

1 Article

2

Influence of Steel Plate Roughness on the Frictional 3 Properties of Cereal Kernels

4 **Zdzisław Kaliniewicz** ^{1,*}, **Zbigniew Żuk** ¹ and **Zbigniew Krzysiak** ²5 ¹ Department of Heavy Duty Machines and Research Methodology, University of Warmia and Mazury in
6 Olsztyn, ul. Oczapowskiego 11, 10-719 Olsztyn, Poland; zdzislaw.kaliniewicz@uwm.edu.pl (Z.Ka.),
7 zbigniew.zuk@uwm.edu.pl (Z.Ż)8 ² Department of Mechanical Engineering and Automation, University of Life Sciences in Lublin, ul. Głęboka
9 28, 20-612 Lublin, Poland; zbigniew.krzysiak@up.lublin.pl (Z.Kr.)

10 * Correspondence: zdzislaw.kaliniewicz@uwm.edu.pl; Tel.: +48-089-523-3934

11 **Abstract:** The aim of this study was to determine the correlation between the external friction angle
12 of cereal kernels and the roughness of a steel friction plate. The experiment was performed on the
13 kernels of five principal cereals: wheat, rye, barley, oats and triticale. Flat seed units composed of
14 three spaced kernels joined by adhesive tape were analyzed in each experimental variant. The
15 external friction angle of flat seed units was determined on 9 steel friction plates with different
16 roughness. Measurements were performed in 3 replications with a photosensor device which
17 registered the external friction angle of cereal kernels. On friction plates with surface roughness
18 $R_a=0.36$ to $R_a=6.72$, the average values of the angle of external friction ranged from 17.56° in rye
19 kernels to 34.01° in oat kernels. The greatest similarities in the angle of external friction were
20 observed between wheat and triticale kernels, whereas the greatest differences were noted between
21 barley and oat kernels and between barley and triticale kernels. Friction plates made of ST3S steel
22 should be characterized by the lowest surface roughness to minimize energy consumption during
23 grain processing. The optimal surface roughness of steel friction plates was determined at $R_a=0.9$.24 **Keywords:** cereal kernels; steel; surface roughness; angle of external friction
2526

1. Introduction

27 Cereals are a group of flowering grasses of the family *Poaceae*. The fruit of grasses are kernels
28 which are characterized by high starch content and are used in the production of foodstuffs and
29 feedstuffs and in industrial processing. The main cereal-derived foods are flour, grits, oil and syrup.
30 Cereals play vital roles in many industries, including milling, distilling, brewing and pharmaceutical
31 processing. Cereal processing requires a thorough knowledge of the physical properties of
32 seeds/kernels, including frictional properties which influence seed transport, proportioning, mixing,
33 compaction and processing [1-4].34 Friction is generally defined as a combination of phenomena that occur at the point of contact
35 between two physical objects and result from the mutual movement of contacting surfaces. Friction
36 causes moving objects to lose their energy, and their surfaces are deformed at the point of contact. In
37 solids, surface deformation is caused mainly by the formation of grooves and abrasion [2,3]. Friction
38 is difficult to explain, and several theories have been proposed to describe this phenomenon with
39 varying degrees of precision. Three groups of theories have been postulated: mechanical, molecular
40 and mechanical/molecular. According to the most advanced theories, friction is a phenomenon with
41 a dual mechanical and molecular nature [1-3,5]. The most recent theory of friction has been
42 developed by Frączek [1] who postulated that friction force has three components: deformation,
43 adhesion and cohesion. According to Frączek, the deformation component is linked with changes in
44 the shape of surface asperities that tug each other. Deformation is directly proportional to the
45 applied load, and it is determined by surface roughness and elasticity of the materials that form a
46 friction pair and by the moisture content of plant materials. The adhesion component accounts for

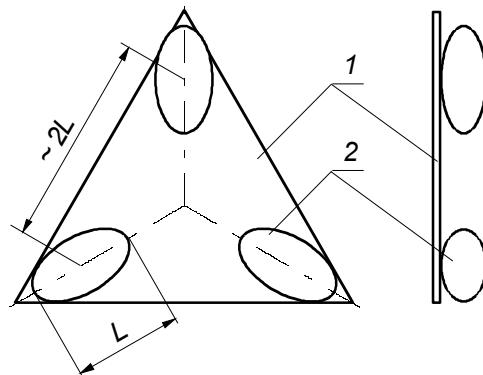
47 the contact between the surface layers of two physical objects, and its value is determined by sliding
48 velocity, duration of frictional contact and surface microhardness of plant material. Adhesion is a
49 power function of load. The cohesion component is related to the mutual attraction between the
50 molecules of a friction pair. It is determined by the real area of contact and the microhardness of
51 plant material. Therefore, the proposed theory accounts for deformations caused by tugging
52 between surface asperities, forces of attraction and cohesion between the surfaces that come into
53 contact. External friction is influenced by the properties of materials that form a friction pair, in
54 particular the ratio of roughness densities of two surfaces, the ratio of roughness of two surfaces, the
55 ratio of elastic moduli, and the product of real contact area and seed hardness. Similar explanations
56 of friction phenomena have been proposed by Horabik [6], Molenda and Horabik [7], Afzalinia and
57 Roberge [3] and Bakun-Mazor et al. [8].

