 
γ 0.3 0.2 0.6 0.2 0.1 0.1 0.1 
Temperatureaim [°C] 23 18 21 23 23 19 28 

4.3 Model formulation 386 
In the model, agents are commuting to work using different means of transport (i.e. car, bike 387 

and public transport) as well as different routes, where they are exposed to different air pollution 388 
and temperature levels. The decision on which mean of transport to use is based on the priority p for 389 
the k different choices while the change of the priorities is based on a value function v which in our 390 
case is the weighted sum of commuting costs cc, commuting time ct, deviation from a desired 391 
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temperature dt (|T-Tdesired|) and the accumulated exposure to NO2 eNO2 (Eq. 1). An exposure to NO2 392 
occurs if a threshold of 30 µg/m³ is reached. 393 

௜,௞ݒ 394  ≤ 0 395 
௜,௞ݒ 396  = −ቆߙ௜ ቀ ௖೎ೖି௖೎೘೔೙௖೎೘ೌೣି௖೎೘೔೙ቁ + ௜ߚ ቀ ௖೟ೖି௖೟೘೔೙௖೟೘ೌೣି௖೟೘೔೙ቁቇ + ௜ߛ ቆቀ ௗ೟ೖௗ೟೘ೌೣିௗ೟೘೔೙ቁ + ቀ ௘ಿೀమೖି௘ಿೀమ೘೔೙௘ಿೀమ೘ೌೣି௘ಿೀమ೘೔೙ቁቇ   (1) 397 

The parameter α, β, and γ represents the relevance of each term, which can differ between the 398 
agents. The sum of all three parameters is 1. In order to make the different terms comparable they are 399 
normalized with respect to their maximum and minimum. Hence, values can range from 0 to 1. For 400 
simplicity the normalized exposure to high/low temperatures and the exposure to NO2 are combined 401 
into one exposure term in the current version of the model. This means that they are currently equally 402 
weighted because it is not yet clear how to combine the effect of exposure to both stressors on the 403 
health of the agents. 404 

Following Scheffran and BenDor [67] the change in priority is computed using Eq. (2). 405 ∆݌௜,௞ = ܽ௜ ∙ ௜,௞݌ ൬௩೔,ೖି∑ ௩೔,೗∙௣೔,೗೙೗సభ;೗ಯೖ∑ ௩೔,೗೙೗సభ;೗ಯೖ ൰   (2) 406 
where ai is the adaption parameter of agent i representing how fast an agent adapts and reacts 407 

to changes. After each time step new priorities are computed (Eq. 3). 408 ݌௜,௞(ݐ) = ݐ)௜,௞݌ − 1) + ݐ)௜,௞݌∆ − 1)   (3) 409 
The values for the exposure are computed during the model run while the values for costs and 410 

the commuting time are currently predefined. 411 

4.4 Preliminary results 412 
In the developed model several model runs were conducted starting with model validation runs, 413 

where “extreme” agents (e.g. setting α=1, β=0, and γ=0) are used to test for consistency and 414 
plausibility. Afterwards, runs under simple conditions for all agents is executed followed by one runs 415 
with low costs for public transportation, runs where rain is turned on, where a construction is 416 
blocking one road and runs where the effect of NO2 in summer and winter is analyzed. The prototype 417 
model is integrated for 120 days keeping the environmental conditions. It is obvious that a rain event 418 
strongly affects the agents with a high prioritybike. Once a switch to public transport occurs (Figure 4), 419 
this has a negative effect on the agents’ capital because costs for public transport are much higher 420 
than for bike. Agents with highest priority for cars are not affected at all. 421 

 422 

 423 
Figure 4. Changes in priorityi,k if rain is turned in and off for the agent Alfred. 424 
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 425 
 426 

 427 
Figure 5. Changes in exposure to environmental stressors if a construction is blocking one path. 428 
 429 

 430 
Figure 6. Changes in v if a construction is blocking one path. 431 
 432 
A construction does only affect agents who are taking the car because one choosable path is not 433 

available anymore. A construction does not affect the exposure to environmental stressors significant 434 
but the commuting time. In Figure 5, it is visible that changes in exposure to environmental stressors 435 
are not significant for Agent Bob, who has a high priority for car (Table 4). On the other hand, Figure 436 
6 shows that a strong change in v (Eq. 2) occurs due to a decreasing commuting time.  437 