58 According to the literature [1,3,5,6,8,9-11], the frictional properties of seeds are determined by
59 the parameters of the friction surface (type, roughness), frictional conditions (normal load, sliding
60 distance, sliding velocity, seed orientation relative to the direction of movement), seed properties
61 (moisture content, species, variety, ripeness, variations in shape) and external conditions
62 (temperature and humidity).

63 Molenda et al. [5], Frączek [1] and Horabik [6] observed that the geometric structure of a surface
64 and the roughness of biological materials influence the frictional properties of seeds. Despite the
65 above, most researchers indicate only the type of structural materials, such as concrete, steel or
66 wood, without describing their manufacturing precision. For this reason, published data should be
67 interpreted with caution because they do not account for differences in surface smoothness which
68 influence adhesion.

69 The aim of this study was to determine the correlation between the external friction angle of the
70 kernels of five cereal species and the roughness of a steel friction plate, and to generate data for grain
71 processing models.

72 2. Materials and Methods


73 2.1. Sample preparation

74 The experiment was performed on the kernels of the five principal cereal species: wheat cv.
75 *Bututa*, rye cv. *Dańkowskie Diament*, barley cv. *Rataj*, oat cv. *Bingo* and triticale cv. *Berenika*. Grain was
76 harvested in the Region of Warmia and Mazury in northern Poland. The kernels of every cereal
77 species were separated from the threshed mass, harvested in 2016 with a combined harvester. The
78 obtained grain was stored in a closed container at room temperature for around 5 months. The
79 relative moisture content of stored grain was determined on a drying scale with a MAX 5-WH
80 halogen lamp (Radwag Radom, Poland). The analyzed parameter was similar across the analyzed
81 cereal species in the range of 9.5% to 10.2%.

82 Fifty kernels of every tested cereal species were selected by the survey sampling method [12],
83 and their physical properties (basic dimensions and mass) were determined. Fifty flat seed units
84 (Figure 1) were prepared for every experimental variant (9 friction plates). Every flat seed unit was
85 composed of three spaced kernels that were placed on the friction plate with the crease down and
86 joined with adhesive tape.

87 2.2. Physical properties

88 Kernel length L and kernel width W were determined with the use of the MWM 2325 workshop
89 microscope (PZO Warszawa, Poland) to the nearest 0.02 mm (one measurement consisted of two
90 readouts from a thickness gauge with 0.01 mm resolution). Kernel thickness T was measured with a
91 device comprising a dial indicator (MasterTools, Kraków, Poland) with 0.01 mm resolution. The
92 above measurements were performed according to the method described by Kaliniewicz et al. [13].
93 Kernel mass was determined on the WAA 100/C/2 weighing scale (Radwag Radom, Polska) to the
94 nearest 0.1 mg.

95 **Figure 1.** Diagram of an “ideally flat seed unit” [14]: 1 – adhesive tape; 2 – kernel; L – kernel length.

96 The dimensions of cereal kernels were used to determine the following parameters:

97 • geometric mean diameter D , aspect ratio R and sphericity index Φ [15]:

$$D = (T \times W \times L)^{1/3} \quad (1)$$

$$R = \frac{W}{L} \times 100 \quad (2)$$

$$\Phi = \frac{(T \times W \times L)^{1/3}}{L} \times 100 \quad (3)$$

98 • density ρ (on the assumption that kernel shape resembles an ellipsoid):

$$\rho = \frac{6 \times m}{\pi \times T \times W \times L} \quad (4)$$

99 Flat seed units were used to measure the angle of external friction α of cereal kernels. The
100 measurements were performed with a device equipped with photodetectors (Figure 2) [11,16].
101 Friction plates made of ST3S steel were fixed to an adjustable arm of the above device. The
102 geometrical product specifications (GPS) of friction plates were measured with the Diavite DH-5
103 (Bülach, Switzerland) surface roughness tester. The results of the measurements are presented in
104 Table 1. Flat seed units were placed on a horizontally inclined plate, just above the light level of the
105 top photodetector. The adjustable arm was lifted with constant angular velocity of $1.25^\circ \cdot s^{-1}$. When
106 kernel motion was initiated, the light beam was interrupted and the arm was automatically paused.
107 The angle of inclination was measured to the nearest 0.01° . Every flat seed unit was measured in 3
108 replications, and the results were used to calculate the average values. After the angle of external
109 friction had been measured in 5 successive flat seed units, the plate was wiped with cotton wool
110 saturated with petroleum ether (Chempur Piekary Śląskie, Polska) to remove cutin.

111 2.3. Statistical analysis

112 The measured angles of external friction were processed in Statistica PL v. 12.5 at a significance
113 level of $\alpha=0.05$. The differences between the measured angles of external friction were determined by
114 one-way analysis of variance (ANOVA). The normality of each group was verified by the
115 Shapiro-Wilk test, and the equality of variances was assessed with Levene's test. Where the null
116 hypothesis postulating equal average values of external friction angles was rejected, the significance
117 of differences were determined and homogenous groups were identified with the use of Duncan's
118 test [17](Rabiej, 2012).

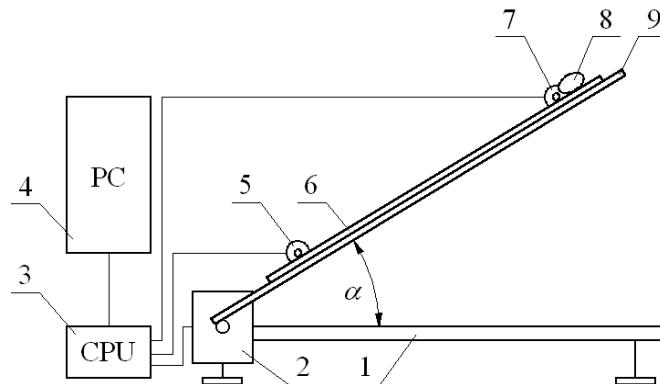


Figure 2. Device for measuring the frictional properties of cereal kernels [11]: 1 – base of inclined plane, 2 – stepper motor, 3 – CPU controller, 4 – computer, 5 – bottom phototube, 6 – friction plate, 7 – top phototube, 8 – kernel, 9 – adjustable arm.

122

Table 1. Structural parameters of steel friction plates.

Plate	Roughness parameters (μm)					
	R_a	R_z	R_{\max}	R_{3z}	R_t	R_q
1	0.36	2.8	4.1	2.0	4.2	0.49
2	0.47	3.2	4.2	2.6	4.4	0.61
3	0.90	4.6	6.5	3.9	6.5	1.10
4	1.28	6.9	9.1	5.4	11.3	1.62
5	2.45	15.4	18.3	11.7	18.4	3.28
6	3.70	22.7	29.1	17.0	29.1	4.90
7	4.78	23.6	36.8	19.3	39.1	6.48
8	5.66	27.4	37.8	23.2	40.8	7.38
9	6.72	36.9	53.9	29.2	53.9	9.11

123 R_a – arithmetical mean deviation of a profile, R_z – height of peaks at 10 points along a profile, R_{\max} – maximum
 124 peak height, R_{3z} – average roughness profile along 5 successive sampling lengths, R_t – total profile height
 125 (between the highest peak and the lowest valley), R_q – root mean square of profile deviations.

126 3. Results

127 3.1. Experimental material

128 The physical parameters of kernels of the evaluated cereal species are presented in Table 2. The
 129 standard error of the mean did not exceed 0.3 mm in basic dimensions and 3 mg in mass. Average
 130 thickness was identical in wheat, barley and triticale kernels, and it was similar in rye and oat
 131 kernels. Barley kernels were characterized by the greatest average width, and rye kernels – by the
 132 smallest average width. The above results contributed to similar ratios between the mass and
 133 geometric mean diameter of kernels in these cereal species. Wheat kernels were shortest, and oat
 134 kernels were longest. As a result, wheat and oat kernels were also characterized by extreme average
 135 values of the aspect ratio and the sphericity index. The kernels of the analyzed cereal species were
 136 arranged in the following descending order based on their average density: wheat, triticale, rye,
 137 barley and oats.