 438 
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 439 

 440 
Figure 7. Exposure to environmental stressors in summer (a) and winter months (b) for all agents. 441 
 442 
The differences in NO2 concentration in winter and summer have a significant effect on exposure 443 

to environmental stressors (Figure 8). Several studies show that NO2 concentration is higher in winter 444 
than in summer [68] mainly caused by more heating processes in winter months. In the first run 445 
temperature is constant but to analyze the effect of heat stress varying temperatures are introduced. 446 
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The model shows that 42.5 °C must be reached to have the same exposure to temperature and NO2 447 
in winter and summer. Based on pervious temperature measurements by the German Meteorological 448 
Service (DWD) it is very unlikely to reach this value in Hamburg (highest temperature ever recorded 449 
at Hamburg-Fuhlsbüttel: 37.3 °C). Figure 8 lists the average exposure to heat stress using the NO2 450 
data for summer and winter. To sum it up, even the highest temperatures in Hamburg are not high 451 
enough to show the same exposure effect than the high NO2 concentrations in winter months. 452 
However, these simulations are idealized and it is not yet clear how to compare air pollution and 453 
heat stress exposure directly e.g. with respect to health or wellbeing. Nevertheless, with the proposed 454 
ABM both stressors can be modeled and assessed in a consistent way.  455 

 456 

 457 
Figure 8. Individual and average normalized exposures to NO2 for summer and winter  458 

5 Conclusion and outlooks 459 
This paper presented an agent based modeling framework for dynamic micro-simulations of 460 

urban individual exposures to environmental stresses. Using the framework for the Hamburg 461 
scenario it is shown that it is flexible enough to handle a variety of input data and extend or replace 462 
algorithms. For example, heat stress data from model results could be employed, which will become 463 
available in the future.   464 

Moreover, it is well possible to extend the prototype model. Therefore, extra algorithms should 465 
be added to each package to verify, manipulate, add or delete data items according to the purpose of 466 
the algorithm. Since for each new scenario different algorithms have to be used or implemented, it is 467 
of great interest that algorithms should be clearly separated from the data structure. They also should 468 
be easily exchangeable by others. The order in which algorithms are called should be flexible as well. 469 
The algorithms are collected into a sub-package of that data structure which they manipulate.  470 

It has been argued that traditional validation methods are less appropriate for agent-based 471 
models, as by their very nature, such models are simplified representations of complex reality and 472 
indicate what may happen rather than what will necessarily happen. This caveat notwithstanding, 473 
the validity of this model has been considered in several ways as illustrated in the modeling 474 
framework and implementation sections. Nevertheless, it is only a framework. The algorithms 475 
presented for modeling are basic. Resources are needed to enhance those algorithms and to validate 476 
the resulting demand against behavioral issues. Within the UrbMod project (von Szombathely et al. 477 
2017) data from a stakeholder survey with a focus on daily routines of urban residents in Hamburg 478 
(von Szombathely et al. 2018) and from the patients’ database at the University Hospital Hamburg-479 
Eppendorf are collected which can be used to set more realistic values for the attributes of the agents. 480 
In addition, with respect to the heat stress exposure the individual differences of the agents (age, 481 
gender) and their thermal history (e.g. time spend in sunshine) could be taken into account to model 482 
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personal dynamic thermal indices, similar to Bruse [69] but for a much larger domain and period. In 483 
this way, the adaptive actions of an agent are linked with the exact thermal history experienced. 484 

The purpose of this case study is not to simulate exact prediction of environmental events but to 485 
demonstrate the utility and potential of an agent-based model to be used in an exposure analysis to 486 
support environmental incident management. The conceptual approach in its current state relies on 487 
simplified assumptions and interrelationships between the social and the environmental subsystem, 488 
as well as artificial input data. This was necessary since real data are lacking and the complexity had 489 
to be limited. The main objective, however, was to test feasibility of this approach for exposure 490 
assessment and to fully understand the relevant mechanisms needed by developing a model 491 
prototype. This work also shows the importance of interaction between the transportation 492 
community and computer scientists. To satisfy the requirements concerning data management, data 493 
processing, computational design and implementation, runtime issues, etc., it is necessary to include 494 
computer knowledge into the transportation research process.  495 
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