138 3.2. Angle of external friction

139 The angle of external friction of the evaluated cereal kernels (Table 3) ranged from 13.71° in rye
 140 to 44.92° in oats. The average angle of external friction ranged from 17.56° (rye kernels on a steel
 141 plate with surface roughness $R_a=0.90 \mu\text{m}$) to 34.01° (oat kernels on a steel plate with surface
 142 roughness $R_a=6.72 \mu\text{m}$). The standard error of the mean did not exceed 1.3° . The above results
 143 indicate that the angle of external friction is largely determined by the surface roughness of the steel
 144 plate. With the exception of wheat, the smallest angle of external friction was noted on a steel plate

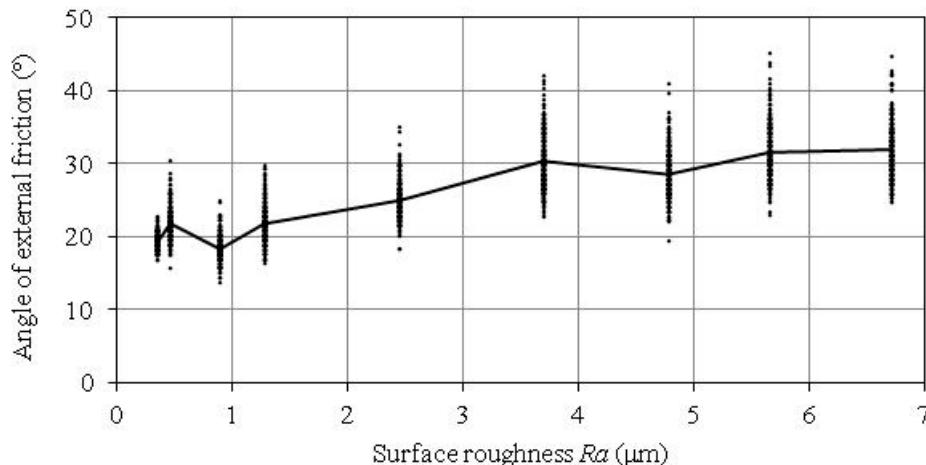
145 with surface roughness $R_a=0.90 \mu\text{m}$. The difference between the largest and the smallest angle of
 146 external friction of cereal kernels on the evaluated steel plates ranged from 11.35° (barley) to 15.55°
 147 (rye). The differences in the average angles of external friction on the same steel plate were not
 148 significant. Similar observations were made in the analysis of variance which supported the
 149 identification of homogeneous groups of external friction angles and where significant differences in
 150 the evaluated parameter were not noted between cereal species on any of the tested steel plates.
 151 Subject to plate roughness, the difference between the largest and the smallest angle of external
 152 friction ranged from 1.22° (steel plate with surface roughness $R_a=0.36 \mu\text{m}$) to 5.46° (steel plate with
 153 surface roughness $R_a=6.72 \mu\text{m}$).

154 **Table 2.** Physical parameters of kernels of the evaluated cereal species (mean value \pm standard
 155 deviation).

Physical parameter ^(a)	Cereal species				
	Wheat $x \pm SD$	Rye $x \pm SD$	Barley $x \pm SD$	Oats $x \pm SD$	Triticale $x \pm SD$
Moisture (% dry basis)	9.5 ± 0.02	9.7 ± 0.02	10.2 ± 0.03	9.9 ± 0.03	9.7 ± 0.02
Thickness (mm)	3.1 ± 0.16	2.6 ± 0.17	3.1 ± 0.14	2.7 ± 0.16	3.1 ± 0.21
Width (mm)	3.6 ± 0.23	2.8 ± 0.22	3.9 ± 0.16	3.3 ± 0.21	3.3 ± 0.22
Length (mm)	6.7 ± 0.30	7.9 ± 0.41	9.3 ± 0.47	11.5 ± 0.91	8.3 ± 0.39
Mass (mg)	52.0 ± 6.66	35.8 ± 4.52	58.3 ± 7.16	51.6 ± 9.35	53.2 ± 8.52
Geom. mean diam. (mm)	4.2 ± 0.17	3.9 ± 0.19	4.8 ± 0.16	4.7 ± 0.23	4.4 ± 0.21
Aspect ratio (%)	53.4 ± 2.92	35.0 ± 3.07	41.8 ± 2.40	29.1 ± 2.38	40.3 ± 2.62
Sphericity index (%)	62.6 ± 1.69	48.9 ± 2.43	51.9 ± 2.07	40.9 ± 2.00	53.1 ± 2.26
Density (g cm^{-3})	1.34 ± 0.05	1.19 ± 0.08	0.99 ± 0.06	0.96 ± 0.19	1.21 ± 0.11

156 ^(a) Moisture values are based on three replications. The remaining parameters are based on 50 replications.

157 **Table 3.** Distribution of external friction angles of cereal kernels and significant differences between
 158 the angles.


Cereal species	Roughness parameter R_a (μm)	Angle of external friction ($^\circ$)			Standard deviation of trait	Coefficient of variation (%)		
		Value of parameter						
		minimum	maximum	average				
Wheat	0.36	17.58	21.06	18.99 ^{aA}	0.78	4.12		
	0.47	19.64	28.67	22.97 ^{bC}	2.06	8.97		
	0.90	17.02	25.08	19.65 ^{aC}	1.57	8.01		
	1.28	18.11	28.33	22.55 ^{bBC}	2.00	8.85		
	2.45	21.69	35.04	25.38 ^{cB}	2.20	8.66		
	3.70	26.98	41.86	31.50 ^{eB}	3.36	10.67		
	4.78	24.62	34.67	28.42 ^{dBC}	2.86	10.07		
	5.66	26.33	43.65	32.67 ^{fC}	4.04	12.36		
	6.72	25.52	41.01	32.52 ^{efBC}	3.20	9.85		
Rye	0.36	16.82	22.46	19.52 ^{bB}	1.08	5.55		
	0.47	17.54	30.43	22.33 ^{dC}	2.05	9.20		
	0.90	13.71	20.26	17.56 ^{aA}	1.35	7.67		
	1.28	16.38	26.47	20.61 ^{cA}	1.94	9.41		
	2.45	21.55	31.04	25.63 ^{eB}	1.93	7.51		
	3.70	24.62	38.69	30.79 ^{fB}	3.52	11.42		
	4.78	25.57	41.05	31.01 ^{fD}	2.93	9.45		
	5.66	23.01	36.61	30.79 ^{fAB}	2.91	9.43		
	6.72	27.86	44.53	33.11 ^{gCD}	3.14	9.49		

160
161**Table 3.** Distribution of external friction angles of cereal kernels and significant differences between the angles – cont.

Cereal species	Roughness parameter R_a (μm)	Angle of external friction (°)			Standard deviation of trait	Coefficient of variation (%)
		minimum	maximum	average		
Barley	0.36	18.31	22.72	20.21 ^{bC}	1.01	5.02
	0.47	15.66	24.02	20.31 ^{bA}	1.65	8.14
	0.90	14.36	24.63	18.80 ^{aB}	2.00	10.66
	1.28	16.68	29.32	22.12 ^{cB}	3.13	14.19
	2.45	22.23	34.44	26.12 ^{dB}	2.63	10.07
	3.70	22.48	35.10	28.00 ^{eA}	3.28	11.69
	4.78	19.41	33.07	26.06 ^{dA}	3.07	11.79
	5.66	23.35	38.05	30.15 ^{fA}	3.24	10.73
	6.72	24.64	33.54	28.55 ^{eA}	2.83	9.90
Oats	0.36	16.47	21.14	18.99 ^{bA}	1.00	5.29
	0.47	17.64	26.11	21.18 ^{cB}	1.83	8.62
	0.90	15.05	20.47	17.71 ^{aA}	1.24	7.02
	1.28	18.53	29.73	23.42 ^{dC}	2.48	10.58
	2.45	20.32	32.68	24.13 ^{dA}	2.53	10.49
	3.70	26.00	41.13	30.46 ^{fB}	3.66	12.01
	4.78	22.59	36.30	29.53 ^{eC}	3.32	11.34
	5.66	24.61	44.92	31.73 ^{gBC}	4.37	13.78
	6.72	25.75	42.63	34.01 ^{hD}	4.49	13.21
Triticale	0.36	17.29	22.35	19.09 ^{aA}	0.87	4.58
	0.47	19.03	27.22	22.35 ^{cC}	1.78	7.98
	0.90	15.55	23.20	18.15 ^{aA}	1.47	8.08
	1.28	16.61	25.33	20.29 ^{bA}	2.20	10.84
	2.45	18.39	29.85	23.55 ^{dA}	2.33	9.89
	3.70	24.57	41.36	30.83 ^{fB}	3.90	12.65
	4.78	24.28	37.10	27.84 ^{eB}	2.54	9.12
	5.66	27.06	43.43	32.18 ^{gBC}	3.55	11.02
	6.72	27.14	39.98	31.22 ^{fgB}	3.20	10.24

162 a, b, c, d, e, f, g, h – different letters denote significant differences in the average values of the angle of external
163 friction of same-species grain on the tested friction plates; A, B, C, D – different letters denote significant
164 differences in the average values of the angle of external friction of cereal kernels on the same friction plate.165 *3.3. Correlation between plate roughness and the angle of external friction of cereal kernels*

166 Due to the similarities in the frictional properties of cereal kernels, one homogeneous group
167 was created for further analyses. The changes in the external friction angle of kernels tested on plates
168 with various surface roughness are presented in Figure 3. In general, the average angle of external
169 friction increased with a rise in parameter R_a within the adopted range of plate roughness values.
170 The above function cannot be described with a simple equation because the angle of external friction
171 increased or decreased relative to the general change trend in selected points. Such characteristic
172 points were the average values of the external friction angle on steel plates with surface roughness
173 $R_a=0.47$ (21.83°), $R_a=0.9$ (18.37°), $R_a=3.7$ (30.32°) and $R_a=4.78$ (28.52°). The smallest variations in the
174 values of external friction angles were observed on a steel plate with surface roughness $R_a=0.36$, and
175 the greatest variations were noted on a plate with surface roughness $R_a=5.66$.

176 **Figure 3.** Relationship between the angle of external friction of cereal kernels and surface roughness
177 of a friction plate.

178 **4. Discussion**

179 The dimensions and mass of kernels of the analyzed cereal species did not differ significantly
180 from the values given in the literature [18-21]. The kernels of wheat cv. *Batuta* resembled the kernels
181 of wheat cv. *Boroudeur* [22], *Korweta* [18], *Pehliván* [23], *Baekjoong* and *Keumkang* [21]. In terms of
182 physical properties, the kernels of rye cv. *Dańkowskie Diament* were similar to the kernels of rye cv.
183 *Dańkowskie Złote* [18], and the kernels of barley cv. *Rataj* – to the kernels of barley cv. *Tiffany* [19].

184 The range of variations in the external friction angle of cereal seeds on steel plates with different
185 surface roughness overlapped, and no single cereal species differed from the others in this respect.
186 The highest number of minimal values of the external friction angle was noted in rye kernels (on 5
187 steel plates), and the highest number of maximal values – in wheat kernels (on 4 steel plates). The
188 range of variations in the above parameter (17.56° to 34.01°) and the corresponding range of values
189 of external friction coefficients (0.316 to 0.675) are similar to the values given in the literature
190 [5,11,20,24-27].

191 The roughness of a friction plate significantly determines the external friction angle of seeds. In
192 general, the angle of external friction increases with a rise in plate roughness, which is partially
193 consistent with the theory postulated by Frączek [1]. According to the cited author, structural
194 materials are generally much harder than biological materials; therefore, their surface asperities are
195 not deformed within a short period of time. When a friction plate comes into contact with cereal
196 kernels, the asperities on plate surface are embedded into kernel surface and surface grooves are
197 produced. Microprotrusions on plate surface produce “scratches”, cut asperity peaks and chisel out
198 fragments of biological material. Therefore, an increase in plate roughness increases the deformation
199 component of the friction force, which increases the angle of external friction. If the remaining
200 components of the friction force were constant values, the angle of external friction would be a linear
201 function of plate roughness. In this experiment, a linear function was not observed because the
202 friction force is also influenced by adhesion and cohesion components. According to many authors
203 [1,5,6,28], adhesion has the greatest influence on friction. Surface asperities in cereal kernels and
204 structural materials can move the kernel's center of gravity towards or away from the friction plate,
205 which increases or decreases cohesion, respectively. The degree of fit between asperities on the
206 surface of two materials changes the real contact area between a seed and a friction plate, which also
207 influences adhesion. The synergistic effects between surface asperities can be observed when plate
208 roughness is $R_a=0.47$ and $R_a=3.70$, and the external friction angle of cereal seeds increases steeply at
209 these points (Figure 3). Differences in the surface asperities of a friction plate and a seed are
210 particularly manifested when plate roughness is $R_a=0.90$, and they are less pronounced when plate
211 roughness is $R_a=4.78$. The average value of the external friction angle decreases in the above points.

212 According to Frączek [1], surface asperities in cereal kernels are determined not only by species,
213 but also by cultivar, and kernels with various surface roughness can be encountered within the same
214 cultivar. The above observation could explain the differences in the external friction angles of cereal
215 kernels on various steel plates. In this study, the coefficient of external friction on steel plates ranged
216 from 4.12% to 14.19%, and the corresponding ranges of values on the tested plates overlapped.

217 **5. Conclusions**

218 The results of this study indicate that the angle of external friction of cereal kernels is
219 significantly influenced by the roughness of the friction plate. In the tested range of plate roughness
220 values, the angle of external friction ranges from 17.56° in rye kernels to 34.01° in oat kernels. In most
221 cases, the external friction angle is smallest on a plate with surface roughness $R_a=0.90$, and largest on
222 a plate with surface roughness $R_a=5.66$. The difference between the largest and smallest angle of
223 external friction on a given plate ranges from 3.48° to 20.31°.

224 Wheat kernels are most similar and barley kernels are least similar to other cereal species in
225 terms of their external friction angles. The above indicates that wheat kernels constitute good
226 reference material for describing the frictional properties of cereal grain. Wheat and triticale kernels
227 are most similar in terms of their angles of external friction (absence of significant differences in 7
228 out of 9 cases). Significant differences in the analyzed parameter were noted between barley and oat
229 kernels, and between barley and triticale kernels on each friction plate.

230 The surfaces that come into direct contact with cereal kernels should be made of carefully
231 selected structural materials, and they should be characterized by high manufacturing precision to
232 reduce energy consumption during grain processing. Friction plates made of ST3S steel should be
233 characterized by the lowest possible surface roughness. The external friction angle of cereal kernels
234 relative to the general change trend decreases visibly on a steel plate with roughness $R_a=0.9$

235 **Acknowledgments:** This research did not receive any specific grant from funding agencies in the public,
236 commercial, or not-for-profit sectors.

237 **Author Contributions:** Zdzisław Kaliniewicz conceived and designed the experiment; Zbigniew Żuk
238 performed the experiments; Zdzisław Kaliniewicz and Zbigniew Krzysiak analyzed the data; Zdzisław
239 Kaliniewicz contributed materials/analysis tools; Zdzisław Kaliniewicz wrote the paper.

240 **Conflicts of Interest:** The authors declare no conflict of interest.

241 **References**

1. Frączek, J. *Tarcie ziarnistych materiałów roślinnych* [Friction of granular materials of plant origin]. Publisher: Akademia Rolnicza im. H. Kołłątaja w Krakowie, Rozprawy nr 252, Krakow, 1999, pp. 1–114, ISBN 12334189 (in Polish).
2. Frączek, J.; Kaczorowski, J.; Ślipek, Z.; Horabik, J.; Molenda, M. . *Standaryzacja metod pomiaru właściwości fizyko-mechanicznych roślinnych materiałów ziarnistych* [Standardization of methods for the determination of the physical and mechanical properties of granular plant materials]. Publisher: Acta Agrophysica, 92, Rozprawy i monografie, Lublin, 2003, pp. 1–160, ISBN 12344125 (in Polish).
3. Afzalinia, S.; Roberge, M. Physical and mechanical properties of selected forage materials. *Canadian Biosyst. Eng.* **2007**, *49*, 2.23–2.27.
4. Mahjoub, M.; Movahhed, S.; Chenarbon, H.A. Effective parameters on angle of repose, internal and external friction coefficient in two wheat varieties (*Behrang* and *Shirudi*). *Intl J. Biosci.* **2014**, *5*(9), 117–124, <http://dx.doi.org/10.12692/ijb/5.9.117-124>.
5. Molenda, M.; Horabik, J.; Grochowicz, M.; Szot, B. *Tarcie ziarna pszenicy* [Friction of wheat grain]. Publisher: Acta Agrophysica, 4, monografia, Lublin, 1995, pp. 1–88, ISBN 12344125 (in Polish).
6. Horabik, J. *Charakterystyka właściwości fizycznych roślinnych materiałów sypkich istotnych w procesach składowania* [Physical attributes of loose plant material which are significant during storage]. Publisher: Acta Agrophysica, 54, monografia, Lublin, 2001, pp. 1–128, ISBN 12344125 (in Polish).
7. Molenda, M.; Horabik, J. On applicability of a direct shear test for strength estimation of cereal grain. *Part. Part. Syst. Char.* **2004**, *21*, 310–315, <http://dx.doi.org/10.1002/ppsc.200400935>.

261 8. Bakun-Mazor, D.; Hatzor, Y.H.; Glaser, S.D. Dynamic sliding of tetrahedral wedge: The role of interface
262 friction. *Inter. J. Numer. Anal. Methods Geomech.* **2012**, *36*, 327–343, <http://dx.doi.org/10.1002/nag.1009>.

263 9. Sharobeam, Y.F. Apparent dynamic friction coefficients for grain crops. *Misr J. Agric. Eng.* **2007**, *24*(3),
264 557–574.

265 10. Ibrahim, M.M. Determination of dynamic coefficient of friction for some materials for feed pellet under
266 different values of pressure and temperature. *Misr J. Agric. Eng.* **2008**, *25*(4), 1389–1409.

267 11. Kaliniewicz, Z.; Anders, A.; Markowski, P.; Jadwisieńczak, K.; Rawa, T. Influence of cereal seed
268 orientation on external friction coefficients. *Trans. ASABE* **2016**, *59*(3), 1073–1081,
269 <http://dx.doi.org/10.13031/trans.59.11628>.

270 12. Greń, J. *Statystyka matematyczna. Modele i zadania* [Mathematical statistics. Models and tasks]. Publisher: PWN,
271 Warszawa, 1984, pp. 237–280, ISBN 830103699 (in Polish).

272 13. Kaliniewicz, Z.; Markowski, P.; Anders, A.; Jadwisieńczak, B.; Rawa, T.; Szczechowicz, D. Basic physical
273 properties of Norway spruce (*Picea abies* (L.) Karst.) seeds. *Technical Sciences* **2016**, *19*(2), 103–115.

274 14. Kaliniewicz, Z., Rawa, T., 2000. *Laboratorium z maszyn rolniczych* [Laboratory of agricultural machinery].
275 Publisher: Uniwersytet Warmińsko-Mazurski, Olsztyn, pp. 29–41, ISBN 8388343181 (in Polish).

276 15. Mohsenin, N.N. *Physical properties of plant and animal materials*. Publisher: Gordon and Breach Science
277 Public, New York, 1986, pp. 1–891, ISBN 9780677213705.

278 16. Bakier, S.; Konopka, S.; Lipiński, A.; Anders, A.; Obidziński, S.; Bareja, K.; Bajko, E. *Innowacyjne metody w
279 badaniach agrotechnicznych* [Innovative methods in agricultural engineering]. Publisher: Polska Akademia
280 Nauk, Komitet Agrofizyki PAN, Wydawnictwo Naukowe FRNA, Lublin, 2015, pp. 29–66, ISBN
281 9788360489284 (in Polish).

282 17. Rabiej, M. *Statystyka z programem Statistica* [Statistics in Statistica software]. Publisher: Helion, Gliwice, 2012,
283 pp. 1–344, ISBN 9788324641109 (in Polish).

284 18. Hebda, T.; Micek, P. Dependences between geometrical features of cereal grain. *Inżynieria Rolnicza* **2005**, *6*,
285 233–241 (in Polish).

286 19. Hebda, T.; Micek, P. Geometric features of grain for selected corn varieties. *Inżynieria Rolnicza* **2007**, *5*(93),
287 187–193 (in Polish).

288 20. Boac, J.M.; Casada, M.E.; Maghirang, R.G.; Harner III, J.P. Material and interaction properties of selected
289 grains and oilseeds for modeling discrete particles. *Trans ASABE* **2010**, *53*(4), 1201–1216,
290 <http://handle.nal.usda.gov/10113/44454>.

291 21. Kim, K.H.; Shin, S.H.; Park, S.; Park, J.C.; Kang, C.S.; Park, C.S. Relationship between pre-harvest
292 sprouting and functional markers associated with grain weight, TaSUS2-2B, TaGW2-6A, and TaCWI-A1,
293 in Korean wheat cultivars. *SABRAO J. Breed. Genet.* **2014**, *46*(2), 319–328.

294 22. Mabille, F.; Abecassis, J. Parametric modelling of wheat grain morphology: a new perspective. *J. Cereal Sci.*
295 **2003**, *37*, 43–53, <http://dx.doi.org/10.1006/jcrs.2002.0474>.

296 23. Kalkan, F.; Kara, M. Handling, frictional and technological properties of wheat as affected by moisture
297 content and cultivar. *Powder Tech.* **2011**, *213*, 116–122, <http://dx.doi.org/10.1016/j.powtec.2011.07.015>.

298 24. Kram, B.B. Research on the coefficient of external friction of corn grain in humidity function. *Inżynieria
299 Rolnicza* **2006**, *3*, 175–182 (in Polish).

300 25. Kaliniewicz, Z. Analysis of frictional properties of cereal seeds. *African J. Agric. Res.* **2013**, *8*(45), 5611–5621,
301 DOI: 10.5897/AJAR2013.7361.

302 26. Markowski, M.; Majewska, K.; Kwiatkowski, D.; Malkowski, M.; Burdylo, G. Selected geometric and
303 mechanical properties of barley (*Hordeum vulgare* L.) grain. *Intl. J. Food Prop.* **2010**, *13*, 890–903,
304 <http://dx.doi.org/10.1080/1094291090290888>.

305 27. Markowski, M.; Źuk-Gołaszewska, K.; Kwiatkowski, D. Influence of variety on selected physical and
306 mechanical properties of wheat. *Ind. Crops Prod.* **2013**, *47*, 113–117,
307 <http://dx.doi.org/10.1016/j.indcrop.2013.02.024>.

308 28. Kaczorowski, J.; Ślipek, Z. Modelling of the external friction kinetic process in plant materials. Part II.
309 Determination of the real contact area during kinetic friction of plant materials. *Ann. Rev. Agric. Eng.* **1996**,
310 *1*/*1*, 87–94.